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A new characterization of some families of �nite simple groups

M. Foroudi Ghasemabadi (�) – A. Iranmanesh (��) –

M. Ahanjideh (���)

Abstract – Let G be a �nite group. A vanishing element of G is an element g 2 G such
that �.g/ D 0 for some irreducible complex character � of G. Denote by Vo.G/ the set
of the orders of vanishing elements of G. In this paper, we prove that if G is a �nite
group such that Vo.G/ D Vo.M/ and jGj D jM j, then G Š M , where M is a sporadic
simple group, an alternating group, a projective special linear group L2.p/, where p is
an odd prime or a �nite simple Kn-group, where n 2 ¹3; 4º. These results con�rm the
conjecture posed in [17] for the simple groups under study.
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1. Introduction

Let G be a �nite group. A vanishing element of G is an element g 2 G such
that �.g/ D 0 for some irreducible complex character � of G. We will denote by
Van.G/ the set of vanishing elements of G and by Vo.G/ the set of the orders of
elements in Van.G/. According to [3] and [14], we know that the set Vo.G/ can
release some information about the structure of a �nite group G. For instance,
Theorem C of [15] as a strengthening of (Corollary 3, [14]) states that if p is a
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prime divisor of jGj and G does not have any vanishing element of order divisible
by p, then G has a normal Sylow p-subgroup. It is also shown in [36] that if G is
a �nite group such that Vo.G/ D Vo.A5/, then G Š A5, i.e., the alternating group
A5 is characterizable by the set of orders of vanishing elements. According to this
result, one may ask the following question:

are all �nite nonabelian simple groups characterizable by the set of

orders of vanishing elements?

The answer to this question is not a�rmative in general. For example, for the
simple linear group L3.5/, we have Vo.L3.5// D Vo.Aut.L3.5// but L3.5/ 6Š

Aut.L3.5// because jL3.5/j ¤ jAut.L3.5//j. Therefore, in [17], the following
conjecture was put forward.

Conjecture. Let G be a �nite group and let M be a �nite nonabelian simple

group. If Vo.G/ D Vo.M/ and jGj D jM j, then G Š M .

Also, in [17], an a�rmative answer was given to this conjecture for the simple
groups L2.q/, where q 2 ¹5; 7; 8; 9; 17º, L3.4/, A7, Sz.8/ and Sz.32/. In this
paper, we �rst prove that the conjecture is con�rmed for all sporadic simple
groups, the alternating groups and projective special linear group L2.p/, where p

is an odd prime. So, we have the following result.

Theorem A. Let G be a �nite group and M be a sporadic simple group, an

alternating group or a projective special linear group L2.p/, where p is an odd

prime. If jGj D jM j and Vo.G/ D Vo.M/, then G Š M .

The �nite simple group G is called a Kn-group if its order has exactly n distinct
prime divisors, where n 2 N. The following lemma determines all Kn-groups,
where n 2 ¹3; 4º:

Lemma 1.1 ([4], [18], [30], [35]). Let G be a �nite simple Kn-group.

(1) If n D 3, then G is isomorphic to one of the following groups:

A5; A6; L2.7/; L2.8/; L2.17/; L3.3/; U3.3/; U4.2/:

(2) If n D 4, then G is isomorphic to one of the following groups:

(a) A7; A8; A9; A10; M11; M12; J2; L2.16/; L2.25/; L2.49/;

L2.81/; L2.97/; L2.243/; L2.577/; L3.4/; L3.5/; L3.7/;

L3.8/; L3.17/; L4.3/; S4.4/; S4.5/; S4.7/; S4.9/; S6.2/;

OC

8 .2/; G2.3/; U3.4/; U3.5/; U3.7/; U3.8/; U3.9/; U4.3/;

U5.2/; Sz.8/; Sz.32/; 3D4.2/; 2F4.2/0;
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(b) L2.r/, where r is a prime, r2 �1 D 2a:3b:v, v > 3 is a prime, a; b 2 N;

(c) L2.2m/, where m, 2m � 1 and .2m C 1/=3 are primes greater than 3;

(d) L2.3m/, where m , .3m C 1/=4 and .3m � 1/=2 are odd primes.

As a second result of this paper, we show the validity of the conjecture for the
groups listed in Lemma 1.1. In fact, we have the following result.

Theorem B. Let G be a �nite group and let M be a simple K3-group or a

simple K4-group. If jGj D jM j and Vo.G/ D Vo.M/, then G Š M .

Throughout this paper, we use the following notation. Let G be a �nite group, p

be a prime number and m be a positive integer. The number of Sylow p-subgroups
of G is denoted by np.G/. Also, Sylp.G/ denotes the set of all Sylow p-subgroups
of G. The notation pm k jGj means that pm divides jGj but pmC1 does not divide
jGj. Also, by !.G/ we denote the set of orders of elements of group G. All further
notation is standard and can be found in [12], for instance.

2. Preliminaries

One of the main keys for the proof of our results is a result by Dol�, et al.
in [15] on the vanishing prime graph of a �nite group and its relationship with the
Gruenberg–Kegel graph. For this reason, we will recall the required de�nitions in
the following.

Given a �nite set of positive integers X , the prime graph ….X/ is de�ned as the
simple undirected graph whose vertices are the primes p such that there exists an
element of X divisible by p, and two distinct vertices p; q are adjacent if and only
if there exists an element of X divisible by pq. For a �nite group G, the graph
….!.G//, which we denote by GK.G/ is also known as the Gruenberg–Kegel
graph of G. Also, the prime graph ….Vo.G//, which in this paper we denote by
�.G/, is called the vanishing prime graph of G.

