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Test modules for �atness

Rafail Alizade (�) – Yılmaz Durğun (��)

Abstract – A right R-module M is said to be a test module for �atness (shortly: an f-test
module) provided for each left R-module N , Tor.M; N / D 0 implies N is �at. f-test
modules are a �at version of the Whitehead test modules for injectivity de�ned by
Trlifaj. In this paper the properties of f-test modules are investigated and are used
to characterize various families of rings. The structure of a ring over which every
(�nitely generated) right R-module is �at or f-test is investigated. Abelian groups that
are Whitehead test modules for injectivity or f-test are characterized.
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1. Introduction

In this paper, we study and analyze the �atness of a module. It consists in eval-
uations of appropriate abelian group-valued functors Tor. A right R-module M

is �at if and only if Tor1.M; N / D 0 for all left R-modules N 2 R � Mod.
We would like to check the �atness of M by calculating a single Tor group using
�xed module N .

Recall that a right R-module M is said to be �at (projective, injective, respec-
tively) provided that the functor M ˝R � (HomR.M; �/, HomR.�; M/, respec-
tively) preserves short exact sequences. There are two basic results on testing �at-
ness. First, by using Baer’s Criterion, �atness can be tested using only all (�nitely
generated) ideals. Then Lazard’s Theorem, saying that any �at module is a direct
limit (over a directed index set) of �nitely generated free modules.
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A right R-module N is called a Whitehead test module for projectivity (or a
p-test module) if a right R-module M is projective whenever ExtR.M; N / D 0.
Dually, a right R-module M is called a Whitehead test module for injectivity

(or an i-test module) if a right R-module N is injective wheneverExtR.M; N / D 0.
If R D Z, then the question “Is Z a p-test Z-module?” is exactly the well-known
Whitehead problem. p-test modules were introduced and studied by Trlifaj in [15].
In that paper, the author calls a ring R right Ext-ring if each right module is
either p-test or injective. Ext-rings have been studied further in [17, 16]. i-test
modules were introduced and studied by Trlifaj in [17]. In that paper, the author
also considered rings over which each (�nitely generated ) module is either i-test
or projective, and referred to such rings as (�nitely saturated rings) fully saturated

rings. It is easy to see that fully saturated rings and Ext-rings are the same. Fully
saturated rings have been studied further in [6].

In a recent paper [9], in contrast to the well-known notion of relative projectiv-
ity, Holston, Lopez-Permouth, Mastromatteo and Simental-Rodriguez introduced
the notion of subprojectivity. Namely, a module M is said to be N -subprojective

if for every epimorphism gW B ! N and homomorphism f W M ! N there exists
a homomorphism hW M ! B such that g ı h D f . For a module M , the subpro-

jectivity domain of M , Pr�1.M/, is de�ned to be the collection of all modules
N such that M is N -subprojective, that is Pr�1.M/ D ¹N 2 Mod � Rj M is N-
subprojectiveº. A module MR is projective if and only if Pr�1.M/ D Mod � R.
If N is projective, then M is vacuously N -subprojective. So, the smallest pos-
sible subprojectivity domain is the class of projective modules. A module with
such a subprojectivity domain is de�ned in [9] to be p-indigent. p-indigent mod-
ules have been studied further in [5] where the author investigated the structure of
rings over which every (simple) module is p-indigent or projective. In the same
paper, the author proved that if a ring R is not von Neumann regular, then R is
right fully saturated if and only if all non-projective modules are p-indigent (see
[5, Corollary 3.1]).

This paper is inspired by similar ideas and notions given above. We say that
MR is RN -sub�at if for every exact sequence of left R-modules 0 ! H ! F !

N ! 0, the sequence 0 ! M ˝ H ! M ˝ F ! M ˝ N ! 0 is exact.
The sub�at domain of MR, F�1.M/, is de�ned to be the collection of all modules

RN such that M is N -sub�at. It is clear that a module MR is �at if and only if
F�1.M/ D R � Mod. It is easy to see that every right R-module is sub�at relative
to all �at left R-modules, and one can show (Proposition 2.4) that �at modules are
the only ones sharing the distinction of being in every single sub�at domain. It is
thus tempting to ponder the existence of modules whose sub�at domain consists of
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only �at modules. To keep in line with [17], we refer to these modules as Whitehead

test module for �atness (or f-test module).

