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A comparison of logarithmic overconvergent de Rham–Witt

and log-crystalline cohomology for projective smooth varieties

with normal crossing divisor

Andreas Langer (�) – Thomas Zink (��)

Abstract – In this note we derive for a smooth projective variety X with normal cross-
ing divisor Z an integral comparison between the log-crystalline cohomology of the
associated log-scheme and the logarithmic overconvergent de Rham–Witt cohomology
de�ned by Matsuue. This extends our previous result that in the absence of a divisor Z

the crystalline cohomology and overconvergent de Rham–Witt cohomology are canon-
ically isomorphic.
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1. Introduction

Let X be a smooth variety over a perfect �eld k of characteristic p > 0, let Z

be a normal crossing divisor on X and U D X n Z. Recently, Matsuue [M] con-
structed an (overconvergent) de Rham–Witt complex for the log-scheme .X; Z/

and compared its hypercohomology with the rigid cohomology of U resp. the
overconvergent de Rham–Witt cohomology of U , de�ned in [D-L-Z]. If X is
in addition projective it is reasonable to compare the hypercohomology of the
complexes W ��X .log Z/ and W �X .log Z/. We can extend the integral compari-
son between overconvergent and crystalline cohomology obtained in [L-Z] for the
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usual de Rham–Witt complexes in absence of a divisor, to the log-scheme .X; Z/

as follows:

Theorem 1. If X=k is smooth and projective with normal crossing divisor Z,

then the canonical map, induced by the inclusion W ��X .log Z/! W �X .log Z/

Hi .X; W ��X .log Z// �! Hi .X; W �X .log Z//

is an isomorphism of W.k/-modules of �nite type for all i � 0.

2. Proof of the theorem

Let X be a smooth quasiprojective variety over a perfect �eld k of characteristic
p > 0. Let Z � X be a normal crossing divisor. We denote by W �X=k.log Z/

resp. W ��X=k.log Z/ the de Rham–Witt complex with log-poles along Z, resp.
the overconvergent de Rham–Witt complex with log-poles along Z, as de�ned
in [M]. The following Lemma is in analogy to Lemma (2.1) in [L-Z] but it makes
only sense if X projective smooth over k.

Lemma 2. Let X be projective and smooth over k. The following diagram is

commutative for all i � 0:

(1)

Hi .X; W ��X=k.log Z/˝Q/ Hi .X; W �X=k.log Z/˝Q/

H i
rig.U / H i

logcrys..X; Z/=W.k//˝Q

 

!

 !�3Š  ! Š �1

 

!

�2

Here the upper horizontal map is induced by the inclusion

W ��X=k.log Z/ �! W �X=k.log Z/:

The isomorphism .�1/ is de�ned in [M], Theorem 7.2, and the isomorphism .�3/ is

de�ned in [M], Theorem 10.14. The isomorphism .�2/ is shown by Shiho [S].

Proof. We reformulate the Lemma in such a way that it makes sense if X is
only quasiprojective. The maps �1 and �3 are de�ned for quasiprojective X and are
functorial with respect to open immersions of pairs .X; Z/.
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In order to de�ne �2 in the quasiprojective case we replace Hrig by a di�erent
“overconvergent” cohomology. We de�ne this cohomology for pairs .X; Z/ as
above, which may be inserted into a diagram

.X; Z/ .P; L/

. xX; xZ/ . xP; xL/;

 

!
i

 !  !

 

!
N{

where the �rst vertical arrow is a closed immersion in a pair . xX; xZ/ with xX smooth
and projective and xZ a normal crossing divisor such that Z D X \ xZ. The
horizontal arrows are closed immersions into formal log-smooth schemes .P; L/

resp. . xP; xL/ over W.k/, see [K].

