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Strong local-global compatibility

in the p-adic Langlands program for U.2/

Przemyslaw Chojecki (�) – Claus Sorensen (��)

Abstract – For certain mod p Galois representations N�, arising from modular forms on
de�nite unitary groups in two variables, we express the N�-part of completed cohomol-
ogy yH 0

N�
(away from † D †p[†0) as a tensor product …p˝…†0

. Here …p is attached

to the universal deformation �univ via the p-adic local Langlands correspondence for
GL2.Qp/, and …†0

is given by the local Langlands correspondence in families, of
Emerton and Helm.
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1. Introduction

We continue the study from [CS16] of the completed cohomology yH 0 of de�nite
unitary groups in two variables; or more precisely, the piece associated with a
modular mod p Galois representation N�, which is irreducible at p. The goal of this
paper is to explicitly describe yH 0

N� as a tensor product of representations arising
from p-adic local Langlands for GL2.Qp/ and local Langlands in families (de�ned
away from p) respectively.

Our unitary groups are de�ned relative to a �xed CM-extension K=F . Thus
U D U.D; ?/=F , where D is a quaternion K-algebra with involution ?. We will
always assume G D ResF=Q.U / is compact at in�nity, and split at p. Here p > 2
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is a �xed prime, which splits in K. Thus G.R/ is a product of copies of U.2/,
and G.Qp/ is a product of copies of GL2.Qp/. Let †p denote the set of places
v of F above p. Choose a �nite set of banal places †0, disjoint from †p, and
let † D †0 [ †p. We assume U splits at all these places, and for each v 2 †

we once and for all choose a divisor Qvjv in K. Via this selection, we identify
U.Fv/ ' GL2.KQv/ (well-de�ned up to conjugacy).

Throughout, we �x a large enough coe�cient �eld; a �nite extension E=Qp ,
with integers O D OE , uniformizer $ D $E , and residue �eld k D kE . We start
with an absolutely irreducible mod p Galois representation,

N�W�K D Gal.xK=K/ �! GL2.k/;

which we assume to be modular. That is, N� ' N�� , for some automorphic repre-
sentation � of G.A/ of weight V and level K D

Q

v Kv . Throughout, we impose
the following conditions on N�.

� N�.�F .�p// is big (in a formal sense, cf. [CHT08]).

� N�j�K Qv
is irreducible, for all vjp.

� K D Kmax � G.Af / is maximal, and hyperspecial outside †.

� The weights of V are in the range Œ0; p � 2/ at each in�nite place.

All but the second one can be traced back to the hypotheses in [CHT08],
which are needed to obtain modularity lifting theorems via the usual Taylor-Wiles
patching machinery.

Let m D m N� be the associated maximal ideal in the Hecke algebra. Here we are
a bit imprecise about which Hecke algebra we use; we pull-back m via surjections
of Hecke algebras without mention. Usually we view m as an ideal of T†, the
quotient of the polynomial algebra Tabs

† , in variables T
.1/
w and T

.2/
w , which acts

faithfully on the completed cohomology,

yH 0.K†/O D lim
�!
K†0

yH 0.K†0
K†/O, yH 0.Kp/O D .lim

�!
Kp

H 0.KpKp/O/^.

(These spaces, and their topologies, will be discussed in more detail in Sec-
tion 2.1 below.) We let �mW�K ! GL2.T†;m/ be the universal modular defor-
mation of N� over the (big) localized Hecke algebra T†;m, which acts faithfully
on yH 0.K†/O;m. This is our main object of interest. Our goal in this paper is to
factor the U.F†/-action as a tensor product of a G.Qp/-representation …p, and a
U.F†0

/-representation …†0
(both over T†;m).



Strong local-global compatibility 137

At each place vjp, consider the restriction N�j�K Qv
, which is irreducible by

assumption – and in particular in the image of Colmez’s Montreal functor. (Recall
that KQv D Qp, so this makes sense.) Thus N�j�K Qv

$ N�Qv for some k-representation
N�Qv of GL2.KQv/. We refer to Section 3.4 in [CS16] for a review of the salient facts.
The correspondence pairs deformations, so �m;Qv corresponds to some deformation
…m;Qv of N�Qv over T†;m. We let …p D y

N

vjp…m;Qv , viewed as a representation of
G.Qp/ over T†;m. Here y̋ denotes the $ -adically completed tensor product.

At each place v 2 †0, the restriction �m;QvW�K Qv
! GL2.T†;m/ yields a

corresponding representation …m;Qv of GL2.KQv/ over T†;m via local Langlands
correspondence in families – as developed by Emerton and Helm in [EH14] and
[He13] (see Section 2.3 for a quick summary of its de�ning properties). The
normalization here is that …m;Qv is cotorsion-free (as opposed to torsion-free), and
thus its smooth dual is the representation which interpolates the local Langlands
correspondence, in the natural sense. We let …†0

D .
N

v2†0
…m;Qv/ctf be the

largest cotorsion-free submodule of the tensor product (cf. Proposition 6.4.2 in
[EH14]). As always, via the selection of divisors ¹ Qvºv2†0

, we view …†0
as a

representation of U.F†0
/.

The main result we present in this note is the following.