In Section 2, sub�atness and sub�at domains are investigated. In Section 3,
we show that a f-test module exists for an arbitrary ring. Moreover, i-test modules
are f-test, and if R is a right Noetherian ring, then a �nitely generated right R-
module is f-test if and only if it is i-test.

In Section 4, we study rings possessing many f-test modules. A non von Neu-
mann regular ring R is said to satisfy the property (F) provided that all non-�at
modules are f-test. An Artinian serial ring R with unique singular simple module
(up to isomorphism) satis�es (F). If R is a nonsemisimple left perfect ring which
has at least one �nitely generated left maximal ideal (for example, left Noether-
ian), then every �nitely generated right R-module is �at or f-test if and only if R is
a left †-CS ring and every �nitely generated singular left R-module is p-indigent
if and only if there is a ring direct sum R Š S �T , where S is semisimple Artinian
ring and T is an indecomposable ring which is either (i) �nitely saturated matrix
ring over a local QF-ring; or, (ii) hereditary Artinian serial ring with J 2 D 0. Us-
ing this result, we show that R is a nonsingular left Artinian ring which satis�es
(F) if and only if R is a right (or left) hereditary fully saturated ring if and only
if R Š S � T , where S is semisimple Artinian ring and T is an indecomposable
hereditary Artinian serial ring with J.T /2 D 0. We show that, for hereditary Noe-
therian rings, a right R-module M is f-test if and only if M is i-test if and only
if Hom.S; M/ ¤ 0 for each singular simple right R-module S . An abelian group
is f-test (or i-test) if and only if it contains a submodule isomorphic to

L
p

Z

pZ
,

where p ranges over all primes.

We use the following notation and conventions: All rings are associative and
with unit. Expressions like “a Noetherian ring” mean that the corresponding right
and left conditions hold. Let R and S be rings. Then S � T denotes the ring direct
sum of R and S . Further, Mod�R (R�Mod) denotes the category of unitary right
(left) R-modules. We often write MR (RM ) to denote M being a right (left) R-
module. For an R-module M , the character module HomZ.M;Q=Z/ is denoted
by M C, the dual module HomR.M; R/ is denoted by M �. We use the notation
E.M/, F.M/, Soc.M/, Rad.M/, Z.M/ for the injective hull, �at cover, socle,
Jacobson radical, singular submodule of M respectively. Also J.R/ denotes the
Jacobson radical of a ring R. By N � M , we mean that N is a submodule of M .
The i-th derived functor of the ˝R (HomR) functor is denoted by TorR

i (ExtiR),
and TorR

1 D Tor (Ext1R D Ext). For all other basic or background material, we
refer the reader to [12, 10, 2].
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2. The sub�at domain of a module

We will start in this section with some of the basic properties.

Definition 2.1. Let MR be a R-module. An exact sequence of left R-modules
0 ! H ! F ! N ! 0 is called M -pure if the sequence 0 ! M ˝ H !

M ˝ F ! M ˝ N ! 0 is exact.

Let � be a complete set of representatives of �nitely presented right R-
modules. Set M WD

L
Si 2� Si . M -pure exact sequences are called (Cohn) pure

exact sequences.

Proposition 2.2. [10, Corollary 4.86] Let R be a ring. Let M 2 Mod � R and

0 ! N ,! P ! M ! 0 be a short exact sequence in Mod � R such that P is

�at. Then M is �at if and only if N is a pure submodule of P .

The following proposition can be proved by using standard tensor product
properties, so we omit its proof.

Proposition 2.3. The following statements are equivalent for any given mod-

ules MR and RN .

(1) M is N -sub�at.

(2) N is M -sub�at.

(3) N Š P=K, where P is a �at left R-module, and K is an M -pure submodule

of P .

(4) Every exact sequence of left R-modules 0 ! K ! P ! N ! 0 is M -pure.

(5) Tor.M; N / D 0.

It is clear that �at left R-modules are contained in the sub�at domain of any
right R-module, and that a right R-module is �at if and only if its sub�at domain
consists of all modules in R � Mod. Moreover, we have the following fact.

