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Primary group rings

Angelina Y. M. Chin (�) – Kiat Tat Qua (��)

Abstract – Let R be an associative ring with identity and let J.R/ denote the Jacobson

radical of R. We say that R is primary if R=J.R/ is simple Artinian and J.R/ is

nilpotent. In this paper we obtain necessary and su�cient conditions for the group ring

RG, where G is a nontrivial abelian group, to be primary.
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1. Introduction

Throughout this paper all rings are associative with identity. For a ringR, let J.R/

denote its Jacobson radical. We say thatR is primary ifR=J.R/ is simple Artinian

and J.R/ is nilpotent. The ring R is said to be semiprimary if R=J.R/ is Artinian

and J.R/ is nilpotent. A primary ring is clearly semiprimary. The aim of this paper

is to obtain necessary and su�cient conditions for the group ring RG, where G is

a nontrivial abelian group, to be primary. Our main result is the following:

Theorem 1.1. LetR be a ring and let G ¤ ¹1º be an abelian group. Then RG

is primary if and only if R is primary with char R=J.R/ D p for some prime p

and G is a �nite p-group.
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We shall prove Theorem 1.1 in Section 2. In Section 3 we consider conditions

for a group algebra to be primary. As a consequence, we obtain an example of a

clean ring which is not primary.

2. Proof of Theorem 1.1

We �rst obtain some su�cient conditions for a group ring to be primary.

Proposition 2.1. Let R be a ring and let G ¤ ¹1º be a group. If R is primary

with char R=J.R/ D p for some prime p and G is a �nite p-group, then RG is

primary.

In order to prove Proposition 2.1, we shall need the aid of the following results:

Theorem 2.2 (Tan [4, Theorem, p. 261]). LetR be a ring and letG be a group.

Then RG is semiprimary if and only if R is semiprimary and G is �nite.

Proposition 2.3. LetR be a ring and letG ¤ ¹1º be a group. If G is a locally

�nite p-group for some prime p, J.R/ D ¹0º and p D 0 in R, then J.RG/ D �,

the augmentation ideal of RG.

Proof. See [2, Proposition 16(iv), p. 683]. �

Proposition 2.4. Let R be a ring and let G be a group. If R is Artinian or G

is locally �nite, then J.R/G � J.RG/.

Proof. See [2, Proposition 9, p. 665]. �

We are now ready for the proof of Proposition 2.1.

Proof. Since R is primary (hence, semiprimary) and G is �nite, it follows by

Theorem 2.2 thatRG is semiprimary. Thus, we only need to show thatRG=J.RG/

is simple.

Let xR D R=J.R/. Then J. xR/ D ¹0º and p D 0 in xR. It follows by Proposi-

tion 2.3 that J. xRG/ D x�, the augmentation ideal of xRG. SinceG is locally �nite,

we have by Proposition 2.4 that J.R/G � J.RG/. Then

RG=J.RG/ Š .RG=J.R/G/= .J.RG/=J.R/G/

D .RG=J.R/G/=J .RG=J.R/G/

Š xRG=J. xRG/ D xRG=x� Š xR:

Since xR is simple, so is RG=J.RG/. This completes the proof of Proposition 2.1.

�
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In what follows we show that the converse of Proposition 2.1 is true when G is

abelian. We �rst prove the following:

Proposition 2.5. LetR be a ring and letG be a group. If RG is primary, then

R is primary and G is �nite.

We will make use of the following lemma to prove Proposition 2.5.

Lemma 2.6. LetR be a ring such thatR=J.R/ is simple. If S is a homomorphic

image of R, then S=J.S/ is also simple.

Proof. Let f WR ! S be a ring epimorphism and let � WR=J.R/ ! S=J.S/

be the mapping induced by f . That is,

�.r C J.R// D f .r/C J.S/; r 2 R:

It is straightforward to verify that � is a well-de�ned ring epimorphism. Then

since R=J.R/ is simple, so is S=J.S/. �

We now prove Proposition 2.5.

Proof. Since RG is primary (hence, semiprimary), it follows readily by The-

orem 2.2 thatR is semiprimary and G is �nite. It remains to show that R=J.R/ is

simple. But this follows readily by Lemma 2.6 since R is a homomorphic image

ofRG andRG=J.RG/ is simple. We thus have thatR is primary, as required. �

If G ¤ ¹1º is an abelian group, Proposition 2.5 can be made more precise as

follows:

Proposition 2.7. LetR be a ring and letG ¤ ¹1º be an abelian group. If RG

is primary, then R is primary with char R=J.R/ D p for some prime p and G is

a �nite p-group.

We �rst give some preliminaries of the proof of Proposition 2.7. Let R be a

ring and let G be a group. Let ıWRG ! R be the norm epimorphism, that is, for

any ˛ D
P

g2G rgg 2 RG, ı.˛/ D
P

g2G rg . Let  W R ! R=J.R/ naturally

and let � D  ı W RG ! R=J.R/. Note that Ker � D ¹˛ 2 RG j �.˛/ D J.R/º.

Since � is onto, we have that �.J.RG// � ¹J.R/º. Therefore, J.RG/ � Ker �.

