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On finite p-groups minimally of class greater than two

RoLF BRANDL (*) — GABRIELLA CORSI TANI (k%) — LUIGI SERENA (33)

In memory of Mario Curzio and Guido Zappa

ABsTRACT — Let G be a finite nilpotent group of class three whose proper subgroups
and proper quotients are nilpotent of class at most two. We show that G is either a
2-generated p-group or a 3-generated 3-group. In the first case the groups of maximal
order with respect to a given exponent are all isomorphic except in the cases where
p =2andexp(G) = 2", r > 4.If G is 3-generated, then we show that there is a unique
group of maximal order and exponent 3; but a similar result is not valid for exponent 9.
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1. Introduction

Let X be a class of finite groups. The finite group G is called a minimal non-X-
group (we write G € Min(X)), if G ¢ X but every proper subgroup and every
proper quotient of G belongs to XK.

For the class X = A of all abelian groups, the structure of the groups in Min(A)
can easily be derived from results of Miller-Moreno and Rédei (see [1, p. 281] and
[1, p.309]) and Lemma 2.1 below. Indeed, it is easy to see that such a group G
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is either a semidirect product G = [N]Q of a minimal normal subgroup N by a
complement Q of prime order, or it is one of the following groups:

D) Gr=(a.bla? =b?=1,a> =a"*"""),r > 2
i) G=(a.bla?=b? =1, [a.b]=c. c? =1 [a.c]=[b.c] = 1), p odd;
iii) the quaternion group Qs.

G, is of exponent p”, and from i), ii), and iii) it follows that, for every exponent
p" # 2, 4, there exists precisely one p-group G € Min(A) of exponent p”. If
p" = 4 we get two groups: the dihedral group D4 and the quaternion group Qs,
while the case p” = 2 does not allow any such group.

In this paper, we discuss the minimal non-N5-groups, where N> denotes the
class of all nilpotent groups of class < 2. The structure of non-nilpotent groups
G € Min(N,) follows immediately from the aforementioned results of Miller-
Moreno and Rédei. Hence we will restrict attention to finite p-groups.

We prove that the p-groups in Min(N,) are either 2-generated or 3-generated
2-Engel. In order to give information on the p-groups in Min(N;) we determine
the structure of the 2-generated free groups in the variety W of all nilpotent groups
of exponent p” (r > 2) and class three, satisfying the law [x, y, z]? = 1, and the
structure of the 3-generated free groups in the variety V of all 2-Engel groups of
exponent 3. We prove that there is a unique 2-generated group of exponent p in
Min(N,): its order is p* with p > 5. If G is a 2-generated group in Min(N3)of
exponent p” with r > 2 and p odd we see that |G| < p3;if p = 2, r > 3 then
|G| < 23C~D;andif p = 2 and r = 2 then |G| < 23 ~!. We give an explicit
construction of the groups in Min(N3)of exponent p” and maximal order and we
show that such groups are all isomorphic exceptin the case p = 2andr > 4. If G
is a 3-generated group of exponent 3 in Min(N,), we show that |G| = 37 and G
is isomorphic to the 3-generated relatively free group in the variety of all groups
of exponent 3 but the groups of exponent 9 of maximal order in Min(N;) are not
isomorphic.

In the following the notation is standard. G = [N]Q indicates the semidirect
product of the normal subgroup N by the subgroup Q, and d(G) indicates the
minimal number of generators of G. Moreover o(x) is the order of the element x.
If V is a variety, Fr,(V) denotes the relatively free group of rank n in V.

All groups considered in this paper are finite.
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2. Preliminaries

LemmMma 2.1. A finite nilpotent group of class ¢ (¢ > 2) has all of its proper
quotients of class at most ¢ — 1 if and only if Z(G) is cyclic and the c-th term of
the lower central series I'c.(G) is of order p.

Proor. Suppose that G has class ¢ and that all proper quotients of G are of
class at most ¢ — 1. Then G is monolithic. Indeed, if N; and N, are two distinct
minimal normal subgroups, then G = G/N; N N, is embedded in G/N; x G/ N,
which is nilpotent of class at most ¢ — 1. As G is monolithic, Z(G) is cyclic. If
N is the minimal normal subgroup of G, then G/N is nilpotent of class at most
c—1.S0T:.(G)=N.

Conversely let G be a nilpotent group of class ¢ and assume that Z(G) is
cyclic and I'.(G) is of order p. Then for every normal subgroup K of G, we have
I':(G) € K.So

I'.(G/K)=T.(G)K/K = 1. O

LemMma 2.2. Let G be a nilpotent group such that all of its proper subgroups
have class at most ¢ but G has not class c. Then Z(G) C ®(G).