Theorem 1. With notation and assumptions as above, there is a G.Qp/ �

U.F†0
/-equivariant isomorphism of T†;m-modules,

…p

f

˝T†;m
…†0

�
�! yH 0.K†/O;m:

(Here
f

˝T†;m
denotes Emerton’s completed tensor product; see Section 3 below.)

This result is formally similar to the (main) local-global compatibility Conjec-
ture 6.1.6 in [Em11] for yH 1 of the tower of modular curves which Emerton proves
for p-distinguished N� in Theorem 6.2.13 of loc. cit. (i.e., for N� such that N�jss�Qp

is
not of the form �˚ �).

In our setup, the arithmetic manifolds are �nite sets, and we only have coho-
mology in degree zero. Furthermore, yH 0 is much simpler. It can be realized as
continuous functions on a compact set, and there is no Galois-action. That be-
ing said, our approach relies heavily on that of Emerton, and for the most part
our proof is an almost formal application of his general results on coadmissible
modules in his Appendix C. However, there seems to be one step in [Em11] which
does not straightforwardly adapt to the unitary setting. Namely how Ihara’s lemma
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ensures that a certain candidate representation for .…†0
=$…†0

/Œm� is indeed es-

sentially AIG (a key notion from [EH14]). In the companion paper [Sor14], this
was taken care of – even for U.n/, where Ihara’s lemma is still a big open problem
for n > 2, although signi�cant progress has been made very recently by Pascal
Boyer, cf. [Boy15]. This led to the writing of this note.

Note that in the special case where †0 D ¿, Theorem 1 realizes …p globally
as yH 0.Kp/O;m, with Kp being a product of hyperspecials away from p. This sug-
gests that the elusive p-adic local Langlands correspondence for n-dimensional
� should be closely related to the analogous piece of completed cohomology for
U.n/ (at least when N� satis�es our criteria).

2. Notation and recollections

2.1 – De�nite unitary groups and their Hecke algebras

We brie�y recall the setting from our paper [CS16].

The unitary groups we work with are de�ned relative to a CM-extension
K=F . More precisely, we let D be a quaternion algebra over K, endowed with an
F -linear anti-involution ? of the second kind (?jK D c). This pair de�nes a unitary
group U D U.D; ?/=F , an inner form of GL.2/ over K. Indeed, U �F K ' D�.
We consider the restriction of scalars, G D ResF=Q.U /. We always assume G.R/

is compact and that D splits at all places ofKwhich lie above a �xed prime number
p, which splits in K.

For each place vjp of F , we choose a place Qvjv of K above it (note that
KQv D Qp canonically). Using this selection of places ¹ Qvº†�

(where � D 0 or p),
we have identi�cations

G.R/
�
�! U.2/Hom.F;R/, G.Qp/

�
�!

Y

vjp

GL2.KQv/.

Of course, KQv D Qp , but we wish to incorporate Qv in our notation to emphasize
how our identi�cation depends on this choice.

Throughout, we �x a �nite set †0 of �nite places of F , none of which lie above
p. We assume each v 2 †0 splits in K, and that D splits at every place above
such a v. Let † D †0 [ †p, where †p D ¹vjpº consists of all places above p.
We enlarge our selection ¹ Qvº, and choose a divisor Qv of each v 2 †.

For any compact open subgroup K � G.Af / we consider the arithmetic
manifold

Y.K/ D G.Q/nG.Af /=K
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which is just a �nite set. For any commutative ring A we denote by H 0.K/A the set
of functions Y.K/! A. For each tame level Kp � G.A

p

f
/, one de�nes (following

Emerton, cf. [Em06]) the completed cohomology, with coe�cients in some p-adic
ring of integers O D OE , having uniformizer $ ,

yH 0.Kp/O WD lim
 �

s

lim
�!
Kp

H 0.KpKp/O=$sO;

where the direct limit runs over compact open subgroups Kp � G.Qp/, and
s > 0. Unwinding the de�nitions one easily identi�es yH 0.Kp/O with the mod-
ule of all continuous functions f WG.Q/nG.Af /=Kp ! O. Since the domain
lim
 �Kp

Y.KpKp/ is compact (indeed pro�nite) the supremum norm kf k is �nite.

Thus yH 0.Kp/O is the unit ball in the p-adic Banach space yH 0.Kp/E of all con-
tinuous E-valued functions f , on which U.F†p

/ '
Q

vjp GL2.KQv/ acts unitarily.
Next, we factor Kp D K†0

K† and let K†0
shrink to the identity. We de�ne

yH 0.K†/O WD yH
0
O;† D lim

�!
K†0

yH 0.K†0
K†/O;

which by de�nition carries a smooth U.F†0
/-action. Here we endow yH 0.K†/O

with the direct limit topology. Alternatively, as above, yH 0.K†/O can be thought
of as the continuous functions f WG.Q/nG.Af /=K† ! O which are smooth at
the places in †0. This guarantees that the supremum norm kf k is �nite, and the
direct limit topology on yH 0.K†/O coincides with the norm topology.