Lemma 2.8. Let R be a ring such that R=J.R/ is simple Artinian and let

G ¤ ¹1º be a torsion abelian group. For any x 2 RG such that �.x/ ¤ J.R/,

assume that there exist a; b 2 RG such that axb D 1. Then char R=J.R/ D p for

some prime p and G is a p-group.
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Proof. Let g 2 G; g ¤ 1 and let n be the order of g. Suppose that

char R=J.R/ D 0. Then

�
�

n�1
X

iD0

gi
�

D  ı
�

n�1
X

iD0

gi
�

D  .n1/ D n1C J.R/ ¤ J.R/:

By the hypothesis, we have a; b 2 RG such that a
� Pn�1

iD0 g
i
�

b D 1. Therefore,

1� g D
�

a
�

n�1
X

iD0

gi
�

b
�

.1� g/ D a
�

n�1
X

iD0

gi
�

.1 � g/b D a.0/b D 0:

This gives us g D 1; a contradiction. Hence, char R=J.R/ ¤ 0. Now since

R=J.R/ is simple Artinian (hence, completely reducible), so R=J.R/ is isomor-

phic to a ring of square matrices over some division ring. Since char R=J.R/ ¤ 0,

we must then have that char R=J.R/ D p for some prime p.

Next we show thatG is a p-group. Write n D puk, wherep and k are relatively

prime, and assume that k > 1. Since

�
�

k�1
X

iD0

gipu

�

D  ı
�

k�1
X

iD0

gipu

�

D  .k1/ D k1C J.R/ ¤ J.R/;

it follows from the hypothesis that there exist u; v 2 RG such that

u
�

k�1
X

iD0

gipu

�

v D 1:

Therefore,

1� gpu

D
�

u
�

k�1
X

iD0

gipu

�

v
�

.1 � gpu

/ D u
�

k�1
X

iD0

gipu

�

.1 � gpu

/v

D u.0/v D 0

which gives us gpu

D 1; a contradiction. Thus, k D 1. Then since g is an arbitrary

element of G, it follows that G is a p-group. �

We are now ready for the proof of Proposition 2.7.

Proof. By Proposition 2.5 it follows readily that R is primary and G is �nite.

Thus, it remains to show that char R=J.R/ D p for some prime p and G is a

p-group.
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We �rst note that Ker � D J.RG/. Indeed, we have seen that J.RG/ � Ker �.

Hence, Ker �=J.RG/ is an ideal of RG=J.RG/. But since RG=J.RG/ is simple

and Ker � ¤ RG, it follows that Ker � D J.RG/.

Now let z 2 RG such that �.z/ ¤ J.R/. Then z … Ker � D J.RG/ and hence,

.RGzRGCJ.RG//=J.RG/ is a nonzero ideal ofRG=J.RG/. SinceRG=J.RG/

is simple, it follows that .RGzRG C J.RG//=J.RG/ D RG=J.RG/. Therefore,

1 � uzv 2 J.RG/ for some u; v 2 RG. We then have that uzv D 1 � .1 � uzv/

is a unit of RG. Hence, the hypothesis in Lemma 2.8 is satis�ed. It then follows

by Lemma 2.8 that char R=J.R/ D p for some prime p and G is a p-group. This

completes the proof of Proposition 2.7. �

Finally, by combining Propositions 2.1 and 2.7, we obtain the proof of Theo-

rem 1.1.

3. Some related results

In the case of group algebras, we obtain the following:

Theorem 3.1. Let K be a �eld of characteristic p > 0 and let G ¤ ¹1º be a

group. Then KG is primary if and only if G is a �nite p-group.

We shall need the aid of the following lemma to prove Theorem 3.1.

Lemma 3.2. Let R be a ring and let G ¤ ¹1º be a group. If J.RG/ D �, the

augmentation ideal of RG, then G is a p-group for some prime p, J.R/ D ¹0º

and p D 0 in R.

Proof. See [2, Proposition 16(iii), p. 683]. �

We now prove Theorem 3.1.

Proof. Suppose that KG is primary. Then by Proposition 2.5 we have that G

is a �nite group. Note that �, the augmentation ideal of KG, is a maximal ideal

of KG since KG=� Š K. Therefore, J.KG/ � � and hence, �=J.KG/ is an

ideal ofKG=J.KG/. But sinceKG=J.KG/ is simple, it follows that J.KG/ D �.

We then have by Lemma 3.2 that G is a p-group.

Conversely, if G is a �nite p-group, it follows readily by Proposition 2.1 that

KG is primary. �

We conclude this paper with the following remarks.
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(1) IfK is a �eld with char K D 0 andG ¤ ¹1º is an abelian group, thenG being

�nite is not su�cient forKG to be primary. Indeed, since char K D 0 and G

is abelian, Amitsur (see [1, Theorem 3, p. 252]) has shown that J.KG/ D ¹0º.

Therefore, KG=J.KG/ Š KG is Artinian and J.KG/ D ¹0º is nilpotent.

However, we note that the augmentation ideal � of KG is a nontrivial ideal

of KG. Thus, KG=J.KG/ Š KG is not a simple ring and therefore, KG is

not primary.

(2) A ring is said to be clean if every element in the ring can be written as the

sum of a unit and an idempotent in the ring. It is known that primary rings are

semiperfect and semiperfect rings are clean; hence, primary rings are clean.

IfK is a �eld with char K D 0 andG ¤ ¹1º is an abelian group, thenG being

�nite is su�cient for the group algebraKG to be clean (by [3, Corollary 2.10,

p. 406]). Thus KG is an example of a clean ring which is not primary.
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