Proor. Let M be a maximal subgroup of G. Then M < G. Suppose that
Z(G) € M. Then G = Z(G)M and so G has class ¢, a contradiction. |

LemMma 2.3. Let G be a p-group in Min(N>). Then either G can be generated
by two elements, or G is a 2-Engel 3-group generated by three elements.

Proor. Suppose that G cannot be generated by two elements. Then for all
x,y € G we have that (x, y) is a proper subgroup of G. So it is nilpotent of class 2.
In particular G satisfies the 2-Engel condition. If p # 3 then G is nilpotent of class
two ([1, p.288]), a contradiction. So p = 3. Moreover G is generated by three
elements, otherwise all subgroups generated by three elements would be proper
subgroups of G, and G would be nilpotent of class two, a contradiction. O

We now give a sufficient criterion for a p-group generated by two elements to
have all of its proper subgroups of class two.

LemMa 2.4. Let G be a p-group which can be generated by two elements.
Assume that [O(G), G] < Z(G). Then every proper subgroup of G is nilpotent of
class two.
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Proor. It suffices to show that every maximal subgroup M of G is of class
two. As G is generated by two elements, we have G/®(G) ~ Z, x Z,. So
M = (®(G), x) for some x in M. We get M’ = ®(G)'-[D(G), x]. By hypothesis,
both factors are contained in Z(G), so that the class of M is two. O

3. Min(N>)-groups with two generators

We start with the smallest case:

ProrosiTion 3.1. Let G € Min(N,) be a group of prime exponent p. If
d(G) = 2,thenp > 5,|G| = p*and G = [N](u), where N = (v1)x {v2)x (v3) =
Z, xZ, x Z,, and the action of u on N is given by

u u u
Uy =1, Uy, = V103, U3z = VU2V3.

ProoF. As exp(G) = p, we infer that p # 2 and |G/G’| = p?. Moreover
G'/T5(G) is cyclic of order p and by Lemma 2.1, we have [T'3(G)| = p. So we
get |G| = p*. An inspection of the groups of order p* (see [1, p. 346)) yields the
result . |

A group G in Min(N,) of exponent p” belongs to the variety W of all groups
of exponent p” and nilpotent of class three satisfying the law [x, y, z]? = 1 (see
Lemma 2.1).

We now collect some information of Fr,(W).

ProvrosiTioN 3.2. Let p” be a power of a prime p andr > 2. Let F = Fry(W)
with free generators x, y. Then

a) F/F' ~ Z, xZ, and either |F'/T3(F)| = p" if p >3 or |F'/T3(F)| =
271 Moreover T5(F) ~ Z, x Z,, and hence |F| = p* 2 for p > 3; and
Fl=2%+1ifp=2;

Z, -1 xZ,x1Z, ifp=>3
b) Z(F) = {Zy2XZyXZy XZy XZy ifp=2andr >3,
Zy X7y ifp=2andr =2;

¢ [FP.F] < Z(F);

d) every proper subgroup of F is nilpotent of class two.
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Proor. a) As exp(F) = p”, we infer that |F/F’| < p?". Moreover,
F'/T3(F) = ([x,y]T'5(F)) is cyclic of exponent dividing p” if p # 2 and
271 otherwise (we have 1 = (xy)? = x?'y? [y,x](zzr) (mod I'3(F)), so
[y,x]zr_1 =1 (modT'3(F))). Then |F'/T3(F)| < p" if p # 2 or < 2”1 other-
wise. Finally, we have |T'3(F)| < p2, because there are only two basic commuta-
tors of weight 3. This implies |F| < p3 T2 if p # 2, |F| < 2% ! otherwise.

We now construct a group Fy, belonging to the variety W, which has order
either p3" T2 if p > 3, or 23”1, So it will be Fy ~ Fry(W).

Let N = [A](x) be the semidirect product of the abelian group

A = (u) x (v1) x (va),
with the cyclic group (x) of order p”; where

o(v1)) =o(v2) = p

and
T ifp >3,

27=1  otherwise.

The action of x on A is given by
u* =wuvy, vy =vy, vy =,

Then we consider the group Fy = [N](y), where y is a cyclic group of order p”
and the action of y on N is given by

XY =xu, u =uvy, v} =vi, v} =v,.

We can immediately verify that
u=[x.yl. vi=[ux]=[xyxl. va=[uy]=I[xp yl
So Fy = (x, y). Moreover
Fy=A, Fo/Fy= (xF§) x (yFy) >~ Zpr x Zpr, Fy/T3(Fo) = (ul'3(Fp)),
[3(Fo) = (v1) X (v2) > Z), X Z,, ['3(Fo) < Z(Fo).

