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Weak local-global compatibility

in the p-adic Langlands program for U.2/
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Abstract – We study the completed cohomology yH0 of a de�nite unitary group G in
two variables associated with a CM-extension K=F . When the prime p splits, we
prove that (under technical asumptions) the p-adic local Langlands correspondence
for GL2.Qp/ occurs in yH0. As an application, we obtain a result towards the Fontaine–
Mazur conjecture over K. If x is a point on the eigenvariety such that �x is geometric
(and satisfying additional hypotheses which we suppress), then x must be a classical
point. Thus, not only is �x modular, but the weight of x de�nes an accessible re�nement.
This follows from a recent result of Colmez (which describes the locally analytic vectors
in p-adic unitary principal series), knowing that �x admits a triangulation compatible
with the weight.
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1. Introduction

In the last decade, the p-adic Langlands program has exploded with activity.
In a nutshell, it predicts a close relationship between continuous representations
�F D Gal. xF=F / ! GLn.E/, where F and E are both �nite extensions of Qp,
and unitary representations of GLn.F / on Banach E-spaces. For GL2.Qp/, this
correspondence was pioneered by Breuil, and in the last few years one has achieved
a more complete understanding for GL2.Qp/, due to the work of many people
(notably Berger, Colmez, Emerton, Kisin, Paskunas, and others). These results
have already had astounding applications to various notoriously di�cult problems
in number theory.

This article takes its point of departure in Emerton’s progress on the Fontaine–
Mazur conjecture. In [Em2], and its predecessor [Em1], he explains how the
p-adic local Langlands correspondence for GL2.Qp/ appears in the completed
cohomology yH 1 of the tower of modular curves. From the “de Rham” condition,
one gets the existence of locally algebraic vectors, and Emerton deduces that a
“promodular” representation �Q D Gal.xQ=Q/ ! GL2.E/, which is de Rham
(with distinct Hodge–Tate weights), must in fact be modular; again, under weak
technical assumptions, which we will not record here.

In this paper we look at the tower of arithmetic manifolds of a de�nite unitary
group in two variables, G D ResF=Q.U /; an inner form of GL.2/=K over a CM
extensionK=F . The arithmetic manifolds are in fact just (arithmetically rich) �nite
sets, occasionally called Hida varieties1. Thus, instead of yH 1, we are looking at
the Banach space yH 0, which can be realized as the space of continuous functions
on a pro�nite set (endowed with the sup-norm). When the prime p splits, we relate
the p-adic local Langlands correspondence for GL2.Qp/ to yH 0 (see Theorem 1.1
below for a precise statement). As a result thereof, we obtain a corollary towards
the Fontaine–Mazur conjecture for representations �K ! GL2.E/ associated
with p-adic modular forms onG, in the vein of Emerton (see Theorem 1.2 below).
In fact we prove a little more than modularity; we prove classicality (that is, we
keep track of re�nements and triangulations). This is our main theorem.

To orient the reader, we brie�y point out the major di�erences with [Em2].

(1) We work with a �xed tame level Kp throughout, to surmount the di�culty
with the non-uniqueness of hyperspecials in `-adic U.2/, at primes ` ¤ p,
and �nd it convenient to formulate our results in terms of the eigenvariety
X D XKp .

1 This can be somewhat misleading. They are just �nite sets (zero-dimensional manifolds),
with no natural structure of a variety, and more importantly no Galois action.
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(2) We allow F ¤ Q, but must assume p splits in K. Thus we really embed
a tensor product (over places vjp of F ) of p-adic local Langlands corre-
spondents in yH 0. Consequently, we make progress on Fontaine–Mazur for
two-dimensional representations of �K, for CM-�elds K, as opposed to �Q.

(3) We work with yH 0, which we �nd to be more hands-on than yH 1. The arith-
metic manifolds of G are not Shimura varieties; so yH 0 carries no Galois-
action (as opposed to yH 1 of modular curves). This simpli�es some of the
arguments.

(4) We prove classicality, not “just” modularity. That is, if the representation
�x at x 2 X is de Rham (with distinct Hodge–Tate weights etc.) then x is
a classical point. Here the crux of the matter lies in relating weights and
re�nements (which makes critical use of recent work of Colmez, and results
of Hellmann and others on triangulinity).

(5) On the �ip-side, for now, we must make the rather bold assumption that the
mod p reduction N�x is irreducible at all places of K above p. Emerton gets
by with much weaker hypotheses at p, using [BE].

In order to state our main results, we must brie�y set up the notation in use
throughout the paper. Once and for all, we �x a prime number p. To be safe, we
will always assume p > 3. We let F=Q be a totally real �eld, and K=F a CM
extension, in which p splits completely. Places of F are usually denoted by v, and
those of K by w. For each place vjp of F , we choose a place Qvjv of K above it
(note that KQv D Qp, canonically). Given an algebraic isomorphism �WC �! xQp,
the choice of a collection ¹ Qvº amounts to choosing a CM-type, which is ordinary
for �, in the sense of Katz.

Let D be a quaternion algebra over K, endowed with an F -linear anti-
involution ? of the second kind (?jK D c). This pair de�nes a unitary group
U D U.D; ?/=F , an inner form of GL.2/ over K. Indeed, U �F K ' D�. We
�nd it convenient to work over Q, and introduce G D ResF=Q.U /. We will always
assume G.R/ is compact, and that D splits above p. Using our choices ¹ Qvº, we
identify

G.R/
�
�! U.2/Hom.F;R/, G.Qp/

�
�!

Y

vjp

GL2.KQv/.

(Of course, KQv D Qp, but we wish to incorporate Qv in our notation to emphasize
how our identi�cation depends on this choice. Hence we stick to the somewhat
cumbersome notation KQv .)
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Our main occupation will be Galois representations � associated with p-adic
modular forms on G. We will show a “Fontaine–Mazur” like result of the follow-
ing form. If � is geometric, with distinct weights (and satis�es additional technical
hypotheses), then in fact � arises from a classical modular form on G.

Eigensystems arising from p-adic modular forms of �nite slope, and their Ga-
lois representations, are parametrized by rigid analytic spaces called eigenvari-
eties. For U.n/, they have been constructed in [BC] by Bellaiche-Chenevier (for
F D Q), and in [Che2] by Chenevier (for any F ) using Buzzard’s “eigenvari-
ety machine” from [Buz]. A more general construction was given by Emerton in
[Em4] (which certainly covers the case where G.R/ is compact; and it does not
require Iwahori-level at p). Yet another construction, in the style of Chenevier,
was given by Loe�er in [Loe], only assuming G.R/ is compact (and curiously
dealing with any parabolic, as opposed to just the Borel). By the uniqueness,
shown in [BC] for example, all these constructions are compatible, and de�ne
the same eigenvariety. In the special case where F D Q, the eigenvariety for our
two-variable unitary group G, is formally reminiscent of the mother of all eigen-
varieties; the celebrated “eigencurve” of Coleman and Mazur [CM], which in turn
has its origin in Hida theory (the slope zero case).

We will not use much about eigenvarieties, besides their de�nition and basic
structural properties. We work with a �xed tame levelKp D

Q

v−p Kv throughout
the paper. Given Kp, let †0 denote the set of places v − p for which Kv is not a
hyperspecial subgroup, and then introduce † D †0 t †p, where †p are places
abovep. The eigenvarietyX D XKp parametrizes eigensystems of H.Kp/sph (the
Hecke algebra of G.A†

f
/ relative to K† - restricted product away from †), which

are associated with p-adic modular forms. To be more precise, we �rst introduce
weight space

yT D Homloc.an..T .Qp/;G
rig
m /, T .Qp/ '

Y

vjp

TGL.2/.KQv/.

Here T is a torus of G and TGL.2/ is the diagonal torus of GL.2/. This is a
rigid analytic space over Qp , endowed with a universal locally analytic character
yT ! O. yT /�. See paragraph 8 of [Buz] for more details. Similarly, W represents
locally analytic characters of T .Zp/, a disjoint union of open balls. Moreover, yT
is non-canonically isomorphic to the direct product W � .Grig

m /
d for some integer

d � 1.

Now, the eigenvariety X D XKp is a reduced rigid analytic variety over Qp

(since KQv D Qp), which comes equipped with a �nite morphism �WX ! yT , and
additional structure (see Theorem 1.6 on p. 5 in [Che2], for example):
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� �WH.Kp/sph ! O.X/, a homomorphism of Qp-algebras,

� t W�K! O.X/, a pseudo-character,

� Xcl � X.xQp/, a Zariski-dense subset.