Proposition 2.4.
T

M 2Mod�R F�1.M/ D ¹N 2 R � Mod j N is �atº

Definition 2.5. We say that an R-module RN is M -injective if for every exact
sequence of left R-modules 0 ! H ! F ! M ! 0, the sequence

0 �! Hom.M; N / �! Hom.F; N / �! Hom.H; N / �! 0

is exact, i.e. Ext.M; N / D 0.
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It is known that Tor.N; M/C Š Ext.N; M C/ Š Ext.M; N C/ by the First and
Second Adjoint Isomorphism Theorems, (see [12]). Then, we get the following:

Proposition 2.6. Let M be a right R-module and N a left R-module. Then,

M is N -sub�at if and only if N C is M -injective if and only if M C is N -injective.

Let .Mk/k2K be a family of left R-modules. It is well known that there is a
natural isomorphism, Tor.A;

L
k2K Mk/ Š

L
k2K Tor.A; Mk/. Proposition 2.3

yields the following.

Proposition 2.7. Let .Mk/k2K be a family of left R-modules. Then

F�1.
L

k2K Mk/ D
T

k2K F�1.Mk/.

Proposition 2.8. Let R be a ring which has the decomposition R D R1 � R2.

Then a right R-module M is N -sub�at if and only if MRi is NRi -sub�at for each

i D 1; 2.

Proof. By assumption, we have K D KR1 ˚ KR2 for any R-module
K. A right R-module M is N -sub�at if and only if N C is M -injective, i.e.
Ext.M; N C/ D 0. The claim follows from the isomorphism ExtR.M; N C/ Š

ExtR1
.MR1; N CR1/ ˚ ExtR2

.MR2; N CR2/. �

3. Modules whose sub�at domain consists of only �at modules

Since a right R-module is �at if and only if its sub�at domain is R � Mod,
it makes sense to wonder about the extreme opposite: What are the modules which
are sub�at with respect to the smallest possible collection of modules? It is clear
that such a smallest collection would have to consist precisely of the �at modules.

Definition 3.1. We will call a right R-module M a test module for �at-

ness (or an f-test module) in case F�1.M/ D ¹A 2 R � Mod j A is �at º,
i.e. Tor.M; N / ¤ 0 for each non-�at left R-module N .

Considering that the notion of f-test modules is formally so similar to that of
injective test modules, one would expect that many results in this theory will echo
those of the other one. Certainly, the �rst problem that comes to mind with the
introduction of the notion of f-test modules is whether such modules exist over all
rings. The following proposition answers this question.

Proposition 3.2. Every i-test module is f-test.
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Proof. Let M be a right R-module. Assume that M is N -sub�at for a left
R-module N . N C is M -injective by Proposition 2.6 and then, by the assumption,
N C is injective. N is �at by [10, Theorem 4.9]. �

By Baer’s Criterian for injectivity, a right R-module N is injective if and only
if Ext.R=I; N / D 0 for each right (essential) ideal I of R. Let .Ik/k2K be a family
of all right (essential) ideals of R. Set M WD

L
k2K R=Ik . It is clear that the right

module M is i-test for any ring R.

Corollary 3.3. Every ring has f-test right R-modules.

The converse of Proposition 3.2 is not true by the following.

Proposition 3.4. Let .Mk/k2K be a family of all �nitely presented right R-

modules. Set M WD
L

k2K Mk. The following statements hold.

(1) M is f-test.

(2) M is i-test if and only if R is right Noetherian.

Proof. .1/ Suppose that M is N -sub�at. Then, by Proposition 2.7, one has
Tor.Mk; N / D 0 for each Mk . This implies that N is �at by [7, Theorem 2.1.8].

.2/ A right R-module N is FP -injective if and only if Ext.Mk; N / D 0 for
each Mk , i.e. Ext.M; N / D 0. It is well known that FP -injective right R-modules
are exactly the injectives if and only if R is right Noetherian ([7, p. 132]). �

A ring R is said to be a von Neumann regular ring if for each a 2 R there is
an r 2 R such that a D ara. Every right (left) R-module is �at if and only if R is
a von Neumann regular ring (see [12, Theorem 4.16]). The proof of the following
is obvious from the de�nitions.

Proposition 3.5. For an arbitrary ring R, the following conditions are equiv-

alent.

(1) R is von Neumann regular.