We observe that, if p > 3, then (uI'3(Fp)) >~ Z,r, while if p = 2, then
(ul'3(Fp)) ~ Z,r—1. By the above conditions we deduce that Fy is nilpotent of
class three with | Fy| = p> *2if p > 3 while, if p = 2 then | Fy| = 2371

It remains to show that the exponent of Fy is p” for all p.
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First of all we prove that the exponent of N is p” for all p. (We note that for
p > 3 we have exp(N) = p”, and for p > 5 we have exp(Fy) = p” by the
regularity of these groups).

Let w € N where w = axk with a € A. Since N is of class two we have

w" = (ax*)" = a”xk"[xk,a](g).
Since [x¥, a] € T3(Fy) which has exponent p and r > 2, we have that
[xk,a](pz) = 1. So (ax*¥)?" = 1.
If w is an element of N we set
w,y" =a1 € A, [a1,w] =c1 € T3(Fo), [a1,y"] = ¢z € T3(Fy).

For n > 2 it is easy to prove by induction the following results

(1) [w’yh ] — ancz( )
and
2) (wyh)n — wnyhnal_(g)cl_(g)cz_z(g)—(g)'

Since N is of exponent p” and a has order 2! for p = 2, we have by (2) that
the exponent of Fy is p” for all p.

From now on we identify Fj, with F.

b) By the structure of F we can write an element z € F in the form

z = ukvlolxiyl,
We have z € Z(F) ifandonly if [z, x] = [z, y] = 1. So
L= [z,y] = p*x'y7, )]
= [, ylu®, y, X)X, y)

3) o
= .y ol
— uzvl(z) k+l]
Similarly we have
4) 1=[z,x]= u_jvlfvz_(é).

Therefore, for p >3wehavei = j =0 (modp”)and k = 0 (mod p). It
follows z = uPk1y! v; vy with k = pky. This implies

Z(F) = (u?) x (v1) x (v2) = Z,r—1 XZp X Z.
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If p=2wemusthavei = j =0 (mod2"~!)and k = 0 (mod?2). So we have
z = ukylymy? 2" where k = 2ky, i = 277 Yy, j = 2771j,. Then, if

r >3 we get

Z(F) = (u?) x (v1) x (v3) x (x2r_1) X (yzr_l) > Zyr—2 X Ly X Ly X Ly X Zs.

If p=2andr = 2, we have u? = 1, s0 z = viol'x21y2/1 withi = 2iy,

j = 2j1. But the condition (;) = 0 (mod?2) implies i;(2i; — 1) = 0 (mod2).
So iy = 0 (mod2). Similarly we obtain j; = 0 (mod2). Therefore z = v{vg"
and

Z(F) = (v1) X (v2) = [3(F) =~ Z X Z5.

¢) Observe that for all a,b,c € F we have [a?,b,c] = [a,b,c]? = 1.
So [FP,F]| < Z(F).

d) We have [®(F), F] = [F'FP?, F]. Since [F', F] = I's5(F) < Z(F) and
[F?, F] < Z(F) by Part ¢), it follows that [®(F), F] < Z(F). So by Lemma 2.4
every proper subgroup of F' is nilpotent of class two. O

THEOREM 3.3. Let p be a prime and r > 2.

a) Let G be a 2-generator group in Min(N,) with exp G = p”. Then

P ifp=>3,
|G| <3230V jfp=21r>3
2571 ifp=2r=2

b) For each one of the above three cases, there is a group of exponent p” in
Min(N,) whose order attains the upper bound.

Proor. a) Every 2-generator group G € Min(N;) of exponent p” is a quotient
F/H of F where HN Z(F) does not contain I'3(F') because G ~ F/H is of class
three. As Z(G) is cyclic by Lemma 2.1, also Z(F)/(H N Z(F)) must be cyclic.
Then H N Z(F) is abelian of rank > 2 if p # 2; of rank > 4 if p =2 and r > 3;
of rank 1 if p = 2 and r = 2. Thus if p > 3 we have |H| > p? and |G| < p?;if
p =2andr >3 wehave |H| > 2* and |G| < 23—V, Finally we observe that, if
p =2 and r = 2, no quotient of F by a proper subgroup of Z(F) is in Min(N5).
In fact, there are only three proper subgroups of Z(F), namely H; = (vy),
H, = (v3), H3 = (vqv2). We see that in each quotient F/H;, (i = 1,2,3)
there are couples of independent elements of Z(F/H;): for example, x> Hy, v, H;
in Z(F/Hl), y2H2, Ule in Z(F/Hz) and (xy)2H3, 0102H3 in Z(F/H3) So no
F/H; belongs to Min(N,) and therefore |G| < 2371
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b) For the first two cases of a) we consider respectively the subgroups of Z(F):

r—1

Ry = (v2,u?

r—2 r—1 r—1 .
Ry = (vp,viu? “vx? Luy? ) ifp=2,r>4,

V1) ifp>3,r>2,

Ry = (v2,u? x*, v1y*) ifp=2,r=3

We want to show that G; = F/R; € Min(N,) (¢t = 1,2, 3). First, since R; does
not contain ['3(F) it follows that G; is of class three. Moreover, as every proper
subgroup of F is of class two, the same holds for G,. By definition of G;, we also
have |I'3(G;)| = p. Therefore, by Lemma 2.1, it is sufficient to show that Z(G;)
is cyclic.