Here t is associated with �, in a natural sense (cf. Theorem 2.1 in the main text).
Furthermore,

X.xQp/ �! . yT � SpecH.Kp/sph/.xQp/, x 7�! .�x; �x/,

restricts to a bijection between Xcl and the set of “classical” points. That is, those
.�; �/, for which � D  � is locally algebraic (where  is an algebraic character of
the torus and � is the smooth part), and there exists an automorphic representation
� of G.A/, of weight  and tame levelKp, such that �p embeds into the (unnor-
malized) principal series representation iB.�/ (consisting of all smooth functions
f WG ! xQp with the transformation property f .bg/ D �.b/f .g/, and with G
acting via right translations).

Finally, for each x 2 X.xQp/, we let �xW�K ! GL2.xQp/ denote the unique
semisimple continuous representation with tr �x D tx. When x 2 Xcl, it is known
that �x is “geometric” in the sense of Fontaine–Mazur (unrami�ed almost every-
where, and de Rham above p). Our goal here is a partial converse. We �rst state
the weak local-global compatibility, referred to in the title, which roughly says the
p-adic local Langlands correspondence occurs in the completed cohomology of
the tower of arithmetic manifolds of G (as announced on p. 8 in [So2]).

In a companion paper, [CS], we prove a version of strong local-global com-
patibility, which gives a more precise description of the completed cohomology,
which involves “local Langlands in families” away from p (following Emerton-
Helm [EH]). We emphasize that [CS] does not make this paper obsolete. The
classicality of geometric points on the egenvariety (which is where the novelty
of this paper lies) is not implied by [CS]. Furthermore, for our timid progress on
the Fontaine–Mazur conjecture (in this context), the weak version of local-global
compatibility treated here su�ces. The focus of [CS] is on the structural properties
of completed cohomology, and their relation to Ihara’s lemma.

Theorem 1.1. LetE=Qp be a �nite extension, and let x 2 X.E/ be a point on

the eigenvariety, of tame level Kp, which satis�es the following assumptions:

(1) �x is de�ned over E;

(2) N�x;w is absolutely irreducible for all wjp.
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Then there is a nonzero continuous G.Qp/-equivariant map (px D ker�x),

yN
vjpB.�x;Qv/ �! yH 0.Kp/E Œpx�;

where B.�/ is the p-adic local Langlands correspondence for GL2.Qp/.

The �aring assumption here is (2); the mod p irreducibility at p. This simpli-
�es many of the arguments a great deal, see the proof of the key Lemma 3.15 in
the main text. In particular, we do not need any results on Serre weights (although
available) to carry out the proof.

We currently do not know how to deal with the reducible case. It would re-
quire an analogue of [BE], which is based on a geometrically intricate construction
of “overconvergent” companion forms in order to show that, for ordinary eigen-
forms f , B.�f;pjGal.xQp=Qp// occurs in the completed cohomology of the tower of
modular curves. (See Theorem 1.1.2 of [BE].) Recently Y. Ding has made progress
along the same lines for ordinary Hilbert modular forms arising from quaternionic
Shimura curves, cf. [Din].

Bergdall has given recently a simpler proof of the geometric part of [BE] in
[Berg] and it seems possible to do similar things in our unitary setting. We hope
to come back to this issue elsewhere.

Guided by [Em2], one would expect that (2) can be replaced with the following
two (much weaker) assumptions:

(3) N�x is absolutely irreducible (as a representation of the full �K),

(4) N�x;w œ �˝
�

1 �
N�

�

, for all places wjp of K.

We wish to stress that the proof of Theorem 1.1 hinges upon local-global
compatibility at p D `, now known (even for U.n/ with n arbitrary) due to the
work of Barnet-Lamb, Gee, Geraghty, and Taylor (see [BLGGT1] and its follow-up
[BLGGT2]), and that of Caraiani [Car].

Our main motivation for proving this weak local-global compatibility, is its
application to the Fontaine–Mazur conjecture, along the following lines:

Theorem 1.2. Let x 2 X.E/ be a point as in Theorem 1.1, and assume

moreover that �x;Qv is potentially semistable, with distinct Hodge–Tate weights,

for all vjp. Then x is a classical point, x 2 Xcl.

This is more than a modularity result. To conclude x 2 Xcl, one needs to keep
careful track of re�nements. This involves the existence of speci�c triangulations
of �x;Qv, proved in many instances by Hellmann, and a description of the locally
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analytic vectors in unitary principal series; a recent result due to Colmez [Co2].
We remark also that a similar theorem (but only with modularity as a result) should
follow from the techniques used by Kisin, cf. [Ki2]. Results for U.n/ analogous
to Theorem 1.2 have very recently been announced in [BHS2].

Acknowledgments. The tremendous debt this paper owes to Emerton’s work
[Em2] will be clear to the experts. We wish to acknowledge its impact on both of
us, as well as that of Breuil’s beautiful Bourbaki survey [Bre], which helped us
enter this circle of ideas. We thank James Newton for useful remarks as well as
the anonymous referee for comprehensive feedback. Finally, we wish to thank the
Fields Institute in Toronto for hosting the p-adic Langlands workshop in April,
2012, where this collaboration began.

2. Automorphic Galois representations

Galois representations associated with regular polarized cusp forms on GL.n/=K

are now almost completely understood, thanks to the “book project” and its spin-
o�s. This is the culmination of collective e�orts of many people, initiated by
Clozel, Harris, Kottwitz, Taylor, and others. Here we wish to brie�y give the lay
of the land for unitary groups in two variables.

Thus let � be an automorphic representation of G.A/, whose in�nity com-
ponent �1 D

N

vj1 �v is an irreducible algebraic representation of G.C/, re-
stricted to the compact Lie group G.R/. We assign weights to �1 as follows.
Each factor �v is a representation of U.Fv/, which we may “complexify” to a
representation of GL2.Kw/, where wjv is unique. Upon choosing an embedding
� WK ,! C, among the pair corresponding to w (i.e. we �x �WC ! xQp and write
K ,! Kw ,!� xQp !

��1
C), we identify this with a representation of GL2.C/,

which is irreducible algebraic of highest weight � , relative to the lower-triangular
Borel. In other words, there are integers �1;� < �2;� such that

 � .t / D t
�1;�

1 t
�2;��1

2 , t D
�

t1
t2

�

2 TGL.2/.C/.

(Note that �1; N� D 1 � �2;� and �2; N� D 1 � �1;� .) Another way to think of this is
in terms of the local base change BCwjv.�v/, which has in�nitesimal character
given by  � , upon identifying it with a representation of GL2.C/, via � .

Theorem 2.1. Choose an isomorphism �WC
�
�! xQp . With � as above, we may

associate a unique continuous semisimple Galois representation,

� D ��;�W�K D Gal.xQ=K/ �! GL2.xQp/;

satisfying the following list of desiderata:
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� For every �nite place wjv, for which the local base change BCwjv.�v/ is

de�ned (even those above p), one has

WD.�j�Kw
/F �ss ' � rec.BCwjv.�v/˝ j det j�1=2/:

(Here the classical local Langlands correspondence rec.�/ is normalized as

in [HT]. At wjp, the Weil–Deligne representation is de�ned by Fontaine.)

� Indeed, for every place wjp, the restriction �w D �j�Kw
is potentially

semistable, with labelled Hodge–Tate weights determined by �1,

HT� .�w/ D ¹�1;� < �2;� º;

for � WKw ,! xQp , tacitly identi�ed with an embedding K ,! C via �.

� �_ ' �c ˝ � (where � D �cyc is the cyclotomic character of �K).

� det� ı ArtK D BCK=F .��/ � �
�1.

(The local base change BCwjv.�v/ is de�ned when v splits in K, or �v is unram-

i�ed; for some hyperspecial maximal subgroup.)