We denote by t .G/ the number of connected components of GK.G/ and by
�i .G/; i D 1; 2; : : : ; t .G/, the i th connected component of GK.G/. If the order
of G is even, we set 2 2 �1.G/. We also, denote by �.n/ the set of all primes
dividing n, where n is a natural number. Now jGj can be expressed as the product
of m1; m2; : : : ; mt.G/, where mi ’s are positive integers with �.mi / D �i.G/.
We call m1; m2; : : : ; mt.G/ the order components of G and we write OC.G/ D

¹m1; m2; : : : ; mt.G/º, the set of order components of G. A �nite simple group S is
said to be characterizable by its order components, if S Š G for each �nite group
G such that OC.G/ D OC.S/.
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A 2-Frobenius group is a group G that has proper normal subgroups K and
L such that L is a Frobenius group with kernel K and G=K is a Frobenius group
with kernel L=K. The following lemma determines the structure of the �nite group
with disconnected Gruenberg–Kegel graph:

Lemma 2.1 ([31]). Let G be a �nite group. If t .G/ � 2, then the structure of G

is as follows.

(1) G is either a Frobenius group or a 2-Frobenius group.

(2) G has a normal series 1 E H E K E G such that �.jH j/ [ �.jG=Kj/ �

�1.G/, H is nilpotent and K=H is a nonabelian simple group.

Lemma 2.2 ([8]). Let G be a Frobenius group of even order with kernel F and

complement H . Then

(1) t .G/ D 2, ¹�1.G/; �2.G/º D ¹�.jH j/; �.jF j/º;

(2) if H is a nonsolvable group, then there exists H0 � H such that H0 D

L2.5/�Z, where .2 � 3 � 5; jZj/ D 1 and the Sylow subgroups of Z are cyclic.

Lemma 2.3 ([5]). If G is a 2-Frobenius group with normal series 1 E H E

K E G, then

(1) t .G/ D 2, �1.G/ D �.jG=Kj/ [ �.jH j/ and �2.G/ D �.jK=H j/;

(2) G=K and K=H are cyclic, jG=Kj j .jK=H j � 1/ and G=K � Aut.K=H/;

(3) G is solvable.

A group G is said to be a nearly 2-Frobenius group if there exist two normal
subgroups F and L of G with the following properties: F D F1 � F2 is nilpotent,
where F1 and F2 are normal subgroups of G, furthermore G=F is a Frobenius
group with kernel L=F , G=F1 is a Frobenius group with kernel L=F1, and G=F2

is a 2-Frobenius group.

Lemma 2.4 ([15], [16], [24]). (1) If G is a �nite nonabelian simple group, then

GK.G/ D �.G/, unless G Š A7.

(2) If G is a solvable Frobenius group with Frobenius kernel F and Frobenius

complement H , then either GK.G/ D �.G/ or �.G/ coincides with the connected

component of GK.G/ with vertex set �.jH j/.

(3) If G is a solvable group, then �.G/ has at most two connected components.

Moreover, if �.G/ is disconnected, then G is either a Frobenius group or a nearly

2-Frobenius group.
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(4) Let G be a solvable group with a Fitting subgroup F.G/. If x is a non-

vanishing element of G, then xF.G/ is a 2-element of G=F.G/.

(5) Let N be a normal subgroup of G. If xN 2 Van.G=N /, then xN � Van.G/.

Lemma 2.5. (1) Let S be a simple group with disconnected Gruenberg–Kegel

graph, except U4.2/; U5.2/. If G is a �nite group with OC.G/ D OC.S/, then G

is neither Frobenius nor 2-Frobenius.

(2) Let S 2 ¹U4.2/; U5.2/º. If G is a �nite group with OC.G/ D OC.S/, then

G is a 2-Frobenius group or G Š S .

Proof. (1) is Main Theorem of [28]. Also, according to [28], there are
2-Frobenius groups U and W with OC.U / D OC.U4.2// and OC.W / D

OC.U4.2//. If G is a �nite group with OC.G/ D OC.U4.2// D ¹26:34; 5º and G is
not a 2-Frobenius group, then by (Theorem 1, [28]) and Lemma 2.1, G has a normal
series 1 E H E K E G such that �.jH j/ [ �.jG=Kj/ � �1.G/, H is nilpotent
and K=H is a nonabelian simple group. Since jGj D 26:34:5, according to [33],
K=H Š A5; A6 or U4.2/. If K=H Š A5; A6, then since G=H � Aut.K=H/, we
have 3 j jH j. Let H3 2 Syl3.H/ and G5 2 Syl5.G/. Thus jH3j D 3i , where
i D 2 or 3. Since G does not have an element of order 15, we can conclude
that G5 acts �xed point freely on H3 and hence, 5 j .3i � 1/ .i D 2; 3/, a con-
tradiction. Thus K=H Š U4.2/ which implies that G Š U4.2/, as desired. If
OC.G/ D OC.U5.2// D ¹210:35:5; 11º, and G is not a 2-Frobenius group, then a
similar argument implies that G has a normal series 1 E H E K E G such that
�.jH j/ [ �.jG=Kj/ � �1.G/, H is nilpotent and K=H Š L2.11/; M11; M12 or
U5.2/. So, it is enough to replace the roles of 5 and 11 in the previous argument
to get G Š U5.2/. �

Let p be a prime number. Recall that a character � in Irr.G/ is said to be of
p-defect zero if p does not divide jGj=�.1/. By a fundamental result of R. Brauer
(Theorem 8.17, [23]) if � 2 Irr.G/ is of p-defect zero then, for every element
g 2 G such that p divides o.g/, we have �.g/ D 0.

Lemma 2.6 (Proposition 2.1, [14]). Let S be a nonabelian simple group and p

a prime number. If S is of Lie type, or if p � 5, then there exists � 2 Irr.S/ of

p-defect zero.

Remark 2.7. If � vanishes on a p-element of G, then �.1/ is divisible by p.

Proof. According to (Corollary 22.26, [25]) the proof is straightforward. �
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Lemma 2.8 ([32]). Let G be a nonsolvable group. Then G has a normal series

1 E H E K E G, such that K=H is a direct product of isomorphic nonabelian

simple groups and G=K � Out.K=H/.