Let us consider a typical element zR; € G; with z = uky! 105X 'yJ ¢ F. Then
zR; € Z(F/R;) if and only if [z, y] € R; and [z, x] € R;. By (3) and (4), this
holds if and only if

u’vl(z) k+ij ¢ R,

and
u=’ vk ~(3) € R;

For p > 3 this happens if and only if there are «, 8 € Z such that
(5) wo® = @ o
(6) w vk = P )P,

By equation (5) we obtain that i = ap”~! (mod p”) and ’(’ D=y (mod p).
So

(7 i(l . 5 lpr—l) =0 (mod p")

which givesi =0 (mod p”).
By Equation (6) we get —j = p" '8 (mod p”) and k = B (mod p). So
®) j ==p"""k (modp").
Therefore, we have that zR; € Z(F/R;) if and only if
kol —p "'k _ (uy—pr_l)kvl

zZ=uvy 1

We observe that
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Since u? 'v; € Ry, we have v;R; = u? 'R, = (uy_Pr_l)_Pr_lRl. Then
zRy = (uy=P ~")k=P"T''R| . Thus Z(F/Ry) = (uy=?""")Ry is cyclic.
If p =2 and r > 3 an analogous calculation yields

2r—2

©) wo® = @2 o)
and
(10) u’ v’f = (uzr_zvl)ﬂ
By (9) and (10) we obtain
i1—@G—12""3) =0 (mod2"1)
and

j=-2""2k (mod2"1).

Soif r > 4, we obtaini = 0 (mod2”~!); while if r = 3 we have i = 0 (mod?2).

In the case p = 2, r > 4 it follows that zR, € Z(F/R;) if and only if z =
(uy‘zr_l)kv{)czr_li1 with i = 2" 1i;. Since (uy=2""" )2 = u=2", we have
U2 7Ry = viRy = x2 'Ry = y2" ' Ry. Thus zRy = (uy=2" k=2 2(+i)

and Z(F/R,) = (uy=2""")R, is cyclic.

In the case p = 2, r = 3 we have zR3 € Z(F/Rj3) if and only if z =
(uy=2)*vt. Since (uy=2)72 = u2y* = u=2 and u"2R3 = v R3, we have
zR3 = (uy~2)k=2' R3. Thus, Z(F/R3) = (uy~2R3) is cyclic.

Finally, in the case p = 2 and r = 2, we consider the normal (non central)
subgroup
R4 = (vz, yz).

Then zRy € Z(F/Ry4) if and only if z = wkvixiy/ with k = 0 (mod2),
j =0 (mod2), i =0 (mod2) and @ = 0 (mod?2). The last two conditions
implies i = 0 (mod4). Then zRs = v{R4 and thus Z(F/R4) = (v1)R4 is
cyclic. O

THEOREM 3.4. Let p be a primeandr > 2. If p > 3 or p = 2 and eitherr = 3
orr = 2, then all 2-generator groups in Min(N,) of exponent p” and maximal
order are isomorphic.

Proor. Using the same notation as in the proof of Theorem 3.3, let F/H €
Min(N;) be of exponent p” (p > 3) and maximal order |F/H| = p>". By the
proof of Theorem 3.3 it follows that H ~ Z,, x Z,,. We will show that there exists



138 R. Brandl — G. Corsi Tani — L. Serena

an automorphism ¢ of F with ¢(H) = R; andso F/H ~ F/R;. Since F/H is
of nilpotency class three, we have that [';(F) £ H. As Z(F) is of rank three and
H ~7,xZ, weget|HNI3(F)| = p. We construct the automorphism ¢ in two
steps. First we give an automorphism which maps H N I'3(F) onto the subgroup
(vz) of R;.

If H N I'5(F) = (v1), we consider the automorphism « of F with a(x) = y
and a(y) = x. In this case we have a([x, y,x]) = [v,x,y] = [x,y, y]"', that is
a(v)) = v € Ry.

IfHNT3(F) = (vzv{’) for some /i € Z, we consider the automorphism g of F
with B(x) = x and B(y) = x"y. Then we have B(v;) = [x,x "y, x] = v;
and B(v2) = [x,x7"y,x7"y] = [x,y,yllx,y,x]™* = wvavy". So we have
,B(vzv{’) = vgvl_hv’l’ =1, € R;.