Proof. Let us quickly sketch the argument, and list the key references. Us-
ing Rogawski’s book [Rog] (Theorem 11.5.1, part (b), on p. 166), we �rst base
change � to GL.2/=K, resulting in an “isobaric” automorphic representation
… D BCK=F .�/, whose in�nity component…1 has the same in�nitesimal char-
acter as an algebraic representation. Moreover,…_ ' …c . If… is cuspidal, we take
� D �…;�, where the latter is given by Theorem 1.2 in [CY], for instance. It satis�es
the desired properties by Theorem 1.1 in [BLGGT2], and Caraiani’s sequel [Car],
which removes the Shin-regularity assumption. At last, if … is non-cuspidal, it is
an isobaric sum of algebraic Hecke characters �1 � �2, with which we associate
Galois characters ��i ;� via class �eld theory. Then we let � D ��1;� ˚ ��2;�, for
which it is straightforward to verify the properties. �

Remark 2.2. The analogous result holds for unitary groups in n variables,
except that a certain “regularity” condition creeps in (ruling out �1 D 1 for
example), which ensures that the base change is an isobaric sum of cusp forms (as
opposed to just discrete automorphic representations). The lucky circumstance for
n D 2, which we rely on, is that “discrete” is the same as “cuspidal” for GL.1/.

For later use, we spell out what happens at the places v where � is unrami-
�ed. First o�, U=Fv

must be unrami�ed (quasi-split and split over an unrami�ed
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extension), in which case it has two conjugacy-classes of hyperspecial subgroups.
Thus we should really pick one, sayKv , and specify that �Kv

v ¤ 0. Via the Satake
parametrization, local base change is given by pulling back eigensystems along
the natural algebra homomorphism (de�ned over ZŒp

1
2 �),

bwjvWH.GL2.Kw/;GL2.Ow// �� H.U.Fv/; Kv/:

For the surjectivity2 of this map, and a thorough discussion of the salient facts,
see [Min] (especially Corollary 4.2). For eachw, we let Tw be the Hecke operator
for GL2.Kw/, which acts on …GL2.Ow/

w by the sum of the integral Satake param-
eters of …w . Similarly, Sw acts by their product. Then, the target Hecke algebra
H.Kv/ is generated by tw D bwjv.Tw/ and sw D bwjv.Sw/. Furthermore,

tr ��;�.Frobw/ D ���v
.tw/, det ��;�.Frobw/ D ���v

.sw/,

where ��v
WH.Kv/! C is the eigensystem of �Kv

v , when �v is Kv-unrami�ed.

3. Proof of Theorem 1.1

Here we prove our main Theorem 1.1 from the introduction. The overall strategy
follows that of [Em2] closely. In section 3.8 below we introduce a Hecke module
X which interpolates the homomorphisms in Theorem 1.1. To show the p-torsion
XŒp� is nonzero, it su�ces to do so for the dense subset of crystalline points. This
special case boils down to local-global compatibility at p (due to Caraiani and
others) and the key fact for GL.2/ that the invariant norm is unique for irreducible
crystalline representations.

3.1 – Finite level Hecke algebras

For any compact open subgroup K � G.Af /, the arithmetic manifold of G,

Y.K/ D G.Q/nG.Af /=K;

is a �nite set. (Recall that G.R/ is compact.) For any commutative ring A, we let
H 0.K/A be the set of functions Y.K/! A. It is naturally a module for the Hecke
algebra H.K/A of compactly supported K-biinvariant functions G.Af / ! A,
equipped with convolution. We will often assume K factors as a direct product
K D

Q

v<1Kv, where Kv � U.Fv/ is hyperspecial for almost all places v of F .
We introduce the following �nite sets of �nite places of F ,

2 Since we are in the GL.2/-case, surjectivity can also be shown directly by writing out
explicitly what bwjv does in terms of Satake parameters. We leave this to the reader.
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� †p D ¹vjpº,

� †0 D ¹v − pWKv is not hyperspecialº,

� † D †0 t†p.

ThenH.K/A factors as a tensor product
N

v<1 H.Kv/A. We will be interested
in the action of the spherical part. That is, the central subalgebra below,

H.Kp/sph D H.K†/A D
N

v…† H.Kv/A:

We let T.K/A denote the quotient of H.Kp/sph which acts faithfully onH 0.K/A.
In other words, theA-subalgebra of EndH 0.K/A generated by all Hecke operators
from H.Kv/A, where v … †. As an A-module, T.K/A D A˝T.K/Z is �nite free
(since this holds for A D Z, and hence for all rings). In particular, when A is
a �eld, for dimension reasons T.K/A is therefore Artinian. (Consequently, prime
ideals are maximal, there are only �nitely many of them, andT.K/A is Noetherian
and semi-local; the direct product of all its localizations. When T.K/A is reduced,
these localizations can be identi�ed with its residue �elds.)

As a Hecke-module, H 0.K/C breaks up as a direct sum of (�nitely many)
simple modules �K

f
, where � runs over automorphic representations of G.A/,

with �1 D 1. As a result, H 0.K/C is a sum of simultaneous eigenspaces for
H.Kp/sph, and T.K/C is a semisimple algebra C�� � ��C, where the direct factors
correspond to automorphic Hecke eigensystemsT.K/C! C (giving the action on
some �K

f
). The same holds over xQp, by transferring via an isomorphism C ' xQp.

We will usually work over a �nite extension E=Qp , with integers O, uni-
formizer $ , and residue �eld k. We are primarily interested in the O-algebra
T.K/O, which is known to factor as a direct product of localizations,

T.K/O
�
�!

Y

m

T.K/O;m;

with m ranging over its maximal ideals (which correspond to maximal ideals of
T.K/k via the reduction map). Here each factor T.K/O;m is a complete local
Noetherian O-algebra. Furthermore, after extending scalars to E,

T.K/O;m ˝E
�
�!

Y

p�m

T.K/E;p;

where p � m runs over the minimal primes of T.K/O (which correspond to
maximal ideals of T.K/E via the inclusion map; which in turn, after �xing
E ,! xQp , correspond to Galois-conjugacy classes of eigensystemsT.K/E! xQp).
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3.2 – In�nite level Hecke algebras

Emerton developed the theory of completed cohomology for any reductive group
in [Em4]. For a �xed tame level Kp, the tower of locally symmetric spaces of
levelKpK

p, where we letKp shrink, has completed cohomology spaces yH i .Kp/.
In this paper, our unitary group G is compact at in�nity, so we will only use this
machinery in degree i D 0, where everything can be done explicitly by hand. We
recall the de�nitions. For each choice of tame level Kp, there are two modules,

� yH 0.Kp/O D .lim�!
Kp

H 0.KpK
p/O/

^ (where ^ is p-adic completion),

� QH 0.Kp/O D lim
 �

s

.lim
�!
Kp

H 0.KpK
p/O=$sO).

There is a natural isomorphism yH 0.Kp/O
�
�! QH 0.Kp/O, and both are nat-

urally identi�ed with the lattice of all continuous functions Y.Kp/ ! O. Simi-
larly we de�ne yH 0.Kp/E , which thus becomes a Banach E-space (for the sup-
norm), endowed with a unitary G.Qp/-action (via right translations). Moreover,
yH 0.Kp/E becomes a Banach-module for the completed Hecke algebra yH.Kp/

of biinvariant functions, which vanish at in�nity (and the G.Qp/-action is Hecke-
linear). Here yH.Kp/ D lim

 �Kp

H.KpK
p/ where the limit runs over compact open

subgroups Kp of G.Qp/.

The p-levels Kp are ordered by reverse-inclusion; if K 0
p � Kp, there is a

surjective transition map T.K 0
pK

p/O � T.KpK
p/O, which makes the collection

of all T.KpK
p/O into a projective system, as Kp varies. We de�ne the O-algebra

T.Kp/O D lim
 �
Kp

T.KpK
p/O;

with its projective limit topology. Thus T.Kp/O is a reduced, compact, complete
O-algebra, equipped with a natural map H.Kp/sph ! T.Kp/O having dense im-
age. Moreover, the action of H.Kp/sph on the completed cohomology yH 0.Kp/O

extends naturally to a faithful action of T.Kp/O, as follows. Say h D .hKp
/ is

a compatible sequence in T.Kp/O, and f is a p-smooth function Y.Kp/ ! O.
Then h.f / D hKp

.f /, if f isKp-invariant. (One veri�es the right-hand side is in-
dependent of the choice ofKp.) This de�nes a continuous action on the p-smooth
functions, which extends to the completion. Thus, one has maps

H.Kp/sph dense
����! T.Kp/O

faithful
�����! End cts yH 0.Kp/O:

(A short argument shows that T.Kp/O is weakly closed.)
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As in the �nite-level case,T.Kp/O is semi-local. IfK 0
p C Kp are pro-p groups,

an eigensystem H.Kp/sph ! k occurs in H 0.K/k if and only if it occurs in
H 0.K 0/k. Therefore T.K 0/O � T.K/O identi�es the maximal ideals of T.K/O
with those of T.K 0/O. Passing to the limit over all Kp, therefore yields

T.Kp/O
�
�!

