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On the piecewise approximation of bi-Lipschitz curves

Aldo Pratelli (�) – Emanuela Radici (��)

Abstract – In this paper we deal with the task of uniformly approximating an L-bi-

Lipschitz curve by means of piecewise linear ones. This is rather simple if one is

satis�ed to have approximating functions which are L0-bi-Lipschitz, for instance this

was already done with L0 D 4L in [3, Lemma 5.5]. The main result of this paper is to

do the same with L0 D LC " (which is of course the best possible result); in the end,

we generalize the result to the case of closed curves.
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2 A. Pratelli – E. Radici

1. Introduction

A problem raised by Evans and Ball in the 1980’s (see for instance [1]), and still

open in its full generality, is the following: can one approximate a planar bi-

Sobolev homeomorphism with di�eomorphisms, or piecewise a�ne homeomor-

phisms, in the bi-Sobolev sense? This would be rather important for applications

in the context of the non-linear elasticity. This problem and its partial solutions

have an interesting history, one can see for instance the papers [2, 5, 3, 4] to have

an overview of what is now known.

In all the available results, for instance in those cited above, the authors use

quite di�erent strategies, but a common ingredient is to divide the domain in

simple ones, namely, triangles or squares, and then to work on each of them. And,

in particular, it is often important to approximate the value of a homeomorphism

on the boundary of the triangle or square. In other words, the much simpler one-

dimensional task (i.e., approximating a function de�ned on a segment, or on the

boundary of a square) is one of the ingredients to solve the two-dimensional

one, actually usually a very easy ingredient. Let us state this more precisely:

we have a function 'W Œ0; 1� ! R2, and we look for a piecewise linear function

'"W Œ0; 1� ! R2, which is uniformly close to ' and which coincides with ' at

0 and 1; this is of course very easy to reach. In addition, one has often the

information that ' is L-biLipschitz; in this case, it would be also interesting to

have an estimate on the bi-Lipschitz constant of '" (which is surely bi-Lipschitz,

since it is piecewise linear). Surprisingly enough, this does not come for free; in

particular, in [3, Lemma 5.5] it was proved that one can obtain a 4L-biLipschitz

approximating function '", and the proof was simple but not straightforward.

The goal of the present paper is to obtain the sharp result in this direction,

namely, that it is possible to have an approximating function '" which is .LC "/-

biLipschitz. To state it, let us �rst recall the de�nition of the bi-Lipschitz property.

Definition 1.1. The function f W Œ0; 1� ! R2 is said to be L-biLipschitz if for

every p; q 2 Œ0; 1�
1

L
jp � qj � jf .p/ � f .q/j � Ljp � qj:

Notice that the second inequality is the usual L-Lipschitz property; through this

paper, we will refer to the �rst inequality as the inverse L-Lipschitz property.

Notice that a function can beL-biLipschitz only ifL � 1, and actually ifL D 1

then the function must be linear (and then, there is no need of approximating it

with piecewise linear functions!). As a consequence, we can always think that

L > 1. We can now state our main result.
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Theorem 1.2. Let 'W Œ0; 1� ! R2 be an L-biLipschitz function, and " > 0.

Then there exists an .LC "/-biLipschitz function '"W Œ0; 1� ! R2 such that

(1.1) '".0/ D '.0/; '".1/ D '.1/; k' � '"kL1 � ";

and '" is �nitely piecewise linear on Œ0; 1�.

The plan of the paper is very simple. Sections 2 and 3 contain the main

ingredients of the proof, namely, the study of how one can approximate a function

near Lebesgue points for '0, and the study of how to treat the remaining small

intervals. These two ingredients will be then put together in Section 4, which

contains the proof of Theorem 1.2. Finally, Section 5 is devoted to generalize the

result to the case of closed curves, that is, instead of functions de�ned on Œ0; 1�we

consider functions de�ned on S1; this is obtained in Theorem 5.2.

1.1 – Notation

In this paper we will use very little notation. We list the main things here for the

sake of clarity. The length-measure is denoted byH
1. Given two points x; y 2 R2,

we denote by xy the segment joining them; depending on the situation, for the ease

of notation we denote its length either by jy � xj, or by the quicker symbol xy, or

also by H
1.xy/. Once a curve 
 W Œa; b� ! R2 is �xed, the arc between two points

P andQ is denoted by ¿PQ, and its length is then H
1.¿PQ/. In particular, for any

a � x < y � b, Ð
.x/
.y/ is the arc connecting 
.x/ to 
.y/. Finally, given any

three points x; y; z 2 R2, we write x yyz 2 Œ0; �� to denote the angle between the

segments xy and yz.

2. The “Lebesgue intervals”

In this section we show that, on a small interval around a Lebesgue point for '0, it is

possible to replace the function ' with a linear one. Since Rademacher Theorem

ensures that almost every point of Œ0; 1� is a Lebesgue point for '0, being ' a

Lipschitz function, we will be eventually able to repeat this argument on a large

number of non-intersecting intervals which �ll a big portion of Œ0; 1�. In the end,

we can prove the following result.

Proposition 2.1. Let 'W Œ0; 1� ! R2 be an L-biLipschitz function, and let

" > 0. Then there exists an .L C "/-biLipschitz function '"W Œ0; 1� ! R2 such

that (1.1) holds true, and '" is �nitely piecewise linear on a �nite union of intervals

A � Œ0; 1� such that jŒ0; 1� n Aj � ".
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As we said above, the main brick to prove this result concerns the modi�cation

of ' on a single small interval. Before stating it, we need the following piece of

notation.

Definition 2.2. Let 'W Œ0; C � ! R2 be a function, and let 0 � s < t � C .

We set 'st W Œ0; C � ! R2 the function de�ned as

'st .x/ WD

8<
:
'.x/ if x … .s; t /,
'.s/C x � s

t � s .'.t/ � '.s// if x 2 .s; t /.

Moreover, we call tC D s C j'.t/ � '.s/j=L and 'C
st W Œ0; C � .t � tC/� ! R2 the

function

'C
st .x/ WD

8̂
ˆ̂<
ˆ̂̂:

'.x/ if x � s;

'.s/C L.x � s/
j'.t/ � '.s/j .'.t/� '.s// if s < x < tC,

'.x C t � tC/ if tC � x � C � .t � tC/.

In words, the function 'st coincides with ' out of the interval .s; t /, while the

curve ' in .s; t / is replaced by the segment connecting '.s/ to '.t/. The function

'C
st behaves in the very same way, except that the segment is parametrized at the

(maximal possible) speed L.

Lemma 2.3. Let 'W Œ0; 1� ! R2 be an L-biLipschitz function, and let " > 0

be small enough. For any x 2 .0; 1/ which is a Lebesgue point for '0, there exists
Ǹ D Ǹ.x/ > 0 such that, for any ` � Ǹ, there is a sets I`.x/ � .x � `; x C `/ with

jI`.x/j � .2� "/`;(2.1)

so that for every s < t 2 I`.x/ the function 'st is .LC "/-biLipschitz and satis�es

k' � 'st kL1 < ". Moreover, for every s 2 I`.x/ and t1; t2 2 .x � `="; x C `="/

with t1 < s < t2, the directions of the segments '.t1/'.s/ and '.s/'.t2/ coincide

up to an error 2".

In this section we will �rst show Lemma 2.3, and then use it as a tool to obtain

Proposition 2.1.
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Proof of Lemma 2.3. We divide the proof in three steps for the sake of clarity.

Step I. The L-Lipschitz property of 'st and a uniform estimate for ' � 'st .

In this step we show that 'st is L-Lipschitz for any choice of s; t in Œ0; 1�, and

we give an estimate for k' � 'st kL1 . Let us �x 0 � s � t � 1 and take two

arbitrary points y ¤ z 2 Œ0; 1�: we have to check that

j'st .y/ � 'st .z/j
jy � zj � L:

This is clearly true if both y; z 2 Œ0; 1� n .s; t /, since in this case 'st D ' at both

y and z; on the other hand, if both y; z 2 Œs; t �, then by de�nition

(2.2)
j'st .y/ � 'st .z/j

jy � zj D j'st .s/ � 'st .t /j
js � t j D j'.s/ � '.t/j

js � t j � L:

Finally, let us suppose that one of the points y and z belongs to .s; t /, and the other

one to Œ0; 1� n Œs; t �; by symmetry, we can assume s < y < t < z. Thus, by the

above observations and by the triangular inequality we have

j'st .y/ � 'st .z/j � j'st .y/ � 'st .t /j C j'st .t / � 'st .z/j

� Ljy � t j C Ljt � zj

D Ljy � zj:

Concerning the uniform estimate, it says that

(2.3) k' � 'st kL1 � 2Ljt � sj:

Indeed, calling for brevity d D jt � sj, for any x 2 Œs; t � one has j'.x/ � '.s/j �
Ljx � sj � Ld . As an immediate consequence, for any y 2 Œs; t � we also get

j'st .y/ � '.s/j � Ld , hence in turn k'st � 'kL1 � 2Ld , that is, (2.3).

Step II. De�nition of `.x/ and I`.x/ and the estimate on the directions.