In what follows, we will always take K† to be a product of hyperspecial
maximal compact subgroups Kv D U.Ov/, for v … †. Note that there are two

conjugacy classes of hyperspecials when U=Fv
is a p-adic unitary group in an

even number of variables, cf. [Min11].

We denote byTabs
† the polynomialO-algebra in the variables T

.1/
w and .T

.2/
w /˙1,

one for each place w of K lying above v D wjF … †, which splits in K. (Here
the superscript abs stands for abstract as a reminder that this is a Hecke algebra of
in�nite type.) Once and for all, we choose an isomorphism

�w WU.Fv/
�
�! GL2.Kw/

in such a way that it identi�es U.Ov/ ' GL2.OKw
/.

The algebra Tabs
† acts naturally on the module yH 0

O;†. Explicitly, T
.j /
w acts via

the usual double coset operator

��1
w

�

GL2.OKw
/

�

12�j

$w1j

�

GL2.OKw
/

�

;
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where $w is a choice of uniformizer in OKw
. We let T† denote the quotient of

Tabs
† which acts faithfully on yH 0

O;†, and we may view T
.j /
w as an operator on yH 0

O;†

or a variable in Tabs
† , interchangeably. For a compact open subgroup K†0

as above
we letT†.K†0

/ be the quotient ofT† cut out by the submodule of K†0
-invariants,

yH 0.K†0
K†/O.

For each maximal ideal m � Tabs
† , say with residue �eld k D Tabs

† =m, which

is a �nite extension of kE � Fp, we may consider the localization yH 0.K†/O;m,
which will be our main object of study. Those maximal ideals we will eventually
look at arise from a modular Galois representation, N�W�K ! GL2.kE /, which is
unrami�ed outside †, as follows: m D m N� � Tabs

† is generated by $ D $E and
all the elements

..�1/j Norm.w/j.j �1/=2T .j /
w � a.j /

w /j;w

where j 2 ¹1; 2º, and w ranges over places of K lying above split v … †. Here the
a

.j /
w 2 O are lifts of Na.j /

w , where X2C Na
.1/
w XC Na

.2/
w is the characteristic polynomial

of N�.Frobw/. We will occasionally write N� D N�m.

2.2 – Essentially AIG representations

Let L=Q` be a �nite extension, for some prime ` ¤ p. Eventually this L will be
one of the completions Fv ' KQv , for v 2 †0. We say (after 3.2.1 in [EH14]) that
a representation V of GL2.L/, with coe�cients in E or kE , is essentially AIG

(which stands for absolutely irreducible and generic) if the conditions below are
ful�lled. We stress that generic is equivalent to in�nite-dimensional here, as we
are working with GL2 and not higher rank general linear groups.

(1) The GL2.L/-socle soc.V / is absolutely irreducible and generic.

(2) The quotient V= soc.V / contains no generic Jordan-Holder factors.

(3) The representation V is the sum (or equivalently, the union) of its �nite length
submodules.

Observation 1. If V is essentially AIG, then so is any non-zero subrepresen-

tation U � V . Moreover, soc.U / D soc.V /. We will use this simple observation

multiple times later on ( for example in the proof of Corollary 1 below).

We will use the term essentially AIG also for representations of
Q

i GL2.Li /,
for a �nite collection of �elds Li=Q`i

(possibly of varying residue characteris-
tics `i ), by which we mean a tensor product

N

i Vi of essentially AIG represen-
tations Vi of each GL2.Li/. The context below will be that of representations
of U.F†0

/, which we always identify with
Q

v2†0
GL2.KQv/ via the selection of

places ¹ Qvºv2†.
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2.3 – The local Langlands correspondence in families

One of the main theorems of [EH14] is a characterization of the local Langlands
correspondence for GL.n/ in families. The proof that it actually does exist (at least
in the banal case, where p is prime to the pro-order of the groups in question) is
given in the recent work [He13]. Local Langlands in families puts the classical
local Langlands correspondence in a family over a reduced complete Noetherian
local O-algebra A. Emerton and Helm give a short list of desiderata, which we
verify for a candidate-representation occuring naturally in the course of the proof
of our main result. For convenience, we recall the criteria here.

Theorem 2. [The local Langlands correspondence in families] Let A be a

reduced complete Noetherian local O-algebra. Let †0 be the set of places of

F from above. Suppose that for each v 2 †0 we are given a representation

�QvW�K Qv
! GL2.A/. Then there is at most one (up to isomorphism) coadmissible1

smooth A-representation …†0
D �.¹�Qvºv2†0

/ of U.F†0
/ '

Q

v2†0
GL2.KQv/

such that

(1) …†0
is cotorsion free over A (that is, the smooth dual is torsion free – which

in turn means nonzero elements can only be annihilated by zero-divisors);

(2) .…†0
=$…†0

/Œm� is an essentially AIG representation (over k D A=m);

(3) there is a Zariski dense subset of closed points S � Spec AŒ1=p�, such that

for each point p 2 S, there exists an isomorphism

.…†0
˝O E/Œp� '

N

v2†0
�.�Qv ˝A �.p//

where �.p/ is the fraction �eld of A=p, and �.�Qv ˝A �.p// is the represen-

tation of GL2.KQv/ associated to �Qv.p/ WD �Qv ˝A �.p/ via the generic local

Langlands correspondence (of Breuil–Schneider [BS07]).