Lemma 2.9. Let G be a �nite group of even order. Suppose that there exists

p 2 �.jGj/ such that p and 2 are nonadjacent in GK.G/. If G is nonsolvable,

then G has a normal series 1 E H E K E G such that K=H is a nonabelian

simple group, jG=Kj j jOut.K=H/j and K=H � G=H � Aut.K=H/.

Proof. According to Theorem 3 in [11] and the proof of Lemma 1 in [32], the
proof is straightforward. �

Lemma 2.10 (Theorem 1, [2]). Let G be a �nite nonsolvable simple group

whose order g is divisible by p > g
1
3 . Then G is isomorphic either to L2.p/,

where p > 3 is a prime or L2.p � 1/, where p > 3 is a Fermat prime.

3. Main Results

The following general results play a role in the proof of Theorems A and B.

Lemma 3.1. Let G be a �nite group and let S be a �nite simple group with

disconnected Gruenberg–Kegel graph such that S 6Š A7 and there exists 2 � i �

t .S/ such that for every p 2 �i .S/, we have p k jS j. If Vo.G/ D Vo.S/ and

jGj D jS j, then mi .S/ 2 OC.G/. Particularly, the Gruenberg–Kegel graph of G

is disconnected.

Proof. According to Lemma 2.4(1) and the fact that Vo.G/ D Vo.S/, we have
�.G/ D �.S/ D GK.S/. Since jGj D jS j, there exists 2 � i � t .S/ such that for
every p 2 �i.S/, we have p divides jGj and p2 does not divide jGj. Suppose the
assertion of the lemma is false. Thus there exists q 2 �j .S/, where 1 � j � t .S/

and i ¤ j , such that p and q are adjacent in GK.G/. Since p j jS j, according to
Lemma 2.6 and the fact that Vo.S/ D Vo.G/, we have p 2 Vo.G/. So G has an
element g of order p such that �.g/ D 0 for some irreducible complex character �

of G. Now, Remark 2.7 implies that p divides �.1/. Since p k jS j and jS j D jGj,
� is an irreducible character of p-defect zero of G. Thus p and q are adjacent in
�.G/, which is a contradiction to the fact that �.G/ D �.S/ D GK.S/. �

According to the above lemma, we have the following corollary.

Corollary 3.2. Let G be a �nite group and S be a �nite simple group

with disconnected Gruenberg–Kegel graph except A7. Assume that for every

p 2 �i .S/, where 2 � i � t .S/, we have p k jS j. If Vo.G/ D Vo.S/ and

jGj D jS j, then OC.G/ D OC.S/.
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Proof of Theorem A. The proof of Theorem A falls naturally into three
parts.

Part 1. Let M be a sporadic simple group. Then according to [31], the
Gruenberg–Kegel graph components of M are shown in Table 1 and hence, M

and G satisfy the conditions of Corollary 3.2. Thus according to [6], we have
G Š M .

Table 1. The Gruenberg–Kegel graph components of some simple groups

M Restriction on M �1.M / m2 m3 m4 m5 m6

An 6 < n D p; p C 1; p C 2 nŠ
2p

p

not both n; n � 2 prime

Ap 6 < p
.p/Š

2p.p�2/
p p � 2

p; p � 2 are primes
M12 ¹2; 3; 5º 11
J2 ¹2; 3; 5º 7
Ru ¹2; 3; 5; 7; 13º 29
He ¹2; 3; 5; 7º 17
McL ¹2; 3; 5; 7º 11
Co1 ¹2; 3; 5; 7; 11; 13º 23
Co3 ¹2; 3; 5; 7; 11º 23
F i22 ¹2; 3; 5; 7; 11º 13
HN ¹2; 3; 5; 7; 11º 19

L2.q/ 3 < q � ".mod4/, " D ˙1 �.q � "/ �.q/
qC"

2
L2.q/ 3 < q, q even ¹2º q � 1 q C 1

L3.4/ ¹2º 32 5 7

L3.q/ q ¤ 2; 4 �.q.q2 � 1//
q3�1

.q�1/.3;q�1/
L4.3/ ¹2; 3; 5º 13

S4.q/ �.q.q2 � 1//
q2C1

.2;q�1/
S6.2/ ¹2; 3; 5º 7

O
C
8

.2/ ¹2; 3; 5º 7
G2.3/ ¹2; 3º 7 13

U3.q/ �.q.q2 � 1//
q3C1

.qC1/.3;qC1/
U4.2/ ¹2; 3º 5
U4.3/ ¹2; 3º 5 7
U5.2/ ¹2; 3; 5º 11
3D4.2/ ¹2; 3; 7º 13
2F 0

4
.2/ ¹2; 3; 5º 13

M11 ¹2; 3º 5 11
M23 ¹2; 3; 5; 7º 11 23
M24 ¹2; 3; 5; 7º 11 23
J3 ¹2; 3; 5º 17 19
HiS ¹2; 3; 5º 7 11
Suz ¹2; 3; 5; 7º 11 13
Co2 ¹2; 3; 5; 7º 11 23
F i23 ¹2; 3; 5; 7; 11; 13º 17 23
F3 ¹2; 3; 5;7; 13º 19 31
F2 ¹2; 3; 5; 7; 11; 13; 17; 19; 23º 31 47
M22 ¹2; 3º 5 7 11

J1 ¹2; 3; 5º 7 11 19

O0N ¹2; 3; 5; 7º 11 19 31

LyS ¹2; 3; 5; 7; 11º 31 37 67

F i0
24

¹2; 3; 5; 7; 11; 13º 17 23 29

F1 ¹2; 3; 5; 7; 11; 13; 17; 19; 23; 41 59 71

29; 31; 47º
J4 ¹2; 3; 5; 7; 11º 23 29 31 37 43

Part 2. Let M D An be an alternating group. If GK.G/ is not connected,
then according to Table 1, one of the numbers n, n � 1 or n � 2 is prime. Thus
Corollary 3.2 and [1] imply that G Š M . So, to complete the proof, we should
consider the case GK.G/ is connected, i.e., n; n � 1 and n � 2 are not primes.
We will prove the cases n D 10 and n � 16, separately.
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� If n D 10, then Vo.G/ D ¹2; : : : ; 10; 12; 15; 21º and jGj D 27:34:52:7. Since
7 divides jGj and 72 does not divide jGj, Remark 2.7 implies that G has an
irreducible character of 7-defect zero. Thus G does not have any element of
order 14. Now we claim that G is nonsolvable. If not, then G has a subgroup
K of order 35. We can easily see that K is nilpotent and hence, G has an
element of order 35. But this is a contradiction to the fact that G has an
irreducible character of 7-defect zero and 35 62 Vo.G/.