Y

m

T.Kp/O;m, T.Kp/O;m D lim
 �
Kp

T.KpK
p/O;m,

with m ranging over its maximal ideals (corresponding to Galois-conjugacy
classes of eigensystems occurring in H 0.Kp/k). Each of the (�nitely many) fac-
tors T.Kp/O;m is a complete local O-algebra, and they play a key role in defor-
mation theory of Galois representations. Correspondingly,

yH 0.Kp/O
�
�!

L

m
yH 0.Kp/O;m;

yH 0.Kp/O;m D yH
0.Kp/O ˝T.Kp/O T.Kp/O;m:

These summands yH 0.Kp/O;m are tightly connected to the p-adic local Langlands
correspondence, as we will see below in the course of the proof of our main
Theorem 1.1. Again, we wish to emphasize that these constructions (where Kp

shrinks) are due to Emerton; see Section 5.2, p. 46, in [Em2], for instance.

3.3 – Locally algebraic vectors in completed cohomology

Inside the Banach space yH 0.Kp/E , we have the dense subspace of locally analytic
vectors, yH 0.Kp/an

E , on which the Lie algebra g D LieG.Qp/ acts. In turn, inside
the locally analytic vectors, we have the locally algebraic vectors,

yH 0.Kp/
alg
E D

L

�
yH 0.Kp/

��alg
E :

Here � runs over the absolutely irreducible algebraicE-representations ofG=E , up
to equivalence, and the superscript � � alg means we take the subspace of locally
�-algebraic vectors; that is, those in the image of the evaluation map

� ˝HomKp
.�; yH 0.Kp/E / ,�! yH 0.Kp/E ;

for some su�ciently small Kp. Equivalently, those vectors in the image of

� ˝Homg.�; yH
0.Kp/an

E / ,�!
yH 0.Kp/an

E ;

see Proposition 4.2.10 in [Em3]. Here the tensor product is over EndG.�/, a priori
a �nite extension of E. However, in our case G=E is a product of copies of GL2,
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in which case it is easy to see EndG.�/ D E (using the standard polynomial model
of �, say).

Each � de�nes a local systemV� on Y.K/, and its space of sectionsH 0.K;V�/E

is naturally identi�ed with the space of algebraic modular forms on G, of levelK,
and weight �. That is, all functions

f WG.Q/nG.Af / �! �, f .gk/ D �.k�1
p /f .g/, for all k 2 K.

(This is straightforward; for details, see Proposition 3.2.2 in [Em4], for example.)
We let H 0.Kp;V�/E denote the collection of all such f , where we allow Kp to
shrink to the identity, that is H 0.Kp;V�/E D lim

�!Kp

H 0.KpK
p;V�/E . It carries

an action of G.Qp/, and as is well-known,

H 0.Kp;V�/C '
L

�W�1D�_mG.�/ � �p ˝ .�
p

f
/K

p

;

where � runs over all automorphic representations of G.A/ with �1 D �
_. Most

likely, mG.�/ D 1, but we will not need that. (We tacitly move between complex
coe�cients and p-adic coe�cients via a choice of isomorphism � as above.)

One of the purposes of this section is to remind the reader of the following result.

Proposition 3.1. Let � be an irreducible algebraicE-representation � ofG=E .

(a) H 0.Kp;V�_/E
�
�! Homg.�; yH

0.Kp/an
E /.

(b) � ˝E H 0.Kp;V�_/E
�
�! yH 0.Kp/

�-alg
E .

Proof. Clearly (b) follows from (a), in conjunction with the preceding re-
marks. Part (a) can really be proved by hand, so to speak (which was done in 2.2 of
[So1], for instance), but can more conveniently be explained as a very special case
of the general machinery developed in [Em4]. Indeed the map in (a) is the edge map
of a certain spectral sequence (given by Corollary 2.2.18 in [Em4]). Since Y.K/ is
zero-dimensional, most terms vanish, and the edge map is an isomorphism. See
Corollary 2.2.25 in loc. cit., which deduces the isomorphism in (b). �

Corollary 3.2. yH 0.Kp/
�-alg
E '

L

�W�1D�mG.�/ � .� ˝ �p/˝ .�
p

f
/K

p

.

Proof. Follows from (b) and the automorphic description of H 0.Kp;V�_/.
�
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3.4 – Universal modular deformations

Suppose N�W�K ! GL2.k/ is an absolutely irreducible representation, which we
assume to be modular of levelK D KpK

p, in the sense that there exists a maximal
ideal m � T.K/k with which N� is associated; by which we mean that m contains

.tw/K � tr N�.Frobw/, .sw/K � det N�.Frobw/,

for all wjv with v … †. By .tw/K we mean the operator onH 0.K/k de�ned by tw ,
and similarly for sw . Note that k D T.K/k=m.

Remark 3.3. Eventually we will take N� D N�x , for a point x 2 X.E/ as in
Theorem 1. Then for Kp deep enough (pro-p su�ces), the reduced eigensystem
N�x factors through T.K/k, and we may take m D mx D ker. N�x/ above.

The goal of this section is to introduce the so-called universal modular defor-
mation of N� (of level K), de�ned as follows.

Proposition 3.4. Up to equivalence, there is a unique continuous representa-

tion

�m D �m;K W�K �! GL2.T.K/O;m/

such that for every place wjv, with v … †,

tr �m.Frobw/ D .tw/K , det �m.Frobw/ D .sw/K .

Moreover,

� N�m ' N� and

� for every modular deformation ��;�W�K ! GL2.A/ of N� (where A is a

complete local Noetherian O-algebra, with reside �eld k), there is a unique

local morphismT.K/O;m! Awith respect to which ��;� is the specialization

of �m.

(In this sense, �m is the universal level-K modular deformation of N�.)

Proof. First, for each minimal prime p � m of T.K/O, we de�ne a represen-
tation

�pW�K �! GL2.T.K/E;p/, T.K/E;p D T.K/E=p,

as follows. Pick an eigensystem �WT.K/E ! xQp with p D ker.�/, extending
our chosen embedding E ,! xQp. Its restriction to T.K/Q then arises from an
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automorphic representation � , of level K, and weight �1 D 1. That is, � D ��� .
After possibly enlarging E, we may assume ��;� takes values in GL2.O/. We then
let �p D ��;�, and observe (by Chebotarev) that this only depends on p; not the
choice of � . By construction, for all wjv with v … †,

tr �p.Frobw/ D .tw/K C p, det �p.Frobw/ D .sw/K C p.

By the factorization at the end of 3.1, we obtain a representation

% D
Y

p�m

�pW�K �! GL2.T.K/O;m ˝E/

with similar properties. In particular, tr %.Frobw/ D .tw/K , which shows that
the pseudo-character tr % takes values in the complete local ring T.K/O;m. Its
reduction equals tr N�; the trace of an absolutely irreducible representation. By
results of Nyssen, Rouquier, and Procesi, there is a unique representation

�m D �m;K W�K �! GL2.T.K/O;m/

with trace tr %. (We refer to Chapter 1 of [BC] for an in-depth treatment of pseu-
docharacters and a thorough discussion of when they originate from genuine rep-
resentations.) �

Finally, we will let Kp shrink. When Kp varies, the representations �m;KpKp

are compatible (because of their unicity), and we may pass to the limit, resulting
in

�m D �m;Kp D lim
 �
Kp

�m;KpKp W�K �! GL2.T.K
p/O;m/;

the universal modular deformation of N�, of tame levelKp. Below, we shall link its
local restrictions �m;Qv to the p-adic local Langlands correspondence for GL2.Qp/,
using the deformation-theoretic approach of Kisin [Ki1].

3.5 – Colmez’s Montreal functor

It turns out it is easier to describe the inverse of the p-adic local Langlands
correspondence B.�/. At a 2005 workshop in Montreal, Colmez gave an elegant
de�nition of a functor V, from representations of GL2.Qp/ to those of �Qp

, which
he subsequently studied in detail [Co1]. More precisely, V is an exact covariant
functor,

VWRep
O
.GL2.Qp// �! Rep

O
.�Qp

/;

from the category of smooth, admissible, �nite length representations of GL2.Qp/

on torsion O-modules (which admit a central character) to the category of repre-
sentations of �Qp

on �nite length O-modules.
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Theorem 3.5. The functor V enjoys the following properties.

