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A construction of a uniform continuous minimizing movement

associated with a singular functional

Yoshihiko Yamaura (�)

Abstract – A minimizing movement is constructed associated with a singular functional

introduced by Alt and Ca�arelli in order to study a free boundary problem. The main

purpose of the present research is to construct a minimizing movement, which is

uniformly continuous with respect to both time and space variables. The strategy is

to regularize the singular term of time discretized functionals, and then to pass to the

limit in the regularization parameter in the sense of �-convergence keeping the time

discretization parameter �xed.
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1. Introduction

The goal of this paper is to construct a uniformly continuous minimizing move-

ment for the singular functional introduced by Alt and Ca�arelli [1] in order to

investigate regularity properties of stationary free boundary. Before stating the

main theorem of this paper, we present the de�nition of minimizing movement in

a general metric space setting ([5]) together with introducing some terminology

used throughout this paper.

Definition 1.1 (minimizing movement). Let X be a metric space with metric

d , and F W X ! Œ0; 1� be a function. Let h be a positive number and suppose that

u0 2 X is an element such that F.u0/ < C1. Set u0;h D u0, and recursively

de�ne un;h, n 2 N, as a minimizer of the variational problem:

“ Minimize
d.u; un�1;h/2

h
C F.u/ among all u 2 X . ”

We call a sequence .un;h/1
nD0 de�ned in this way the discrete minimizing

movement and designate by DMM.F I u0; h/ the collection of all such sequences.

We say that u D u.t/W Œ0; 1/ ! X is a minimizing movement for F starting

from u0 if there exists a sequence .hj /1
j D1 converging to zero as j ! 1 and

.un;hj
/1
nD0 2 DMM.F I u0; hj / such that

(1.1) lim
j !1

uhj
.t / D u.t/ in X

for each t � 0, where uh.t / D uh.t; x/ for .t; x/ 2 .t
.h/
n�1; t

.h/
n � � R

N , t
.h/
n D nh,

n D 0; 1; 2; : : : . We call such a limit function u.t/ the minimizing movement of F

starting from u0 and designate by MM.F I u0/ the collection of all such u.t/.

Although the term “generalized minimizing movement” is commonly used in

references, the word “ generalized” is omitted in this paper for brevity. Throughout

this paper, “DMM” and “MM” will refer to “discrete minimizing movement” and

“minimizing movement,” respectively. Our main theorem is the following.

Theorem 1.2 (main result). De�ne a functional AC W L2.RN / ! Œ0; 1� as

follows:

AC .u/ WD

8

<

:

Z

RN

.jruj2 C �.u// d x for u 2 W 1;2.RN /;

C1 for u 2 L2.RN / n W 1;2.RN /;

where �.�/ is the characteristic function of the interval .0; 1/. Suppose that the

initial data u0 satis�es conditions (2.3) of Section 2. Then there exists an element

u D u.t/ 2 MM .AC I u0/ such that
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(i) 0 � u � sup
RN

u0 in Œ0; 1/ � R
N ;

(ii) there exist positive constants C1 D C1.u0/ and C2 D C2.u0; N / such that

ju.t; x/ � u.t; x0/j � C1jx � x0j for t � 0; x; x0 2 R
N

and

ju.t; x/ � u.t 0; x/j � C2jt � t 0j
1
2 for t; t 0 � 0; x 2 R

N :

A general existence result for MM is known.

Theorem 1.3 (existence [3, Theorem 2.4]). Let X be a metric space with

metric d , and let F W X ! Œ0; 1� be a functional ful�lling the following conditions:

(F1) F is lower semicontinuous on X ;

(F2) the set ¹u 2 X j F.u/ � kº is compact in X for any positive constant k.

Then, for any u0 2 X with F.u0/ < C1, there exists an element of MM.F I u0/.

Set F D AC and .X; d/ D .L2
loc.R

N /; dL2
loc

.RN //, and extend AC to be

equal to C1 on L2
loc.R

N / n L2.RN /. Here, the distance dL2
loc

.RN // is de�ned for

f; g 2 L2
loc.R

N / as

dL2
loc.RN /.f; g/ WD

1
X

`D1

1

2`

kf � gkL2.B`.0//

1 C kf � gkL2.B`.0//

;

where B`.0/ D ¹x 2 R
N j jxj < `º. Then, since the conditions (F1) and (F2) are

ful�lled, the existence of an element of MM .AC I u0/ is immediate from the above

theorem. However, if we proceed the argument further along these lines, we will

face the situation of investigating the regularity of MM having at our disposal only

the fact that un;h is a minimizer of a time discretized functional with a singular

term. To obtain such regularity seems di�cult since we can rely neither on the

regularity theory for the stationary problem [1, 2] nor on the standard theory for

parabolic partial di�erential equations. For this reason, we propose an approach

formulated by adopting the local estimation technique in the framework of the

minimizing movement scheme. Namely, we �rst establish a DMM with an equi-

continuity property, and then construct a MM maintaining the regularity. More

precisely, we carry out the construction according to the following plan:

(step 1) regularize � and establish equi-continuity for piecewise linear func-

tion generated by each minimizers;



158 Y. Yamaura

(step 2) pass to the limit as " ! 0, while h > 0 is kept �xed. Here " > 0

is a regularization parameter for �, and h > 0 is the width of time

discretization;

(step 3) pass to the limit as h ! 0 to obtain the desired MM.

In the present paper, we concentrate on (step 2) and (step 3), whereas (step 1)
has already been delivered in the preceding paper [26]. Thus, on combination of

the results of the present paper and [26], we complete the proof of Theorem 1.2
according to the strategy above. Let us give an outline of the argument in each of

the above all steps.

(step 1) is based on the local estimation for solutions to Euler–Lagrange equa-

tions of regularized functionals. Let u"
0;h

D u0 and u"
n;h

, n 2 N, be a minimizer

of the time-discretized and regularized functional

AC "
n;h.u/ D

1

h
ku � u"

n�1;hk2
L2.RN /

C

Z

RN

.jruj2 C �".u// d x;

where �", " > 0, represents a regularization of � such that �" ! � as " ! 0.

Then it is shown that Ou"
h
, the piecewise linear function generated by .u"

n;h
/1
nD0,

is equi-continuous in .0; 1/ � R
N . In the proof, the techniques in the paper [11]

are essentially exploited. The precise proof of (step 1) is given in the paper [26],

whose results are summarized in Section 2.

In (step 2), for the purpose of constructing a uniformly continuous DMM, we

pass to the limit as " ! 0 for each �xed n 2 N and h > 0, preserving the

regularity property. With the help of the result of (step 1), it is possible to �nd

an in�nitesimal ."j / such that u
"j

n;h
converges to a function un;h locally uniformly

on R
N . By the de�nition of DMM, the limit function un;h is required to be a

minimizer of AC n;h which is de�ned by replacing u"
n�1;h

and �" in AC "
n;h

by

un�1;h and �, respectively. To this end, we only have to show that the sequence of

functionals AC
"j

n;h
converges, as j ! 1, to AC n;h in the sense of �-convergence,

the variational convergence, in terms of the topology of L2.RN /. This fact follows

from the global L2.RN /-convergence of u
"j

n�1;h
to un�1;h, which is shown by

employing the comparison argument investigated in Section 3. The �-convergence

theory is originally introduced as an approximation method in the calculus of

variation ([12], [8], [24]). We mention [6] and [7] as examples of its application

to singular functionals. This theory is also applied to time evolutionary problems,

as shown in this paper (cf. [14], [25]).