Now from Lemma 2.9 we deduce that G has a normal series 1 E H E

K E G such that K=H is a nonabelian simple group, jG=Kj j jOut.K=H/j

and K=H � G=H � Aut.K=H/. According to jGj and [33], K=H is one
of the simple groups An, where n 2 ¹5; 6; 7; 8; 9; 10º, U4.2/, L3.4/, L2.7/,
L2.8/, U3.3/, J2. Moreover, we know that in these cases, Out.K=H/ is a
¹2; 3º-group. So we have the following three characterizable cases.

Case 1. If 7 does not divide jK=H j, then K=H is one of the groups A5,
A6 or U4.2/. In this case, we can easily see that jH j D 35k, where 35 and
k are coprimes. Let P be a Sylow 7-subgroup H , then the Frattini argument
implies that G D HNG.P / and hence, 5 j jCG.P /j. Thus G has an element
of order 35. But this is a contradiction to the fact that G has an irreducible
character of 7-defect zero and 35 62 Vo.G/.

Case 2. If 7 divides jK=H j and 5 divides jH j, then K=H is one of the
simple groups An, where n 2 ¹7; 8; 9º, L3.4/, L2.7/, L2.8/, U3.3/. Let P be a
Sylow 5-subgroup H , then the Frattini argument implies that G D HNG.P /.
Since 7 j jG=H j, 7 j jNG.P /j. Now we can see that 7 j jCG.P /j. Thus G has
an element of order 35 and we can get a contradiction similar to Case 1.

Case 3. If 7 divides jK=H j and 5 does not divide jH j, then according to
jOut.K=H/j, K=H D J2; A10. Let K=H D A10. According to jGj, we can
easily conclude that G ŠA10. Let K=H DJ2. Since jG=Kj j jOut.K=H/jD2

and jGj=jK=H j D 3, we conclude that G is a central extension of a group of
order 3 by J2. Also, according to the order of the Schur Multiplier of J2, we
have this extension splits. Thus G D C3 � J2, where C3 is the cyclic group
of order 3. It is easy to see that in this case 30 2 Vo.C3 � J2/, which is a
contradiction to the fact that 30 62 Vo.G/.

� Let n � 16 and rn be the largest prime not exceeding n. Since Remark 2.7
enables us to follow the proofs in [29] to conclude G Š M , here we just
mention the sketch of the proof in the following three steps.
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Step 1. In this step, we prove that G has a normal series 1 E H E K E G

such that K=H is a nonabelian simple group and tn.1/ j jK=H j. (tn.k/ D
Qk

iD1.
Q

n
iC1

<p�
n
i

pi /
i , where pj is de�ned as 1 if there is no prime between

n
j C1

and n
j
.)

Let 1 D H0 < H1 < � � � < Hm D G be a chief series of G. Suppose p

is a prime dividing tn.1/. Since p k jGj, we can assume p j jHiC1=Hi j and
p − jHi j. Moreover, we can assume that p0 − jHi j, for every p0 j tn.1/. Put
K WD HiC1 and H WD Hi . Since K=H is a direct product of isomorphic
simple groups and p k jK=H j, K=H is a group of order p or a nonabelian
simple group. If K=H is cyclic, then G=H

CG=H .K=H/
is embedded in the cyclic

group of order p � 1. Since n � 16, there is a prime q (q ¤ p) such that
q j tn.1/. An easy calculation shows that q − .p � 1/ and p − .q � 1/. Thus
q 2 �.jCG=H .K=H/j/ which implies pq 2 !.G/. Since p k jGj, Remark 2.7
yields pq 2 Vo.G/ D Vo.An/ D !.An/, which is a contradiction to the fact
that p C q > n. Therefore, K=H is a nonabelian simple group. To complete
the proof of this step, let p0 j tn.1/ and p0 − jK=H j. Thus p0 j jG=Kj and
by the Frattini argument, we have G D NG.P /K, where P 2 Sylp0.K/. This
implies that G has a subgroup of order pp0 which is a contradiction, because
p0 − .p � 1/, p − .p0 � 1/ and pp0 62 !.G/.

Step 2. Let 16 � n � 82 and assume that n; n � 1 and n � 2 are
not primes. According to step 1 and [33], we can see that G has a normal
series 1 E H E K E G such that K=H Š Am, rn � m � n. Let
N be the inverse image of CG=H .K=H/ in G. Thus Am � G=N � Sm.
Moreover, by an easy calculation, we can see that G=N Š An or Sn and
hence, G Š An. For instance, let n D 27. We have Am � G=N � Sm,
where m 2 ¹23; 24; 25; 26; 27º. If m D 27, then since jGj D jA27j, we
can easily conclude that G Š M , as desired. So, it is enough to get a
contradiction for the case m ¤ 27. In this case, we have jN j 2 ¹33; 2:33:13,
33:13; 2:33:52:13; 33:52:13; 24:34:52:13; 23:34:52:13º. If jN j D 33, then since
8:17 2 !.A27/ D Vo.A27/, 8:17 2 !.G/ and hence, we can easily see that
8:17 2 !.Am/ or !.Sm/, where 23 � m � 26, a contradiction. Thus 13 j jN j.
If N13 2 Syl13.N /, then the Frattini argument shows that 19 j jNG.N13/j

