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Weakly Laskerian rings versus Noetherian rings

Kamal Bahmanpour (�) – Kamran Divaani-Aazar (��)

Abstract – Let R be a commutative ring with identity. We investigate some ring-theoretic

properties of weakly Laskerian R-modules. Our results indicate that weakly Laskerian

rings behave as Noetherian ones in many respects. However, we provide some examples

to illustrate the strange behavior of these rings in some other respects.
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1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity.

Also, all modules are assumed to be left unitary.

Let R be a ring. An R-module M is said to be Laskerian if the zero submodule

of every quotient of M has a primary decomposition. Clearly, any Noetherian

R-module is Laskerian. As a generalization of this notion, the notion of weakly

Laskerian modules was introduced by the present second author and Ma� in [9].

An R-module M is said to be weakly Laskerian if every quotient module of M has

�nitely many associated prime ideals. The class of weakly Laskerian R-modules

obviously includes all Laskerian modules. In Example 3.7, we provide an example

of a non-Laskerian ring which is weakly Laskerian. The class of weakly Laskerian

R-modules is large enough to contain all Noetherian and Artinian R-modules.
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One may easily check that it is a Serre class. This means that in any short exact

sequence of R-modules and R-homomorphisms, the middle module is weakly

Laskerian if and only if the two other modules are weakly Laskerian. In the case

R is Noetherian, the present �rst author proved that an R-module M is weakly

Laskerian if and only if it is FSF; see [5, Theorem 3.3]. Recall that by Quy’s

de�nition [20, De�nition 2.1], an R-module M is said to be FSF if it possesses a

�nitely generated submodule N such that SuppR M=N is a �nite set.

Let us for a while assume that R is Noetherian. The study of �niteness prop-

erties of local cohomology modules of �nitely generated R-modules has been an

active area of research in recent years. Although, the class of weakly Laskerian R-

modules is much larger than that of �nitely generated R-modules, the analogues

of many nice �niteness properties of local cohomology modules of �nitely gener-

ated R-modules have been established for weakly Laskerian R-modules. So, this

class deserves a deeper investigation. In fact, in several papers the class of weakly

Laskerian R-modules have been examined in conjunction with local cohomology

modules; see e.g. [9], [10], [4], and [6].

To the best of our knowledge, there is no investigation on weakly Laskerian

modules over non-Noetherian commutative rings. In this paper, we investigate

some ring-theoretic properties of weakly Laskerian modules over commutative

(not necessarily Noetherian) rings. As a by-product, we deduce several conse-

quences on di�erent types of associated prime ideals. Below, we summarize some

of our main results.

Let R be a weakly Laskerian ring and I an ideal of R.

i) Min I is a �nite set; see Theorem 2.3.

ii) If either dim R is �nite or the ring RŒX� is weakly Laskerian for some

indeterminate X over R, then Spec R is Noetherian; see Corollary 2.5 and

Theorem 2.6. In particular, in both cases each minimal prime ideal p of I is

an associated prime of I in the Zariski-Samuel sense; see Corollary 2.9.

iii) For any weakly Laskerian R-module M , the trivial ring extension R Ë M is

weakly Laskerian; see Theorem 3.4.

iv) The polynomial ring RŒX� and the power series ring RŒŒX�� are not neces-

sarily weakly Laskerian; see Theorem 4.5. Thus the analogue of the Hilbert

Basis Theorem does not hold for the weakly Laskerianness.

v) If A is a ring extension of R which is �nitely generated as an R-module, then

A is also a weakly Laskerian ring; see Theorem 5.2.
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2. Minimal prime ideals

For a proper ideal I of R, let Min I denote the set of all minimal prime ideals of I .

We know by de�nition that if R is a weakly Laskerian ring and I is an ideal of R,

then the set AssR R=I is �nite. But this does not immediately imply the �niteness

of Min I . This is because, it is not true in general that Min I � AssR R=I . Let us

explain this more.

We start this section by borrowing an example from [2].

Example 2.1. Let

R WD
°

.ai /i2N 2
Y

i2N

Z=2Z
ˇ

ˇ

ˇ ai D 0 for all large ior ai D 1 for all large i
±

:

Then with pointwise addition and multiplication R is a commutative ring with

identity. As x2 D x for every x 2 R, it readily follows that Spec R D Max R, and

so Min.0/ D Spec R. Let

mi WD ¹.an/n2N 2 R j ai D 0º

and

m1 WD ¹.an/n2N 2 R j an D 0 for all large nº:

It can be easily checked that m1 and mi ; i 2 N are prime and these are the only

prime ideals of R. Thus

Min.0/ D ¹m1º [
�

[

i�1

¹miº
�

:

For any positive integer i , set �i WD .ın;i C 2Z/n2N 2 R, where ı denotes the

Kronecker delta. Then, it is easy to see that mi D 0 WR �i ; and hence mi 2 AssR R

for all positive integers i and that m1 62 AssR R. Thus Min.0/ ª AssR R. Note

that for any positive integer i we have mi D .1
R

� �i /R, and so mi is �nitely

generated. Nevertheless, it is easy to verify that m1 is not �nitely generated.