Finally, in (step 3), we derive the desired regular MM by passing to the limit

as h ! 0, preserving again the regularity property. Having shown that . Ouh/ is

equi-continuous in R
N � .0; 1/, we can �nd an in�nitesimal .hj / such that uhj

.t /
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converges to u.t/ in the topology of L2
loc.R

N / for each �xed t > 0. However,

by the de�nition of MM, such a convergence is too weak to attain our �nal

goal. Indeed, we are required to verify the convergence in terms of the global

L2.RN /-norm. This is accomplished again by invoking the comparison argument

for the functional deprived of the �-term. In fact, since the functional F without

the �-term is convex, we can take advantage of the monotonicity property of its

subgradient, i.e., the Laplace operator ([3]).

Since the functional AC is singular because of �-term, we can not adopt the

local estimation technique directly. For this reason we regularize the singular term

([26]), so that we can exploit the technique in order to establish the regularity of

each solutions. Once we pass to the limit in the regularization parameter, we can

proceed our investigation according to the MM scheme. In this way, our analysis

in this paper makes possible to apply the local estimation technique in the MM

method through the regularization of functionals.

We illustrate the relation to other results and the background of our research.

The time evolution corresponding to the stationary free boundary problem was

treated by Ca�arelli and Vázquez [11] for the problem of �ame propagation. They

�nd a function u and a domain D in .0; 1/ � R
n such that @t u D 4u in D

and jrxuj D 1 on @D. Their method is based on a singular perturbation of the

heat equation by the derivative of a regularized characteristic function, and the

investigation is performed essentially by choosing an initial data such that the

solution has a monotonicity property.

The minimizing movement method was originally introduced by De Giorgi [3]

in order to construct curves of maximal slope (see [20]) associated with singular

energy functionals whose Euler–Lagrange equation can not be formulated. This

approach is frequently adopted in recent works on PDEs, especially in the studies

of time evolutionary problems with background in geometric measure theory

(see [5] and the references therein). In fact, a minimizing movement turns out to be

a curve of maximal slope if continuity is assumed for the energy functional and for

its “slope,” which is a generalized notion of the modulus of gradient. Although a

curve of maximal slope is a notion de�ned in a scalar setting because of the lack of

di�erentiability of functionals, once the norm of a subdi�erential to the functional

equals to the slope, a “gradient �ow equation” with a vectorial structure can be

established ([5]). For instance, an application to an image segmentation problem

de�ned on the space of functions of bounded variation has been reported ([4],

[10]). In the reference [23], a curve of maximal slope to the functional AC is

constructed in the one-dimensional case based on the method established in [20],

which is a di�erent formulation from the time discretization approach presented

here.
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The local estimation technique is known in regularity theory for weak solutions

to elliptic and parabolic PDEs, like as, for instance, Campanato theory ([9, 13]).

It has been developed by Kikuchi [19] to apply such a local estimation technique

to MM in terms of energy functionals whose Euler–Lagrange equations can be

formulated. The goal of this approach is to investigate equi-regularity of approx-

imate solutions generated by time-discretized PDEs of elliptic type. It is worth

mentioning that the aim of studying equi-regularity of approximate solutions is

di�erent from the purposes of usual regularity theory for the weak solutions to

parabolic PDEs. The investigation of regularity for approximate solutions with an

approximation parameter is inevitably divided into several cases depending on the

relation between the size of the considered local parabolic cylinder and the width

of time discretization. Thus, extremely precise and careful calculations are indis-

pensable to this analysis, which is one of the distinct features of this method (refer

to [17, 18, 26]). By adopting this method together with the Campanato theory, a

weak solution to a parabolic system with a locally uniform continuity under a con-

siderably weak initial and boundary conditions is constructed in [16]. Since this

method is also constructive in the sense that an approximate solution is de�ned

by minimizers of variational functionals and satis�es the Euler–Lagrange equa-

tion, the researches in the numerical analysis for free boundary problems have

been investigated through a regularization technique as treated in this paper (e.g.

[15, 22]).

We explain about the relation between the MM constructed in this paper and

the evolution problem. Although the MM can not be a solution of just a single

parabolic equation in time-space domain because of the characteristic function

term, it is expected to be shown to be a solution of time evolutional problem in

the sense of a Curve of Maximal Slope (CMS henceforth) to the Alt-Ca�arelli

functional. But this problem is still open. As stated above, in [23] a CMS is

constructed in the case of one dimension by a minimizing scheme di�erent from

ours, and it is proved to be a weak solution in the sense of [11]. In the proof, an

appropriate restriction of the domain of functional makes possible to apply the

general theory of [20] for constructing CMS. On the other hand, in Part I of [5],

a su�cient condition that a MM become to be a CMS is proposed in general

dimension. Since the condition is equivalent to that of [20], the MM of this paper

is expected to be a CMS also in general dimension. However, to demonstrate this

conjecture along the line of [23] is considered to be di�cult. Indeed, in [23] the

function at which the slope of the functional is �nite can be explicitly described

owing to the particularity of one dimension.
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We end this introduction by stating the future prospects of the problem treated

in this paper. Due to the existence of the characteristic function term, the unique-

ness of the solution does not hold in this problem. Therefore, the MM constructed

by the method of this paper is expected to have better properties compared with

the weak solution of the paper [11], since the MM is de�ned through an energy

minimizing process. The key of the regularity theory of free boundary in [1] is a

Lipschitz regularity of minimizers. It is considered to be signi�cant that we es-

tablish in this paper the corresponding regularity property in the time-evolutional

setting by a minimizing scheme, although other tools as non-degeneracy property

have not been proved yet. We also expect that by using the MM obtained in this pa-

per the investigation the regularity of the time evolutional free boundary becomes

possible without any monotonicity hypothesis as assumed in [11].

We list now some of the main notation which will be used throughout this

paper.

Notation

The letters R, Z and N denote the real integer and the natural number system,

respectively. Let .fn/1
nD0 be a sequence of functions de�ned on R

N , h a positive

number, and t
.h/
n D nh (n 2 Z). We set the function fh de�ned in R

N � .�h; 1/

as follows:

fh.t; x/ WD fn.x/ for .t; x/ 2 R
N � .t

.h/
n�1; t .h/

n �; n D 0; 1; : : : :

We call fh the h-step function generated by .fn/. We also set the function Ofh

de�ned on R
N � .0; 1/ ! R as follows:

Ofh.t; x/ WD
t

.h/
n � t

h
fn�1.x/ C

t � t
.h/
n�1

h
fn.x/

for .t; x/ 2 Œt
.h/
n�1; t .h/

n � � R
N ; n D 1; 2; : : : :

We call Ofh the h-piecewise linear function generated by .fn/.

The N dimensional Lebesgue measure is denoted by L
N . We use the standard

notation for the Lebesgue and Sobolev spaces Lp.RN / and W m;p.RN /, 1 � p �

1, m 2 N, equipped with the norms k � kLp.RN /, k � kW m;p.RN /, respectively.