In both cases we have now found an automorphism of F which maps H onto
a subgroup H* of Z(F) with

H* NT3(F) = (v2).

Therefore we may assume that H* = (v, v{”u’”’r—l) with m,n € Zand n #
0 (mod p). Since n # 0 (mod p), we have

H* = (vz,v{’ul’"_l)
withh = mn™! (mod p). Firstleth # 0 (mod p). We consider the automorphism
y of F such that y(x) = x" and y(y) = y. We have y(v5) = vé’ € H* and

y(1x, v, X1 12 = Py, X e, 1P = (e e, p1P O € HE

So y(viu? ") = (v{’upr_l)h and R} = H*. »

Finallyleth = 0 (mod p). So H* = (v,, ,u?""'). Since [x?" ', y] =u?""' €
H*, we have that x?" ' H* € Z(F/H*). Similarly y?'~' H* € Z(F/H*). But
the images of x?" ' and y?"~' under the canonical epimorphism of F/H* onto
F/F' ~ Z,r x Zpr are independent, and so the center of F/H* is not cyclic. This
case does not occur.

Let F/H € Min(N3) be of exponent 23 and maximal order 26. Then |H | = 24
and H must contain exactly one of the three subgroups (vi), (v2), (vivz) of
['3(F). The automorphism o of F, defined by a(x) = y and a(y) = x~!1y~1,
is of order 3 and acts transitively on the non-identity elements of I's3(F). So
without loss of generality we may assume H N I'3(F) = (v2) and v; ¢ H. Now
consider the intersection of H with the subgroup E = (vy,vp,u?) = Q(F’).

Since E/E N H =~ EH/H < Z(F/H) which is cyclic, we get |E N H| = 22.
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The subgroups of E of order 22, that contain v, but not v; are precisely L; =
(vz, Mz) and L, = (1)2, le)l). If L, < H, then U1L2,X2L2, uy2L2 € Z(F/Lz)
So Z(F/H) is not cyclic, because Z(F/H) =~ Z((F/L2)/(H/L>)) contains
Z(F/L,)/(H/L>) and x?>L,,uy?L, ¢ H/L, since H < Z(F). Therefore
L; < H and H/L; is a subgroup of rank 2 of Z(F/L,) that does not contain
v1L1. Since |Z(F)/L1| = 23, we get the following four subgroups:

Hy = (va,u?, vix*, viy?), Hz = (va,u?, x* v1y?),
H3 = <v27 u2’ v1x47 y4>’ H4 = (Uz,uz,x4,y4>.

By a simple calculation, using the relations (3) and (4), we see that F'/H; and
F/H, have cyclic center, while the centers of the two remaining quotients are
not cyclic. Finally, the theorem for the case p = 2 and r = 3 is proved by the
automorphism S defined by B(x) = xy, B(y) = y that fixes v, and u? and maps
H, onto H,.

Let F/H € Min(N;) be of exponent 4 and maximal order 2°. Then |H| = 4
and F/H is nilpotent of class 3 with cyclic center (see Lemma 2.1). Since I';(F) =
(v1,v2) >~ Zp x Z,, we must have |H N I'3(F)| = 2. As in the previous case,
without loss we may assume H N [3(F) = (v2). Let L = (v;). It is easy
to see that Z(F/L) = (viL) x (y2L) ~ Z, x Z,. Now H/L < F/L and
|H/L| = 2. If vwL € H/L, then I's3(F) = (v1,v2) < L and so F/L would
be of class two, a contradiction. Hence v, ¢ H/L, and hence either H = (vs, y?)
or H = (vy,vy?). But the automorphism y of F, defined by y(x) = x and
y(y) = x2y, centralizes I'3(F) and maps y? to vy y2. Therefore all the quotients
F/H € Min(N,) of order 2° are isomorphic. O

Remark 3.1. In the case p = 2 and r > 4, there are non-isomorphic
groups in Min(N3) of exponent 2" and maximal order 23" ~D_ In fact, the two

quotients F/R, and F/R%, where R, = (vg,vluzr_z,lezr_l,vlyzr_l) and

R: = (va.vu? 2 %27, y27"), have cyclic center but one can check that the

power 2"~! of an element g = ukviv2x'y/ in F is

g = 0y = (TP T
so we have
gzr—1R2 _ Ui+j+in2
and
gzr_lR; = v/ R3.
It follows that the number of the elements of order 2" is different in the two
quotients and F/R,, F/R} are not isomorphic.
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Remark 3.2. The referee suggested to investigate the existence of groups in
Min(N,) of exponent p” and order p* for all k with r +2 < k < 3r. He gave an
example of minimal order p”+2. Namely the group:

Gy = (% j.a| X =1=37 =a?, [%, 7] =u, [, 3] =%, [0, 7] = 1).
We have G; = F/L; where L1 = (va, u?, xl’r_lvl_l, yP).