Let x be a Lebesgue point for '0. By de�nition, for every ı > 0 there exists a

strictly positive constant Nh D Nh.x/ < 1=.4L/ such that, for any h < Nh,

(2.4)

« xCh

x�h

j'0.z/ � '0.x/jdz < ı:

Let us now assume for simplicity that '0.x/ is an horizontal vector, and for any

p < q in .x � h; x C h/, let us call �pq 2 S1 the direction of the segment
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'.p/'.q/. Since j'0.x/j � 1=L, we immediately obtain that for any interval

.p; q/ � .x � h; x C h/ the following holds,

(2.5) M.p; q/ WD
« q

p

j'0.z/ � '0.x/j dz < "

2L
H) j�pq j < ":

We want now to �nd a particular set A � .x � 3h; x C 3h/ such that

(2.6) M.p; q/ <
"

2L
for all p; q 2 .x � h; x C h/W .p; q/ … A � A:

Notice that we are asking M.p; q/ to be small as soon as at least one between

p and q belongs to .x � h; x C h/ n A. To de�ne A, let us start simply by letting

A D ; ifM.p; q/ < "=.2L/ is true for every pair p; q 2 .x�h; xCh/, so that (2.6)

trivially holds.

Otherwise, let p1 < q1 2 .x � h; x C h/ be two points maximizing H
1.pq/

among all the pairs for which M.p; q/ � "=.2L/: notice that this is possible by

the fact that '0 is an L1 function on the compact interval Œx � h; x C h�. Then, let

us de�ne I1 D .p�
1 ; q

C
1 /, being

(2.7) p�
1 D p1 � .q1 � p1/; qC

1 D q1 C .q1 � p1/:

Notice that by construction I1 � .x � 3h; x C 3h/. Now, if (2.6) is satis�ed with

A D I1 we stop here, otherwise let p2 < q2 2 .x � h; x C h/ be two points

maximizing H
1.pq n I1/ among the pairs for which M.p; q/ � "=.2L/, and let

I2 D .p�
2 ; q

C
2 / where p�

2 and qC
2 are de�ned as in (2.7). Notice that, by de�nition,

it is possible that p2 or q2 belong to I1, but the intervals .p1; q1/ and .p2; q2/ are

surely disjoint. Indeed, by the maximality in the de�nition of p1 and q1 we have

that H1.p2q2/ � H
1.p1q1/; as a consequence, the intervals .p1; q1/ and .p2; q2/

could intersect only if both p2 and q2 belong to I1: but then, H1.p2q2 n I1/ D 0,

against the maximality in the de�nition of p2 and q2. Moreover, as before, I2 �
.x � 3h; xC 3h/. We continue our de�nition of the intervals Ij recursively, being

at any step pj < qj 2 .x � h; x C h/ two points maximizing H
1
�
pq n

Sj �1
iD1 Ii

�
among the pairs for whichM.p; q/ � "=.2L/, noticing that the di�erent intervals

.pj ; qj / are disjoint, and stopping the construction if A D
Sj

iD1 Ii satis�es (2.6).

Thus, either we stop after �nitely many steps, and this means that (2.6) holds

true being A a �nite union of intervals, or we end up with a sequence of intervals

Ij D .p�
j ; q

C
j /; j 2 N. Since all the di�erent “internal intervals” .pj ; qj / are

disjoint, the sum of the lengths is bounded, hence jIj j ! 0 when j ! 1. As a

consequence, we can easily check that (2.6) holds true by setting

A WD
°
z 2 .x � 3h; x C 3h/W lim inf

�!0

j.z��;zC�/\
S

j Ij j

2�
> 0

±
;
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that is, A is the set of points having strictly positive density with respect to
S

j Ij .

To do so, let us assume the existence of p < q 2 .x � h; x C h/ such that at

least one between p and q does not belong to A, but M.p; q/ � "=.2L/. We can

immediately notice that

(2.8) H
1.pq n

S
j Ij / D 0W

indeed, if the above measure were some quantity � > 0, then the fact that the

interval .p; q/ was not chosen at the j -th step gives that

H
1.pj qj n

Sj �1
iD1 Ii / � H

1.pq n
Sj �1

iD1 Ii / � H
1.pq n

S
i2N Ii / D �;

hence in particular jIj j � � for every j , while we have already noticed that

jIj j ! 0. On the other hand, (2.8) implies that both p and q have at least density

1=2 for
S

j Ij , so they both belong toA, against the assumption. Hence, the validity

of (2.6) has been established.

We de�ne then ` D Q"h for some Q" D Q"."; L/ < " to be speci�ed later, and we

set

I`.x/ D .x � `; x C `/ n A:

Keep in mind that, since h is any positive constant smaller than Nh.x/, then also `

can be chosen as any positive constant smaller than Ǹ.x/ D Q" Nh.x/. To conclude

this step, we give an estimate of the length of A, namely,

jAj �
C1X
j D1

jIj j

D 3

C1X
j D1

H
1.pj qj /

� 6L

"

C1X
j D1

Z qj

pj

j'0.z/ � '0.x/j dz

� 6L

"

Z xCh

x�h

j'0.z/ � '0.x/j dz

<
12Lhı

"

< h" Q"

D `";
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where we have used the de�nition ofA, the fact thatM.pj ; qj / � "=.2L/ for every

j 2 N, the fact that all the intervals .pj ; qj / are disjoint, and (2.4), and where the

last inequality holds true as soon as ı � "2 Q"=.12L/. As a consequence, the validity

of (2.1) follows.

To conclude this step, we take two points s 2 I`.x/ and t1; t2 2 .x � h; xC h/

with t1 < s < t2. Applying (2.6) at both pairs .t1; s/ and .s; t2/, and keeping in

mind (2.5), we get that both the segments '.t1/'.s/ and '.s/'.t2/ are horizontal

up to an error ", thus in turn the two directions coincide up to an error 2". Notice

that, since .x � `="; x C `="/ � .x � h; x C h/, in particular we have proved the

last assertion of the claim about the directions.

Step III. The bi-Lipschitz property and the L1 estimate for 'st .

To conclude the proof we only have to check that, whenever x is a Lebesgue

point for '0 and the points s and t are in I`.x/, the function 'st is .L C "/-

biLipschitz and satis�es k' � 'st kL1 < ".

The L1 estimate comes directly by Step I, keeping in mind (2.3) and since

by construction 2Ljt � sj � 4`L < 4"hL < "; moreover, Step I ensures also the

Lipschitz property, even with constantL instead of .LC "/: as a consequence, we

only have to take care of the inverse Lipschitz inequality. In other words, we take

y; z 2 Œ0; 1� and we have to check that

(2.9) j'st .y/ � 'st .z/j � jy � zj
LC "

:

If y and z are both in Œ0; 1� n .s; t /, then (2.9) is true – with L in place of LC " –

because ' D 'st at both y and z, while if they are both in Œs; t � then the validity

of (2.9) – again with L in place of L C " – can be obtained exactly as in (2.2).

Without loss of generality, let us then consider the case when s < y < t < z,

which we further subdivide in two cases.

If z 2 .x � h; x C h/ then, as observed at the end of Step II, the angle

� D '.y/b'.t/'.z/ is at most 2". Recalling that the validity of (2.9) with L in

place of LC " is already known for both the pairs .y; t / and .t; z/, we have then

j'st .y/ � 'st .z/j � cos.�=2/.j'st .y/ � 'st .t /j C j'st .t / � 'st .z/j/

� cos "
jy � t j C jt � zj

L

� jy � zj
LC "

;

which is valid up to take " small enough.
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Finally, assume that z > x C h: in this case it is enough to observe that, also

by (2.3),

j'st .y/ � 'st .z/j
jy � zj D j'st .y/ � '.z/j

jy � zj

� j'.y/ � '.z/j
jy � zj � k'st � 'kL1

jy � zj

� 1

L
� 4L`

h � `

D 1

L
� 4L Q"
1 � Q"

>
1

LC "
;

up to have chosen Q" D Q"."; L/ small enough. Thus, the estimate (2.9) has been

proved in any case and the proof is concluded. �

Definition 2.4. Given an interval J D .a; b/ � Œ0; 1� and " > 0, we call

central part of J the interval J " given by

J " WD
�aC b

2
� "

2
.b � a/;

aC b

2
C "

2
.b � a/

�
:

Moreover, we say that J is "-admissible if there exists x 2 J " such that Ǹ.x/ >
.b � a/=2.

Proof of Proposition 2.1. For any N 2 N, we write Œ0; 1� as the essentially

disjoint union of the intervals Jm D
�
m=N; .m C 1/=N

�
, with 0 � m < N .

Moreover, we let Q" D Q"."; L/ < " be a small constant, to be speci�ed later. We

split the proof in three steps for clarity.

Step I. A piecewise linear .LCQ"/-biLipschitz function 'm on each Q"-admissible

interval.

Let us start by considering an interval Jm which is Q"-admissible. Then, there

exists a Lebesgue point xm 2 J Q"
m for '0 satisfying Ǹ.xm/ > 1=2N . Let now

` D dist.xm; Œ0; 1� n Jm/: of course ` � 1=2N < Ǹ.xm/, hence we can apply

Lemma 2.3 with Q" in place of ", and get two points

x�
m 2

�m
N
;
m

N
C 2 Q"
N

�
; xC

m 2
�mC 1

N
� 2 Q"
N
;
mC 1

N

�
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such that the function 'm D '
x�

mx
C
m

of De�nition 2.2 is .LC Q"/-biLipschitz and

satis�es k' � 'mkL1 < Q" < ". Notice that 'm is piecewise linear on a subset

of Jm having length at least .1 � 4 Q"/=N . We underline now another L1 estimate

which holds for ' � 'm, which will be needed later; namely, since ' and 'm are

bi-Lipschitz and they coincide at x�
m, then for any y 2 .x�

m; x
C
m/ we have

j'm.y/ � '.y/j � j'm.y/ � 'm.x
�
m/j C j'.x�

m/ � '.y/j

� .2LC Q"/.y � x�
m/

<
3L

N
:

(2.10)

Step II. The length of the non Q"-admissible intervals Jm is small.