L2
loc.R

N / is the set of measurable functions whose square are locally integrable

in R
N . C 1.RN / indicates the set of functions of C 1-class in R

N , and C 1;˛.RN /,

0 < ˛ < 1, is the space of C 1.RN /-functions whose derivatives are Hölder

continuous with the exponent ˛. For a function f on R
N , we designate by spt f
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the support of f , RN n
S

U , where union is taken over all open sets in which

f D 0 holds almost everywhere. For a positive number ı and a point a of RN ,

we use the notation Bı.a/ for the open ball in R
N of radius ı with center a. By

.t; x/ we denote the pair of variables t and x, where t is a time in .�1; 1/ and

x D .x1; x2; : : : ; xN / a point of RN . We say that a sequence ."j / is an in�nitesimal

sequence if "j > 0 for j 2 N and "j ! 0 as j ! 1. For a sequence .fj / of

functions de�ned on A � R
m, m 2 N, and a function f on A, we write fj � f on

A to mean that fj converges to f uniformly on A as j ! 1. For a function f on

R
N , a subset A ofRN and a real number ı, we set A.f > ı/ D ¹x 2 A j f .x/ > ıº.

Other symbols A.f � ı/, A.f < ı/, A.f � ı/, etc. are understood analogously.

2. Preliminaries

Let � be the characteristic function of the interval .0; 1/ ofR: �.r/ WD 1 for r > 0,

and WD 0 for r � 0. For any " > 0, we indicate by �" a smooth approximation of

� which satis�es the following properties:

�" 2 C 1.R/I

0 � �" � 1 in RI

�0
" � 0 in R; �0

" > 0 in .0; "/I(2.1)

�".r/ D

8

<

:

0 for r 2 .�1; 0�;

1 for r 2 Œ"; 1/I
(2.2)

j�0
"j �

K

"
; j�00

" j �
K

"2
in R for some positive constant K.

Suppose u0 is a given initial datum ful�lling

(2.3)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

u0 2 W 1;2.RN / \ W 2;1.RN / \ C 1;˛.RN / forsome ˛ 2 .0; 1/;

L
N .spt u0/ < C1;

0 � u0 � sup
RN

u0 < C1 in R
N :

Then, in particular, we notice that AC .u0/ < C1.

For arbitrarily �xed positive numbers h and ", set u"
0;h

D u0 and recursively

de�ne u"
n;h

.n D 1; 2; : : :) as a minimizer in L2.RN / of the functional

AC"
n;h.u/

D

8

ˆ

<

ˆ

:

Z

RN

� ju � u"
n�1;h

j2

h
C jruj2 C �".u/

�

d x for u 2 W 1;2.RN /,

C1 for u 2 L2.RN / n W 1;2.RN /:
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Remark 2.1 (collection of sequences ADMM .AC I u0; "; h/). The existence of

a minimizer of the variational problem above is demonstrated by the usual direct

method in the calculus of variation. The energy comparison with the constant

function of the value zero con�rms that AC"
n;h.u"

n;h
/ < C1 for n D 1; 2; : : : ,

and, in particular, u"
n;h

2 W 1;2.RN /. Since AC"
n;h is not convex, the minimizer

is not necessarily unique. Accordingly, more than one sequence .u"
n;h

/1
nD0 may

be de�ned. For this reason, we set up the notation ADMM .AC I u0; "; h/ to mean

the collection of all such sequences, where “ADMM” is the abbreviation of the

expression Approximate Discrete Minimizing Movement.

Henceforth, for an arbitrarily �xed positive numbers h and ", let .u"
n;h

/1
nD0 2

ADMM .AC I u0; "; h/ be given. We list up properties of .u"
n;h

/ established in [26]

which will play an important role in this paper. By a truncation argument, the

following result follows from the third condition of (2.3).

Theorem 2.2 (weak maximum principle [26, Theorem 2]). It holds that

0 � u"
n;h � sup

RN

u0 in R
N

for n D 0; 1; 2; : : : .

Theorem 2.3 (uniform gradient bound [26, Theorem 4]). It holds that

(2.4) kru"
n;hkL1.RN / � C max

®

M
1
2 ; kru0kL1.RN /

¯

DW L

for n D 0; 1; 2; : : : , where M D sup
R

.�0
1 C j�00

1j/, and C is a positive constant

independent of ", h and n.

Here, we notice that the �rst condition of (2.3) on the initial data u0 is needed

to demonstrate Theorem 2.3 (see [26] for further details).

Corollary 2.4. Let u"
h

be the h-piecewise constant function generated by

.u"
n;h

/1
nD0. Then it holds that

sup
.�h;1/�RN

jru"
hj � L;

where L is the positive constant de�ned in (2.4).

Theorem 2.5 (Hölder estimate [26, Theorem 1]). Let Ou"
h

be the piecewise

linear function generated by .u"
n;h

/1
nD0. Then there exists a positive constant H

independent of " and h such that

j Ou"
h.t; x0/ � Ou"

h.t 0; x0/j � H jt � t 0j
1
2

for 0 � t < t 0 < C1 and x0 2 R
N .
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Additionally to the results listed above, we also use the following property.

Lemma 2.6. It holds that

sup
nD0;1;:::

";h>0

kru"
n;hkL2.RN / < C1:

Proof. In view of the minimality of u"
n;h

, we infer

Z

RN

�

jru"
n;hj2 C �".u

"
n;h/ C

ju"
n;h

� u"
n�1;h

j2

h

�

d x

�

Z

RN

.jru"
n�1;hj2 C �".u

"
n�1;h// d x:

Dropping the fractional term of the left-hand side, we, in particular, have

Z

RN

.jru"
n;hj2 C �".u

"
n;h// d x �

Z

RN

.jru"
n�1;hj2 C �".u

"
n�1;h// d x:

Utilizing this inequality iteratively, we deduce

Z

RN

jru"
n;hj2 d x �

Z

RN

.jru0j2 C �".u0// d x �

Z

RN

jru0j2 d x C L
N .spt u0/:

Since the last quantity is �nite and independent of n; " and h, we arrive at our

conclusion. �

3. The comparison principle

In this section, we establish a comparison principle which will be an essential

tool to show the convergence stated in the next section. For given functions

v0; w0 2 L2.RN /, de�ne functionals F and G on L2.RN / as follows:

F.�/

WD

8

ˆ

<

ˆ

:

Z

RN

� j� � v0j2

h
dx C jr�j2 C �".�/

�

d x for � 2 W 1;2.RN /;

C1 for � 2 L2.RN / n W 1;2.RN /;

and

G.�/ WD

8

ˆ

<

ˆ

:

Z

RN

� j� � w0j2

h
dx C jr�j2

�

d x for � 2 W 1;2.RN /,

C1 for � 2 L2.RN / n W 1;2.RN /:
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Lemma 3.1 (comparison). Let v and w be minimizers of F and G, respectively.

If 0 � v0 � w0 in R
N , then 0 � v � w in R

N .

Proof. The energy comparison with the constant function of the value zero

tells us that v and w belong to W 1;2.RN /. In addition, the facts v � 0 and w � 0

in R
N are derived from the assumption v0; w0 � 0 in R

N by employing the usual

truncation argument.