We denote by .PK ; LK/ resp. . xPK ; xLK/ the associated rigid log-varieties. We
denote by j WU ! X and N| WU ! xX the open immersions. Then the rigid
cohomology is given by

(2) H �rig.U / D H�. N|���
� xXŒ

log
xPK

/:

Indeed, we note that for an exact closed immersion i (resp. N{) we have by de�nition
�XŒ

log
PK
D�XŒPK

(resp. � xXŒ
log
xPK
D� xXŒ xPK

) (see [S] pp. 56-58). Therefore for N{ exact the
right hand side of (2) is rigid cohomology. If we only assume that N{ is a closed
immersion then by [K], 4.10, there exists a factorisation N{ D f ı M{, where M{ is an
exact closed immersion into a formal log-smooth scheme . xP 0; xL0/ and where f

is formally log-étale. By de�nition � xXŒ
log
xPK
D� xXŒ xP 0

K
and therefore f induces a map

� xXŒ
log
xPK
!� xXŒ xPK

. We can apply the claim in ([S], p. 114) to conclude that

H �rig.U / D H�. N|���
� xXŒ

log
xPK

/ D H�. N|���
� xXŒ xPK

/:

By restricting strict tubular neighbourhoods of �U Œ xPK
in � xXŒ xPK

to strict tubular
neighbourhoods of �U ŒPK

in �XŒPK
we obtain a canonical map

(3) H �rig.U / �! H�.j �! �
�XŒ

log
PK

/ D H�.j ���
�XŒ

log
PK

/ DW H �rig.U; X/

If X is proper then the map (3) is an isomorphism: both are the rigid cohomol-
ogy of U !
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We have a natural map

H�.! �
�XŒ

log
PK

/ �! H�.j �! �
�XŒ

log
PK

/;

where this time the source of the arrow is log-analytic cohomology, which co-
incides with log-convergent ([S], Corollary 2.3.9) which coincides with log-
crystalline cohomology ([S], Theorem 3.1.1). If we assume that X is proper and
smooth (in our case this implies that X is projective) then the above maps are
all isomorphic ([S], Theorem 2.4.4), yielding the isomorphism labelled �2 in the
diagram (1).

The cohomology groups H �rig.U; X/ de�ned in terms of an embedding
.X; Z/ ! .P; L/ are in fact independent of this embedding by the usual argu-
ment. Now we may write a diagram which makes sense for quasiprojective X .

(4)

Hi .X; W ��X=k.log Z/˝Q/ Hi .X; W �X=k.log Z/˝Q/

H �rig.U; X/ H i
log�crys..X; Z/=W.k//˝Q:

 !

 

!

 !

 

!
Here the vertical map on the left hand side is obtained by composing the corre-
sponding map of (1) with (3). We remark that the cohomology group H �rig.U; X/

may be de�ned even in the case where the embedding .X; Z/! .P; L/ exists only
locally. This is shown by simplicial methods in the proof of [S], Theorem 2.4.4.
Therefore the last diagram makes sense even if we can’t choose .X; Z/! .P; L/

globally. We note that all maps in the diagram are functoriel with respect to open
immersions. Since (3) is an isomorphism for X projective and smooth the com-
mutativity of the diagram (4) would imply the commutativity of (1).

Hence to prove the Lemma it su�ces to show that (4) is commutative. By the
Mayer-Vietoris sequence it is enough to prove the commutativity for X D Spec A

a�ne and Z D ¹t1 � : : : � tr D 0º for a regular system of parameters t1; : : : ; tr 2 A.
In this case we denote by zA a lifting of A to a smooth W.k/-algebra. The

cohomology group H�.j �! �
�XŒ

log
PK

/ is the cohomology of the complex �
.
yzA/

�

zt1�:::�ztr

.

But then the commutativity of (4) follows because we have a commutative
diagram of complexes

� zA�.log zZ/ � yzA
.log zZ/

�
.
yzA/

�

Qt1�:::�Qtr

:

 

!

 !  

!