(1) V.�/ D 0 if and only if � is �nite over O.

(2) V is compatible with twisting by a character.

(3) If V is a two-dimensional k-representation of �Qp
, which is not a twist of

�

1 �

N�

�

;

then there exists a unique representation N� 2 Repk.GL2.Qp// such that

(a) V. N�/ ' V , and N� has central character (corresponding to) det.V /N��1;

(b) Ext1GL2.Qp/. N�; N�/ ,! Ext1�Qp
.V; V /;

(c) N�SL2.Qp/ D 0.

(Thus N� has no �nite-dimensional submodules or quotients.)

Furthermore, V realizes the mod p local Langlands correspondence: N�ss $ V ss.

Proof. This is taken from [Ki1], where it occurs as Theorem 2.1.1. It summa-
rizes some of the most important results from [Co1]. �

The representation N� can be written down explicitly when V is reducible;
see Remark 3.3.3 in [Em2]. For instance, if V is a sum of characters (in general
position), N� is a sum of two irreducible principal series. In general, N� sits in an
extension of such. On the other hand, when V is irreducible, N� is supersingular.

V can be de�ned for more general coe�cient rings A, namely for a local
Artinian O-algebra A whose residue �eld is a �nite extension of k. If A is a
complete local Noetherian O-algebra (with residue �eld �nite over k), and � is
a “suitable” A-representation of GL2.Qp/, one de�nes V.�/ as the inverse limit
of V.�=ms

A�/. See Section 3.2 of [Em2] for a more thorough discussion of this.

3.6 – Deformation theory and p-adic Langlands

We go back to our absolutely irreducible, modular, representation N� from Sec-
tion 3.4. At each place wjp, we look at its restriction N�w to the Galois group of
Kw ' Qp. One of our standing hypotheses is that (for all � and extensions �),

N�w œ �˝

�

1 �

N�

�

:
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Therefore, N�w $ N�w , a smooth, admissible, �nite length k-representation of
GL2.Qp/, via mod p local Langlands. Since V is exact, it takes a deformation
of N�w to a deformation of N�w . Recall that a deformation of N�w to a complete local
Noetherian O-algebra A (with residue �eld k) is a free rank two A-module �w ,
with a continuous �Kw

-action, such that �w ˝A k ' N�w . Deformations of N�w are
de�ned similarly; we refer to De�nition 3.2 in [Bre].

For simplicity only, we will assume End�Kw
. N�w/ D k (for example, this holds

if N�w is absolutely irreducible). Equivalently, EndGL2.Kw/. N�w/ D k. This forces a
certain rigidity into our deformation problems, and Schlessinger’s criterion guar-
antees they are representable, by complete local NoetherianO-algebrasR. N�w/ and
R. N�w/, respectively. One can relax the “endomorphism-condition” and employ
more advanced deformation theory (groupoid-valued functors, framings etc.).
We refrain from doing so. The necessary modi�cations are made exactly as on
p. 25 in [Em2].

Since V is exact, it de�nes a morphism of local O-algebras,

VWR. N�w/ �! R. N�w/;

which we will continue to denote V. Let R. N�w/
det denote the quotient of R. N�w/,

which parametrizes deformations �w , which admit a central character ��w
cor-

responding to detV.�w/�, via local class �eld theory. We say �w satis�es the
“determinant-condition.” In [Co1], VII.5.3, Colmez showed the composition

R. N�w/
V
�! R. N�w/ �! R. N�w/

det

is onto. Geometrically, SpecR. N�w/
det is a closed subset of the deformation space

SpecR. N�w/. We will intersect it with another closed subset; the Zariski-closure
of the crystalline points. More precisely, consider the quotient

R. N�w/
cris D R. N�w/=

T

p;

where p runs over all prime ideals of the form p D ker.R. N�w/
˛
! xZp/, where ˛

is a homomorphism such that the ˛-specialization is a crystalline representation
�Kw

! GL2.xQp/ with distinct Hodge–Tate weights. We say p runs over the
“crystalline-regular” points of SpecR. N�w/. Thus we may think of SpecR. N�w/

cris

as their Zariski-closure. We look at the “intersection,”

SpecR. N�w/
cris D SpecR. N�w/

cris �Spec R. N�w/ SpecR. N�w/
det:
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In other words, the tensor product R. N�w/
cris �ts in a Cartesian square,

R. N�w/ R. N�w/
det

R. N�w/
cris R. N�w/

cris

 

!

 !  !

 

!

Here the bottom map turns out to be an isomorphism, by a key result of Kisin.

Theorem 3.6. R. N�w/
cris �
�! R. N�w/

cris.

Proof. This is Proposition 2.3.3 in [Ki1], and its Corollary 2.3.4. �

Intuitively, this says that SpecR. N�w/
cris is contained in SpecR. N�w/

det. Hence,
what goes into the proof is to �rst show that crystalline-regular deformations �w

lie in the image of V, say �w D V.�w/; and thereafter that such �w automatically
satis�es the determinant-condition.

We now apply this to our universal modular deformation �m over T.Kp/O;m.
Its restriction �m;w is a deformation of N�w , so it arises from the universal defor-
mation over R. N�w/ via a unique morphism of local O-algebras,

R. N�w/
˛
�! T.Kp/O;m:

We wish to show ˛ factors through R. N�w/
cris. This, combined with the previous

Theorem, would show the existence of a unique deformation �m;w of N�w over
T.Kp/O;m, which satis�es the determinant-condition, and such that

�m;w D V.�m;w/:

Here we will show that ˛ factors, granted that the crystalline points are Zariski
dense; which is the main result of the next section.

Lemma 3.7. The morphism R. N�w/
˛
�! T.Kp/O;m factors through R. N�w/

cris.

Proof. Suppose r 2
T

p. We must show ˛.r/ acts trivially on yH 0.Kp/O;m.
By the main Proposition of the next section, Proposition 3.10, it su�ces to show
˛.r/ acts trivially on each �-eigenspace of yH 0.Kp/O;m ˝ E, with � D �� as
in 3.10 (i.e. the kernel of an eigensystem �WT.Kp/O ! xQp is in Cm). For the
remainder of this proof, let q D ker.�/, viewed as a prime ideal in T.Kp/O;m.
We need to show its pullback ˛�1.q/ is among the p’s in the intersection

T

p.
However, the q-specialization �m.q/ of the universal modular deformation, can be
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identi�ed with ��;�, once we �x an embedding T.Kp/O=q ,! xQp . Since ��;� is a
deformation of N�, which is crystalline-regular at every wjp, the morphism

R. N�w/ �! T.Kp/O;m �! T.Kp/O=q ,�! xQp

factors through R. N�w/
cris, which is to say that

T

p � ˛�1.q/, as wanted. �

Remark 3.8. In fact, one can show that the projection R. N�w/! R. N�w/
cris is

an isomorphism (that is,
T

p D 0 in the above notation). For instance, see Theorem
A in [Che1], when N�w is irreducible. Consequently, so is R. N�w/

det ! R. N�w/
cris,

and
VWR. N�w/

�
�! R. N�w/

det

is a strengthening of Theorem 3.6. We note that an alternative approach to some
of these results can be found in the important recent work of Paskunas [Pas].

3.7 – Zariski density of crystalline points

First, let us get the de�nition of “classical and crystalline” in place.

Definition 3.9. A prime ideal p � T.Kp/O is called classical if p D

ker.�/, for some eigensystem �WT.Kp/O ! xQp associated with an automorphic
representation � of G.A/, of tame level Kp (and possibly non-trivial weight). If
moreover �p is unrami�ed, we say p is classical and crystalline. We denote by C

the set of all classical and crystalline points p in SpecT.Kp/O.

Note that prime ideals p in the localization T.Kp/O;m correspond to prime
ideals p � T.Kp/O such that p � m. We will pass between these points of view,
with no mention. We will let Cm denote the set of p 2 C contained in m.

Proposition 3.10. The submodule
L

p2C
yH 0.Kp/E Œp�

alg is dense in

yH 0.Kp/E . (Similarly,H D yH 0.Kp/O;m˝E contains
L

p2Cm

HŒp�alg as a dense

submodule.)