Let us consider an interval Jm which is not Q"-admissible. By de�nition, this

means that no Lebesgue point x in J Q"
m satis�es Ǹ.x/ > 1=2N , or equivalently that

J Q"
m is entirely contained in

AN D
°
x 2 Œ0; 1�W either x is not a Lebegue point for '0, or Ǹ.x/ � 1

2N

±
:

As a consequence, the union of the intervals which are not Q"-admissible has length

at most jAN j= Q": hence, since " > 0 is �xed and since Q"will ultimately depend only

on " and L, by Rademacher Theorem we can selectN � 1 such that this union is

as small as we wish.

Step III. De�nition of the function '".

We are now in position to de�ne the desired function '". More precisely, we

let '" D 'm in every Q"-admissible interval Jm, and '" D ' on the other intervals;

thus, '" coincides with ' on every interval which is not Q"-admissible, as well as

in the “external” portion Jm n .x�
m; x

C
m/ of the Q"-admissible intervals.

First of all, observe that '" is piecewise linear on the union of the intervals

.x�
m; x

C
m/, hence – by Steps I and II – on a portion of Œ0; 1� having measure larger

than 1 � 5 Q" (thus in turn larger than 1� " if Q" < "=5) as soon as N � 1.

Second, by construction we have '".0/ D '.0/ and '".1/ D '.1/; moreover,

since in every Q"-admissible interval Jm one has k' � '"kL1 D k' � 'mkL1 < Q",
while on each non Q"-admissible interval one has '" D ', theL1 estimate and thus

the whole (1.1) has been established.
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To conclude, we have only to check the .L C "/-biLipschitz property of '".

To do so, having �xed two points y < z in Œ0; 1�, we need to show that

(2.11) j'".y/ � '".z/j � .LC "/jy � zj; j'".y/ � '".z/j � 1

LC "
jy � zj:

Since ' is L-biLipschitz by assumption, and every 'm is .L C Q"/-biLipschitz by

Step I, there is nothing to prove unless y 2 .x�
m; x

C
m/ and z 2 .x�

n ; x
C
n / for some

m < n, being both the intervals Jm and Jn Q"-admissible. In this case, the �rst

inequality in (2.11) comes directly by the triangular inequality, being

j'".y/ � '".z/j � j'".y/ � '".x
C
m/j C j'".x

C
m/ � '".x

�
n /j C j'".x

�
n / � '".z/j

D j'm.y/ � 'm.x
C
m/j C j'.xC

m/ � '.x�
n /j C j'n.x

�
n / � 'n.z/j

� .LC Q"/jy � zj

� .LC "/jy � zj:
To show the other inequality, it is convenient to distinguish two subcases, namely,

whether y and z are very close, or not. More precisely, let us �rst assume that

z < xm C 1=.2N Q"/ < xm C Ǹ.xm/= Q"; in this case, by Lemma 2.3 we know that the

angle � D '".y/
2'".x

C
m/'".z/ satis�es � > � � 2 Q", so that as soon as Q" D Q"."; L/

is small enough we have

j'".y/ � '".z/j � cos. Q"/.j'".y/ � '".x
C
m/j C j'".x

C
m/ � '".z/j/

� cos. Q"/
LC Q" jy � zj

� 1

LC "
jy � zj:

Finally, if z � xmC1=.2N Q"/, then of course jy�zj � 1=.3N Q"/. As a consequence,

since by (2.10) we have k' � '"kL1 < 3L=N , we get

j'".y/ � '".z/j
jy � zj � j'.y/ � '.z/j

jy � zj � 2k' � '"kL1

jy � zj � 1

L
� 18L Q" � 1

LC "
;

where the last inequality is again true for a suitable choice of Q" D Q"."; L/. The

second inequality in (2.11) is thus proved in any case, and the proof is concluded.

�

Remark 2.5. Notice that, if the function ' is C1 up to the boundary on the

interval Œ0; 1�, then Lemma 2.3 can be applied to any point of Œ0; 1�, thus by a

trivial compactness argument the proof of Proposition 2.1 can be modi�ed to get

an .L C "/-biLipschitz approximation of ' which is �nitely piecewise linear on

the whole Œ0; 1�.
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3. The “non Lebesgue intervals”

In this section we show that any L-biLipschitz function ' can be modi�ed inside

any small interval .a; b/, shrinking a little bit this interval, becoming C1 there, and

remaining globally L-biLipschitz. In the next section we will apply this result to

the “non Lebesgue intervals”, that is, the intervals which we were not able to treat

in the last section. The main aim of the section is to prove the following result.

Proposition 3.1. Let 'W Œ0; C � ! R2 be an L-biLipschitz function, let Œa; b� �
Œ0; C � be a given interval, and suppose that for some " > 0 the function ' is

linear on .a � "; a/ \ Œ0; C � and on .b; b C "/ \ Œ0; C �, with j'0j D L on both

these intervals. Then, there exists a C .b � a/=L2 � b0 � b and an L-biLipschitz

function  W Œ0; C � .b � b0/� ! R2 which is C1 on Œa; b0� and satis�es

(3.1)

´
 .t/ D '.t/ for every 0 � t � a;

 .t/ D '.t C b � b0/ for every b0 � t � C � .b � b0/:

To obtain this result, the following two de�nitions will be useful.

Definition 3.2 (Fast and short functions). Let 'W Œ0; C � ! R2 be an L-

biLipschitz function and Œa; b� � Œ0; C � be a given interval. We say that a function

 W Œ0; C�.b�b0/� ! R2 is fast on Œa; b� if aC.b�a/=L2 � b0 � b, satis�es (3.1),

(3.2)
1

L
jz � yj � j .z/ �  .y/j � Ljz � yj for all y 2 Œa; b0�; z … Œa; b0�;

and j 0j � L on Œa; b0�. Moreover, any  which minimizes the value of b0 among

all the functions fast on Œa; b�, is said to be short on Œa; b�.

In words, a “fast” function is a function which connects '.a/ with '.b/ always

moving at maximal speed, and satisfying (3.2), while a “short” function is the

shortest possible fast function. Let us immediately make a very simple observa-

tion, which we will use often later.

Lemma 3.3. Let'W Œ0; C � ! R2 be anL-biLipschitz function, and let W Œ0; C�
.b � b0/� ! R2 be short on some interval Œa; b� � Œ0; C �. Let also a � r < s � b0,

and assume that  is not a straight line between  .r/ and  .s/. Then, the inverse

L-Lipschitz property for the function  C
rs fails for some p … Œa; b0 � .s � sC/� and

q 2 .r; sC/, where  C
rs and sC are as in De�nition 2.2.

Proof. Let us consider the function  C
rsW Œ0; C � .b � b00/� ! R2, with

b00 D b0 � .s � sC/, which of course satis�es (3.1). Since  is not a straight
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line between  .r/ and  .s/, we have that b00 < b0 and then, since  is short

on .a; b/, by de�nition we get that  C
rs cannot be fast on .a; b/. As a consequence,

recalling (3.2), we know that there must be some p … Œa; b00� and some q 2 Œa; b00�

such that the L-biLipschitz property for  C
rs fails at p and q. However, we know

that
ˇ̌
. C

rs/
0
ˇ̌

D L in .a; b00/, while outside
ˇ̌
. C

rs/
0
ˇ̌

� L since  C
rs coincides with

' up to a translation of the variable, and ' is L-biLipschitz. Thus, the L-Lipschitz

property for  C
rs cannot fail, and we realize that the inverse L-Lipschitz property

must fail at p and q. By symmetry, we can also assume that p < a; hence, if

a � q � r , then

j C
rs.q/ �  C

rs.p/j
q � p

D j .q/ �  .p/j
q � p � 1

L
;

because the function  is short and then in particular it satis�es (3.2). Instead, if

sC � q � b00, then we have

j C
rs.q/ �  C

rs.p/j
q � p D j .q C .s � sC// �  .p/j

q � p

D j .q C .s � sC// �  .p/j
q C .s � sC/ � p

q � p C .s � sC/

q � p

� j .q C .s � sC// �  .p/j
q C .s � sC/ � p

� 1

L
:

As a consequence, we obtain that q must be in .r; sC/, and the thesis is concluded.

�

Our next result tells that a short function always exists, and it is even L-

biLipschitz: notice that this is not guaranteed by (3.2), since there we check only

some pairs .y; z/, namely, those for which y is inside the interval .a; b0/ and z is

outside it.

Lemma 3.4. Let 'W Œ0; C � ! R2 be an L-biLipschitz function, and let Œa; b� �
Œ0; C � be a given interval. Then, there exists a function  short on Œa; b�, and any

such function is L-biLipschitz.

Proof. First of all, let us observe that the set of the fast functions is not empty.

Indeed, the function ' itself, reparametrized at speed L in .a; b/, is fast: more

precisely, let us set

b0 D aC H
1.Ð'.a/'.b//

L
;
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let � W Œ0; C � ! Œ0; C � .b � b0/� be the one-to-one function given by

�.t/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

t for all 0 � t � a;

a C H
1.Ð'.a/'.t//

L

for all a < t < b;

t � .b � b0/ for all b � t � C;

and set  1 as  1.�.t// D '.t/. We claim that  1 is a fast function on Œa; b�:

everything is obvious by construction except the validity of (3.2). But in fact,

let y 2 .a; b0/ and z > b0 (if z < a, the very same argument applies). Since

j 0
1.t /j D L for t 2 .y; b0/, while for b0 < t < z one has j 0

1.t /j D j'0.tCb�b0/j �
L because ' is L-biLipschitz, we get immediately the validity of the second

inequality. Concerning the �rst one, we have just to recall that j� 0j � 1, so that

b0 � y D �.b/ � �
�
��1.y/

�
� b � ��1.y/;

and then we directly get

j 1.z/ �  1.y/j
jz � yj D j'.z � b0 C b/ � '.��1.y//j

z � b0 C b0 � y

� j'.z � b0 C b/ � '.��1.y//j
z � b0 C b � ��1.y/

� 1

L
;

where in the last inequality we have used the bi-Lipschitz property of '. So, also

the �rst inequality in (3.2) is proved and thus the claim is established.