Let A WD ¹x 2 R
N j v.x/ > w.x/º. Then our task is to verify L

N .A/ D 0. We

will proceed by contradiction. Assume that LN .A/ > 0. Putting Nv WD min ¹v; wº,

we see F.v/ � F. Nv/ by the minimality of v. Since Nv D v in R
N n A and Nv D w

in A, we deduce

(3.1) FA.v/ � FA. Nv/ D FA.w/;

where

FA.�/ D

Z

A

� j� � v0j2

h
d x C jr�j2 C �".�/

�

d x for � 2 W 1;2.RN /:

Analogously, we can verify

(3.2) GA.w/ � GA.v/

by using, in this case, the comparison function Nw WD max¹v; wº, where

GA.�/ D

Z

A

� j� � v0j2

h
d x C jr�j2

�

d x for � 2 W 1;2.RN /:

On account of (2.1), the inequality �".w/ � �".v/ holds in A. In fact, the equality

is shown to hold in the following manner: Due to the relations (3.1) and (3.2),

we infer
Z

A

� jv � v0j2

h
C jrvj2 C �".v/

�

d x

�

Z

A

� jw � v0j2

h
C jrwj2 C �".w/

�

d x

D

Z

A

° jw � w0j2

h
C jrwj2 C �".w/ C

jw � v0j2

h
�

jw � w0j2

h

±

d x

�

Z

A

° jv � w0j2

h
C jrvj2 C �".w/ C

jw � v0j2

h
�

jw � w0j2

h

±

d x:

We thereby �nd

(3.3)

Z

A

®

�".v/ � �".w/
¯

d x

�
1

h

Z

A

¹.jv � w0j2 � jv � v0j2/ C .jw � v0j2 � jw � w0j2/º d x:
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The integrand on the right hand side of (3.3) equals to 2.v0 � w0/.v � w/, which

is nonpositive in A because v > w and, by assumption, v0 � w0 in A. Thus

from (3.3)
Z

A

¹�".v/ � �".w/º d x � 0:

As indicated above, however, �".v/ � �".w/ � 0 in A, and therefore it must hold

that

(3.4) �".v/ D �".w/

in A. By (3.2) and (3.4) we have

Z

A

� jw � w0j2

h
C jrwj2 C �".w/

�

d x �

Z

A

� jv � w0j2

h
C jrvj2 C �".v/

�

d x;

and hence

FA.w/ � FA.v/ C
1

h

Z

A

¹.jv � w0j2 � jv � v0j2/ C .jw � v0j2 � jw � w0j2/º d x:

The last integral coincides with the right-hand side of (3.3) which has already been

proved to be nonpositive in A, and hence FA.w/ � FA.v/. Combining this with

its reverse inequality (3.1), we eventually achieve

(3.5) FA.w/ D FA.v/:

We are now prepared to derive a contradiction from our assumption L
N .A/ >

0. By setting Qv WD 1
2
.vC Nv/, we shall verify the strict inequality F. Qv/ ˆ F.v/ which

contradicts the minimality of v. For this, it is su�cient to show FA. Qv/ ˆ FA.v/

for Qv D v in R
N n A, which is equivalent to the inequality

(3.6) FA. Qv/ ˆ
FA.v/ C FA. Nv/

2

by (3.5) and the fact Nv D w in A. Noticing the strict convexity of j � j2, we �nd

(3.7)

Z

A

� j Qv � v0j2

h
C jr Qvj2

�

d x

ˆ
1

2

Z

A

� jv � v0j2

h
C jrvj2

�

d x C
1

2

Z

A

� j Nv � v0j2

h
C jr Nvj2

�

d x

by the fact v 6D w in A and the assumption L
N .A/ > 0. If we have the convexity

inequality

(3.8)

Z

A

�". Qv/ d x �
1

2

Z

A

�".v/ d x C
1

2

Z

A

�". Nv/ d x;
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we can attain the desired result (3.6) by adding (3.7) and (3.8). The inequality (3.8)

is not generally expected to hold because of the lack of convexity of �". Neverthe-

less, in our particular situation, we can demonstrate the validity of the equality in

the following manner. Recall that for almost every x 2 A, it hold that w.x/ < v.x/

and �".w.x// D �".v.x// by (3.4). Therefore, by taking into account the strict in-

creasing property (2.1) of �" on the interval Œ0; "�, two cases are possible: either

(a) w.x/ < v.x/ � 0 or (b) " � w.x/ < v.x/. However, since v and w are

nonnegative in R
N as stated at the beginning of the proof, the possibility (a) is

eliminated. We thus have " � w D Nv < Qv < v in A, and hence by (2.2) the iden-

tity �". Qv/ D �".v/ D �". Nv/ D 1 in A, which, in particular, reveals that the values

of both sides of (3.8) coincide. �

Remark 3.2. The assertion of Lemma 3.1 holds true even if we replace �" by

� in the de�nition of F . Indeed, by such a replacement, the arguments related to

�" in the proof above remain valid.

4. The �-convergence of approximate functionals

Our eventual goal in this section is to show that AC"
n;h converges to ACn;h as " ! 0

in the sense of �-convergence. In order to establish this convergence, we need the

convergence u"
n;h

! un;h in the topology induced by the global norm k � kL2.RN /.

Lemma 4.1 (passage to the limit " ! 0). Fix an arbitrary positive number h.

For each " > 0, choose an element .u"
n;h

/1
nD0 2 ADMM .AC I u0; "; h/. Then there

exist an in�nitesimal sequence ."j / and a sequence .un;h/1
nD0 � W 1;2.RN / such

that for any �xed n D 0; 1; 2; : : :

(i) u
"j

n;h
� un;h locally in R

N .j ! 1/;

(ii) u
"j

n;h
! un;h in L2.RN / .j ! 1/:

Proof. In the case n D 0, by de�ning u0;h D u0 we have u"
0;h

D u0 D u0;h

for any " > 0, which especially produces the convergence (i) and (ii).

For n � 1, we know

sup
0<"<1

.ku"
n;hkL1.RN / C kru"

n;hkL1.RN // < C1

by Theorem 2.2 and Theorem 2.3, and therefore it follows from the Ascoli–Arzelà

theorem together with a diagonal argument that there exists an in�nitesimal se-

quence ."j / and a sequence .un;h/1
nD1 � W

1;2
loc .RN / such that (i) holds.
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We next show that the convergence (ii) holds if we take ."j / as above. Looking

at (i), we readily �nd

(4.1) u
"j

n;h
! un;h in L2

loc.R
N / .j ! 1/

for n D 1; 2; : : : Let us prove the global convergence in L2.RN /. For this purpose,

we need an argument based on comparison. Put v0;h D u0, and de�ne recursively

vn;h .n D 1; 2; 3; : : :/ as a minimizer of the functional

Gn;h.v/ D

8

ˆ

<

ˆ

:

Z

RN

� jv � vn�1;hj2

h
C jrvj2

�

d x for v 2 W 1;2.RN /,

C1 for v 2 L2.RN / n W 1;2.RN /:

By recursively applying Lemma 3.1 with v0 WD u"
n�1;h

, w0 WD vn�1;h, F WD AC "
n;h

and G WD Gn;h, we deduce for n D 1; 2; 3; : : :