An other example of minimal order non-isomorphic to the previous one is

given by

Gy= (%, J,a| ¥ =1=37 =a?, [%,7] =, [,3] = 3, [@,7] = 1);

in fact, G, has an abelian maximal subgroup (i, y), while G; has no abelian
maximal subgroup. This is the quotient of F' by the subgroup:

Ly = (vy, u?, x?, y""_lvl_l).
Other examples of order p’+r7J2r1, with r = 2h 4 1, are given by splitting meta-
cyclic groups:

My =(x, y,|y?

These are the quotients of F by the subgroups:

+1 2h

h h
Np = (va, uy? , xP° ", vyy? ).

The problem of the existence of groups in Min(N;) of order other than of the
maximal one seems of non easy solution. We have to construct quotients F/L of
F with cyclic center. Considering the automorphisms « and $ used in the proof
of the Theorem 3.4, we can assume, W.L.O.G., that L. > H* = (v, ub"™! ).
We prove that the orders of such quotients cannot be greater than p?" ™!, Since
Z(F/H*) = Z,r—1 x Zp x Z, X Z, L has to contain a subgroup isomorphic to
Z, -1 XxZ,xZ,.Infact

F/L = (F/H")/(L/H™)

and
Z(F/L) > (Z(F/H*)(L/H"))/(L/H");
since both
Z(F/H*) = P H*, viH*, x?"H* y?"" H*)
and

(Z(F/H*)(L/H))/(L/H")

has to be cyclic, it follows that L/H* has to contain a complement of (v; H*) in
Z(F/H*). Thus |L| > p"*tland |F/L| < p?" 1.
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4. Min(N3)-groups with three generators

It follows from Lemma 2.3 that a group G € Min(N3), with three generators and
exponent 3" (r > 1), belongs to the variety V of all 2-Engel groups of exponent
3". So G is a quotient of Fr3(V).

ProrosiTion 4.1. Let F = Fr3(V) be the relatively free group with free
generators x, y, z in the variety V.

a) |T3(F)| =3and |F| = 35"

b) Z(F) = Zyr—1 X Z3r—1 X Z3r—1 X Z3.

c) Every proper subgroup of F is nilpotent of class two.
d) F belongs to Min(N>) if and only if r = 1.

e) Let F/H be a quotient of F of class three. Then F/H € Min(N,) if and only
if Z(F/H) is cyclic.

Proor. a) Note that F/F’ is a 3-generated group of exponent 3", so |F/F'| <
337, Similarly, we have |F’/T3(F)| < 3%". Now we show that [['3(F)| = 3. In
fact, I'3(F) is generated by the basic commutators of weight three and, as F
is 2-Engel, they are all equal to 1, except at most [y, x, z] and [z, x, y] (see, for
example [2, p. 54]). Moreover, in a 2-Engel group G, for all x;, x5, x3 € G the
following conditions hold:

i) [x1,x3, x2] = [x1, X2, x3]7L,

i) [xi'xo] =[x x5 =[x x0]”
(see (2) and (3) in the proof of Satz 6.5 in [1, p. 288]).
So we get

1

[[x.z]7' y]  byii)
[x,z.y]™! by i)
=[x.y.zl=1[y.x]7"z]  byii)
= [y, x,z]”L
Hence I'3(F) = ([x, y, z]) is cyclic of order 3 (see [4, p.358]) and |F| < 3371,
We now construct a group Fy, belonging to the variety V, which has order
337+1 Then it follows that Fy = F and |F| = 3% 1,

Let A be the abelian group of exponent 3" defined by

[z, x,y] =

A= (Z) X (’Ul) X (’U2) X (U3) > Zs3r X Z3r X Z3r X Z3
and let Q be the group of exponent 3" and of nilpotency class 2 defined by

0=(xyx* =y =Lu=[xyu¥ =1[ux]=[uy=1.
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Let Fy = [A]Q be the semidirect product of A and Q with the action of Q on
A defined by

X _ -1 x __ X _ X __

(11) zZ7 =2V, , V] =V1V3, V5 = Uy, vz = U3,
_ y _ y _ vy _

z¥ = zv;, vy =1, Uy = UaU3, V3 = V3.

Since

u=I[x,y], vi=I[z.y]l, va2=[x.z], v3=[v1.x] = [v2,)]

we obtain that Fy = (x, y, z) and we have |Fy| = |A||Q| = 337 T133" = 36r+1,
Also we have

(12) [z,u] = v3, [u,v1]=[u,v2] =[u,v3]=1.