Proof. See Corollary 4 in section 7.5 of [So2]. �

We have the following corollary to the above result:

Corollary 3.11. One has
T

p2Cm

p D 0 (that is, Cm is Zariski dense in

SpecT.Kp/O;m).

Proof. Any t 2
T

p2Cm

p must act trivially on all of yH 0.Kp/O;m, so
t D 0. �
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Remark 3.12. The Zariski-density of crystalline points have been proved by
one of us (P.C.) in the generality of a PEL-type Shimura variety, see [Cho]. The
argument is much similar to the zero-dimensional case, except for a few issues
with cohomology in higher degree.

3.8 – Reformulation of Theorem 1.1

We are �nally in possession of all the ingredients needed to de�ne a certain
module X, in terms of which Theorem 1.1 gets a simple formulation. For each
wjp, we have �m;w , a deformation of N�w $ N�w over T.Kp/O;m, with central
character det.�m;w/�, such that �m;w D V.�m;w/. First, we introduce

�m D
N

vjp �m;Qv:

(Here vjp varies over places of F , and Qvjv is our choice of a place of K above v.
The tensor product is over the ring T.Kp/O;m.) This �m is thus a T.Kp/O;m-mod-
ule, with a linear action of the group G.Qp/, which we always identify with
Q

vjp GL2.KQv/, using our collection of places ¹ Qvº. Furthermore, �m has a natural
m-adic topology, from T.Kp/O;m.

Strongly inspired by Section 6.3 in [Em2], we introduce the (multiplicity)
module:

X D XKp WD Homcts
T.Kp/O;mŒG.Qp/�.�m; yH

0.Kp/O;m/:

(See also Section 4.1 in [Bre]). This parametrizes maps

�m �! yH 0.Kp/O;m;

and as we will see below its specialization XŒpx � parametrizes the maps
N

vjp B.�x;Qv/ �! yH 0.Kp/E Œpx�

relevant for Theorem 1.1, for primes p D px . Here the big di�erence with [Em2]
and [Bre], is the lack of a Galois-action on yH 0.Kp/, so we look at continuous
homomorphism out of �m, as opposed to �m ˝ �m. Moreover, we �nd it simpler
to work with a �xed tame level Kp throughout (and hence a �xed eigenvariety).

We �nd it useful to spell out the continuity assumption: X consists of
T.Kp/O;m-linear, G.Qp/-equivariant, homomorphisms of the form

�W�m �! yH 0.Kp/O;m;

such that for all s 2 Z>0, there is a t 2 Z>0, such that

�.mt�m/ � $
s yH 0.Kp/O;m:

(The reader may want to compare this to the �rst paragraph of 4.4 in [Bre].)
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Theorem 3.13. XŒp� ¤ 0, for all prime ideals p � T.Kp/O;m.

This implies our main result.

Lemma 3.14. Theorem 3.13 H) Theorem 1.1.

Proof. If p is a prime, the p-torsion XŒp� consists of those � which factor
through

�m.p/ D �m=p�m '
N

vjp.�m;Qv=p�m;Qv/;

this tensor product being over the �eld T.Kp/O;m=p. Since V is an exact functor,

�m;Qv.p/ D �m;Qv=p�m;Qv D V.�m;Qv=p�m;Qv/:

If we take p D px , as in Theorem 1.1, the left-hand side is �x;Qv . Consequently,

�m.px/ D
N

vjp B.�x;Qv/;

since B and V are each others inverse (see De�nition 3.3.15 on p. 26 in [Em2]). In
conclusion, the non-vanishingXŒpx � ¤ 0 of Theorem 3.13 amounts to the existence
of a nonzero, continuous, E-linear, G.Qp/-equivariant, homomorphism

�W�m.px/ D
N

vjp B.�x;Qv/ �! yH 0.Kp/O;mŒpx� ' yH
0.Kp/E Œpx�

(Since �m.px/ is annihilated by px, so is the image of �.) Finally, since the target is
complete, and � is continuous, it extends uniquely to the completion (with respect
to the tensor product norm, cf. (1) at the end of the next section). This shows
Theorem 1.1. �

3.9 – Non-vanishing at classical crystalline points

Recall that N�W�K ! GL2.k/ is an absolutely irreducible representation, associ-
ated with the maximal ideal m � T.Kp/O. In this section we will make the rather
bold assumption that all its restrictions N�w W�Kw

! GL2.k/ remain absolutely
irreducible, for wjp. This is to avoid having to deal with B.�/, for reducible crys-
talline �. We are hopeful that one can adapt the approach of [BE], and relax this
condition. For now, we wish to keep things simple by imposing this hypothesis.

In the next section, by a formal Nakayama type argument, we will verify that
it is enough to prove Theorem 3.13 for a Zariski dense subset of p � m. Here we
will prove the non-vanishing for all classical and crystalline points p.
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Lemma 3.15. XŒp� ¤ 0, for all p 2 Cm.

Proof. Let p � m be a classical crystalline point of SpecT.Kp/O. Say,
p D ker.��/, for an automorphic � , which is unrami�ed at p (and of tame level
Kp, and some weight). By the observations made in the proof of Lemma 3.14, we
seek a nonzero, continuous, E-linear, G.Qp/-equivariant map,

�W
N

vjp B.��;Qv/ ' �m=p�m �! yH 0.Kp/O;mŒp� ' yH
0.Kp/E Œp�;

after possibly passing to a �nite extension ofE (containing the residue �eld of p).
Here �� D ��;� is as in Theorem 2.1; we suppress �. Note that N�� ' N�, since
p � m. In particular, by our “bold” assumption on N�Qv , we infer that the crystalline
representation ��;Qv is absolutely irreducible (in fact, residually).

Now, for absolutely irreducible crystalline �, the p-adic local Langlands corre-
spondentB.�/ has a simple description, due to Berger and Breuil, [BB], which we
brie�y recall. Following the recipe of [BS], one �rst associates a locally algebraic
representation BS.�/ of GL2.Qp/ out of the p-adic Hodge theoretical data of � as
follows:

BS.�/ WD �.�/˝E �.�/ D det�1Sym�2��1�1.E2/˝E �.�/;

where �1 < �2 are the Hodge–Tate weights of �, and the smooth factor �.�/
is given by the generic local Langlands correspondence. Thus, �.�/ is a full
unrami�ed principal series, possibly reducible. When it is irreducible, one has

WD.�/F �ss ' rec.�.�/˝ j det j�1=2/:

In the reducible case, WD.�/ corresponds to the Langlands quotient of �.�/. By
Theorem 2.3.2 in [Ber], which summarizes some of the main results of [BB], one
knows that BS.�/ admits a separated GL2.Qp/-stable O-lattice, which is �nitely

generated over GL2.Qp/. Clearly all such lattices are commensurable, and B.�/
is the completion of BS.�/ with respect to any one of them. Thus B.�/ becomes
a topologically irreducible, admissible, unitary Banach E-space representation.

Specializing this discussion to � D ��;Qv , Theorem 2.1 (especially local-global
compatibility at the places above p) allows us to compute BS.�/ in terms of � ,

�.�/ D �Qv , �.�/ D BCQvjv.�v/,

where �Qv denotes the irreducible algebraic representation of GL2.KQv/, over E,
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related to �1 as follows. A priori, �1 is a representation of G.C/, restricted to
G.R/. Via �, we view �1 as a representation of G.xQp/, and restrict it to G.Qp/.
The resulting representation is � D

N

vjp �Qv . For more details, see 2.4 in [So2].
So,

N

vjp BS.��;Qv/ ' � ˝ �p;

both viewed as representations of G.Qp/, identi�ed with
Q

vjp GL2.KQv/.

We now invoke Corollary 3.2 which shows the existence of embeddings
N

vjp BS.��;Qv/ ' � ˝ �p ,�! yH 0.Kp/E Œp�
alg;

parametrized by .�p

f
/K

p

(repeated m� times).

If L is an arbitrary Banach E-space, with a unitary action of GL2.KQv/, then
any equivariant map i WBS.��;Qv/! L is automatically continuous; with respect to
the topology given by a �nite type latticeƒ � BS.��;Qv/. This is almost immediate.
If ƒ is generated by ¹�j º as a GL2.KQv/-module, then i.ƒ/ is contained in the ball
in L (centered at zero) with radius max ki.�j /kL. Thus, for example, if there was
only one place vjp of F (that is, if F D Q), any map

BS.��;Qv/ ,�! yH 0.Kp/E Œp�

automatically extends to the completion B.��;Qv/, which yields the desired map �.