(4.2) 0 � u"
n;h � vn;h

in R
N . Insert "j into " and let j go to in�nity. Then we infer

(4.3) 0 � un;h � vn;h

in R
N . For a �xed positive number R,

(4.4)
Z

RN

ju
"j

n;h
� un;hj2 d x D

Z

BR.0/

ju
"j

n;h
� un;hj2 d x C

Z

RN nBR.0/

ju
"j

n;h
� un;hj2 d x

�

Z

BR.0/

ju
"j

n;h
� un;hj2 d x C 4

Z

RN nBR.0/

jvn;hj2 d x

by (4.2) and (4.3). Pass to the limit as j ! 1 in (4.4). Then, the �rst term of the

right-hand side is annihilated by (4.1), and as a result the next relation holds:

(4.5) lim
j !1

Z

RN

ju
"j

n;h
� un;hj2 d x � 4

Z

RN nBR.0/

jvn;hj2 d x:

By letting R go to in�nity, the right-hand side of (4.5) converges to zero because

vn;h belongs to the class L2.RN /. Hence we �nd

lim
j !1

Z

RN

ju
"j

n;h
� un;hj2 d x D 0:
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To complete our proof, we shall observe that un;h belongs to the regularity class

W 1;2.RN /. The inequality (4.3) and the fact that vn;h belongs to L2.RN / informs

us that un;h belongs to L2.RN /. Moreover, by Lemma 2.6, sup
j 2N

kru
"j

n;h
kL2.RN / <

C1. Accordingly, by taking a subsequence, if necessary, there exists a function

wi 2 L2.RN / .i D 1; 2; : : : ; N ) such that riu
"j

n;h
! wi weakly in L2.RN / as

j ! 1. We can show that wi D riun;h in R
N , and hence we come to the

conclusion run;h 2 L2.RN /. �

We are now ready to prove the �-convergence AC"
n;h ! ACn;h which is the

�nal goal of this section. Let ."j / be an in�nitesimal sequence determined as in

Lemma 4.1 and let .un;h/ be the sequence of the limit functions. Then, we de�ne

the functionals AC n;h as follows:

AC n;h.u/

D

8

ˆ

<

ˆ

:

Z

RN

� ju � un�1;hj2

h
C jruj2 C �.u/

�

d x for u 2 W 1;2.RN /,

C1 for u 2 L2.RN / n W 1;2.RN /.

Based on the convergence result of .u
"j

n;h
/ shown in Lemma 4.1, we shall demon-

strate the desired result.

Proposition 4.2 (�-convergence). It holds that

AC
"j

n;h
! AC n;h in the sense of �.L2.RN // .j ! 1/:

Proof. By de�nition, it is su�cient to show the following lower- and upper-

semicontinuity property.

(lsc) For any sequence .vj /1
j D1 � L2.RN / and v 2 L2.RN / with vj ! v in

L2.RN /, it holds

(4.6) AC n;h.v/ � lim
j !1

AC
"j

n;h
.vj /:

(usc) For any v 2 L2.RN /, there exists a sequence .vj /1
j D1 � L2.RN / with

vj ! v in L2.RN / such that

(4.7) lim
j !1

AC
"j

n;h
.vj / � AC n;h.v/:
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We �rst show (lsc). Choose a sequence .vj / � L2.RN / and a function v 2

L2.RN / arbitrarily such that vj ! v in L2.RN /. Since in case lim
j !1

AC
"j

n;h
.vj / D

C1, the conclusion surely holds, we may assume lim
j !1

AC
"j

n;h
.vj / < C1: Then

we can choose a subsequence .vj`
/ � .vj / such that

(4.8) lim
`!1

AC
"j`

n;h
.vj`

/ D lim
j !1

AC
"j

n;h
.vj / < C1:

For su�ciently large number `, the value AC
"j`

n;h
.vj`

/ is �nite. Hence, by the

de�nition of AC "
n;h

, it turns out that vj`
belongs to W 1;2.RN /, and the following

relation holds:

AC
"j`

n;h
.vj`

/ D

Z

RN

� jvj`
� u

"j`

n�1;h
j2

h
C jrvj`

j2 C �"j`
.vj`

/
�

d x

for ` 2 N. We infer from (4.8) sup
`2N

AC
"j`

n;h
.vj`

/ < C1 to obtain

sup
`2N

Z

RN

jrvj`
j2 d x < C1:

Thus, up to an extraction of a suitable subsequence, we can suppose that

8

ˆ

ˆ

<

ˆ

ˆ

:

(a) vj`
! v in L2.RN /;

(b) vj`
! v a.e. in R

N ;

(c) rvj`
* rv weakly in L2.RN /:

as ` ! 1 for some v 2 W 1;2.RN /. Since v 2 W 1;2.RN /, we have the relation

AC n;h.v/ D

Z

RN

� jv � un�1;hj2

h
C jrvj2 C �.v/

�

d x:

Therefore the desired inequality (4.6) is rewritten as

(4.9)

Z

RN

� jv � un�1;hj2

h
C jrvj2 C �.v/

�

d x

� lim
`!1

Z

RN

� jvj`
� u

"j`

n�1;h
j2

h
C jrvj`

j2 C �j"`
.vj`

/
�

d x;

which is shown as follows. In light of the convergence (c),

(4.10)

Z

RN

jrvj2 d x � lim
`!1

Z

RN

jrvj`
j2 d x:
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By applying Lemma 4.4 below to E D BR.0/, we verify

Z

BR.0/

�.v/ dx � lim
`!1

Z

BR.0/

�"j`
.vj`

/ d x � lim
`!1

Z

RN

�"j`
.vj`

/ d x:

By letting R " 1 we get

(4.11)

Z

RN

�.v/ dx � lim
`!1

Z

RN

�"j`
.vj`

/ d x:

However, by the L2-strong convergence (a) of (4.10) and (ii) of Lemma 4.1, we

derive for any R > 0

Z

BR.0/

jv � un�1;hj2

h
d x D lim

`!1

Z

BR.0/

jvj`
� u

"j`

n�1;h
j2

h
d x

� lim
`!1

Z

RN

jvj`
� u

"j`

n�1;h
j2

h
d x:

Letting R ! 1, we have

(4.12)

Z

RN

jv � un�1;hj2

h
d x � lim

`!1

Z

RN

jvj`
� u

"j`

n�1;h
j2

h
d x:

The inequalities (4.10), (4.11), and (4.12) imply that the inequality (4.9) holds

true. Next we shall prove that (usc) is valid by setting vj WD v for any j 2 N.

If AC n;h.v/ D C1, then the assertion is surely satis�ed, and therefore it is

not restrictive to consider the case AC n;h.v/ < C1. In this case, since v 2

W 1;2.RN /, it follows that

AC
"j

n;h
.vj / D AC

"j

n;h
.v/ �

Z

RN

� jv � u
"j

n�1;h
j2

h
C jrvj2 C �.v/

�

d x

by making use of the inequality �"j
.r/ � �.r/ for r 2 R

N . Thereby, by passing to

the limits as j ! 1, we establish (4.7) with the help of the global convergence (ii)

of Lemma 4.1. �

Remark 4.3. We remark that the proof of (lsc) continues to be valid even if

we use the local L2-convergence property u
"j

n;h
! un;h. On the other hand, to

accomplish the proof of (usc) the global, not local, L2-convergence property (ii)

of Lemma 4.1 is decisive.
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Lemma 4.4. Let E � R
N be a measurable set with L

N .E/ < C1, and let

."`/ be an in�nitesimal sequence. Suppose that w` ! w in L2.E/ as ` ! 1.