(2) Every (non-zero) right (left) R-module is f-test.

(3) There exists a right (left) �at f-test R-module.

From now on, unless otherwise stated, all rings will be non von Neumann

regular.

The weak global dimension of R, w:dim.R/, is less than or equal 1 if and only
if every submodule of a �at right (or left) R-module is �at if and only if every
(�nitely generated) right (or left) ideal is �at, (see [12, 9.24]).
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Proposition 3.6. Let R be a ring with w:dim.R/ � 1. A right R-module M

has a f-test submodule if and only if M is a f-test.

Proof. Assume that Tor.M; N / D 0 for a left R-module N , and M 0 is an
f-test submodule of M . Consider the exact sequence 0 ! M 0 ,! M ! K ! 0.
We have the sequence

Tor2.K; N / �! Tor1.M 0; N / �! Tor1.M; N / D 0:

By the hypothesis, Tor2.K; N / D 0. Then Tor1.M 0; N / D 0, and N is �at since
M 0 is an f-test. The converse is clear. �

By [12, Theorem 9.51], Tor.M; N C/ Š Ext.M; N /C for any �nitely presented
right R-modules M and a right R-module N .

Proposition 3.7. Let R be a right Noetherian ring. A �nitely generated right

R-module M is f-test if and only if M is i-test.

Proof. Assume Ext.M; N / D 0 for a module NR. Then Tor.M; N C/ D 0

and, by the assumption, N C is �at. Since R is right Noetherian, N is injective by
[7, Corollary 3.2.17]. The converse follows from Proposition 3.2. �

A ring R is said to be a right C -ring if Soc.R=I / ¤ 0 for each proper essential
right ideal I of R. Left perfect rings and right semi-Artinian rings are right
C -rings. A right R-module M is called m-injective if for any maximal right ideal I

of R, any homomorphism I ! M can be extended to a homomorphism R ! M ,
i.e. Ext.R=I; M/ D 0. Let ƒ be a complete set of representatives of singular
simple R-modules. A ring R is right C -ring if and only if every m-injective right
R-module is injective, i.e. the module

L
Si 2ƒ Si is i-test (see, [14, Lemma 4] ).

Therefore, Proposition 3.2 yields the following.

Corollary 3.8. Let R be a right C -ring. The right R-module
L

Si 2ƒ Si is

f-test.

4. Every module is �at or f-test

We know that there is an f-test module over any ring R by Proposition 3.3. This
suggests the question of how close can the class of f-test right R-modules be to
Mod�R. By Proposition 3.5, every right R-module is f-test if and only if R is left
von Neumann regular ring. If R is not von Neumann regular, then no �at module
is f-test.
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Proposition 4.1. Let R be a ring. The following are equivalent.

(1) Every non-�at right R-module is f-test.

(2) Every non-�at left R-module is f-test.

(3) TorR
1 .M; N / ¤ 0 for all non-�at right R-modules M and non-�at left R-mod-

ules N .

Proof. .1/ H) .2/ Let M be a non-�at left R-module. Suppose that M is
N -sub�at. By the assumption, N is �at or f-test. If N is �at, then we are done.
In the later case, M is �at, a contradiction. .2/ H) .1/ just right-left symmetry.
.1/ () .3/ is clear. �

Remark 4.2. Let M be a �nitely presented right R-module, that is, M has a

free presentation F1

f
! F0 ! M ! 0 where F0 and F1 are �nitely generated free

modules. If we apply the functor HomR.�; R/ to this presentation, we obtain the
sequence

0 ! M � �! F �

0 �! F �

1 �! Tr.M/ �! 0

where Tr.M/ is the cokernel of the dual map F �

0 ! F �

1 . Note that, Tr.M/

is a �nitely presented left R-module. The left R-module Tr.M/ is called the

Auslander–Biridger transpose of the right R-module M . It is important to note
that the right R-module Tr.M/ is uniquely determined only up to splitting o� or
adding a projective direct summand ([3]).

Theorem 4.3 ([13, Theorem 8.3]). Let M be a �nitely presented right R-mod-

ule. The following hold.

(1) Hom.Tr.M/;E/ is exact if and only if the sequence M ˝ E is exact for any

short exact sequence E of left R-modules.