�
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Proposition 3. Let X=k be smooth, Z a normal crossing divisor on X . We

have quasi-isomorphisms of complexes

W ���X=K.log Z/=pn Š W ��X=k.log Z/=pn Š Wn��X=k.log Z/

Proof. In the absence of Z this was shown in [L-Z], Proposition 2.2. It
su�ces to show the Proposition locally in the Zariski-topology. So let X D Spec B

be smooth and Z given by an equation t1 � � � tr D 0 for t1; : : : ; tr 2 B such that
Spec B=.ti / is smooth for all i . Using Steenbrink’s weight �ltration [St] which
can be de�ned on W ��X=k.log Z/, resp. W �X=k.log Z/ resp. Wn��

X=k
.log Z/

as in [M], §10.2, one applies [M], Lemmas 8.4 and 10.8, to get three residue
isomorphisms

ResWGrj W ���B=k.log Z/
�
�!

M

cjJ jDj
JD.˛1;:::; j̨ /

W ��
��j

B=.t˛1
;:::;t

j̨
/
;

ResWGrj W ��B=k.log Z/
�
�!

M

cjJ jDj
JD.˛1;:::; j̨ /

W �
��j

B=.t˛1
;:::;t

j̨
/
;

ResWGrj Wn��B=k.log Z/
�
�!

M

cjJ jDj
JD.˛1;:::; j̨ /

Wn�
��j

B=.t˛1
;:::;t

j̨
/

on the graded quotients of the weight �ltrations.
Since all B=.t˛1

; : : : ; t
j̨
/ are smooth, the entries in the overconvergent and

usual de Rham–Witt complexes are p-torsion free. We have exact sequences, using
the weight �ltration of complexes

0! Pj W ��X=k.log Z/! PjC1W ��X=k.log Z/! Grj W ��X=k.log Z/! 0;

0! Pj W �X=k.log Z/! PjC1W �X=k.log Z/! Grj W �X=k.log Z/! 0:

By the residue isomorphism these exact sequences of complexes remain exact after
tensoring with Z=pn. Moreover, by the residue isomorphism and [L-Z], Propo-
sition 2.2, we see that Grj W ��X=k.log Z/=pn and Grj W �X=k.log Z/=pn are
quasi-isomorphic complexes. By induction this shows that W ��X=k.log Z/=pn

and W �X=k.log Z/=pn are quasi-isomorphic too. Since W ��
C=k

=pn is quasi-
isomorphic to Wn��

C=k
for any smooth algebra C=k by [I], 3.17.3, we can apply

the residue isomorphism and induction on the weight �ltration again to obtain a
quasi-isomorphism

W �X=k.log Z/=pn Š Wn�X=k.log Z/:

This proves Proposition 3. �
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We can now �nish the proof of the Theorem. Using W ��X=k.log Z/ instead of
W ��X=k and W �X=k.log Z/ instead of W �X=k and noting that by Proposition 3:

lim
 �

Hi .X; W ��X=k.log Z/Œ=pn�/ D lim
 �

Hi .X; Wn�X=k.log Z//

D Hi .X; W �X=k.log Z//;

where the last equality holds because all Hi .X; Wn�X=k.log Z// are of �nite
length as X is proper, one can apply the arguments in [L-Z], p. 1392, because

Hi .X; W �X=k.log Z// Š H i
log�crys ..X; Z/=W.k//

is a W.k/-module of �nite type. This �nishes the proof of the Theorem.

Remark. Let Z1; : : : ; Zd be irreducible components of the normal crossing
divisor Z; let ZJ D Zj1

\ � � � \ Zjl
for J D ¹j1; : : : ; jlº � ¹1; : : : ; j º and let

Z.l/ D
Q
jJ jDl ZJ for all l � 0.

Then the above residue isomorphisms which also hold globally ([M], §8.2)
give rise to p-adic weight spectral sequences

E
�l;hCl
1 D Hh�l

crys.Z
.l/=W.k//.�l/ H) H h

log�crys..X; Z/=W.k//

and

{E�l;hCl
1 D Hh�l .W ���

Z.l/=k
/.�l/ H) Hh.W ���X .log Z//:

By ([M], Theorem 9.1) and ([N], Theorem 5.2) the �rst spectral sequence
degenerates at E2 after tensoring with K. As it is not known whether the p-adic
weight spectral sequence degenerates before tensoring with K, we cannot deduce
the main Theorem from the result in the case without log structure as shown in
[L-Z] by using the weight spectral sequence.
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