Suppose for simplicity we only have two places ¹v1; v2º of F above p. The
previous discussion gives rise to a GL2.KQv1

/-equivariant embedding,

BS.��;Qv1
/ ,�! HomGL2.K Qv2

/.BS.��;Qv2
/; yH 0.Kp/E Œp�/:

All the homomorphisms on the right-hand side are automatically continuous.
So, the target may be identi�ed with the Banach space of bounded transformations,

LGL2.K Qv2
/.B.��;Qv2

/; yH 0.Kp/E Œp�/;

which then must contain B.��;Qv1
/. Composing with the evaluation map, yields

B.��;Qv1
/˝ B.��;Qv2

/ ,�! yH 0.Kp/E Œp�;

which is necessarily continuous relative to the tensor-product norm (and therefore
extends to the completed tensor product). Since all invariant norms on B.��;Qvi

/

are equivalent, see Corollary 5.3.4 on p. 56 in [BB], a short argument (which
we include below) shows that any norm on their tensor product is dominated by
(a constant multiple of) the tensor product norm; as de�ned in paragraph 17 in [Sc].

We may continue this inductively in order to deal with three or more places vjp.
�
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For completeness let us give the short argument mentioned in the above proof.
If V andW are normed vector spaces over a non-archimedean �eldK, one de�nes
the tensor product norm on V ˝K W as on p. 103 of [Sc]:

(1) kxkt WD inf¹max
i
kvikV � kwikW º; x D

X

i

vi ˝ wi 2 V ˝K W:

Here the in�mum is taken over all possible expansions x D
P

i vi ˝ wi . By
Proposition 17.4 on p. 105 of [Sc] this de�nes a norm (as opposed to just a
seminorm) with the property that kv ˝ wkt D kvkV � kwkW .

Now suppose V carries a K-linear action of a group G, and that k � kV is the
only G-invariant norm on V up to equivalence. Similarly, W carries anH -action,
and k � kW is the only H -invariant norm on W (up to equivalence).

Lemma 3.16. Let k � k be any G �H -invariant norm on V ˝K W . Then there

is a constant C > 0 such that kxk � Ckxkt for all x 2 V ˝K W .

Proof. For any �xed v ¤ 0, the formula kwkv WD kv ˝ wk de�nes an
H -invariant norm on W , so by assumption there is a constant Cv such that
kwkv � CvkwkW for all w 2 W . Thus it makes sense to de�ne

kvk0 WD sup
w¤0

kv ˝ wk

kwkW
� Cv <1:

This is easily seen to be a G-invariant norm on V , from which we deduce the
existence of a constant C such that kvk0 � CkvkV for all v 2 V . In other words,

kv ˝ wk � CkvkV kwkW D Ckv ˝ wkt ;

for all v; w. Consequently, for any x D
P

i vi ˝ wi , we get the estimate

kxk � max
i
kvi ˝ wik � C �max

i
kvi ˝ wikt :

Taking the in�mum over all expansions of x yields the result. �

In the proof of Lemma 3.15, we apply Lemma 3.16 with V WD BS.��;Qv1
/

and W WD BS.��;Qv2
/, viewed as representations of GL2.KQv1

/ and GL2.KQv2
/

respectively, and equipped with the unique invariant norms.

3.10 – Non-vanishing at all p � m

To �nish the proof of Theorem 1.1, we have to deduce Theorem 3.13 from
Lemma 3.15; again under the assumption that m is associated with a N�, with ir-
reducible restrictions N�w , for wjp. Thus, knowing that XŒp� ¤ 0 for all p 2 Cm,
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we will deduce this for all primes p � m whatsoever. This proceeds exactly as the
proof of Proposition 4.7 in [Bre], making use of the density of Cm (Corollary 3.11
above).

Below we will use Nakayama’s lemma, which requires the following prelimi-
nary result.

Lemma 3.17. HomO.X;O/ is a �nitely generated T.Kp/O;m-module.

Proof. For simplicity, let T D T.Kp/O;m throughout this proof (a complete
local O-algebra). By Proposition C.5 on p. 104 in [Em2], we need to show X is
co�nitely generated over T (cf. De�nition C.1 in loc. cit., X clearly satis�es the
�rst three properties, since yH 0.Kp/O;m is $ -adically complete, separated, and
O-torsion-free). By C.1 it remains to show .X=$X/Œm� is �nite-dimensional over
k (the fourth property). Note that there is a natural reduction map, � 7! N�,

X=$X �! HomTkŒG.Qp/�.�m=$�m; H
0.Kp/k;m/;

which is injective. Since $ 2 m, after taking the m-torsion, we get

.X=$X/Œm� ,�! HomkŒG.Qp/�.
N

vjp N�m;Qv; H
0.Kp/k;m/;

using that �m D
N

vjp �m;Qv, where �m;Qv is a deformation of N�m;Qv $ N�m;Qv over
T ( N�m;Qv is the residual representation obtained from the evaluation of �m;Qv at the
special point). We will show that the ambient space of Hom’s is �nite-dimensional.
We use a trick from p. 78 of [Em2], from the proof of his Theorem 6.3.12.
Since the representation N�m;Qv has �nite length, choose a �nite-dimensional k-
subspaceWQv , which generates N�m;Qv as a GL2.KQv/-representation (cf. the de�nition
of V in Section 3.5). Put W D

N

vjp WQv, a representation of G.Qp/ over k.
Furthermore, sinceWQv is smooth and �nite-dimensional, we can choose a compact
open subgroup KQv �xing WQv pointwise. Let Kp D

Q

vjp KQv. By restriction,

HomkŒG.Qp /�.
N

vjp N�m;Qv; H
0.Kp/k;m/ ,�! HomkŒKp�.W;H

0.Kp/k;m/:

Moreover, since Kp acts trivially on W , the latter space can be thought of as

HomkŒKp�.W;H
0.Kp/k;m/ ' W

_ ˝k H
0.KpK

p/k;m;

which obviously has �nite dimension over k. �

We now have everything in place to �nish the proof.
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Lemma 3.15) Theorem 3.13: Let p � m be a prime ideal of T D T.Kp/O;m.
By Lemma C. 14 on p. 108 of [Em2], the natural restriction map

HomO.X;O/˝T .T=p/ �! HomO.XŒp�;O/

becomes an isomorphism after tensoring �
N

O
E. By the anti-equivalence of

Proposition C.5 in loc. cit., it therefore su�ces to show that

M=pM ¤ 0, M D HomO.X;O/.

Once we show T acts faithfully onM , we are done by Nakayama’s lemma (which
applies since M is �nitely generated, as shown above). SupposeM D pM . Then
there is a t � 1 (mod p) in T such that tM D 0. Clearly a contradiction.

To show faithfulness, �rst note thatM=pM is a vector space over T=p, a �nite
�eld extension of E. Thus, T=p acts faithfully on M=pM , whenever the latter
is nonzero. If t 2 T acts trivially on M , it acts trivially on every M=pM , and
therefore t belongs to every p for which M=pM is nonzero. If this holds for a
Zariski dense set S of primes, take S D Cm for instance, we infer that

t 2
T

p2S p D 0:

That is, t D 0; which is to say T acts faithfully on M .

4. Theorem 1.1 H) Theorem 1.2

We deduce Theorem 1.2 in the introduction. This is in some sense the novelty
of our paper. We show classicality of a point on an eigenvariety, which requires
knowledge about how re�nements on the “automorphic” side interfere with trian-
gulations on the “Galois” side. For this we need a comparison of eigenvarieties.
Those from [Che2], and those from [KPX]. This is (at least in part) the subject
matter of [He], [HeSc], and [BHS].

4.1 – Classical weights

First o�, let us note that x at least has a classical weight �x D  x�x , where �x

is smooth, and  x is a dominant algebraic character of T .Qp/. Indeed, for any x,
the Hodge–Tate–Sen weights ¹�1; �2º of �x;Qv are encoded in �x D

N

vjp �x;Qv as
follows. On a compact open subgroup of TGL.2/.KQv/, the character �x;Qv takes the
form

�x;Qv.t / D t
�1

1 t
�2�1
2 :
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Since �x;Qv is Hodge–Tate, �1 < �2 are integers, and  x;Qv.t / D t
�1

1 t
�2�1
2 is an

algebraic character on all of TGL.2/.KQv/, which is dominant (relative to the lower-
triangular Borel), and agrees with �x;Qv in a neighborhood of the identity.