(2) Hom.M;E/ is exact if and only if the sequence E ˝ Tr.M/ is exact for any

short exact sequence E of right R-modules.

Proposition 4.4. Let R be a ring and M a non-�at �nitely presented right

R-module. Then, M is f-test if and only if Pr�1.Tr.M// consists precisely of the

�at left R-modules.

Proof. Assume that Tr.M/ is N -subprojective for a left R-module N .
Consider the exact sequence EW 0 ! H ! F.N / ! N ! 0. Since Tr.M/

is N -subprojective, Hom.Tr.M/;E/ is exact. Then, by Theorem 4.3, M ˝ E is
exact, and so M is N -sub�at by Proposition 2.3 . Therefore, by the assumption,
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N is �at. For the converse, assume that M is an N -sub�at for a left R-module N .
Consider the exact sequence EW 0 ! H ! F ! N ! 0. Since M is an
N -sub�at, M ˝ E is exact. Then, by Theorem 4.3, Hom.Tr.M/;E/ is exact, and
so Tr.M/ is N -subprojective. Therefore N is �at by the assumption. �

Recall that a ring R is right perfect if and only if every �at right R-module is
projective (see [2, Theorem 28.4]).

Corollary 4.5. Let R be a left perfect ring. A non-�at �nitely presented right

R-module M is f-test if and only if Tr.M/ is p-indigent.

Recall that a ring R is called right �nitely saturated if every non-projective
�nitely generated right R-module is i-test. Since i-test modules are f-test, by
Proposition 3.2, every non-projective �nitely generated (presented) right R-mod-
ule is f-test in case R is �nitely saturated. Proposition 3.7 yields the following.

Corollary 4.6. Let R be a right Noetherian ring. The following statements

are equivalent.

(1) Every non-�at �nitely generated right R-module is f-test.

(2) Every non-�at �nitely generated right R-module is i-test, i.e. R is right �nitely

saturated.

Proposition 4.7. Let R be a ring with w:dim.R/ � 1. The following state-

ments are equivalent.

(1) Every non-�at �nitely generated right R-module is f-test.

(2) Every non-�at right R-module is f-test.

Proof. .2/ H) .1/ is obvious. To .1/ H) .2/, let M be a non-�at right
R-module. It is well known that a module is �at if its �nitely generated submodules
are �at, (see [12, Corollary 3.49]). Hence, M has a non-�at �nitely generated
submodule N . N is f-test by the hypothesis. Then, M is f-test by Proposition 3.6.

�

For convenience, we will de�ne the following condition for a ring R:

(F) Every right R-module is �at or f-test.

By Corollary 4.6 and Proposition 4.7 we have the following.

Corollary 4.8. Let R be a right Noetherian right hereditary ring. R satis-

�es (F) if and only if every non-�at right R-module is i-test.
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Theorem 4.9 ([5, Theorem 3.1]). The following conditions are equivalent for

a nonsemisimple ring R.

(1) Every simple right R-module is projective or p-indigent.

(2) R is a right †-CS ring with a unique simple singular module (up to isomor-

phism).

(3) There is a ring direct sum R Š S � T , where S is semisimple Artinian ring

and T is an indecomposable ring which is either

(a) matrix ring over a local QF-ring, or

(b) hereditary Artinian serial ring with J.T /2 D 0.

Note that .1/ in Theorem 4.9 implies that every non-projective simple module
is i-test by Corollary 3.8. But the converse is not true.

Example 4.10. Let R be a commutative local perfect ring which is not Ar-
tinian. R has a unique singular simple module, say S . S is i-test by Corollary 3.8.
If S is p-indigent, then R is Artinian by Theorem 4.9, a contradiction.

Lemma 4.11. Let R be a serial ring. R is fully saturated if and only if every

simple right R-module is projective or p-indigent.

Proof. Necessity is a consequence of [5, Corollary 3.1]. Conversely, by The-
orem 4.9, R Š S � T , where S is semisimple Artinian ring and T is an inde-
composable ring which is either matrix ring over a local QF-ring or hereditary
Artinian serial ring with J.T /2 D 0. In the former case, T has a homogeneous
socle and, in the terminology of [1], every non-injective module is indigent by [1,
Proposition 13]. Then, R is fully saturated by [1, Theorem 16]. In the later case, the
claim follows by [5, Proposition 3.1, Corollary 3.1]. �

Corollary 4.12. An Artinian serial ring R with unique singular simple

module (up to isomorphism) is fully saturated. In particular, R satis�es (F).