To get the existence of a short function, it is enough to recall that all the fast

functions are uniformly continuous on uniformly bounded intervals; thus, such

existence follows directly by Ascoli–Arzelà Theorem and since any uniform limit

of fast functions is also fast.

To conclude, we take a short function  on Œa; b�, and we have to show that  

is L-biLipschitz. We have already noticed that j 0j � L, so the Lipschitz property

is obvious and we only have to care about the inverse Lipschitz property. To do

so, let us take y < z 2 Œ0; C � .b � b0/�. If y and z are both smaller than a, or

both larger than b0, this comes directly by the inverse Lipschitz property of '; if

one between y and z is smaller than a, and the other is larger than b0, the same

argument applies since

j .z/ �  .y/j D j'.z C b � b0/ � '.y/j � 1

L
j.z C b � b0/ � yj � 1

L
jz � yj I
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if exactly one between y and z is in Œa; b0�, the inequality is ensured by (3.2).

Summarizing, the only situation left to prove is the case a < y < z < b0.

Let us assume, by contradiction, that there exists a < r < s < b0 such that

(3.3) j .s/ �  .r/j < 1

L
js � r j;

and consider the function  C
rsW Œ0; C � .b � b00/� ! R2 given by De�nition 2.2.

Notice that  cannot be a straight line between  .r/ and  .s/, by (3.3) and the

fact that j 0j D L on .a; b0/. Thus, Lemma 3.3 ensures the existence of some

p … Œa; b00� (and, without loss of generality, we can think p < a) and q 2 .r; sC/

such that

(3.4) j C
rs.q/ �  C

rs.p/j <
1

L
.q � p/:

Finally, making use of the validity of (3.2) for  , together with (3.3) and (3.4), we

get

1

L
js � pj � j .s/ �  .p/j

� j .s/ �  C
rs.q/j C j C

rs.q/ �  .p/j

D j .s/ �  .r/j � j C
rs.q/ �  C

rs.r/j C j C
rs.q/ �  C

rs.p/j

<
1

L
.s � r/ � L.q � r/C 1

L
.q � p/

� 1

L
js � pj;

and since the contradiction shows that  is L-biLipschitz, the proof is concluded.

�

Keep in mind that we aim to prove Proposition 3.1, that is, we want to �nd

some L-biLipschitz function  which satis�es (3.1) and which is C1 on Œa; b0�. By

de�nition, any function fast in Œa; b� already satis�es (3.1), and the lemma above

ensures that any function short on Œa; b� is also L-biLipschitz. We will then get

our proof once we show that any short function is necessarily C1 on Œa; b0�. To do

so, we start with a couple of preliminary geometric estimates.
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Lemma 3.5. For every small constants ` and � and for everyL � 1, there exists
Nı.`; �; L/ � ` satisfying the following properties. Let P; Q; S be three points in

R2 such that PQ � `=2 and ı D QS � Nı. Call also �; � 0; � 2 S1 the directions

of the segments PQ, PS and QS respectively. Then the following holds true:

j� � � 0j � �

L2
;(3.5)

� � � � �

L2
� PS � PQ

ı
� � � � C �

L2
:(3.6)

Proof. Once `, � and L are given, the existence of some Nı satisfying (3.5) is

immediate by continuity; we will show that the same choice of Nı gives also (3.6).

Let us call � W Œ0; ı� ! R2 the function given by �.t/ D QCt�, so that �.0/ D Q

and �.ı/ D S ; call also �.t/ the direction of the segment P�.t/, and observe that

j�.t/ � � j � �=L2 by (3.5) applied to the triple .P;Q; �.t//. Hence,

PS � PQ D
Z ı

0

d

dt
.P �.t// dt

D
Z ı

0

�.t/ � � dt

D ı� � � C
Z ı

0

.�.t/ � �/ � � dt;

and the modulus of the latter integral is smaller than ı�=L2, hence (3.6) follows.

�

Lemma 3.6. Let `, � and L be �xed, let 'W Œ0; C � ! R2 be an L-biLipschitz

function, and take three points P D '.p/, Q D '.q/, R D '.r/, with p <

q < r , satisfying PQ � ` and ı WD QR � Nı.`; �; L/. Assume that the function

'C
qr W Œ0; C � .r � rC/� ! R2 of De�nition 2.2 does not satisfy the inverse L-

Lipschitz property at the pair .p; t/ with some q � t � rC. Then,

1

L2
� 2 �

L2
� � � � � 1

L2
C 2

�

L2
;(3.7)

PQ

jq � pj � 1

L
C 3�ı

jq � pjL2
;(3.8)

H
1.¿QR/
QR

� 1C 6�;(3.9)

where � and � are the directions of the segments PQ and QR respectively.
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Proof. First of all, let us call for brevity � WD Q'C
qr .t / andQ� D 'C

qr .t /. The

failure of the inverse L-Lipschitz property at p and t , together with (3.6) applied

with S D Q� and with the fact that ', instead, is L-biLipschitz, gives

�

L2
C q � p

L
D t � p

L

> 'C
qr .p/'

C
qr.t /

D PQ�

� PQC �
�
� � � � �

L2

�

� q � p
L

C �
�
� � � � �

L2

�
;

(3.10)

which can be rewritten as

� � � < 1

L2
C �

L2
;

so that one inequality in (3.7) is already proved.

Notice now that PQ� � ` � Nı > `=2, so we can apply (3.6) also to Q D Q�

and S D R. By (3.10) and the biLipschitz property of ' again, we have then

� � L.rC � q/
L2

C r � p

L
� � � L.r � q/

L2
C r � p

L

D �

L2
C q � p

L

> PQ�

� PR � .QR � �/
�

Q� � � C �

L2

�

� r � p
L

C .� � L.rC � q//
�

Q� � � C �

L2

�
;

where Q� is the direction of PQ� . Since L.rC � q/ D QR � � , we deduce

Q� � � > 1

L2
� �

L2
:

And since j Q� � � j < �=L2 by (3.5), we conclude the validity of (3.7).

Property (3.8) can be directly deduced from (3.10) and (3.7), since

PQ

jq � pj <
1

L
C �

jq � pj
� 1

L2
� � � � C �

L2

�

� 1

L
C 3��

jq � pjL2

� 1

L
C 3�ı

jq � pjL2
:
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And �nally, to get property (3.9), �rst we use that ' is L-biLipschitz to get

(3.11) PR � r � p
L

D q � p
L

C r � q
L

� q � p
L

C H
1.¿QR/
L2

;

and then we use (3.6), (3.8), and (3.7) to get

PR � PQC ı
�
� � � C �

L2

�
� q � p

L
C ı

L2
.1C 6�/;

which inserted in (3.11) gives (3.9). �

Let us now present the main technical tool of this section: thanks to this result,

we will be able to prove the regularity of any short map.

Lemma 3.7. Let `, � and L be �xed, let 'W Œ0; C � ! R2 be an L-biLipschitz

function with j'0j � L in .q; r/, and take �ve points P D '.p/, Q D '.q/,

R D '.r/, Q0 D '.q0/ and Q00 D '.q00/ with p < q < q0 < q00 < r , satisfying

PQ � 2` and ı WD QR � Nı.`; �; L/. Assume also that both Q0 and Q00 have

distance at least ı=3 from each of Q and R, that � is small with respect to L � 1

and 1=L, and that (3.9) holds true. Then, if the inverse L-Lipschitz property for

the function 'C
q0q00 is not satis�ed by P and some point in the segmentQ0Q00, one

has

(3.12) j� � �0j � 1

2
min

° 1

L2
; 1� 1

L2

±
H) j� � �0j � 15

p
�;

where � and �0 are the directions of the segmentsQR and Q0Q00 respectively.

Proof. First of all, we use property (3.9) for Q and R, which is valid by

assumption: we immediately get that every point in the curve ¿QR, hence in

particular both Q0 and Q00, has distance less than 2ı
p
� from the segment QR.

Since QQ0 � ı=3 and Q00R � ı=3, we deduce that

(3.13) j� � Q�j � 6
p
�; Q0Q00 � ı

2
� 3

2
QQ0;

being Q� the direction of QQ0. Moreover, the validity of (3.9) also implies that

QR.1C 6�/ � H
1.¿QR/

D H
1.ÀQQ0/C H

1.ÀQ0R/

� H
1.ÀQQ0/CQ0R

� H
1.ÀQQ0/CQR �QQ0;
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which in turn implies by the assumptions

(3.14) H
1.ÀQQ0/ � 6�QRCQQ0 � QQ0.1C 18�/:

Let us now use the fact that the inverse L-Lipschitz property for the function 'C
q0q00

fails for P and some point in Q0Q00. As a consequence, we can apply Lemma 3.6

to the points P; Q0 andQ00, so by (3.7), calling � 0 the direction of PQ0, we know

(3.15)
ˇ̌
ˇ� 0 � �0 � 1

L2

ˇ̌
ˇ � 2

�

L2
:

Let us now assume that

(3.16) j� � �0j � 1

2
min

° 1

L2
; 1� 1

L2

±
;

so that the proof will be concluded once we show that

(3.17) j� � �0j � 15
p
�:

First of all, putting together (3.15), (3.16) and (3.13), a simple geometric argument

shows that the directions � and Q� are in the same quadrant with respect to � 0 as

soon as � is small enough; more precisely, this holds true as soon as � is much

smaller than both L � 1 and 1=L (keep in mind that L > 1). As a consequence, a

trigonometric argument immediately gives

ˇ̌
� 0 � Q� � � 0 � �0

ˇ̌
� jQ� � �0j2

3
:

Just to �x the ideas, we can assume that

(3.18) � 0 � Q� � � 0 � �0 � jQ� � �0j2
3

;

otherwise the argument below about QQ0 has to be replaced by a completely

similar argument about RQ00.