Then it holds that
Z

E

�.w/ d x � lim
`!1

Z

E

�"`
.w`/ d x:

Proof. It is su�cient to show

(4.13) lim
`!1

Z

E.w>0/

j�"`
.w`/ � �.w/j d x D 0:

Indeed, (4.13) yields

lim
`!1

Z

E

�"`
.w`/ d x � lim

`!1

Z

E.w>0/

�"`
.w`/ d x

D

Z

E.w>0/

�.w/ d x

D

Z

E

�.w/ dx;

which is our conclusion.

Let us now prove (4.13). Since by (2.2) it holds that �"`
.w`/��.w/ D 1�1 D 0

on E.w > 0/ \ E.w` � "`/, we have

(4.14)

Z

E.w>0/

j�"`
.w`/ � �.w/j dx D

Z

E.w>0/\E.w`<"`/

j�"`
.w`/ � �.w/j d x

� L
N .E.w > 0/ \ E.w` < "`//:

Given an arbitrary positive number ı, by the assumption L
N .E/ < C1, there

exists a positive number � such that

(4.15) L
N .E.0 < w < 2�// <

ı

2
:

Furthermore, since w` ! w in L2.E/, we can �nd `0 2 N such that for ` > `0

(4.16) L
N .E.jw` � wj > �// <

ı

2
:

Let us choose `1 2 N such that the following two conditions hold: “`1 > `0” and

“` > `1 implies "` < � .” By (4.15) and (4.16), if ` > `1,

L
N .E.w > 0/ \ E.w` < "`//

� L
N .E.w > 0/ \ E.w` < �//

D L
N .E.0 < w < 2�/ \ E.w` < �// C L

N .E.w � 2�/ \ E.w` < �//

� L
N .E.0 < w < 2�// C L

N .E.jw` � wj > �// < ı:

Combining this estimate with (4.14) we arrive at (4.13). �
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5. The proof of Theorem 1.2

The proof is split in four steps.

[Step 1] Review of the regularity properties of . Ou"
h/. Let u0 be given

as in (2.3), h and " positive numbers, .u"
n;h

/ 2 ADMM .AC I u0; "; h/, and Ou"
h the

h-piecewise linear function generated by .u"
n;h

/. Then by Theorem 2.2, 2.3 and 2.5,

it holds that

(5.1)

8

ˆ

ˆ

<

ˆ

ˆ

:

0 � Ou"
h � sup

RN u0 in R
N � Œ0; 1/;

j Ou"
h.t0; x/ � Ou"

h.t0; x0/j � Ljx � x0j for t0 � 0; x; x0 2 R
N ;

j Ou"
h.t; x0/ � Ou"

h.t 0; x0/j � H jt � t 0j
1
2 for t; t 0 � 0; x0 2 R

N :

[Step 2] The construction of .un;h/ 2 DMM .AC I u0; h/. Fix h > 0 arbi-

trarily. Let ."j / be an in�nitesimal sequence determined as in Lemma 4.1 and let

.un;h/ be the sequence of the limit functions. We denote by Ouh the h-piecewise

linear function generated by .un;h/. Let us demonstrate the following two facts

Fact 1 and Fact 2.

Fact 1. Ouh are equi-bounded and equi-continuous.

Let .t; x/ 2 Œ0; 1/�R
N and let n be a positive integer such that t 2 Œt

.h/
n�1; t

.h/
n /.

Then by (i) of Lemma 4.1, u
"j

n;h
converges to un;h as j ! 1 everywhere in R

N ,

and hence

Ou
"j

h
.t; x/ D

.t
.h/
n � t /u

"j

n�1;h
.x/ C .t � t

.h/
n�1/u

"j

n;h
.x/

h

!
.t

.h/
n � t /un�1;h.x/ C .t � t

.h/
n�1/un;h.x/

h
D Ouh.t; x/ as j ! 1:

Thereupon, Ou
"j

h
turns out to converge to Ouh as j ! 1 everywhere in Œ0; 1/�R

N .

Exploiting this convergence, we can passage to the limit as j ! 1 in (5.1) with

" D "j to �nd

(5.2)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 � Ouh � sup
RN u0 in Œ0; 1/ � R

N ;

j Ouh.t0; x/ � Ouh.t0; x0/j � Ljx � x0j for t0 � 0; x; x0 2 R
N ;

j Ouh.t; x0/ � Ouh.t 0; x0/j � H jt � t 0j
1
2 for t; t 0 � 0; x0 2 R

N :
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Fact 2. The limit function un;h is a minimizer of AC n;h in L2.RN /.

u
"j

n;h
is a minimizer of AC

"j

n;h
in L2.RN /, and u

"j

n;h
! un;h in L2.RN / as shown

in Section 4. Therefore, the �-convergence AC
"j

n;h
! ACn;h leads us to the fact

that the limit function un;h minimizes the limit functional ACn;h in L2.RN /.

[Step 3] The construction of an element of MM .AC I u0/. Since from (5.2)

the functions Ouh are equi-bounded and equi-continuous in Œ0; 1/ �R
N due to the

Ascoli–Arzelà theorem, there exists an in�nitesimal sequence .hj / and a function

u continuous in Œ0; 1/ � R
n such that

(5.3) Ouhj
� u locally in Œ0; 1/ � R

N :

We claim that this limit function u D u.t/ belongs to MM .AC I u0/. To this aim,

recall the De�nition 1.1 of MM. Having already shown that un;h is a minimizer of

the functional AC n;h in L2.RN /, we only have to prove

(5.4)
(a) u.t0/ 2 L2.RN /

(b) uhj
.t0/ ! u.t0/; in L2.RN / .j ! 1/;

for each t0 � 0. Fixing t0 � 0 arbitrarily, we shall show (a) and (b) of (5.4)
according to the following two steps.

(step 1) First we show that the desired convergence holds in terms of the

topology of L2
loc.R

N / weaker than L2.RN /:

(5.5) uhj
.t0/ ! u.t0/ in L2

loc.R
N /:

As for Ouhj
, we deduce from (5.3) that

Ouhj
.t0/ � u.t0/ locally in R

N ;

and therefore we readily deduce

(5.6) Ouhj
.t0/ ! u.t0/ in L2

loc.R
N /:

Consequently, we only have to show that the convergence (5.6) remains valid by

replacing Ouhj
.t0/ with uhj

.t0/. To this end, we carry out an estimation of the value

of k Ouh.t0/ � uh.t0/kL2.RN /. Choose n 2 N such that t0 2 .t
.h/
n�1; t

.h/
n �. Then we see

(5.7)

j Ouh.t0; x/ � uh.t0; x/j �
jt

.h/
n � t0j

h
jun;h.x/ � un�1;h.x/j � jun;h.x/ � un�1;h.x/j;
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where we use h D t
.h/
n � t

.h/
n�1. On the other hand, since un;h is a minimizer of

AC n;h, by choosing un�1;h 2 W 1;2.RN / as an energy comparison function, we

observe that

Z

RN

� jun;h � un�1;hj2

h
C jrun;hj2 C �.un;h/

�

d x

�

Z

RN

�

jrun�1;hj2 C �.un�1;h/
�

d x;

(5.8)

which particularly turns to the inequality AC .un;h/ � AC .un�1;h/. By applying

this inductively,

AC .un;h/ � AC .u0;h/ D AC .u0/;

where we notice that the last quantity is a �nite constant, independent of n and h,

by the hypothesis (2.3). Dropping the last two terms of the left-hand side of (5.8),

we get

(5.9)

Z

RN

jun;h � un�1;hj2 d x � AC .u0/h:

In this way, we infer from (5.7) and (5.9) that

(5.10) k Ouh.t0/ � uh.t0/kL2.RN / � AC .u0/
1
2 h

1
2 :

Passing to the limit as j ! 1 in (5.10) with h D hj , we observe that

lim
j !1

k Ouhj
.t / � uhj

.t /kL2.RN / D 0:

Combining this with (5.6), we conclude (5.5).