Proof. Note that an Artinian ring R is serial if and only if the transpose of
every singular simple R-module is simple, (see [8, Theorem 1]). By our hypothesis,
there is a unique singular simple left (right) R-module S (J ), and so Tr.S/ Š J .
Since R is C-ring, we have S is f-test. By the isomorphism Tr.S/ Š J and
Proposition 4.4 and Corollary 4.5, J is p-indigent. Then R is fully saturated by
Lemma 4.11. �
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Theorem 4.13. Let R be a nonsemisimple left perfect ring which has at least

one �nitely generated left maximal ideal (e.g., let R be left Noetherian). The

following statements are equivalent.

(1) Every �nitely generated right R-module is �at or f-test.

(2) Every �nitely generated left R-module is projective or p-indigent.

(3) R is a left †-CS ring and every �nitely generated singular left R-module is

p-indigent.

(4) There is a ring direct sum R Š S �T , where S is a semisimple Artinian ring

and T is an indecomposable ring which is either

(a) �nitely saturated matrix ring over a local QF-ring, or

(b) hereditary Artinian serial ring with J.T /2 D 0.

Proof. By the hypothesis, R has a �nitely presented singular simple left
R-module, say S .

.1/ H) .2/. By Corollary 4.5, every �nitely presented left R-module is p-in-
digent. In particular, S is p-indigent. Let S 0 be a singular simple left R-module
which is not isomorphic to S . Then, S is clearly S 0-subprojective. Since S is p-in-
digent, S 0 is then projective, contradicting the singularity of S 0. Thus, R has a
unique singular simple module up to isomorphism. Therefore, by Theorem 4.13,
R is a left †-CS ring, and so R is left Noetherian by [11, Theorem 2.11]. The claim
follows by Corollary 4.5.

.2/ H) .3/. In particular, every simple left R-module is projective or p-in-
digent. Thus R is a right †-CS ring by Theorem 4.9. Every �nitely generated
singular left R-module is p-indigent by the assumption.

.3/ H) .1/. Let M be a non-projective �nitely generated left R-module.
Since R is a left †-CS ring, M D F ˚ D for some projective module F and
a singular module D by [11, Theorem II]. Since M is �nitely generated, D is also
�nitely generated. Then D is p-indigent by the assumption. Suppose that M is
N -subprojective. Then, D is N -subprojective. But D is p-indigent, and so N is
projective. Therefore M is p-indigent. By Corollary 4.5, every �nitely generated
right R-module is projective or f-test.

.2/ H) .4/. By Theorem 4.9, R Š S � T , where S is a semisimple Artinian
ring and T is an indecomposable ring which is either matrix ring over a local
QF-ring or hereditary Artinian serial ring with J.T /2 D 0. In the former case, R

is �nitely saturated by Corollary 4.6. This completes the proof.
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.4/ H) .1/. R Š S � T , where S is a semisimple Artinian ring and T is
an indecomposable ring which is either �nitely saturated matrix ring over a local
QF-ring or a hereditary Artinian serial ring with J.T /2 D 0. In the former case,
.1/ follows by Corollary 4.6. In the later case, it follows by Corollary 4.12 and
Proposition 2.8. �

Corollary 4.14. Let R be a nonsemisimple ring. Then the following are

equivalent.

(1) R is a nonsingular left Artinian ring which satis�es (F).

(2) R is a right (or left) hereditary fully saturated ring.

(3) R Š S � T , where S is a semisimple Artinian ring and T is an indecompos-

able hereditary Artinian serial ring with J.T /2 D 0.

Proof. .1/ H) .3/ is by Theorem 4.13, .3/ H) .1/ is by Corollary 4.12 and
Proposition 2.8, .2/ () .3/ is by [5, Theorem 3.2, Corollary 3.1]. �

Note that the assumption that R is a left perfect ring which has at least one
�nitely generated left maximal ideal is essential in Theorem 4.13.