So Fy = (u,vi,v2,v3) and I'3(Fp) = (v3) is of order 3. Therefore Fy is
nilpotent of class 3.

To prove a) we only need to show that the group Fy we have constructed
belongs to the variety V. In other words, we have to show that F is a 2-Engel
group of exponent 3”. Since the right 2-Engel elements form a subgroup of a
group (see [3]), it is sufficient to check that the generators x, y, z of Fy are right
2-Engel elements. In fact, by the definition of Fy, it is easy to see that the basic
commutators of weight three on the generators, are the following:

[x.y.yl =[xy x]=[z.x.x] =[z,p.z] = [z, y.y] = [z.x. 2] = 1
[x,y,z] = v;l, [z,y,x] = vs.
We observe that v3 € Z(Fp) by (1) and (12). Then it follows that Fy is nilpotent
of class 3 and I'3(Fy) = (v3) is of order 3.
Moreover, since A is abelian, the relations (11), (12) yield

ap

émv [Za’yﬁ] =l

[x%, 2% = v§%, [v2,x% =v

B

(13) 2

? 2% = vy

where a, b, c,a, B,y belong to Z3-. Using the above relations, we can directly
check that for all g € Fy we have

[x.g.8l=1[v.8.8l =1z, 8. ¢l =1.

Write g = vw with v € A and w € Q. Since Q is of class 2 and A is abelian,
we have [x, w, w] = [x,v,v] = 1. So

[x,g, g] = [x,v, w][x,w,v].
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Letting w = y's, where s € (x,u), and v = z/9, where ¥ € (vy, v2, v3), the
relations displayed in (11), (12), and (13) yield

[x,v,w] = [x,z/, w] = [v2 y]—v]

and

[x,w,v] = [x,yi,v] = [ui,zj] = v;ij.

So[x,g,g]=1.
The proof that y is right 2-Engel is analogous.
For z we observe that, since A4 is abelian and [z, Q] is contained in A4, we have

[z,v,v]=[z,v,w] = [z,w,v] = 1.
Moreover, letting w = x y’uk by relations (11), (12), and (13) we have
Wk = [z, y'[z. xMe. ¢ € Z(Fy).

[z, w] = [z, x" yiu

It follows that
[z, w,w] = [pjv; ", ¥y ] = viTv3" =1

It remains to check that the exponent of Fj is 3”. By the Hall-Petrescu identity
(see [1, p. 317]) we have

¢ = 0w =v’w c1(3r) 2(2;)

where ¢; € Fj and ¢z € y3(Fp) = (v3). Since Q, A, F are of exponent 3" and
IT3(Fo)| = 3, we have (wv)? = 1.

We can now identify F with Fp.

b) By the relations (11) and (12) we have that u>, vl, v2, v3 € Z(F).

Conversely, computing the commutators between an element g = vw =
z“vbvzv x®yPu? and the generators x , y, z of F, we obtain
(14) [x.vw] = [, wilv.ollx, vow] = uf vgv3"[og. y#] = w503 b,
cow] = [y, w]ly, v][y, v, w] = u" %75 [T, x*] = v % u’,
(15) [y, vw] = [y, w]ly, vi[y. v, w] vs[or x] = vy tey T

(16) [z,vw] = [z, w] = [z. x*yPu?] = [z, u” ][z, yP ¥ [z, x%] = vﬂvz_“v_l: o8
It follows that g € Z(F) onlyifa =B =0 =0 (mod3")andb=c =y =
0 (mod 3). So the elements of Z(G) have the following form

g—Ui’,bl ;’CI d w3



144 R. Brandl — G. Corsi Tani — L. Serena
where by, c1, Y1 € Z3r—1 and d € Z3. Thus
Z(F) = (v7) x (v3) x (v3) x ().

c) It is sufficient to show that every maximal subgroup M of F is of class two.
As F/®(F) = Z3 x Z3 x Z3, we have M = (D(F), x1, x,) for some x1,x, € M.
We want to show that M’ = {([x1,x2], [xi, F], [xi, F3], ®(F)) (i = 1,2) is
contained in Z(M). In fact, F is nilpotent of class 3, so [x;, F'] < Z(F). We
observe that Z(F) = (v3, F3) is contained in M and then Z(F) < Z(M).
Therefore [x;, F'] < Z(M). Since the identity [g1,g5] = [g1,g2]" holds in
the 2-Engel group F, for all n € Z and g1, g2 € F, we have [x;, F3] =
[x;, F]? < F® < Z(M). In the same way we see that ®(F) < Z(M). Finally
[x1,x2] € Z(M) because [x;, x3,x1] = [x1,X2,x2] = 1 holds in the 2-Engel
group F.

d) Suppose r > 1, then v}, v3, u® belong to Z(F) (see b)). So Z(F) is not
cyclic, contradicting Lemma 2.1.