Let us now collect all the information that we have: by (3.6) applied to P; Q0

and Q, by (3.8) applied to P; Q0 and Q00, and by (3.13), we get

q � p

L
� PQ � PQ0 CQQ0

�
� 0 � .�Q�/C �

L2

�

� q0 � p
L

C 3�Q0Q00

L2
CQQ0

� �

L2
� � 0 � Q�

�

� q0 � p
L

C 9�QQ0

2L2
CQQ0

� �

L2
� � 0 � Q�

�

� q0 � p
L

CQQ0
� 6�
L2

� � 0 � Q�
�
:
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This, also keeping in mind the fact that j'0j � L in .q; r/ and (3.14), implies

QQ0
�
� 0 � Q� � 6�

L2

�
� q0 � q

L
D H

1.ÀQQ0/

L2
� QQ0.1C 18�/

L2
;

which �nally gives

� 0 � Q� � 1

L2
C 24�

L2
:

Inserting now this estimate and (3.15) in (3.18), we get

j Q� � �0j �
9
p
�

L
< 9

p
�;

which together with (3.13) �nally gives (3.17). �

Even though the estimate (3.12) is quite obscure, it gives an important infor-

mation, namely, if the directions � and �0 are not too far away from each other,

then they must be very close. We can now see that this implies the regularity of

a short map '. First of all, we prove the internal regularity in the open segment

.a; b/.

Lemma 3.8. Let ' be an L-biLipschitz function, short on Œa; b�. Then, ' is of

class C1 in the open interval .a; b/.

Proof. Let us take a < a0 < b0 < b, and let us �x some ` � 1 such that

PQ > 2` for all P D '.p/; Q D '.q/; p … Œa; b�; q 2 .a0; b0/:

We aim to show that ' is of class C1 in .a0; b0/, and this will of course give the

thesis since a0 and b0 are arbitrary.

Let us then �x a point S D '.s/ with s 2 .a0; b0/, and let also � � 1 be given.

De�ne Nı D Nı.`; �; L/ according to Lemma 3.5: we claim that there exists some

direction � 2 S1 for which

(3.19)
ˇ̌
ˇ'

0.t /

L
� �

ˇ̌
ˇ � 16

p
� for all t 2 .a0; b0/W jt � sj �

Nı
12L

:

Since s and � are arbitrary, of course this will immediately imply the required C1

regularity of ' in .a0; b0/.

Figure 1. Situation in Lemma 3.8
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Let us now take Q D '.q/ and R D '.r/ in such a way that QR D Nı and that

s D .qC r/=2, and let us call � the direction of the segmentQR: Figure 1 depicts

all the involved points. Notice that, by construction and since Nı � `, both q and

r are in .a; b/, and both PQ and PR are larger than ` whenever P D '.p/ for

some p … Œa; b�. If ' is linear on QR, then of course '0 is constantly equal to L�

in .q; r/, thus (3.19) is already established. Otherwise, Lemma 3.3 says that there

must be some p … .a; b� .r � rC// such that the inverse L-Lipschitz property for

'C
qr fails at p and at some point in .q; rC/. Thus, we can apply Lemma 3.6 and in

particular (3.9) is true.

As noticed in the proof of Lemma 3.7, this implies that the whole curve ¿QR
has distance less than 2 Nıp� from the segment QR. As a consequence, if we call

QC and R� the �rst and the last point of ¿QR having distance Nı=3 from Q and

from R respectively, we clearly have

(3.20) j Q� � �j � arctan.12
p
�/ < 16

p
�;

where Q� is the direction of the segment QCR�. Let us assume now that (3.19) is

false, thus there exists some t with jt � sj � Nı=12L such that

(3.21)
ˇ̌
ˇ'

0.t /

L
� �

ˇ̌
ˇ > 16p�:

Observe that, by construction, t must belong to the interval .qC; r�/. By conti-

nuity, (3.20) and (3.21) imply the existence of qC < q0 < t < q00 < r� such

that

(3.22) j�0 � �j D 16
p
�;

where �0 is the direction of the segmentQ0Q00. The function ' cannot be a segment

between Q0 and Q00, because otherwise it would be '0.t / D L�0, against (3.21)

and (3.22). Again by Lemma 3.3, we deduce the existence of some new point
zP D '. Qp/ with Qp … Œa; b� .q00C � q00/� such that the inverse L-Lipschitz property

for 'C
q0q00 fails at Qp and some point between q0 and q00C (notice that there is no

reason why this point zP should coincide with the point P D '.p/ of few lines

ago).

We can then apply Lemma 3.7 with P D zP , and we get the validity of (3.12).

Notice that, since � has been taken arbitrarily small, by (3.22) we can assume

without loss of generality that

j� � �0j D 16
p
� � 1

2
min

° 1

L2
; 1� 1

L2

±
:
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As a consequence, (3.12) tells us that j� � �0j � 15
p
�, which is clearly a

contradiction with (3.22). Therefore, the proof of (3.19) is completed, and as

noticed above the thesis follows. �

Now, we can extend the regularity up to the extremes of the interval Œa; b�. We

do this �rst for an interval compactly contained in Œ0; C �, and then for an interval

reaching the boundary of Œ0; C �.

Lemma 3.9. Let 'W Œ0; C � ! R2 be an L-biLipschitz function, short on some

Œa; b� �� Œ0; C �, and assume that for some " � 1 the function ' is linear on

.a � "; a/ with j'0j � L. Then, '0 is right-continuous in a.

Proof. Up to a rotation, we can assume for simplicity also that ' is horizontal

in .a � "; a/ or, in other words, that '0 D Le1 in .a � "; a/. Since by de�nition

j'0j D L on the whole .a; b/, we have to �nd a direction N� 2 S1 such that

the directions of '0.t / converge to N� when t & a. First of all, let us de�ne
N� D 2 arcsin.1=L2/, and notice that N� converges to � (resp., to 0) if L converges

to 1 (resp., to C1).

Step I. For every r 2 .a; a C "/, the direction of the segment AR is between

�.� � N�/ and � � N� .

Let us take a generic r 2 .a; aC "/, de�ne � D AR=L, and notice that

(3.23) L.r � a/ D H
1.¿AR/ � AR; thus r � a � �:

Call now P D '.p/ D '.a � �/, and notice that PA D AR by construction,

since the above inequality in particular ensures that � < ". If we assume, by

contradiction, that the direction of AR is not between �.� � N�/ and � � N� , then

in particular P yAR < N� . As a consequence, by (3.23) we have

PR < 2AR sin. N�=2/ D 2AR

L2
D 2�

L
� r � p

L
;

and this gives a contradiction to the L-biLipschitz property of '. Hence, the �rst

step is concluded.

Step II. There exists N� 2 Œ�.� � N�/; � � N�� such that the direction of A'.t/

converges to N� when t & a.

By compactness of S1, the directions of the segments A'.t/ have at least a

limit point for t & a: the goal of this step is to show that there is actually only a

single such limiting point.
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Let us assume that the limiting directions are more than one: since the set of

the limiting directions is clearly a connected subset of S1, which can only contain

directions between �.� � N�/ and � � N� by Step I, we deduce in particular the

existence of �1; �2 2 S1, and of two sequences of pointsRi
n D '.r i

n/ for i 2 ¹1; 2º
and n 2 N satisfying

�1; �2 2 .�.� � N�/; � � N�/; �1 ¤ �2; r i
n &

n!1
a;

Ri
n � A

jRi
n � Aj D �i :

Let us now �x a constant ` much smaller than L". For every � > 0, calling for

brevity r D r1
n andR D R1

n, as soon as n is big enough we have thatAR is smaller

than Nı.`; �; L/. As a consequence, since of course ' is not linear between a and r

but it is short on .a; b/, Lemma 3.3 implies that the inverse L-Lipschitz property

for the function 'C
ar must fail for some pair Pn D 'C

ar .pn/ and S D 'C
ar .s/, where

pn … Œa; b� .r � rC/� while s 2 .a; rC/. Notice now the following simple general

trigonometric fact: given two directions ˛1; ˛2 2 S1, the map � WR ! R2 de�ned

as �.x/ D Lx˛1 for x � 0 and �.x/ D �Lx˛2 for x < 0 is L-biLipschitz if and

only if the angle between ˛1 and ˛2 is at least the angle N� de�ned above. Thus,

Step I and the fact that �1 2
�

� .� � N�/; � � N�
�
, ensure that pn cannot belong to

.a� "; a/ if r < aC ", which is of course true up to have taken n big enough. As a

consequence, we can apply Lemma 3.6 to the points P D Pn; Q D A and R, and

we get that

ˇ̌
ˇ�n � �1 � 1

L2

ˇ̌
ˇ � 2

�

L2
; APn � ja � pnj

L
C 3�AR

L2
:

where �n is the direction of the segment PnA. If we now send � ! 0 and

consequently n ! 1, we �nd a point P 1 D '.p1/ (which is a limit of some

subsequence of the points Pn) such that, calling �1 the direction of P 1A, it is

(3.24) �1 � �1 D 1

L2
; AP 1 D ja � p1j

L
:

The very same argument, using the direction �2 in place of �1, gives us of course

another point P 2 D '.p2/ satisfying

(3.25) �2 � �2 D 1

L2
; AP 2 D ja � p2j

L
;

where �2 is the direction of P 2A. Again recalling that the set of the limiting

directions, among which we have chosen �1 and �2, is a connected subset of S1,

from (3.24), (3.25) and the fact that �1 ¤ �2 we get that, up to swap �1 and �2,

(3.26) �1 � �2 <
1� �
L2
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for some strictly positive constant�. Let us now again select a pointR D R2
n with n

big enough so that AR � Nı.`; �; L/, and let us assume that p1 < a (otherwise one

just has to repeat the argument below swapping the roles of A and R). Recalling

that ' is L-biLipschitz, so in particular the inverse L-Lipschitz property holds for

the points p1 and r D r2
n , using again Lemma 3.5 with P D P 1, Q D A and

S D R, and by (3.24) and (3.26), we have

AR

L2
� r � a

L

D r � p1

L
� a � p1

L

� P 1R � a � p1

L

� P 1AC AR
�
�1 � �2 C �

L2

�
� a � p1

L

D AR
�
�1 � �2 C �

L2

�

<
AR

L2
;

and the contradiction shows the uniqueness of the direction �, hence this step is

concluded.

Step III. Conclusion.

We are now ready to conclude the proof. In Step II we have already found a

direction N� such that
A � '.t/

jA � '.t/j �! N�

for t & a. Hence, we only have to show that '0.t / ! L N� for t & a: our argument

will be very similar to the one of Lemma 3.8. Call again ` a constant much smaller

than L", �x arbitrarily some � � 1, and consider the �rst portion of the curve ',

after A, of a length Nı.`; �; L/. We claim that for any point '.t/ in this piece of

curve one has

(3.27) j'0.t / � L N�j � 16
p
�:

Once we prove this, since � is arbitrary the proof is concluded. Assume then

the existence of some t as before for which (3.27) is not satis�ed, take a point

R D '.r/, with r > a, such that AR D 2AT , and take two more points
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QC D '.qC/ and R� D '.r�/ with a < qC < r� < r so that

AQC D R�R D AR

3
:

The existence of t implies that ' is not linear between A andR. Therefore, we can

apply once again �rst Lemma 3.3 and then Lemma 3.6 with Q D A, in particular

getting the validity of (3.9). Exactly as in the proof of Lemma 3.8, this implies that

the direction � of the segmentQCR� satis�es

j� � N�j < 16p�;

hence by continuity we can �nd two points Q0 D '.q0/ and Q00 D '.q00/ with

qC < q0 < q00 < r� with j�0 � N�j D 16
p
�, being �0 the direction of Q0Q00. And

�nally, the points Q0 and Q00 give a contradiction with (3.12) of Lemma 3.7. This

contradiction show the validity of (3.27), and then the proof is concluded. �

Lemma 3.10. Let 'W Œ0; C � ! R2 be an L-biLipschitz function, short on some

interval Œa; C �. Then, ' is of class C1 on the interval .a; C �.

Proof. The C1 regularity on the open interval .a; C / has been already proved

in Lemma 3.8, thus we only have to take care of the situation near b D C . Our

argument will be quite similar to what already done in the proof of Lemmas 3.7

and 3.8, and is divided in two steps for simplicity.

Step I. The directions of the segmentsQB converge to some � 2 S1.

First of all, we consider the segments QB , where as usual Q D '.q/ and

B D '.b/. We aim to show that the directions of the segments QB converge

to some � 2 S1 when q ! b. Suppose that this is false and notice that, by

compactness, this means that the limit points of the directions of the segments

QB when q ! b are a connected subset of S1 made by more than one point. We

can then �x a distance ` such that PB � ` for every P D '.p/ and p < a, and �

much smaller than the diameter of the set of the limiting directions just mentioned.

Let us now pick any q < b, with q very close to b so that QB � Nı.`; �; L/; the

function ' is of course not a segment between q and b, thus the function 'C
qb

does

not satisfy the inverse L-Lipschitz property at some pair .p; t/ with p < a and

q < t < b, so we can apply Lemma 3.6 and in particular we get

(3.28)
ˇ̌
ˇ� � � � 1

L2

ˇ̌
ˇ � 2

�

L2
;

H
1.¿QB/
QB

� 1C 6�; PQ � q � p

L
C 3�QB

L2
;
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where � and � are the directions of the segments PQ and QB respectively. The

very same argument can be applied to some otherQ0 nearB , getting another point

P 0 and

(3.29)
ˇ̌
ˇ� 0��0� 1

L2

ˇ̌
ˇ � 2

�

L2
;

H
1.ÀQ0B/

Q0B
� 1C6�; P 0Q0 � q0 � p0

L
C3�Q0B

L2
;

being � 0 and �0 the directions of P 0Q0 and Q0B respectively. Recall now that we

are assuming that the limiting directions of the segments QB form a nontrivial

arc of S1: as a consequence, similarly as in Step II of the proof of Lemma 3.9, we

can select two such directions �; �0, assume by symmetry that

(3.30) � 0 � � > 1

L2
C 10

�

L2
;

and chose two pointsQ; Q0 corresponding to the directions � and �0 in such a way

that b � q0 � b � q, so that H1.ÀQQ0/ � H
1.¿QB/ and then also using (3.28) we

get

(3.31) Q0B � QQ0

3
; QQ0 � H

1.ÀQQ0/.1� 6�/; j Q� � �j � �

L2
;

where Q� is the direction ofQQ0. Using then the estimates (3.31), (3.29) and (3.30),

and applying Lemma 3.5 to the points P 0, Q0 and Q, we obtain

q0 � p0

L
C �QQ0

L2
� q0 � p0

L
C 3�Q0B

L2

� P 0Q0

� P 0Q CQQ0
�
� 0 � Q� � �

L2

�

� q � p0

L
CQQ0

�
� 0 � � � 2 �

L2

�

� q � p0

L
CQQ0

� 1

L2
C 8

�

L2

�
;

which implies, again recalling (3.31),

q0 � q
L

� QQ0
� 1

L2
C7 �

L2

�
� H

1.ÀQQ0/

L2
.1�6�/.1C7�/D q0 � q

L
.1C��42�2/;

which is impossible as soon as � was chosen small enough. This concludes the

proof of this step.
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Step II. The derivative '0.q/ converge to L�.

In order to conclude the proof, we have now to check that '0.q/ ! L� when

q ! b, being � the direction found in Step I. Suppose that this is not the case;

then, since we already know that '0 is continuous, with j'0j D L, on the open

interval .a; b/ by Lemma 3.8, the set of limiting directions of the vectors '0.t /=L

with t ! b is a non-trivial arc of S1, containing of course the direction � found in

Step I. Let us then pick a direction Q� ¤ � in the interior of this arc, satisfying

j� � Q�j � 1

4
min

° 1

L2
; 1� 1

L2

±
;

and let us select `; � > 0 in such a way that PB � ` for every P D '.p/ and

p < a, and that

(3.32) j� � Q�j > 16p�:

Let now t < b be a point such that b � t � Nı.`; �; L/=L, '0.t / D L Q� (which is

possible since Q� is in the interior of the arc containing all the limiting directions),

and also such that

(3.33)
ˇ̌
ˇB � S
SB

� �
ˇ̌
ˇ � �

L2
for all S WSB � 3TB I

this last estimate is of course admissible thanks to Step I. Moreover, let us �x q < t

so thatQB D 2TB. Since ' cannot be a segment between q and b, keeping in mind

Lemma 3.3 we can apply as usual Lemma 3.6 with R D B and in particular we

get that (3.9) holds true. Now, let q0 < t < q00 be two points such that the direction

�0 of the segmentQ0Q00 satis�es

(3.34) j� � �0j D 16
p
�; j� � �0j � 1

2
min

° 1

L2
; 1� 1

L2

±
:

Notice that such two points surely exist, thanks to (3.32) and the fact that the

direction of QB is very close to � by (3.33). Moreover, since � � j� � �0j and

since the curve ¿QB is very close to the segment QB by the validity of (3.9), we

�nd that Q0Q00 � ı D QB, hence in particular

QQ0 � ı

3
; QQ00 � ı

3
; Q0B � ı

3
; Q00B � ı

3
:

Finally, since (3.33) and (3.34) give that Q� ¤ �0, and thus that ' is not a segment

between Q0 and Q00, and then by Lemma 3.3 the inverse L-Lipschitz property for

'C
q0q00 must fail for someP D '.p/withp < a and some point betweenQ0 andQ00,

we can apply Lemma 3.7 with R D B . However, (3.34) is clearly in contradiction

with (3.12), and this shows that '0.q/ ! L� for q ! b, as desired. �
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Let us conclude this section by simply observing that Proposition 3.1 is an

immediate consequence of Lemma 3.8, Lemma 3.9 and Lemma 3.10 (and the

symmetric counterparts of the last two): indeed, the internal regularity is given by

Lemma 3.8, while the regularity up the boundary is achieved applying Lemma 3.9

or Lemma 3.10 for points of the boundary which are in .0; 1/ or in ¹0; 1º.

4. Proof of Theorem 1.2

This section is devoted to show Theorem 1.2. The idea is simply to put together

Proposition 2.1 and Proposition 3.1; with the �rst result, one gets a bi-Lipschitz

function which is piecewise linear on most of Œ0; 1�, and then the second result

allows to modify the function on the small regions which are left out.