(step 2) We claim that the convergence (5.5) continues to hold in terms of

the topology of L2.RN / stronger than that of L2
loc.R

N /. In order to show this, we

resort to the following comparison argument. De�ne

F.u/ WD

8

<

:

Z

RN

jruj2 dx for u 2 W 1;2.RN /,

C1 for u 2 L2.RN / n W 1;2.RN /;

and set v0;h WD u0 for h > 0. Further, recursively de�ne vn;h 2 L2.RN / (n � 1)

as a minimizer of the functional

Fn;h.u/ WD

Z

RN

ju � un�1;hj2

h
d x C F.u/ .u 2 L2.RN //:
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We can show that vn;h belongs to W 1;2.RN / by the argument of energy compar-

ison with w D 0. With the aid of Remark 3.2, we �nd 0 � un;h � vn;h in R
N

.n D 0; 1; 2; : : :/. Hence, by the de�nition of piecewise constant function we see

(5.11) 0 � uh.t0/ � vh.t0/ in R
N :

Taking advantage of the convexity of F , it turns out that there exists a function

v.t0/ 2 L2.RN / such that without selecting a subsequence

(5.12) vh.t0/ ! v.t0/ in L2.RN /

as h # 0 (refer to [3, Page 205, Esempio 2.1]). Let R be an arbitrary positive

number. Then by (5.11)
Z

RN nBR.0/

juh.t0/ � u.t0/j2 d x

� 2

Z

RN nBR.0/

juh.t0/j2 d x C 2

Z

RN nBR.0/

ju.t0/j2 d x

� 2

Z

RN nBR.0/

jvh.t0/j2 d x C 2

Z

RN nBR.0/

ju.t0/j2 d x

� 4

Z

RN

jvh.t0/ � v.t0/j2 dx C 4

Z

RN nBR.0/

.ju.t0/j2 C jv.t0/j2/ d x:

Now, set here h D hj and pass to the limit as j ! 1 in the last relation. Then

by (5.12) we obtain

(5.13)

lim
j !1

Z

RN nBR.0/

juhj
.t0/ � u.t0/j2 d x � 4

Z

RN nBR.0/

.ju.t0/j2 C jv.t0/j2/ d x:

In view of (5.5) and (5.12), there exists a subsequence .hjk
/ of .hj / such that

uhjk
.t0/ ! u.t0/ and vhjk

.t0/ ! v.t0/ almost everywhere in R
N as k ! 1.

Now, by passing to the limit as k ! 1 in (5.11) with h replaced by hjk
, we achieve

the inequality 0 � u.t0/ � v.t0/ in R
N which reveals to the assertion (a) of (5.4),

since v.t0/ 2 L2.RN /. Utilizing the last inequality again, we obtain from (5.13)

lim
j !1

Z

RN nBR.0/

juhj
.t0/ � u.t0/j2 d x � 8

Z

RN nBR.0/

jv.t0/j2 d x:

Invoking again the fact that v.t0/ belongs to L2.RN /, the last inequality informs

us that for any positive number ı, there exists a positive number Rı such that

(5.14) lim
j !1

Z

RN nBRı
.0/

juhj
.t0/ � u.t0/j2 d x < ı:
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Passing to the limit as j ! 1 in the relation
Z

RN

juhj
.t0/ � u.t0/j2 d x

D

Z

BR" .0/

juhj
.t0/ � u.t0/j2 d x C

Z

RN nBR" .0/

juhj
.t0/ � u.t0/j2 d x;

we deduce from (5.5) and (5.14) that

lim
j !1

Z

RN

juhj
.t0/ � u.t0/j2 d x < ı;

which results in (b) of (5.4) due to the arbitrariness of ı > 0.

[Step 4] The proof of (i) and (ii) of Theorem 1.2. By virtue of (5.3), it holds

that Ouhj
converges to u everywhere in Œ0; 1/ �R

N . As a consequence, passing to

the limit as j ! 1 in (5.2) with h D hj , we arrive at (i) and (ii) of Theorem 1.2.

6. Investigation of convergence as h ! 0

In this section we investigate two kinds of convergence properties in terms of the

passage h ! 0. The �rst one is uh.t0/ ! u.t0/ in the space domain R
N for �xed

t0 > 0, and the second one is uh ! u in time-space domain QT � .0; T / � R
N .

In De�nition 1.1, the convergence (1.1) at each time is imposed to hold in the

topology induced by the metric of X , which is, in our setting, the one induced

by L2.RN /-norm as achieved in Section 5. On the other hand, restricting our

argument to .uh/ 2 DMM .AC I u0; h/ constructed by the approximation method

proposed in this paper, we can replace it with the topology induced by the uniform

norm k � kL1.RN /.

Proposition 6.1 (convergence 1). Let .hj / be an in�nitesimal sequence as

in (5.3) of the preceding section. Then, for each �xed t0 > 0,

uhj
.t0/ � u.t0/ in R

N

as j ! 1, where u is the limit function in (5.3).

Proof. Throughout this proof, we �x t0 > 0 arbitrarily. If our conclusion

failed, we could �nd a positive number "0 satisfying the following: by taking a

subsequence of .uhj
/1
j D1, if necessary, there exists a point xj 2 R

N for each

j 2 N such that

(6.1) juhj
.t0; xj / � u.t0; xj /j � "0:
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Let n0 be a natural number such that t0 2 .tn0�1; tn0
�. Then, for any x; x0 2 R

N ,

juhj
.t0; x/ � uhj

.t0; x0/j D jun0;hj
.x/ � un0;hj

.x0/j

D j Ouhj
.tn0

; x/ � Ouhj
.tn0

; x0/j

� Ljx � x0j

by the second inequality of (5.2) with h D hj . In addition, due to Theorem 1.2, we

also have the same type of inequality for u:

ju.t0; x/ � u.t0; x0/j � Ljx � x0j:

The last two inequalities imply that the function x 2 R
N 7! .uhj

.t0; x/�u.t0; x//

is Lipschitz continuous onR
N with Lipschitz coe�cient 2L. Accordingly, we �nd

from (6.1)

juhj
.t0/ � u.t0/j �

"0

2
in B "0

4L
.xj /:

Therefore

kuhj
.t0/ � u.t0/kL2.RN / �

"0

2

� "0

4L

�
N
2

L
N .B1.0//

1
2

for j 2 N, which gives an obvious contradiction to (b) of (5.4). �

We turn our attention to the convergence uh ! u in time-space domain.