Example 4.15. Let R be a Noetherian valuation domain which is not a
�eld. Then R is �nitely saturated, but is not right Artinian [17, Examples 4.6].
By Proposition 3.2, every �nitely generated non-�at right module is f-test.

Lemma 4.16. Let R be a nonsemisimple left coherent ring. If every �nitely

generated non-�at right R-module is f-test, then R is a left IF ring or a left

semihereditary ring.

Proof. In case every �nitely generated right ideal of R is �at, every left ideal
of R is �at by [12, 9.24]. Then, since R is left coherent, every �nitely generated left
ideal of R is projective by [12, Corollary 3.58]. Hence, R is a left semihereditary.
If there is a non-�at �nitely generated (presented) left ideal I of R, then Tr.I / is
f-test by the assumption. By Proposition 4.4, Pr�1.I / consists precisely of the �at
left R-modules. Now, we show that every injective left R-module is �at, i.e. R is
left IF ring. Let E be an injective left R-module. Consider the following diagram:

I
�

//

f

��

R

h1~~⑦
⑦

⑦

⑦

h2

ww♥
♥
♥
♥
♥
♥
♥

0 // A // B
�

// E // 0:
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Since E is injective, there is a homomorphism h1W R ! E such that h1 ı � D f .
By projectivity of R, there is a homomorphism h2W R ! B such that � ı h2 D h1.
Then, f D h1 ı � D � ı .h2 ı �/, and hence E is I -subprojective. Therefore, E is
�at by the �rst paragraph. �

Lemma 4.17. Let R be a left coherent ring such that R is not IF . Assume that

every �nitely generated non-�at right R-module is f-test. Then R satis�es (F).

Proof. By Lemma 4.16 and Proposition 4.7. �

Let R be a right @0-saturated ring. Then R Š S � T , where S is a semisimple
Artinian ring and T is an indecomposable ring which is either (i) a matrix ring
over a local QF-ring or (ii) Morita equivalent to a 2 � 2 upper triangular matrix
ring over a skew-�eld (see [6, Theorem 13]). The characterization in case (i) can
also be obtained under a weaker assumption by Corollary 4.6, Theorem 4.13 and
Lemma 4.16, as follows.

Corollary 4.18. Let R be a right �nitely saturated left Noetherian ring. Then

R Š S � T , where S is a semisimple Artinian ring and T is an indecomposable

ring which is either (i) a matrix ring over a local QF-ring or (ii) a hereditary ring.

Note that @0-saturated rings are Noetherian �nitely saturated, but the converse
is not true, see [17, Example 4.6].

Let R be a right semihereditary and M a �nitely presented right R-module.
Then, the Auslander-Bridger Transpose of M can be taken in the form Tr.M/ D

Ext.M; R/, see [13, Remark 5.2].

Theorem 4.19. Let R be a hereditary Noetherian ring. The following are

equivalent for a non-�at left R-module M .

(1) M is i-test.

(2) M is f-test.

(3) Hom.S; M/ ¤ 0 for each singular simple left R-module S .

Proof. .1/ H) .2/ is by Proposition 3.2.

.2/ H) .3/. Let S be a singular simple left R-module. Assume, contrarily,
that Hom.S; M/ D 0. Consider the exact sequence 0 ! K ! P ! M ! 0

with P projective. By the assumption, 0 ! Hom.S; K/ ! Hom.S; P / !

Hom.S; M/ D 0 is exact. Then, by Theorem 4.3, 0 ! Tr.S/˝K ! Tr.S/˝P !

Tr.S/˝M ! 0 is exact, and hence Tor.Tr.S/; M/ D 0. Since M is f-test, Tr.S/ is
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�at. But Tr.S/ is �nitely presented, and so it is projective by [10, Theorem 4.30].
Then, S Š Tr.Tr.S// D Ext.Tr.S/; R/ D 0, a contradiction.

.3/ H) .1/. Let ƒ be a complete set of representatives of singular simple
R-modules. By .3/, M contains a submodule isomorphic to the module S D
L

Si 2ƒ Si . Note that hereditary Noetherian rings are C-rings by [4, p.98], and
hence the module S is i-test by Corollary 3.8. Let Ext.M; N / D 0 for some module
N . Consider the exact sequence 0 ! S ,! M ! M=S !. We have the following

� � � �! Ext1.M; N / D 0 �! Ext1.S; N / �! Ext2.M=S; N / D 0

Then, Ext1.S; N / D 0. But S is i-test, and so N is injective. �

Corollary 4.20. An abelian group is f-test (i-test) if and only if it contains a

submodule isomorphic to
L

p
Z

pZ
, where p ranges over all primes.