Proof. This is the content of Proposition 6.3.14 in [EH14], except that we have
dualized everything – using Proposition C.5 and Lemma C.35 in [Em11] �

In this article we specialize the theorem to the following situation. We take
A D T†;m, for some maximal ideal m D m N� � T†, and the Galois input is
�Qv D �m;Qv D �mj�K Qv

, where �mW�K ! GL2.T†;m/ is the universal modular
†-deformation of N� over the big Hecke algebra T†;m. We write …†0

for the
resulting representation. For any p 2 SpecT†;m we will write

…†0
.p/ WD �.p/˝T†;m

…†0
:

1 i.e. its smooth A-dual is admissible.
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Similarly, for v 2 †p, let …v be the T†;m-representation of GL2.KQv/ associ-
ated with �mj�K Qv

under the p-adic local Langlands correspondence for GL2.Qp/

(of Berger, Breuil, Colmez, Emerton, Kisin, Paskunas and others). Keep in mind
thatKQv D Qp , so this is well-de�ned. Let …p D

N

vjp …v – viewed as aT†;m-rep-
resentation of G.Qp/ '

Q

vjp GL2.KQv/. As above, we may specialize,

…p.p/ WD �.p/˝T†;m
…p:

When p D m, we will write N�p instead of …p.m/ D …p=m…p (which is a smooth
G.Qp/-representation over k).

3. The strategy of the proof of our main result

The overall argument is to relate …†0
to the module

X WD HomT†;mŒG.Qp/�.…p; yH 0
O;†;m/;

of T†;mŒG.Qp/�-linear continuous homomorphisms …p ! yH 0
O;†;m. Here …p is

given the m-adic topology, and yH 0
O;†;m is given the induced topology from yH 0

O;†

(as described in Section 2.1). Note that X is naturally a T†;m-module, with a
smooth action of U.F†0

/, and there is a natural evaluation map

evX W…p

f

˝T†;m
X �! yH 0

O;†;m;

which is equivariant for the U.F†/-action. The curly-wedge tensor product
f

˝T†;m

is Emerton’s notation (see De�nition C.43 in [Em11]); it is the direct limit of $ -
adically completed tensor products,

…p

f

˝T†;m
X WD lim

�!K†0

…p y̋ T†;m
XK†0 ;

over compact open subgroups K†0
� U.F†0

/.

For every coadmissible T†;mŒU.F†0
/�-submodule Y � X , we let evY denote

the restriction of evX ,

evY W…p

f

˝T†;m
Y ,�! …p

f

˝T†;m
X �! yH 0

O;†;m:

(The fact that the initial map is an embedding is Lemma C.48 in [Em11].) In what
follows, we use the map evY;E into yH 0

E;†;m, obtained from evY by tensoring
.�/ ˝O E. For each prime p � T†;mŒ1=p�, we take the p-torsion and look at
the induced map

evY;E Œp�W…p.p/˝�.p/ .Y ˝O E/Œp� �! yH 0
E;†;mŒp�:
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On the other hand, we may �rst reduce evY modulo $ , and then take them-torsion.
By Lemma C.45 in [Em11] this gives rise to a map

evY;kŒm�W N�p ˝k .Y=$Y /Œm� �! H 0
k;†;m

Œm�;

where H 0
k;†

is the space of all k-valued K†-invariant functions on G.Q/nG.Af /.

In view of these de�nitions, our main result can be restated as saying there
exists a coadmissible T†;mŒU.F†0

/�-submodule Y � X such that evY is an iso-
morphism and Y ' …†0

. To carry this out we need two results whose proofs are
given in the following sections, which form the technical core of the argument. We
recall that Xctf � X denotes the maximal cotorsion free coadmissible submodule
of X .

Proposition 1. Let Y � X be a coadmissible T†;mŒU.F†0
/�-module. Then

the following two conditions are equivalent:

(1) the map evY is an isomorphism;

(2) Y is a faithful T†;m-module, and the map evY;kŒm� is injective.

Moreover, if Y satis�es these conditions, then Y D Xctf.

We will combine this result with:

Proposition 2. If evXctf is an isomorphism, then Xctf ' …†0
.

Before proving our main Theorem 1, granting the above Propositions, let us
mention one elementary lemma of Emerton’s (Lemma 6.4.15, [Em11]). We recall
its proof for completeness.

Lemma 1. Suppose that N�1 and N�2 are smooth representations of G over k,

U is a vector space over k, and f W N�1 ˝k U ! N�2 is a G-equivariant k-linear

map (the G-action on the source is de�ned via its action on N�1). Assume that N�1 is

admissible and the G-socle soc. N�1/ of N�1 is multiplicity free. If for every non-zero

element u 2 U , the map N�1 ' N�1˝k .k �u/! N�2 induced by f is an embedding,

then f itself is an embedding.