Proposition 6.2 (convergence 2). Let .hj / be an in�nitesimal sequence as

in (5.3) of the preceding section. For any T > 0,

(i) (a) uhj
! u in L2.QT /;

(b) Ouhj
! u in L2.QT /;

(ii) (a) uhj
� u in QT ;

(b) Ouhj
� u in QT :

as j ! 1, where QT D .0; T / � R
N .

Before showing Proposition 6.2, we shall �rst show Lemma 6.3 stated below.

We notice that Lemma 6.3 applies to any MM, namely, Lemma 6.3 is demonstrated

without restricting our argument to MM constructed in the way proposed by this

paper.

Lemma 6.3 (energy inequality for MM). Let u.t/ be an arbitrary element of

MM .AC I u0/. Then it holds

AC .u.t// � AC .u0/ for any t � 0:
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Proof. Let t0 be an arbitrarily �xed nonnegative number. By the de�nition of

MM there exists an in�nitesimal sequence .hj / and for each j 2 N an element

.un;hj
/1
nD0 2 DMM .AC I u0; h/ such that

(6.2) uhj
.t / ! u.t/ in L2.RN /

as j ! 1 for each t � 0, where uhj
.t / is the piecewise constant function

generated by the sequence .un;hj
/. Due to the minimality of un;hj

with respect to

the energy functional AC n;hj
, taking un�1;hj

as an energy comparison function

we get
Z

RN

� jun;hj
� un�1;hj

j2

h
C jrun;hj

j2 C �.un;hj
/
�

d x

�

Z

RN

.jrun�1;hj
j2 C �.un�1;hj

// d x:

By dropping the fractional term on the left-hand side, we obtain AC .un;hj
/ �

AC .un�1;hj
/ for n 2 N. Applying inductively this inequality, we observe that

AC .un;hj
/ � AC .u0/. Hence, we �nd AC .uh.t0// � AC .u0/, that is,

(6.3)

Z

RN

.jruhj
.t0/j2 C �.uhj

.t0/// d x � AC .u0/:

Owing to this boundedness and (6.2), we can extract a subsequence, still denoted

by the same notation .uhj
/, such that

uhj
.t0/ ! u.t0/ a.e. in R

N ;(6.4)

ruhj
.t0/ ! ru.t0/ weakly in L2.RN /(6.5)

as j ! 1. By employing the Banach–Steinhaus theorem, it follows from (6.5)
that

(6.6)

Z

RN

jru.t0/j2 d x � lim
j !1

Z

RN

jruhj
.t0/j2 d x:

Furthermore, by (6.4), with the help of the Lebesgue convergence theorem we

discover that for any R > 0

Z

BR.0/.u.t0/>0/

�.u.t0// d x D lim
j !1

Z

BR.0/.u.t0/>0/

�.uhj
.t0// d x:

Hence,
Z

BR.0/

�.u.t0// d x � lim
j !1

Z

RN

�.uhj
.t0// d x:
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Passing to the limit as R " 1, we see from the monotone convergence theorem

that

(6.7)

Z

RN

�.u.t0// d x � lim
j !1

Z

RN

�.uhj
.t0// d x:

By means of (6.3), we conclude from (6.6) and (6.7) that

AC .u0/ � lim
j !1

Z

RN

.jruhj
.t0/j2 C �.uhj

.t0/// d x

�

Z

RN

.jru.t0/j2 C �.u.t0/// d x

D AC .u.t0//: �

Proof of Proposition 6.2. (i) From (6.3) we, in particular, have

(6.8) L
N .¹un;hj

> 0º/ � AC .u0/ for n; j 2 N:

By a truncation argument based on the minimality of un;hj
and by induction with

respect to n we have

(6.9) 0 � un;hj
� sup

RN

u0 in R
N ; for n; j 2 N:

Along with (6.8) and (6.9) we obtain

(6.10) sup
j 2N

t>0

Z

RN

juhj
.t /j2 d x < C1:

On the other hand, by (i) of Theorem 1.2 and Lemma 6.3 we also have the

corresponding properties for u.t/ as follows:

8

<

:

0 � u.t/ � sup
RN u0 in R

N ;

L
N .¹u.t/ > 0º/ � AC .u0/ n; j 2 N:

We thereby discover

(6.11) sup
t>0

Z

RN

ju.t/j2 d x < C1:

Thus, from (6.10) and (6.11) we �nd

sup
j 2N

t>0

Z

RN

juhj
.t / � u.t/j2 d x < C1:
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Due to this and (b) of (5.4), which follows from our assumption (5.3), we see

Z

QT

juhj
� uj2 d z D

Z T

0

d t

Z

RN

juhj
.t / � u.t/j2 d x ! 0 .j ! 1/

with the help of Lebesgue convergence theorem. We have thus accomplished the

proof of (a). The convergence (b) follows from (a). Indeed,

k Ouhj
� ukL2.QT / � k Ouhj

� uhj
kL2.QT / C kuhj

� ukL2.QT /:

Since the last term of the right-hand side converges to 0 because of (a) of (i), we

only have to show that the �rst term also converges to zero. This is proved in the

following fashion:

k Ouhj
� uhj

k2
L2.QT /

D

Z T

0

Z

RN

j Ouhj
.t; x/ � uhj

.t; x/j2 d t d x

�

Œ T
hj

�C1
X

nD1

Z

RN

j Ouhj
.t; x/ � uhj

.t; x/j2 d t d x

D

Œ T
hj

�C1
X

nD1

hj

Z

RN

ˇ

ˇ

ˇ

tnC1 � t

hj

unC1;hj
C

t � tn

hj

un;hj
� unC1;hj

ˇ

ˇ

ˇ

2

d x

�

Œ T
hj

�C1
X

nD1

hj

Z

RN

jun;hj
� unC1;hj

j2 d x

� AC .u0/

Œ T
hj

�C1
X

nD1

h2
j ;

where we use (5.9) with h D hj for the last inequality. Since the last expression

is evaluated from above by the value hj .T C hj /, the desired result is attained.

Let us turn our attention to the proof of (ii). The assertion (a) immediately follows

from (b), because it holds that

j Ouhj
.z/ � uhj

.z/j � Hh
1
2

j
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holds for each j 2 N and z D .t; x/ 2 .0; 1/ � R
N . This is shown by (5.7) with

h D hj and the second inequality of (5.2) in the following manner:

j Ouhj
.z/ � uhj

.z/j � jun;hj
.x/ � un�1;hj

.x/j

D j Ouhj
.t

.hj /
n ; x/ � Ouhj

.t
.hj /

n�1 ; x/j

� Hh
1
2

j :

Here n is a natural number such that t 2 .t
.hj /

n�1 ; t
.hj /
n �. The proof of (b) is done by

the contradiction argument similar to the proof of Proposition 6.1. More precisely,

we use not only the uniform Lipschitz continuity with respect to the space variable

but also the uniform Hölder continuity (5.2) and the second inequality of (ii) of

Theorem 1.2. As a result, we can arrive at a fact which contradicts (b) of (i). �
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