Proof of Theorem 1.2. We take a small constant � D �.L; "/, to be speci�ed

at the end. For the sake of simplicity, we divide the proof in a few steps.

Step I. The function '1 from Proposition 2.1.

We start by applying Proposition 2.1 to ', thus getting an .LC �/-biLipschitz

function '1W Œ0; 1� ! R2, which satis�es (1.1) and which is piecewise linear on a

�nite union A of closed intervals which cover a portion of length at least 1� � of

the whole Œ0; 1�. Let us then write

Œ0; 1� n A D
SN

iD1 Ji ;

where the Ji ’s are a �nite number of open intervals, satisfying

NX
iD1

jJi j D 1 � jAj � �:

Step II. The function '2, which “goes fast” near the intervals Ji .

In this step, we make a simple modi�cation of '1, in order to be able to apply

Proposition 3.1 later. To do so, we recall that the function '1 is �nitely piecewise

linear on a subset A of Œ0; 1�; hence, we can de�ne a very small length ` > 0 such

that any interval (contained in A) where '1 is linear, is much longer than `. This is

of course possible since such intervals are �nitely many. In particular, the distance

between any two consecutive “bad” intervals Ji and JiC1 is always much larger

than `. Up to further decrease `, we can also assume that

(4.1) 2`N < �:
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Let us now de�ne A� the subset of Œ0; 1� made by all the points of A which have

distance from Œ0; 1� n A smaller than `: by construction, A� is a union of either

2N � 2, or 2N � 1, or 2N small subintervals of A, on each of which '1 is linear

by construction: the exact number depends on whether 0 and/or 1 belong to A or

not. Let us now consider the function � W Œ0; 1� ! Œ0; C � identi�ed by

�.0/ D 0; � 0.x/ D

8̂
<
:̂
1 for all x … A�;

j'0
1.x/j
LC �

for all x 2 A�:

It is immediate from the de�nition to observe that � 0.x/ � 1 for every x, and that

1� 2N` � C � 1;

which also by (4.1) implies

x � � � �.x/ � x for all 0 � x � 1;

so that in particular

(4.2) 1� � � �.1/ D C:

Finally, we de�ne the function '2W Œ0; C � ! R2 as

'2.x/ D '1.�
�1.x//:

Since � 0 � 1, as already observed the inverse Lipschitz property for '2 works

better as than for '1, hence '2 satis�es theL inverse Lipschitz property because so

does '1. On the other hand, j'0
2.x/j D j'0

1.�
�1.x//j � L as soon as ��1.x/ … A�,

while otherwise j'0
2.x/j D LC �. As a consequence, also the .LC �/-Lipschitz

property for '2 follows. Summarizing, the function '2W Œ0; C � ! R2 is an .LC �/-

biLipschitz function, which is �nitely piecewise linear on the whole Œ0; C � except

on N intervals zJi , where each zJi is simply �.Ji /, and so j zJi j D jJi j. Observe that,

by construction, the function '2 is linear, with j'0
2j D L C �, for a short while

before and after each of the intervals zJi , except of course before zJ1 if 0 2 zJ1, and

after zJN if C 2 zJN . We conclude this step with a couple of observations. First of

all, by construction, '2 is �nitely piecewise linear on a subset zA of Œ0; C � which

satis�es

(4.3) C � j zAj D C � j�.A/j D j�.Œ0; 1� n A/j D jŒ0; 1� n Aj D 1� jAj � �:

And moreover, for every x 2 Œ0; C �, we have

(4.4) j'2.�.x// � '.x/j D j'1.x/ � '.x/j � �

recalling that (1.1) holds for '1.
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Step III. The function '3, which is short on each zJi .

We can now further modify the function '2. We simply apply Proposition 3.1

(with L C � in place of L) on each of the intervals zJi ; more precisely, we �rst

apply the proposition to the interval zJ1, �nding a map '1
3 W Œ0; C1� ! R2 which is

.LC �/-biLipschitz and satis�es (3.1). Then, we apply again Proposition 3.1 to the

interval zJ 1
2 , which is simply the interval zJ2 translated of a distance C � C1, so

that '1
3 on zJ 1

2 coincides with '2 on zJ2. Going on with the obvious recursion, after

N steps we have �nally de�ned the function '3W Œ0; C 0� ! R2, which is .LC �/-

biLipschitz, and which by construction is �nitely piecewise linear on some subset

A0 of Œ0; C 0� satisfying

C 0 � jA0j D C � j zAj � �;

recalling (4.3). We can say also something more precise: Œ0; C 0�nA0 is the union of

N intervals J 0
i , and on the closure of each of them the function '3 is of class C1. In

addition, since the function has been changed only on the intervals zJi , and doing

so those intervals have been shrinked, there exists a function Q� W Œ0; C � ! Œ0; C 0�

such that

Q�. zA/ D A0;

Q� 0.x/ D 1 for all x 2 zA;

and by (4.4) we get

(4.5) j'3. Q�.�.x/// � '.x/j D j'2.�.x// � '.x/j � � for all x 2 . Q� ı �/�1.A0/:

Step IV. The function '4, which is �nitely piecewise linear.

From the previous steps, we have now a function '3W Œ0; C 0� ! R2 which is

�nitely piecewise linear on almost the whole Œ0; C 0�, and which is C1 on the closure

of each of the N intervals J 0
i where it is not already piecewise linear.

As pointed out in Remark 2.5, it is elementary how to modify a C1 function

into a �nitely piecewise linear one, up to increase the biLipschitz constant of

an arbitrarily small constant. Applying this argument N times, to each of the

intervals J 0
i , we get then a �nitely piecewise linear function '4W Œ0; C 0� ! R2,

which is .L C 2�/-biLipschitz and which of course satis�es '4.0/ D '.0/ and

'4.C
0/ D '.1/. And moreover, since '4 D '3 on A0, then the estimate (4.5) holds

also with '4 in place of '3.
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Step V. The “�nal” function '".

We are �nally in position to conclude the proof of our Theorem. The function

'4 was already almost perfect, its only �aw being that it is de�ned on the interval

Œ0; C 0� instead than on Œ0; 1�. Nevertheless, we can easily observe that

(4.6) 1� 2� � C 0 � 1:

Indeed, the fact that C 0 � 1 is obvious, since all our modi�cations of the map '

either left the domain unchanged or shrinked it. On the other hand, recalling (4.3)

and (4.2), we have

(4.7) C 0 � jA0j D j zAj � C � � � 1 � 2�;

so the validity of (4.6) is established.

The function '" will then be simply a reparameterization of '4, precisely we

set '"W Œ0; 1� ! R2 as

'".x/ D '4.C
0x/:

The function '" is then �nitely piecewise linear by construction, of course it

satis�es '".0/ D '.0/ and '".1/ D '.1/, and it is at most .L C �/.1 C 3�/-

biLipschitz, hence in particular .LC "/-biLipschitz if �.L; "/ is suitably small.

To conclude, we have then just to check that k'" � 'kL1 � ". To do so, let us

take a generic z 2 Œ0; 1�; �rst of all, we can �nd x 2 A00 D A0=C 0 such that, also

by (4.7),

jz � xj � 1� jA00j D 1� jA0j
C 0

� 2�:

Then, we de�ne y D . Q� ı �/�1.C 0x/ and, since

y � 2� � y � .1 � C 0/ � Q�.�.y// D C 0x � y;

also recalling that (4.5) holds also with '4 in place of '3 we deduce

jy � xj � jy � C 0xj C jC 0 � 1j � 4�;

j'".x/ � '.y/j D j'4.C
0x/ � '.y/j � �:

Recalling that ' is L-biLipschitz while '" is .L C "/-biLipschitz, the above

estimates give us

j'".z/ � '.z/j � j'".z/ � '".x/j C j'".x/ � '.y/j C j'.y/ � '.z/j
� .LC "/jz � xj C � C Ljy � zj
� .LC "/2� C � C 6L�:
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Since z 2 Œ0; 1�was generic, and since the last quantity is smaller than " as soon as

� D �.L; "/ is small enough, the L1 estimate has been established, and the proof

is concluded. �

A straightforward consequence of our construction is the following.

Corollary 4.1. Assume that 'W Œ0; 1� ! R2 is an L-biLipschitz function,

linear on Œ0; a� and on Œ1 � a; 1� for some a � 1. Fix two quantities 0 < a0 < a

and " > 0. There exists an .L C "/-biLipschitz function '"W Œ0; 1� ! R2 such

that (1.1) holds, '" is �nitely piecewise linear on Œ0; 1�, and '" coincides with ' on

the intervals Œ0; a0� and Œ1 � a0; 1�.

Proof. To obtain the required function '", it is enough to check the proof of

Theorem 1.2 and to modify it only very slightly.

Indeed, the �rst step of that proof simply consists in taking a function '1

given by Proposition 2.1. On the other hand, from a quick look at the proof

of Proposition 2.1, it is obvious that '1 coincides with ' in all the intervals

Œm=N; .mC 1/=N � where ' is linear. As a consequence, we can select any ı > 0

and, up to take N much bigger than 1=a and 1=ı in the proof of Proposition 2.1,

we get a function '1 which coincides with ' on Œ0; a � ı� and on Œ1 � .a � ı/; 1�,

and in particular these two intervals are contained in the set A of Step I.

In the second step of the proof of Theorem 1.2, we just modi�ed '1 in order

to make it faster near the end of the good intervals, getting then a new function

'2W Œ0; C � ! R2. Up to take ` smaller than ı there, we can do the same construction

and we have then that '2 D ' on Œ0; a � 2ı� and that '2.x C C � 1/ D '.x/ for

each x 2 Œ1 � .a � 2ı/; 1�.