and since jNG.N13/=CG.N13/j j 12, we conclude that 13:19 2 !.G/. Now,
Remark 2.7 implies that 13:19 2 Vo.G/ D Vo.A27/, a contradiction.
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Step 3. Let n � 83 and n; n � 1 and n � 2 are not primes. According
to Step 1, G has a normal series 1 E H E K E G such that K=H is a
nonabelian simple group. Also, by Remark 2.7, we can easily follow (Lemma
2.1, [29]) to prove that tn.6/ j jK=H j. This is the main key to show that there
exists a normal subgroup N of G such that G=N Š Am or Sm, rn � m � n

in (Lemma 2.4, [29]). Now, it is enough to show that n D m. If m ¤ n,
then we derive a contradiction. Let q be the largest prime factor of nŠ=mŠ.
In (Theorem 2.1, [29]), the following results are obtained:

(1) q � 17 and q � n � m C 3;

(2) if Am contains the elements of order t , where gcd.t; q/ D 1, then
tq 2 !.G/.

Since the proof of the above statements relies on the fact that G=N Š Am

or Sm, we have the same statements here. Put p1 WD rm. If m � p1 > 2, then
we take p2 D rm�p1

. Also, if m� .p1 Cp2/ > 2, then take p3 D rm�.p1Cp2/,
and so on. Thus there exist certainly some odd primes p1 > p2 > � � � > pk

such that m � 2 � p1 C p2 C � � � C pk � m. If q ¤ pi , 1 � i � k,
then from the fact that Am has an element of order p1p2 : : : pk, we see that
G has elements of order qp1p2 : : : pk from (2). According to (1), we have
p1 C p2 C � � � C pk C q � .m � 2/ C .n � m C 3/ > n which implies
that qp1p2 : : : pk 62 !.An/. But q k jGj and hence, qp1p2 : : : pk 62 !.G/,
a contradiction. Therefore, there exists 1 � i � k such that q D pi . Put
l D p1 Cp2 C� � �Cpi�1. Thus q D rm�l and hence, 17 � q D pi � m� l �

2pi . We know that there exists another prime p0
i ,

1
2
.m � l/ < p0

i < m � l and
p0

i < pi . If p1 C p2 C � � � C pi�1 C p0
i � m � 2, then we can similarly

get a contradiction. Thus p1 C p2 C � � � C pi�1 C p0
i < m � 2 and we

can assume that m0 D m � .p1 C p2 C � � � C pi�1 C p0
i / < 1

2
.m � l/.

We take again q1 D rm0 , q2 D rm0�q1
; : : : ; qs D rm0�.q1Cq2C���Cqs�1/ such that

m0 �2 � q1 Cq2C� � �Cps�1 � m0. Thus p1 > p2 > � � � > pi�1 > p0
i > q1 >

q2 > � � � > qs and m�2 � p1 Cp2 C� � �Cpi�1 Cp0
i Cq1 Cq2 C� � �Cqs � m.

Moreover, qi ¤ q, i D 1; 2; : : : ; s, and hance, we can get a contradiction as
above.

Part 3. Let M D L2.p/, where p is an odd prime. Since Vo.G/ D Vo.L2.p//,
according to Lemma 2.4(1) and Table 1, we have �.G/ D GK.L2.p// and
G is a nonsolvable group. Thus Lemma 2.9 implies that G has a normal se-
ries 1 E H E K E G such that K=H is a nonabelian simple group and
jG=Kj j jOut.K=H/j. According to jGj, we can conclude that p j jG=Kj, p j jH j

or p j jK=H j.
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If p j jG=Kj, then as in the proof of Step 2 in [27], we can get a contradiction.
If p j jH j, then the Frattini argument implies that G D NG.P /H , where P is
a Sylow p-subgroup of H . Also, since for every k > 1, pk is not an element
of Vo.G/, we have CG.P / D P . Thus G=H is isomorphic to a homomorphic
image of NG.P /=P . But NG.P /=P is embedded in the cyclic group Aut.P /.
Thus G=H is cyclic, which is a contradiction to the fact that G=H is not solvable.
Therefore, p j jK=H j and according to jGj and Lemma 2.10, we have G Š L2.p/,
as desired. �

Proof of Theorem B. We have divided the proof of Theorem B into a se-
quence of cases.

Case 1. Let M D S6.2/. According to Table 1 and Corollary 3.2, we can see
that OC.G/ D OC.S6.2//. Thus Lemmas 2.1, 2.5, and 2.9 imply that G has a
normal series 1 E H E K E G such that K=H is a nonabelian simple group,
jG=Kj j jOut.K=H/j and K=H � G=H � Aut.K=H/. According to [33], K=H

is isomorphic to one the following simple groups

A5; A6; A7; A8; A9; U4.2/; L2.7/; L2.8/; U3.3/; L3.4/; S6.2/:

If K=H Š A5; A6; U4.2/, then 7 does not divide jG=H j. Since 5 2 Vo.G=H/,
Van.G=H/ contains an element xH of order 5. Without loss of generality we can
assume that o.x/ D 5. Thus xH is a subset of Van.G/. Fix L D< x > H .
If R 2 Syl7.H/, then Frattini argument implies that L D NL.R/H . Since
5 j ŒL W H� D ŒNL.R/ W NH .R/�, we deduce that 5 j jNL.R/j. Thus there exist
h 2 H and 1 � i � 4 such that xih 2 NL.R/ has order 5. Since G does not contain
any element of order 35, < xih > acts �xed point freely on R and hence, 5 j 7�1,
a contradiction. If K=H Š L2.7/; L2.8/; U3.3/, then 5 does not divide jG=H j and
7 j jG=H j. Thus replacing the rules of 5 and 7 in the previous argument leads us to
get a contradiction. If K=H Š A7; A8; L3.4/, then replacing 7 with 3 and 5 with 7
in the argument given in the above leads us to get a contradiction. Let K=H Š A9.
If G=H Š S9, then jH j D 2 and if G=H Š A9, then jH j D 8. Now applying the
previous argument for 2 and 7 shows that 7 j .jH j � 1/ and hence, G=H Š A9

and jH j D 8. If H1 is a normal minimal subgroup of G such that H1 � H , then
applying the above argument shows that 7 j .jH1j � 1/ and hence, jH1j D 8.
Thus H is a normal minimal subgroup of G and hence, H Š Z2 � Z2 � Z2.
Therefore, G=CG.H/ � Aut.H/ Š GL3.2/. Therefore, 26:33:5 j jCG.H/j and
jCG.H/j j jGj=7. Also, CG.H/=H is a normal subgroup of G=H D K=H and
hence, simplicity of K=H forces CG.H/=H D K=H or CG.H/=H D 1, which is
a contradiction. Therefore K=H Š S6.2/ which implies that G Š S6.2/.
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Case 2. Let M D U5.2/. According to Table 1 and Corollary 3.2, we have
OC.M/ D OC.G/. It follows from Lemma 2.5 that G is a 2-Frobenius group
or G Š M . We claim that G is not a 2-Frobenius group. Conversely, suppose
that G is a 2-Frobenius group with normal series 1 E H E K E G. Since
OC.M/ D OC.G/, according to Table 1 and Lemma 2.3, we have �.jK=H j/ D

�2.G/ D ¹11º, jK=H j D 11 and jG=Kj j 10. Thus by jU5.2/j D 210:35:5:11,
jH j 2 ¹29:35:5; 210:35; 29:35º.

Let Q 2 Syl11.K/. Since Q acts �xed point freely on H , Thompson’s nilpo-
tency criterion shows that H is nilpotent. Thus if P 2 Sylp.H/, where p j jH j,
then P E K and hence, 11 j .jP j � 1/. This forces jH j D 210:35 which implies
that jG=Kj D 5. According to [12], 4; 8 2 !.G/. Thus if P2 2 Syl2.H/, then P2

is not an elementary abelian 2-group. Now, assume that N is a normal minimal
subgroup of G such that N � P2. Since G is solvable, we conclude that N is an
elementary abelian 2-group of order 2t , where t > 0. Thus our assumption on
P2 implies that 1 < 2t < 210. But K=H acts �xed point freely on N and hence,
11 j .2t �1/, which is impossible by checking the di�erent values of t . This shows
that G is not 2-Frobenius and hence, G Š M .

The proof for M D U4.2/ is similar and we omit the details for the sake of
convenience.

Case 3. Let M D S4.7/. Note that jS4.7/j D jGj D 28:32:52:74 and the
components of �.G/ are ¹2; 3; 7º and ¹5º. Let G be solvable and let F.G/ be
the Fitting subgroup of G. According to Lemma 2.4(2-3), it is easy to see that
G is a nearly 2-Frobenius group. If 5 2 �.jF.G/j/, then since 25 2 Vo.G/,
we deduce that 25 2 !.G/ and hence, P 2 Syl5.F.G// is a cyclic nor-
mal subgroup of G. Therefore, G=CG.P / is a cyclic group which its order di-
vides 4. Thus considering the components of �.G/, shows that 5 is an isolated
point in �.G/, and Lemma 2.4(4) implies that G=F.G/ is a 2-group. Since G

is nearly 2-Frobenius, F.G/=F2 � F.G=F2/ and hence, G=F2=F.G=F2/ is a
2-group. Thus .G=F2/=F.G=F2/ is not a Frobenius group and hence, G=F2 is not a
2-Frobenius group, which contradicts to the fact that G is nearly 2-Frobenius.
Thus 5 62 �.jF.G/j/. If there exists an element x 2 G such that o.x/ D 5r , where
r 2 ¹2; 3; 7º, then since 5r 62 Vo.G/, x is a non-vanishing element. Lemma 2.4(4)
now implies that o.xF.G// j 2i and hence, 5 2 �.jF.G/j/, which is a contra-
diction. This shows that GK.G/ D �.G/ D �.S4.7// D GK.S4.7///. Therefore,
OC.G/ D OC.S4.7//. Now according to [19] we have G Š S4.7/, this contradicts
the fact that G is solvable. So G is not solvable and by Lemma 2.8, G has a normal
series 1 E H E K E G, such that K=H is a direct product of isomorphic non-
abelian simple groups and jG=Kj � jOut.K=H/j. Considering the orders of S4.7/
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and the �nite simple K3-groups and K4-groups show that K=H Š A5, A5 � A5;

A6; L2.7/; L2.7/ � L2.7/; L2.8/, A7, A8, L2.49/; L3.4/ or S4.7/.
If K=H 6Š A5, A5 � A5, A6, L2.7/; L2.7/ � L2.7/, L2.8/ and S4.7/, then

G=H contains an element xH of order 5. Also, for P 2 Syl7.H/, considering
the order of G=H forces 1 < jP j � 73. Since G D NG.P /H , without loss of
generality, we can assume that x 2 NG.P / and x is a 5-element. Also, since G=H

does not contain any normal 5-subgroup, we can assume by (Theorem C, [15])
that xH 2 Van.G=H/ and hence, Lemma 2.4(iv) shows that xH � Van.G/. Thus
xP � Van.G/. On the other hand, 5 is an isolated point in �.G/, so hxi acts
�xed point freely on P . Thus 5 j jP j � 1, which is impossible. If K=H Š L2.7/;

L2.7/�L2.7/ or L2.8/, then replacing the roles of 5 and 7 in the previous argument
and if K=H Š A5 and A6, then replacing 5 with 3 and 7 with 5 and the relative
subgroups in the previous argument lead us to get a contradiction. Also, since
25 2 Vo.G/, 25 2 !.G/, so K=H 6Š A5 � A5.This shows that K=H Š S4.7/ and
hence, G Š S4.7/, as claimed.