Proof. Write soc. N�1/ D
Ls

iD1 N�1;i where N�1;i are pair-wise non-isomorphic
irreducible admissible smooth G-representations. We have the isomorphism

Ls
iD1 N�1;i ˝k U ' soc. N�1/˝k U ' soc. N�1 ˝k U /
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If f has a non-zero kernel, then this kernel has a non-zero socle, hence it has a non-
zero intersection with N�1;i ˝k U for at least one i . Thus it contains N�1;i ˝k .k � u/

for some non-zero u 2 U . But this means that the map N�1 ˝k .k � u/! N�2 is not
injective, which contradicts our assumption. �

Proof of Theorem 1. By Proposition 2 it is enough to show that evXctf is an
isomorphism. By Proposition 1, this is equivalent to evXctf;kŒm� being injective, and
Xctf being faithful over T†;m. First, in regards to the faithfulness. We will show
later that evX;E is certainly onto (this is part of Proposition 4 below). In particular,
X is faithful. Now Proposition C.40 in [Em11] tells us that so is Xctf. What remains
is the injectivity of the evaluation map

N�p ˝k .Xctf=$Xctf/Œm� �! H 0
k;†;m

Œm�:

By Lemma 1 it su�ces to show, for every nonzero u 2 .Xctf=$Xctf/Œm�, that
the induced map N�p ! H 0

k;†;m
Œm� is injective. However, each such G.Qp/-

equivariant map is either trivial or injective by our standing hypothesis on N�.
Namely, by known properties of mod p local Langlands for GL2.Qp/, we know
that N�p is irreducible since each restriction N�j�K Qv

is assumed to be irreducible for
all vjp. �

4. Coadmissible Hecke modules

4.1 – Allowable points

Following standard terminology in the subject, we de�ne allowable points to be
those prime ideals p 2 SpecT†;mŒ1=p� for which the specialization �m.p/ is
irreducible and crystalline above p, with distinct Hodge–Tate weights.

We record the following lemma for later use.

Lemma 2. If p 2 SpecT†;mŒ1=p� is an allowable point, then there is a U.F†0
/-

equivariant �.p/-linear isomorphism

.X ˝O E/Œp� '
N

v2†0
�.�m;Qv.p// DW �†0

.�m.p//:

Furthermore, the evaluation map induces an isomorphism

evX;E Œp�W…p.p/˝�.p/ .X ˝O E/Œp�
�
�! . yH 0

E;†;mŒp�loc.alg./
� DWM.p/E :

(M.p/E is the closure of the space of locally algebraic vectors in yH 0
E;†;mŒp�.)
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Proof. Since �m;Qv.p/ is irreducible crystalline and regular, a fundamental
result of Berger and Breuil ([BB10]) tells us that …v.p/ is the universal unitary
completion of the locally algebraic representation BS.�m;Qv.p// associated with
�m;Qv.p/ by Breuil and Schneider. A fortiori, …p.p/ D y̋ vjp…v.p/ is the universal
unitary completion of BS.p/ WD

N

vjp BS.�m;Qv.p//, which is a locally algebraic
representation of G.Qp/ over �.p/, which we factor as �.p/ ˝�.p/ �.p/. Here the
algebraic part �.p/ records the Hodge–Tate weights, and the smooth part �.p/

corresponds to the Weil–Deligne representations WD.�m;Qv.p// under the classical
local Langlands correspondence.

The locally algebraic vectors in yH 0
E;†;mŒp� have a description in terms of

automorphic representations � of G (see either Proposition 3.2.4 in [Em06], or
Corollary 3.2 in [CS16]),

(1) yH 0
E;†;mŒp�loc.alg. D

L

�W�1D�.p/BS.p/˝ �†0
˝ .�†

f
/K†

Œp�:

The sum ranges over automorphic � with �1 D �.p/, which are unrami�ed
outside †, such that T†;m acts on the line .�†

f
/K†

through T†;m=p. We have used
multiplicity one for G (see [Mok15] and [KMSW] for instance), and local-global
compatibility at p (due to Caraiani and others, cf. [BGGT] and [Car14]).

In fact there is a unique � D
N

v �v contributing to the right-hand side of (1).
Indeed, by [Rog90] (Theorem 11.5.1, part (b), on p. 166) any such � admits a base
change … WD BCK=F .�/ to GL2.AK/. Note that … is a cuspidal automorphic
representation (as opposed to just isobaric) since N�� ' N� is irreducible. Moreover,
the local base change …w D BCwjv.�v/ is unrami�ed for all v … † as Kv is
hyperspecial. When v splits in K, and wjv is a place dividing it, the spherical
Hecke algebra acts on …

GL2.OKw /
w via the eigensystem

H.GL2.Kw/; GL2.OKw
// ,�! Tabs

† �� T† �! T†;m=p ' O;

which shows that …w is completely determined by p for such v. At an inert place
v D w … †, the actions of the spherical Hecke algebras on …

GL2.OKw /
w and �

Kv
v

correspond to each other via the base change morphism

bwjvWH.GL2.Kw/; GL2.OKw
// �! H.U.Fv/; Kv/:

(This is the morphism b.�/ from (2.7) on p. 11 of [Min11], with � D BC

as given in (4.1) on p. 16 of op. cit.) By Corollary 4.2 of [Min11] the mor-
phism bwjv is surjective, which is to say the local base change map is injective:
BCwjv.�v/ ' BCwjv.� 0

v/ ) �v ' � 0
v. By Corollary B (of the main Theorem)

in [Ram15] a cuspidal automorphic representation … of GLn.AK/ is determined
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by its components …w for all but �nitely many degree one primes w. In particular
… D BCK=F .�/ is determined by p. By the above remark on injectivity at the
inert places, �v is then determined for all v … †. Finally, all places v 2 † split in
K by assumption, so �v is determined here as well.