In the third and fourth step of the proof, we de�ned a function '4W Œ0; C 0� !
R2, modifying '2 only in the bad intervals. Again, we can do exactly the same

thing now, and we still have that '4 coincides with ' on Œ0; a � 2ı� and that

'4.x C C 0 � 1/ D '.x/ for each x 2 Œ1� .a � 2ı/; 1�.

Finally, in the last step we de�ned the approximating function '", which

was obtained simply by “changing the velocity” of '4, namely, we set '".x/ D
'4.C

0x/. This time, we cannot do the same, otherwise we lose the information

that ' and '" coincide near 0 and 1; nevertheless, it is clear that a solution is just
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to de�ne

'".x/ D

8̂
ˆ̂<
ˆ̂̂:

'4.x/ for 0 � x � a,

'4

�
a C C 0 � 2a

1 � 2a .x � a/
�

for a � x � 1 � a,

'4.x C C 0 � 1/ for 1 � a � x � 1.

Indeed, with this de�nition, the very same arguments as in Step V of the proof

of Theorem 1.2 still ensure that '" is .L C "/-biLipschitz and that (1.1) holds;

moreover, '" is �nitely piecewise linear by de�nition. Finally, '" coincides with '

on Œ0; a� 2ı� and on Œ1� .a� 2ı/; 1� thus, provided that we have chosen ı smaller

than .a � a0/=2, the proof is concluded. �

5. generalization to S1

In this section we generalize Theorem 1.2 in order to consider the case of a map

de�ned on S1, instead than on Œ0; 1�. To do so, we need the following standard

de�nitions.

Definition 5.1. Let � WR ! S1 be the map�.t/ D t .mod 2�/, let 'W S1 ! R2

be any function, and let a < b be any two real numbers such that b � a < 2� .

We denote by 'ab W Œa; b� ! R2 the function de�ned by 'ab.t / D '.�.t// for any

a � t � b. We say that the function ' is �nitely piecewise linear if so is the

function 'ab for any choice of a and b.

The goal of this last section is to prove is the following statement.

Theorem 5.2. Let 'W S1 ! R2 be an L-biLipschitz function, and " > 0. Then,

there exists a �nitely piecewise linear, .LC "/-biLipschitz function '"W S1 ! R2

such that k' � '"kL1 � ".

Proof. First of all, let us �x a small positive quantity "0, to be speci�ed later,

and let us also �x a small � > 0 such that

(5.1) 1� "0 � 2 sin.�=2/

�
� 1:

We divide the proof in few steps for clarity.

Step I. The Lebesgue points for ' and the function '1.

Let p 2 S1 be a Lebesgue point for ', that is, for any a < z < b such that

p D �.z/ 2
�
�.a/; �.b/

�
the point z is a Lebesgue point for 'ab . In particular, let
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us choose z 2 R so that p D �.z/, and let us set for a moment a D z � �=2 and

b D z C �=2. Notice that, by (5.1), for any a < x < y < b one has

(5.2) .1 � "0/jy � xj � j�.y/ � �.x/j � jy � xj:

Let us now concentrate ourselves on the function 'ab , which is easily L1-bi-

Lipschitz with L1 D L.1� "0/�1 thanks to (5.2). The point z is a Lebesgue point

for 'ab , hence we can apply to it Lemma 2.3, using Œa; b� in place of Œ0; 1� and

with constant "0 in place of ". We get then a constant Ǹ and the sets I`.z/ for ` � Ǹ.
We can arbitrarily select ` � � and two points s < z < t in I`.z/, and the lemma

ensures us that the function W Œa; b� ! R2 de�ned as D 'ab
st isL2 D .L1 C"0/-

biLipschitz and satis�es k � 'abkL1 � "0. We can then de�ne the function

Q'W S1 ! R2 as Q' D ' outside the arc �.a/�.b/, and Q'.q/ D  .��1.q// inside.

By construction we have that k' � Q'kL1 � "0, and moreover Q' is L3-biLipschitz

with L3 D L2.1 � "0/�1: this can be obtained arguing exactly as in Lemma 2.3,

and keeping in mind that ` � � .

We want now to use a similar argument with many Lebesgue points, instead

of just one. To do so, let us select �nitely many Lebesgue points p1; p2; : : : ; pM

in S1, such that every arc ÁpipiC1 in S1 has length less than � , and it does not

contain other points pj (of course, as usual we denote pM C1 � p1). For each of

these points, say pi , we can repeat the argument above, selecting ` much smaller

than the minimal distance between two of the points pj , and �nding a function

Q'i which is a segment between Q'i .si / D '.si / and Q'i .ti / D '.ti /. Hence, each

function Q'i coincides with ' in all S1 except a small arc ¿si ti around pi , and these

arcs are all well disjoint. We can then de�ne '1W S1 ! R2 as the function which

coincides with Q'i in every ¿si ti , and with ' otherwise. Arguing as in Section 2,

in particular keeping in mind that each length ` has been chosen much smaller

than the distance between di�erent points pj , we obtain immediately that '1 is

L4-biLipschitz, with L4 D L3 C "0. Moreover, by construction '1 is linear on

each arc .si ; ti/, and k'1 � 'kL1 � "0.

Step II. Modi�cation in each arc ÁpipiC1 and the function '".

We now restrict our attention to the function '1 on the arc ÁpipiC1. This is an

L4-biLipschitz function, and its image is a segment at the beginning and at the end,

that is, from pi to ti and from siC1 to piC1. Let us then take two real numbers a < b

with b�a < 2� and �.a/ D pi , �.b/ D piC1, and let us call  D 'ab
1 . Moreover,

let aC; b� 2 .a; b/ be such that �.aC/ D ti and�.b�/ D siC1: hence, the function

 W Œa; b� ! R2 is an L5-biLipschitz function with L5 D L4.1 � "0/�1, again
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by (5.2), and it is linear in Œa; aC� and in Œb�; b�. We can then apply Corollary 4.1,

so we get a piecewise linear function Q W Œa; b� ! R2, biLipschitz with constant

L6 D L5 C "0, such that k Q � kL1 � ı, and coinciding with  (thus, linear) on

the two intervals Œa; a0� and Œb0; b�, for two points a < a0 < aC and b� < b0 < b,

and for a suitable constant ı > 0 to be speci�ed later.

We de�ne then 'i
2W S1 ! R2 as the function which coincides with '1 out of

the arc ÁpipiC1, and with Q ı ��1 inside the arc. Notice that the function 'i
2 is

piecewise linear in the arc ÁpipiC1, and in particular it is linear and coincides

with '1 in the small arcs ¿pi t
0
i and Ðs0

iC1piC1, where the points t 0i 2 ¿pi ti and

s0
iC1 2 ÐsiC1piC1 are ��1.a0/ and ��1.b0/ respectively. Moreover, we also have

k'i
2 � '1kL1 D k Q �  kL1 � ı.

Finally, we repeat the same construction for each 1 � i � M , and we de�ne

the �nal function '" as the function coinciding with 'i
2 in each arc ÁpipiC1, so that

k'" � '1kL1 � ı.

Step III. Conclusion.

It is now only left to check that the function '" satis�es the requirement of

the Theorem. By construction we have that '" is �nitely piecewise linear, and

moreover

k'" � 'kL1 � k'" � '1kL1 C k'1 � 'kL1 � ı C "0;

so we have k'" � 'kL1 � " as soon as we have chosen ı and "0 small enough. To

conclude, we only have to check that '" is .LC "/-biLipschitz.

To do so, let us take two points x; y 2 S1. Suppose �rst that they belong to a

same arc ÁpipiC1. Then, by construction we have, setting L7 D L6.1� "0/�1,

j'".y/ � '".x/j D j'i
2.y/ � 'i

2.x/j

D j Q .��1.y// � Q .��1.x//j

� L6j��1.y/ � ��1.x/j

� L6.1� "0/�1jy � xj

D L7jy � xj;

(5.3)

since Q is L6-biLipschitz by Step II and again by (5.2).
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Suppose now, instead, that x and y belong to two di�erent arcs, in particular

let us take x 2 ÁpipiC1 and y 2 Ápjpj C1. We can divide this case in two subcases,

namely, if the equality '" D '1 holds at both x and y, or not. If '".x/ D '1.x/

and '".y/ D '1.y/, then since '1 is L4-biLipschitz we have that

(5.4) j'".y/ � '".x/j D j'1.y/ � '1.x/j � L4jy � xj:

Finally, assume (by symmetry) that '".x/ ¤ '1.x/. By construction, this implies

that x 2 Át 0is0
iC1; since y … ÁpipiC1, we derive that jy � xj � �, where we de�ne

� D min¹jd � cjW there exist 1 � h � M; d … ÁphphC1; c 2 Át 0hs0
hC1º:

Notice that � is strictly positive, since the arcs ÁphphC1 are only �nitely many.

Moreover, notice that we are free to decide ı depending on �, thanks to the

construction of Step II. As a consequence, recalling that '1 is L4-biLipschitz and

that k'" � '1kL1 � ı, we have for this last case

(5.5)
j'".y/ � '".x/j

jy � xj � j'1.y/ � '1.x/j
jy � xj C 2ı

�
� L4 C 2ı

�
� L4 C "0;

where the last inequality is true as soon as ı has been chosen small enough.

We are then in position to conclude: it is straightforward to check that all the

constantsLj for 1 � j � 7 converge toLwhen "0 go to 0, then the estimates (5.3),

(5.4), and (5.5) give that '" is .LC"/-biLipschitz as soon as "0 is small enough. �
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