Case 4. Let M D L2.49/. According to Table 1 and Lemma 2.4(1), we obtain
that G is nonsolvable. Since jL2.49/j D 24:3:52:72, Remark 2.7 implies that
G has an irreducible character of 3-defect zero. Thus by Lemma 2.8, G has a
normal series 1 E H E K E G such that K=H Š S1 � � � � � St , where
Si , 1 � i � t , is a simple K3-group or a simple K4-group and for every
1 � i; j � t , we have Si Š Sj . Since 3 j jSi j, where 1 � i � t , and 3 k jGj,
we conclude that K=H Š S , where S is a simple K3-group or a simple K4-group
and K=H � G=H � Aut.K=H/.

Subcase 1. Let K=H be a simple K3-group. Since jK=H j j jGj and 3 k jGj,
checking the orders of simple K3-groups shows that K=H 2 ¹A5; L2.7/º. If
K=H Š A5, then A5 � G=H � S5. It follows that 22 � 3 � 5 j jG=H j and
jG=H j j 23 � 3 � 5. Thus jH j D 72 � 2 � 5 or jH j D 72 � 22 � 5. Let P 2 Syl5.H/ .
By Farttini’s argument, we have G D NG.P /H . Thus G=H Š NG.P /=NH .P /

and 3 j jNG.P /j. Put Q 2 Syl3.NG.P //. Since G has an irreducible character of
3-defect zero and 15 62 Vo.M/ D Vo.G/, we deduce that 15 62 !.G/. Thus Q acts
�xed point freely on P and hence, 3 D jQj j .jP j�1/ D 5�1, which is impossible.
If K=H Š L2.7/, then we conclude that G=H � Aut.L2.7//. Thus 23:3:7 j jG=H j

and jG=H j j 24:3:7. Therefore, jH j D 52 � 2 � 7 or jH j D 52 � 7, which implies
that n5.H/ D 1. If P 2 Syl5.H/, then P E G and we have P Š Z25, because

25 2 Vo.M/ D Vo.G/ and P 2 Syl5.G/. Since P � CG.P /,
jNG.P /j

jCG.P /j
j 4. Thus

jGj

jCG.P /j
j 4 and hence,

jGj

4
j jCG.P /j, which implies that 3:25 2 !.G/. But G
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has an irreducible character of 3-defect zero and hence, 3:25 2 Vo.G/ D Vo.M/,
a contradiction.

Subcase 2. Assume that K=H is a simple K4-group. If K=H is isomorphic
to one of the groups listed in Lemma 1.1 (2), then comparing the orders of these
groups and K=H forces K=H Š L2.49/ and hence, H D 1 and K D G Š L2.49/,
as desired. If K=H Š L2.r/, then r 2 ¹2; 3; 5; 7º, which is impossible. If
K=H Š L2.2m/, where m � 5, 2m � 1 D u and .2m C 1/=3 D t are primes,
then since u; t 2 �.jGj/ D ¹2; 3; 5; 7º, we get a contradiction. Finally, assume
that K=H D L2.3m/, where m and .3m C 1/=4 D t are odd primes. But
t 2 �.jGj/ D ¹2; 3; 5; 7º, which is a contradiction.

Case 5. Let M D L2.2m/, where 2m C 1=3 D t and 2m � 1 D u, are primes
greater than 3. Then according to Table 1 and Lemma 2.4(1), we obtain that G is
nonsolvable. Thus Lemma 2.3 implies that G is not a 2-Frobenius group. Also,
if G is a Frobenius group with kernel F and complement H , then according
to Lemma 2.2, we have OC.G/ D ¹jF j; jH jº. Since u k jGj and u 2 OC.M/,
we obtain u 2 OC.G/, by Lemma 3.1. If u D jF j, then jH j j .u � 1/. Thus
2m.2m C 1/ j .2m � 2/, which is impossible. If u D jH j and P 2 Sylt .F /, then
since F is nilpotent, we see that P E G and hence, H acts �xed point freely on
P . Thus, .2m � 1/ D jH j j .jP j � 1/ D 2.2m�1 � 1/=3, which is impossible. Thus
according to Lemma 2.1, G has a normal series 1 E K E H E G and K=H is a
nonabelian simple group such that u j jK=H j.

Subcase 1. If K=H is a simple K3-group, then K=H 2 ¹A5; L2.7/º, because
3 k jGj and hence, 3 k jK=H j. We have u 2 �.jK=H j/ and hence, u D 5 or u D 7.
Since u D 2m � 1, we deduce that u ¤ 5 and hence K=H 6Š A5. If u D 7, then
m D 3, which is a contradiction.

Subcase 2. If K=H is a simple K4-group, then since 3 k jGj, we deduce that
3 k jK=H j and hence, K=H 2 ¹L2.16/; L2.25/; L2.49/; L3.5/; U3.7/, L2.2m0

/;

L2.r/º, under conditions of Lemma 1.1(2). If K=H Š L2.16/ or L2.25/, then
2m � 1 2 ¹5; 13; 17; 31; 43º, which is impossible. If K=H Š L2.49/, then u D 3,
which is impossible. Now, if K=H Š L2.r/, then r 2 ¹u; tº. If r D u D 2m � 1,
then jL2.r/j D r.r2 � 1/=2 D .2m � 1/2m.2m�1 � 1/ j .2m � 1/2m.2m C 1/, and
hence .2m�1 � 1/ j .2m C 1/. It follows that m D 2 or m D 3, which is impossible.
If r D t , then r D t D 2m C 1=3. Since u j jL2.r/j D r.r � 1/.r C 1/=2, we have
2m �1 D u j .t �1/=2 D .2m�1 �1/=3 or 2m �1 D u j .t C1/=2 D 2.2m�2 C1/=3,
which is impossible. Finally, if K=H Š L2.2m0

/, then 2m0
� 1 is a prime number.
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Thus 2m0
� 1 D u or 2m0

� 1 D t . But t j .2m C 1/, and 2m0
� 1 D u. From this,

we have 2m0
� 1 D u D 2m � 1, and hence m0 D m. It shows that G Š L2.2m/, as

claimed.