As observed in the previous paragraph, the base change BCK=F .�/ is cuspidal
hence (globally) generic. Therefore the factors of �†0

are generic (so local Lang-
lands and generic local Langlands coincide at the places in †0). By local-global
compatibility at the places in †0, and the fact that �v is unrami�ed for v … †, the
closure of yH 0

E;†;mŒp�loc.alg. in yH 0
E;†;m factors as

M.p/E WD yH
0
E;†;mŒp�loc.alg. ' …p.p/˝E �†0

.�m.p//;

again using the fact that …p.p/ is the completion of the irreducible (by Theorem 1,
part 2, p. 126 in Prasad’s Appendix to [ST01]) locally algebraic representation
BS.p/. Furthermore,

HomEŒG.Qp/�.…p.p/; yH 0
E;†;mŒp�/ ' HomEŒG.Qp /�.BS.p/; yH 0

E;†;mŒp�/

' HomEŒG.Qp /�.BS.p/; yH 0
E;†;mŒp�loc.alg./

' HomEŒG.Qp /�.BS.p/; M.p/E/

' HomEŒG.Qp /�.…p.p/; M.p/E /:

This string of isomorphisms, together with the natural identi�cation

.X ˝O E/Œp� ' HomEŒG.Qp/�.…p.p/; yH 0
E;†;mŒp�/;

implies
.X ˝O E/Œp� ' HomEŒG.Qp/�.…p.p/; M.p/E/;

from which both statements of the Lemma are easily deduced. �

Of course, the way this will be used below, is by showing that the allowable
points Sal are Zariski dense – so that we may take S D Sal in part (3) of
Theorem 2 which characterizes …†0

. The previous Lemma identi�es .X˝OE/Œp�

with …†0
˝T†;m

�.p/, for p 2 Sal . We will eventually use this in the proof of
Proposition 2.

4.2 – Proof of Proposition 1 following Emerton

Recall that a submodule Y of a O-torsion free module X is saturated if X=Y is
O-torsion free (see De�nition C.6 in [Em11]). The proof of the following Proposi-
tion is based on that of Proposition 6.4.2, p. 82, in [Em11]. Here, for convenience,
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we will walk the reader through the relevant facts from Emerton’s comprehensive
Appendix C on coadmissible modules.

Proposition 3. If Y � X is a saturated coadmissible T†;mŒU.F†0
/�-submod-

ule, then the following conditions are equivalent:

(a) Y is a faithful T†;m-module;

(b) for each level K†0
� U.F†0

/, the submodule of invariants Y K†0 is a faithful

T†.K†0
/m-module;

(c) for each classical allowable closed point p 2 SpecT†;mŒ1=p�, the inclusion

.Y ˝O E/Œp� � .X ˝O E/Œp� is an equality.

(d) for each level K†0
� U.†0/, and for each classical allowable closed point

p 2 SpecT†;mŒ1=p�, the inclusion .Y K†0 ˝O E/Œp� � .XK†0 ˝O E/Œp� is

an equality;

(e) Xctf � Y .

Proof. As a T†;mŒU.F†0
/�-module, X is co�nitely generated and coadmis-

sible (as explained in [CS16], Subsection 3.9). Hence, by Corollary C.34 from
[Em11], since Y is saturated in X , we infer that Y is co�nitely generated overT†;m.

Observe from the outset that clearly (c) () (d), and (b) H) (a).

(a) () (c). Lemma 2 above shows that for any allowable point p �

T†;mŒ1=p� the U.F†0
/-representation .X ˝O E/Œp� is in particular irreducible.

Hence, for any allowable p, we have .Y ˝OE/Œp� 6D 0 if and only if .Y ˝OE/Œp� D

.X˝OE/Œp�. We know from our previous work [CS16] that the allowable points are
Zariski dense in SpecT†;mŒ1=p� (see Corollary 3.11 of [CS16]), and since T†;m is
reduced, we conclude from Proposition C.36 of [Em11], that (a) and (c) are equiv-
alent.

(d) H) (b). By the irreducibility remarks just made, .Y K†0 ˝O E/Œp� 6D 0

for each allowable point p 2 SpecT†.K†0
/m. Referring to Proposition C.22 in

[Em11], p therefore lies in the cosupport of Y K†0 which by the preceding remarks
in loc. cit. means p contains the annihilator ideal AnnT†.K†0

/m.Y K†0 /. By the
aforementioned density,

T

p D 0. Consequently, the annihilator ideal is trivial.