Proposition 4.21. Let R be a hereditary Noetherian ring and B a right R-

module. An essential submodule A of B is f-test if and only if B is f-test.

Proof. . H) / By Proposition 3.6.

. (H / Assume, contrarily, that A is not f-test. Then, by Theorem 4.19, one
gets Hom.S; A/ D 0 for some singular simple right R-module S . Since B is f-test,
Hom.S; B/ ¤ 0. Without loss of generality, we can assume that S is a submodule
of B . We have, by essentiality, A \ S D S . Then Hom.S; A/ ¤ 0, a contradiction.
Therefore, A is f-test by Theorem 4.19. �

The full characterization of nonsingular @0-saturated rings are given in [6,
Theorem 13, Corollary 16]. But the full characterization of nonsingular �nitely
saturated rings is not known exactly. There exist rings that are �nitely saturated,
but are not @0-saturated [17, Examples 4.6 and 4.7]. In the following theorem, we
present some equivalent conditions for the right �nitely saturated ring which is
not QF-ring.

Theorem 4.22. Let R be a Noetherian ring such that R is not QF. The following

are equivalent.

(1) R satis�es (F).

(2) Every right R-module is �at or i-test.

(3) R is right �nitely saturated.

(4) R is right hereditary and every singular right R-module is f-test (i-test).

(5) R is right hereditary and every injective right R-module is �at or f-test

(i-test).
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Proof. .1/ H) .2/ is by Lemma 4.16 and Corollary 4.8, .2/ H) .3/ is
obvious, .3/ ) .1/ is by Corollary 4.18, Corollary 4.6 and Proposition 4.7, and
.1/ H) .4/; .5/ are by Lemma 4.16 and Theorem 4.19. For .4/ H) .1/, note that
nonsingular modules and �at modules are the same over hereditary Noetherian
rings. Let M be a non-�at right R-module. Then M has a nonzero singular sub-
module, and hence it is f-test by Proposition 3.6. .5/ H) .1/. Let M be a right
R-module. By the assumption, E.M/ is �at or f-test. In �rst case, M is �at. In the
later case, M is f-test by Proposition 4.21. �

Since condition .1/ is left-right symmetric, it is also equivalent to the left-sided
versions of .2/ � .5/.

A fully saturated ring R satis�es (F) by Proposition 3.2. We do not know if the
converse is true in general but is true for the special case when R is an Artinian
ring which is not QF by Theorem 4.22.

Corollary 4.23. Let R be an Artinian ring such that R is not QF. R satis-

�es (F) if and only if R is @0-saturated (or fully saturated) ring.

An indecomposable @0-saturated (or fully saturated) ring R which is not
nonsingular is isomorphic to a matrix ring over a local QF-ring, ([6, Theorem 16]).
We present the same characterization for rings which satisfy (F).

Theorem 4.24. Let R be a Noetherian ring such that R is not left (or right)

nonsingular. If R satis�es (F) (or every �nitely generated non-�at right (left)

R-module is f-test), then R Š S � T , where S is a semisimple Artinian ring

and T is a indecomposable matrix ring over a local QF-ring.

Proof. By Lemma 4.16 and Theorem 4.13. �

Let us note that a QF-ring R is isomorphic to a matrix ring over a local ring if
and only if it has homogeneous socle. A serial QF-ring with homogeneous socle
satis�es (F) by Proposition 3.2, Theorem 4.9 and Lemma 4.11. We do not know
precisely the structure of a QF-ring (isomorphic to a matrix ring over a local ring)
over which every (�nitely generated) right R-module is �at or f-test. The solution
of this problem will give us a characterization of �nitely saturated rings which are
not nonsingular by Corollary 4.6.

A commutative local Artinian principal ideal ring R is fully saturated by [17,
Example 4.5], and so it is a local QF-ring which satis�es (F) by Theorem 4.24.
We do not know whether or not a local QF-ring which satis�es (F) is a principal
ideal ring.
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