4.2 – Modularity

By assumption, �x;Qv is absolutely irreducible. By well-known properties of the
p-adic local Langlands correspondence, we infer that B.�x;Qv/ is topologically
irreducible. Thus the space of locally algebraic vectors B.�x;Qv/

alg is dense,
since it is nonzero by the de Rham assumption in Theorem 1.2. Consequently,
N

vjp B.�x;Qv/
alg is dense in y

N

vjpB.�x;Qv/, and by continuity of the map in Theo-
rem 1.1 it restricts to a nonzero G.Qp/-equivariant map

N

vjp B.�x;Qv/
alg �! yH 0.Kp/E Œpx�

alg:

In particular, the target is non-trivial, which is to say there is an automorphic rep-
resentation � ofG.A/, with coe�cients inE, such that �1 has highest weight x,
and the spherical Hecke algebra H.Kp/sph acts on �Kp

f
¤ 0 via the eigensystem

�x WH.K
p/sph ! E, with kernel px. This shows that �x is at least modular; it is

associated with the automorphic representation � . To conclude that x 2 Xcl, we
are left with verifying that there is an embedding �p ,! iB.�x/. Here B is the
product of the upper-triangular BGL.2/.KQv/, and the induction is not unitarily nor-

malized (no modulus factor ı
1
2

B involved). We say �x is an accessible re�nement
of �p D

N

vjp �v.

4.3 – Re�nements

We will use the following result on re�nements.

Theorem 4.1. When �x;Qv is regular, �x;Qv is trianguline. In fact, its étale .�; �/-

module Drig.�x;Qv/ admits a triangulation,

0 �! R.ı1/ �! Drig.�x;Qv/ �! R.ı2/ �! 0;

where R is the Robba ring over E, and the ıi are E-valued (necessarily) contin-

uous characters of Q�
p D K�

Qv
, related to the weight �x;Qv via the formula

�x;Qv D ı1 ˝ ı2�
�1;

where � is the “cyclotomic” character of Q�
p , which kills p (sending x 7! xjxj).
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Proof. When F D Q, this is Corollary 4.3 in [He], which in fact gives
an analogue for GL.n/. (This uses the residual irreducibility of �x.) The result
appears in general also as Theorem 6.3.13 in [KPX] or Theorem A in [Berg2],
for the space of trianguline .�; �/-modules. Theorem 3.5 on p. 17 of [HeSc] and
Theorem 4.8 on p. 40 of [BHS] relate this space to the automorphically de�ned
eigenvariety X we consider in Theorem 1.2. �

Remark 4.2. We will not be precise about what we mean by �x;Qv being regular
(see [He] page 7 for the de�nition). It is automatically satis�ed if �x;Qv is potentially
semistable with distinct Hodge–Tate weights �1 < �2, which we assume.

Consequently, B.�x;Qv/ is a p-adic unitary principal series for GL2.Qp/, and
Colmez has recently described its locally analytic vectorsB.�x;Qv/

an, thereby prov-
ing conjectures of Breuil and Emerton. (We refer to [Em3] for a precise de�nition
of locally analytic vectors.) A di�erent proof was given by Liu, Xie, and Zhang,
[LXZ]. We recall Colmez’s result below.

Theorem 4.3. Suppose ı1ı
�1
2 ¤ xk jxj, for any k 2 ZC, and �x;Qv is irre-

ducible. Then B.�x;Qv/
an sits in an exact sequence of locally analytic representa-

tions,

0 �! iB.ı2 ˝ ı1�
�1/an �! B.�x;Qv/

an �! iB.ı1 ˝ ı2�
�1/an �! 0:

(Here the induction is unnormalized. The notation iB was introduced just before

Theorem 1.1 in the introduction.)

Proof. This is Theorem 0.7, part (i), on page 7 in [Co2]. See also the main
Theorem 1.2 in [LXZ], which gives an alternative proof. �

Taking locally algebraic vectors, which is left exact, yields

0 �! iB.ı2 ˝ ı1�
�1/alg �! B.�x;Qv/

alg �! iB.ı1 ˝ ı2�
�1/alg:

Here the rightmost term is iB.�x;Qv/
alg, by Theorem 4.1, and the leftmost term is

iB.�
0
x;Qv
/alg, where �0

x;Qv
is the character sending t D

�

t1
t2

�

2 TGL.2/.KQv/ to

�0
x;Qv.t / D �x;Qv

��

t2

t1

��

� �
� t1

t2

�

:

In particular, its algebraic part  0
x;Qv
.t / D t

�2

1 t
�1�1
2 is not dominant, relative to the

lower triangular Borel, and consequently we have iB. 0
x;Qv
/alg D 0.
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Lemma 4.4. The two extreme terms of the exact sequence are

(a) iB.�
0
x;Qv
/alg D 0,

(b) iB.�x;Qv/
alg ' iB. x;Qv/

alg ˝ iB.�x;Qv/,

where, in (b), the �rst induction is algebraic induction (thus �x;Qv D iB. x;Qv/
alg is

irreducible algebraic of highest weight  x;Qv), and the second is smooth induction.

Proof. For (b), note that there is a natural multiplication map,

iB.�x;Qv/ �! Hom.�x;Qv; iB.�x;Qv//
sm;

which is GL2.KQv/-equivariant. It is injective. Indeed, a function in the kernel
would annihilate the highest weight vector in �x;Qv , and therefore vanish on xN ,
and hence on the dense open Bruhat cell B xN . To show surjectivity, it su�ces to
show

iB.�x;Qv/
K �
�! HomK.�x;Qv; iB.�x;Qv//;

for all su�ciently small compact open subgroups K. All we have to do is count
dimensions. On the left-hand side, we get jBnG=Kj, at least for small enough K.
To deal with the right-hand side, think of it as

.�_
x;Qv ˝ iB.�x;Qv//

K D iB.�
_
x;QvjB ˝ �x;Qv/

K :

If K is small enough, the latter is identi�ed with jBnG=Kj copies of .�_
x;Qv
jB ˝

 x;Qv/
B , since B

T

K is Zariski-dense, which is the line spanned by the highest
weight vector in �_

x;Qv
. (Note here that �_

x;Qv
has highest weight  �1

x;Qv
relative to B .)

As a result, the initial “multiplication map” is an isomorphism, and

�x;Qv ˝ iB.�x;Qv/
�
�! iB.�x;Qv/

�x; Qv-alg D iB.�x;Qv/
alg;

where the last equality is deduced by looking at the highest weight vectors as in the
above argument (cf. the paragraph preceding the Lemma). The same arguments
works for (a). If iB.�0

x;Qv
/ hadW -algebraic vectors, for someW , one could deduce

thatW _ has highest weight �0�1
x;Qv

relative toB , but then �0
x;Qv

would be xB-dominant,
which we already observed is not the case. �

We conclude that there is an embedding

B.�x;Qv/
alg ,�! �x;Qv ˝ iB.�x;Qv/:

On the other hand, since �x;Qv is assumed to be potentially semistable, with distinct
Hodge–Tate weight, the algebraic vectors can be expressed as �x;Qv ˝ �x;Qv , where
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�x;Qv arises from WD.�x;Qv/
F �ss via the generic local Langlands correspondence

(suitably normalized). We infer that there is an inclusion of �x;Qv,

�x;Qv ,�! Hom.�x;Qv; �x;Qv ˝ iB.�x;Qv//
sm D .End.�x;Qv/˝ iB.�x;Qv//

sm D iB.�x;Qv/;

since �x;Qv jK remains irreducible for any K. This proves what we want. Using
Theorem 1.1, we have already deduced �x ' �� is modular. From local-global
compatibility above p (due to Barnet-Lamb, Gee, Geraghty, Taylor, and Caraiani)
we conclude that �x;Qv D BCQvjv.�v/. (Indeed, since �� is irreducible, BCK=F .�/

must be cuspidal, hence globally generic, and therefore �v is generic, so in this
case “generic” local Langlands is just “classical” local Langlands). Finally, by
taking the tensor product over all vjp, we get the desired embedding�p ,! iB.�x/,
which shows x must be a classical point. This �nishes the proof of Theorem 1.2.
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