Altogether this shows the �rst four conditions are equivalent. We end by show-
ing they are all equivalent to (e). Suppose we can prove that Xctf can be character-
ized as the unique saturated, coadmissible T†;mŒU.F†0

/�-submodule of X which
is both faithful and cotorsion free over T†;m. Note that, by Proposition C.40 of
[Em11], Yctf is faithful if Y is. As a result, admitting the posited characterization
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of Xctf, we �nd that (a) implies the equality Yctf D Xctf, and in particular con-
dition (e) that Xctf � Y . In conclusion (a)) (e). For the converse, observe that
the claim implies Xctf satis�es (a), the faithfulness. Thus, if Xctf � Y , then Y

automatically satis�es (a) as well. To summarize, (a) and (e) are equivalent.

We are left with proving the characterization of Xctf. As X trivially satis�es (c)
it also satis�es (a), and by Proposition C.40 of [Em11], we infer that Xctf also satis-
�es (a). Hence Xctf is a faithful T†;m-cotorsion free T†;mŒU.F†0

/�-submodule of
X . Let Y be any saturated, coadmissible T†;mŒU.F†0

/�-submodule of X which
is faithful and cotorsion free over T†;m. Obviously Y � Xctf. Moreover, since
we know (a) implies (c), we get an equality .Y ˝O E/Œp� D .Xctf ˝O E/Œp� for
allowable points p (which we already observed are Zariski dense in SpecT†;m).
Thus Proposition C.41 of [Em11] implies that Y D Xctf, as desired. �

This is one of the key technical ingredients which goes into the proof of
Proposition 1. The other is the following variant of “Zariski density of crystalline
points.”

Proposition 4. Let Y � X be a saturated coadmissible T†;mŒU.F†0
/�-

submodule, which satis�es the equivalent conditions (a)–(e) of the previous

Proposition 3. Then evY;E is surjective. Equivalently, for each su�ciently small

level K†0
, the map

evY;E .K†0
/W…p y̋ T†;m

.Y K†0 ˝O E/ �! yH 0.K†0
K†/E;m

is surjective.

Proof. The last equivalence of the Proposition follows by taking K†0
-invari-

ants or, conversely, passing to the limit over all levels K†0
, using the very de�ni-

tion of the curly wedge tensor product
f

˝T†;m
(cf. Section 3).

We �rst prove that the image of evY;E contains
L

p2C
yH 0

E;†;mŒp�loc.alg., where C
is the set of classical allowable points p 2 SpecT†;mŒ1=p�. Proposition 3 part (c)
gives us the equality .Y ˝O E/Œp� D .X ˝O E/Œp�. Therefore,

im.evY;E Œp�/ D im.evX;E Œp�/ DM.p/E � yH
0
E;†;mŒp�loc.alg.;

by the second half of Lemma 2. Letting p vary, we deduce our �rst claim that
im.evY;E / contains

L

p2C
yH 0

E;†;mŒp�loc.alg.. However, the latter space is dense in
yH 0

E;†;m by Zariski density of crystalline points (Proposition 3.10 of [CS16]). Thus

im.evY;E / is dense in yH 0
E;†;m. However, im.evY;E / is in fact closed, as we now

explain.
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Using Lemma 3.1.16 on p. 17 in [Em11], we �rst note that …p y̋ T†;m
Y K†0 is

a $ -adically admissible representation of G.Qp/ over T†;m (acting through the
�rst factor of the tensor product). Admissibility of yH 0.K†0

K†/O;m is immediate
(by �niteness of the class number of G). We may then apply Proposition 3.1.3
of [Em11] to the G.Qp/-map evY .K†0

/ between admissible representations. It
states precisely that the induced map on Banach E-spaces, evY;E .K†0

/, has closed

image. We conclude that each evY;E.K†0
/ must in fact be onto. �

Having established these preliminary results, we can �nally proceed to the
proof of Proposition 1. We remark that the proof is very similar to that of Emerton’s
Theorem 6.4.9, p. 85, in [Em11].

Proof of Proposition 1. Suppose �rst that evY is an isomorphism. Since
yH 0
O;†;m is a faithful T†;m-module, we see that Y must be a faithful T†;m-module.

Reducing the map evY modulo $ , and taking m-torsion, we �nd that evY;kŒm� is
at least injective (it may not be onto, a priori). This shows that (1) H) (2).

(2) H) (1). Conversely, if evY;kŒm� is injective, then by Lemma C.46 of [Em11],
we see that evY is injective, with saturated image. Lemma C.52 of [Em11] then
implies that Y must be saturated in X . If Y is furthermore faithful as a T†;m-
module, then Proposition 4 shows that evY;E is surjective. It follows that evY is in
fact an isomorphism (again because im.evY / is saturated in yH 0

O;†;m).