Case 6. Let M D L2.25/. According to Table 1, we obtain that �.L2.25//

has three components. Thus Lemmas 2.4 and 3.1 show that G is a nonsolvable
group and 13 2 OC.G/. Since G is nonsolvable, G is not 2-Frobenius. Also,
Lemma 2.2 and checking the orders imply that G is not a Frobenius group. Thus
according to Lemma 2.1, G has a normal series 1 E K E H E G such that
13 2 �.jK=H j/. Furthermore, jK=H j 2 ¹13 � p˛ � qˇ ; 13 � 2˛ � 3ˇ � 5
º, where
p; q 2 ¹2; 3; 5º and ˛; ˇ; 
 2 N. If jK=H j D 13 � p˛ � qˇ , then by checking
the orders of simple K3-groups in Lemma 1.1(1), we can easily get a contradiction.
Thus jK=H j D 13�2˛ �3ˇ �5
 and K=H is one of the groups listed in Lemma 1.1(2).
If K=H is a group listed in Lemma 1.1(2-a), then checking the orders of the
groups shows that K=H Š L2.25/. Thus jGj D jK=H j which implies that
G D K Š L2.25/, as desired. If K=H is a group listed in Lemma 1.1(2-b,d),
then we can see that 7 2 �.jK=H j/, a contradiction. Also, if K=H is a group
listed in Lemma 1.1(2-c), then K=H Š L2.2m/, where m � 5 and 2m � 1 D u is
prime. Thus u 62 ¹3; 5; 13º, which is a contradiction.

If M D L2.81/, then replacing 13 with 41 in the argument given for L2.25/

leads us to see that G Š L2.81/.

Case 7. Let M D L2.3m/, under conditions of Lemma 1.1(2-d). According to
Table 1 and Lemma 2.4(1), we obtain that G is nonsolvable. Thus by Lemma 2.8,
G has a normal series 1 E K E H E G such that K=H Š S1 � � � � � Sl ,
where Si , 1 � i � l , is a simple K3-group or a simple K4-group and for every
1 � i; j � t , we have Si Š Sj . Since jL2.3m/j D 3m:.3m � 1/:.3m C 1/=2,
conditions of Lemma 1.1(2-d) show that 4 k jGj and G has an irreducible character
of u-defect zero, where t D .3m C 1/=4. Since 4 k jGj and 4 j jSi j, we deduce that
l D 1 and 4 k jK=H j. Therefore, K=H is a simple K3-group or a simple K4-group.
Let u j .3m � 1/=2, under conditions of Lemma 1.1(2-d).

Subcase 1. Let K=H be a simple K3-group. Since 4 k jK=H j, we deduce that
K=H Š A5, by checking the orders of simple K3-groups. Thus 5 2 �.jGj/ D

¹2; 3; u; tº. Therefore, 5 j .3m � 1/ or 5 j .3m C 1/. This shows that 2 j m, which
is a contradiction with conditions of Lemma 1.1(2-d).

Subcase 2. Assume that K=H is a simple K4-group. Since 4 k jK=H j, we
deduce that K=H Š L2.3e/ or L2.r/ satisfying conditions of Lemma 1.1(2-b,d).



72 M. Foroudi Ghasemabadi – A. Iranmanesh – M. Ahanjideh

First let K=H Š L2.3e/. Since �.jK=H j/ D �.jGj/ and jK=H j j jGj, we deduce
that e � m and u; t 2 �.jK=H j/. If u j .3m � 1/=2 and u j .3e � 1/=2, then e D m

and hence, K=H Š M . Since jGj D jM j D jK=H j, we deduce that H D 1 and
K D G and hence, G Š M , as desired. Also, if t j .3m C 1/=4 and t j .3e � 1/=2,
then t j gcd..3m C1/=4; .3e �1/=2/ and hence, 2m j e. This forces e is even, which
is a contradiction.

If K=H Š L2.r/, then we can see at once that r 2 ¹t; uº. If r D u, then
since jK=H j D u.u2 � 1/=2 and either 3m � 1 D 2u or 2:112, we deduce that
jK=H j D 3.3m � 1/.3m C 1/.3m�1 � 1/=8 j jGj or jK=H j D 22:3:5:11. Thus
either .3m�1 � 1/=4 j 3m�1 or t D .35 C 1/=4 j 22:3:5, which is impossible. If
r D t , then since jK=H j D t .t2 � 1/=2, we deduce that u j .t � 1/ or .t C 1/,
which is a contradiction, because 3m C 1 D 4t .

If M 2 ¹L3.4/; L2.8/; Sz.8/; Sz.32/º, then according to [17], we have G Š

M . Thus it remains to consider the case in which M is one of the groups L2.16/,
L3.q/, where q 2 ¹3; 5; 7; 8; 17º, U3.q/, where q 2 ¹3; 4; 5; 7; 8; 9º, S4.q/, where
q 2 ¹4; 5; 9º, L4.3/, U4.3/, D4.2/, G2.3/, 3D4.2/, 2F4.2/0. Thus M satis�es
the conditions of Corollary 3.2 and hence, we have OC.G/ D OC.M/. If M 2

¹L3.3/; U3.3/; U3.4/; U3.5/; 2F4.2/0º, then similar argument for the group U4.2/

in Lemma 2.5 shows that G Š M . Moreover, according to [7], [9], [10], [13], [19],
[20], [21] , [22], [26], [34] the remaining groups are characterizable by their order
components and hence the proof of Theorem B is complete. �
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