Conversely, let r = 1, then Z(F) = (v3) is cyclic of order three. So, by
Lemma 2.1 and c¢), F belongs to Min(N5).

e) Let L = F/H be a quotient of F of class precisely three. If M/H is
a maximal subgroup of L, then M is a maximal subgroup of F and, by c), it
is nilpotent of class two. Since I'3(L) = I['3(F)H/H is cyclic of order 3, by
Lemma 2.1, L € Min(N) if and only if Z(L) is cyclic. O

ProrosiTion 4.2. a) Let G be a 3-generated group in Min(N,) with exp(G)=9.
Then |G| < 37.

b) There are at least two non-isomorphic groups in Min(N,) of exponent 9 and
order 37.

Proor. a) Using the same notation as in the previous theorem, G has to be
isomorphic to a quotient F/H of the relatively free group F with exp(F) = 32.
Since F/H has to be nilpotent of class 3, we have v3 ¢ H. As Z(F/H) must be
cyclic and Z(F) is elementary abelian of rank 4, then H must contain a subgroup
K of Z(F) which is of rank 3 and v3 ¢ H. Now Z(F') contains 40 subgroups of
index 3. Among these, 13 contain v3. So there are 27 subgroups of Z(F) which
do not contain (v3). The subgroup K; = (v3,v3,u®) = (F’)? is characteristic in
F and the other 26 form a single orbit under the automorphism ¢ of F defined by

(17 x? =y, yP=z z%=x1y.
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In fact consider the subgroup K» = (v}, v3vy', u?) of Z(F). We observe

that v = v'vs!, vy = u, u? = v, A straightforward calculation shows that

ng = (v}, vivs, u®) # K. As ¢ is an automorphism of order 26, the orbit of

K> has length 26. So we may assume that H contains one of the two subgroups
K;, i = 1,2.Consider F/K;. A generic element of K; can be written in the form

vflvgmzf" with /,m,n € {0,1,2}.
From the relations (14), (15), and (16) we get that an element
b,c.d o B

gKy = z%vjvsvix*yPu’ Ky

of F/K; belongs to Z(F/K;) if and only if

a..aB—b B _ .3l1,3m 3n
Vv ut =i vy ut

—a, —c—ao,,—o __ . 3l> 3m> 3n,
vy vy u % =vivy Cu?,
B, —a y—af _  3l3 3m3 3nj
vy vy Vs =v] vy cut3,

for some l;,m;,n; €{0,1,2}; i =1,2,3. Itfollowsa=B=b=c=a=y =
0 (mod3).Leta = 3ay, 8 = 3B1,b = 3b1,c =3¢y, @ = 3a; and y = 3y;. Then

3b1, 3c
gKl — Z3L11U1 1v2 lvgx3(x1y3,31u3y1 K = Z3alv§1x3"‘1y331K1,

In a similar way we see that gK, € Z(F/K,)ifandonlyif 8 = ¢ =« =
0 (mod3)anda = 3h (mod9) ¢ = 3y (mod9). If B = 3B, ¢ = 2c¢; and
o = 3a, we have that

gk, = z3bvagclv§ix3”y3ﬂ‘u”1(2 = (z3v1)bv§l+c1 (x3u)”y3ﬁ1 K.

Therefore Z(F/K1) and Z(F/K>) are abelian groups which can be repre-
sented as direct product

Z(F/K1) = (2°K1) x (v3K1) x (x*K1) x (y* K1)
and
Z(F/K>) = (2°v1K3) x (v3K2) x (x*uKz) x (y*K»)

In order that a quotient (F/K;)/(H/K;), (i = 1,2) of F/K; would be nilpotent
of class 3 with cyclic center, we need that v3K; ¢ Z(F/K;) and that H/K;
would contains a subgroup of rank 3 of Z(F/K;). So the order of a group F/H €
Min(N,) is at most 37.
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b) Consider the subgroups
H, = (vf,vg,u3,x3,y3,z3v3_1) and H, = (vf,v%v;l,u3,x3u,y3,z3v1)

which contain K; and K5, respectively. By the same argument used above to

determine the center of F/K;, one can check easily that the center of Z(F/Hj) is

cyclic. If g = z"vbvg vgl X yﬂ u? is, as before, a generic element of F, we have

g3 234, 3(b apP) 3(c+aa)x3ay3,3 3(y—eB)

Using this relation we see that the exponent of F/H; is 9. Moreover we see that
the Gl(F/Hl) = <U3H1) while Gl(F/Hz) = <1)1H2,U3H2,MH2> which is not
cyclic. O
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