Finally, assume evY satis�es conditions (1) and (2). We must show Y D Xctf.
As we have already noted in the previous paragraph, it follows that Y is saturated
in X , and so (e) of Proposition 3 shows one inclusion, Xctf � Y . Since Xctf is
saturated in X , and therefore also in Y , we conclude that the induced map

.Xctf=$Xctf/Œm� �! .Y=$Y /Œm�

is an embedding (even before taking m-torsion), and thus that evXctf;kŒm� is in-
jective, since evY;kŒm� is. The equivalence (1), (2) applied to Xctf then tells us
that evXctf is an isomorphism. In other words, the inclusion Xctf � Y induces an
isomorphism

…p

f

˝T†;m
Xctf

�
�! …p

f

˝T†;m
Y:

It follows from Lemma C.51 of [Em11] that the inclusion Xctf � Y is an equality
as required. �
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4.3 – Ihara’s lemma and the proof of Proposition 2

Let W gl . N�/ be the set of global Serre weights of N�. By de�nition, those are the
�nite-dimensional irreducible kŒG.Zp/�-representations V for which

HomkŒG.Zp/�.V; H 0
k;†;mŒm�/ ¤ 0:

It is easy to see that this space can be identi�ed with SV .G.Zp/K†; k/mŒm�, where
SV .G.Zp/K†; k/ is the space of mod p algebraic modular forms of weight V , and
level G.Zp/K†. More concretely,

SV .G.Zp/K†; k/ D lim
�!
K†0

SV .G.Zp/K†0
K†; k/;

where SV .G.Zp/K†0
K†; k/ is the (�nite-dimensional) space of functions

f WG.Q/nG.Af /=K†0
K† ! V _; f .gu/ D u�1f .g/; u 2 G.Zp/:

The Buzzard-Diamond-Jarvis conjecture (proved by Gee et al. in the case of uni-
tary groups in two variables, cf. [GLS14]) gives an explicit description of W gl . N�/

in terms of the restrictions to inertia, ¹ N�jIK Qv
ºvjp. Recall from the introduction

that N� is assumed to occur at maximal level K†0
, with weight V in the Fontaine-

La�aille range (which means the highest weights of V lie in Œ0; p� 2/). Once and
for all, choose such a V 2 W gl . N�/. One of the goals of [Sor14] was to prove the
following:

Proposition 5. SV .G.Zp/K†; k/mŒm� is essentially AIG.

Proof. Up to notational inconsistency this is Theorem 4 in Section 5.5 of
[Sor14], which in fact gives the analogous result for U.n/ contingent on the
conjectural Ihara lemma. The latter is known (and almost a trivial consequence
of the strong approximation theorem) for n D 2. �

Corollary 1. HomkŒG.Qp /�. N�p; H 0
k;†;m

Œm�/ is essentially AIG.

Proof. Since it is known that sockŒG.Zp/�. N�p/ D
L

V 2W gl . N�/ V (see [GLS12,
Theorem A]), we have an embedding V ,! N�pjG.Zp/ whose image generates N�p

over G.Qp/ because N�p $ ¹ N�j�K Qv
ºvjp is irreducible – by known properties of

mod p local Langlands for GL2.Qp/. We deduce that the restriction map

HomkŒG.Qp /�. N�p; H 0
k;†;mŒm�/ �! HomkŒG.Zp/�.V; H 0

k;†;mŒm�/

is injective, and the result follows from Proposition 5 and Observation 1. �
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We need one more preliminary result in order to show Xctf interpolates the
local Langlands correspondence. It is analogous to Lemma 6.4.5, p. 83, in [Em11],
except that we only need allowable prime ideals.

Lemma 3. The closure (in the sense of de�nition C.28 of [Em11]) of

S

p allowable XŒp�

in X coincides with Xctf.

Proof. We start with a general remark, which will be used for both inclusions.
Let Y � X be an arbitrary saturated, coadmissible T†;mŒU.F†0

/�-submodule,
which is a faithful T†;m-module. By Proposition 3 part (c) we know that Y Œp� D

XŒp� for all allowable p. (A priori, we only know this after tensoring with E, but
Y is saturated – see also C.41 in [Em11].) In particular, any such Y contains the
union

S

p allowable XŒp�, and therefore its closure W since Y is closed. By C.31 in
loc. cit., this is equivalent to Y being coadmissible.

�. Take Y D Xctf in the previous paragraph.

�. To show that W � Xctf, �rst observe that W is saturated (C.30), coadmissible
(C.31), and faithful. If t 2 T†;m acts trivially in W , it acts trivially on each XŒp�.
In other words t 2 AnnT†;m

XŒp� D p. By Zariski density
T

p D 0 so that
t D 0. From the �rst paragraph of the proof we conclude that W is the minimal

saturated coadmissible faithful submodule of X . Since Wctf � W has all these
three properties, W D Wctf must be cotorsion-free. As we have already seen in the
proof of Proposition 3 part (e) this implies the desired equality W D Xctf. �

Proof of Proposition 2. Let S denote the set of closed points p 2 SpecT†;m,
which are allowable. As noted above, S is Zariski dense. We want to show that Xctf,
S and A D T†;m satisfy the three conditions determining the local Langlands
correspondence in families (see Section 2.3).

(1) Xctf is cotorsion-free over T†;m by de�nition.

(2) .Xctf=$Xctf/Œm� is essentially AIG, since (by saturation) it sits inside

.X=$X/Œm� ' HomkŒG.Qp /�. N�p; H 0
k;†;mŒm�/;

which was just shown to be essentially AIG.

(3) By Lemma 2, for all p 2 S we have

.X ˝O E/Œp� '
N

v2†0
�.�m;Qv.p//:

On the left-hand side, Lemma 3 allows us to replace X by Xctf.
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This proves Proposition 2, and altogether �nishes the proof of our main The-
orem 1. �
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