In view of the above example, it is natural to ask: does any �nitely generated

minimal prime ideal of R belong to AssR R? The next result gives an a�rmative

answer to this question.

Proposition 2.2. Let I be an ideal of R. If p 2 Min I and p=I is a �nitely

generated ideal of the ring R=I , then p 2 AssR R=I .
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Proof. Let p 2 Min I be such that p=I is a �nitely generated ideal of the

ring R=I . Replacing R with R=I , without loss of generality, we may assume that

I D 0, and so it is enough to show that p 2 AssR R.

Since pRp is a �nitely generated nilpotent ideal of the ring Rp, there exist a

positive integer k and an element s 2 R n p such that pks D 0. Let ` be the least

positive integer such that p`s D 0 for some s 2 Rnp. So, p`�1t ¤ 0 for all t 2 Rnp.

We claim that .0 WR p`�1s/ D p. Assume the contrary. Then, as p � .0 WR p`�1s/,

there exists an element s1 2 .0 WR p`�1s/ n p. Now, we have p`�1ss1 D 0 which

is a contradiction. So, we have .0 WR p`�1s/ D p. Since by the hypothesis p is

�nitely generated, it follows that the ideal p`�1s is also �nitely generated, and so

p D .0 WR a/ for some a 2 p`�1s. In particular, p 2 AssR R. �

Concerning Example 2.1, we also have the following positive result.

Theorem 2.3. Let R be a weakly Laskerian ring and I a proper ideal of R.

Then the set Min I is �nite.

Proof. As in the proof of Proposition 2.2, we may and do assume that I D 0.

So, we should show that the set Min.0/ is �nite.

In contrary, assume that Min.0/ is in�nite. Then by [7, Theorem 2.4], there

exists an element p 2 Min.0/ such that p is not �nitely generated and for any

�nitely generated ideal J of R with J � p, the set V.J / \ Min.0/ is in�nite.

We inductively choose prime ideals p1; p2; : : : in Min.0/ n ¹pº and elements

x1; x2; : : : in p such that xn 2 .p \ .
Tn�1

iD1 pi // n pn and

pn 2 V.Rx1 C Rx2 C � � � C Rxn�1/

for all n 2 N. Let p1 be any element in Min.0/ n ¹pº and x1 any element in

p n p1. Next, assume that n > 1 and prime ideals p1; p2; : : : ; pn�1 2 Min.0/ n ¹pº
and elements x1; x2; : : : ; xn�1 2 p with the above requested properties have been

chosen. Let pn be any element of

.V.Rx1 C Rx2 C � � � C Rxn�1/ \ Min.0// n ¹p; p1; p2; : : : ; pn�1º:

Then .p \ .
Tn�1

iD1 pi // ª pn; and so we can choose an element

xn 2
�

p \
�

n�1
\

iD1

pi

��

n pn:

So, the induction is complete.
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For each n 2 N, set In WD p1x1 C p2x2 C � � � C pnxn. Let n 2 N and

0 � i � n. We show that .In W xi / D pi . Clearly, pi � .In W xi /. As

pi 2 V.Rx1 C Rx2 C � � � C Rxi�1/ and xj 2 pi for all j > i , we deduce that

In � pi . Thus

.In W xi /xi � In � pi :

But xi … pi , and so .In W xi / � pi . Set K WD
S1

nD1 In. Then

.K W xi / D
1
[

nD1

.In W xi / D pi

for all i . Hence p1; p2; : : : are in�nitely many associated prime ideals of R=K

which is a contradiction. �

Recall that a topological space X is said to be Noetherian if any ascending

chain of open sets eventually stabilizes. Refer to [8, Ch.2, §4] for more details

on Noetherian topological spaces. Our next result provides a criterion for the

Noetherianness of Spec R equipped with its Zariski topology. We extract the

following result from [19] and apply it several times in the sequel.

Lemma 2.4. The following statements are equivalent:

i) Spec R is Noetherian;

ii) Spec RŒX� is Noetherian, where X is an indeterminate over R;

iii) R satis�es the ascending chain condition on prime ideals and each ideal has

a �nite number of minimal prime ideals;

iv) each prime ideal of R is equal to the radical of a �nitely generated ideal of R.

Proof. i) () ii) follows by [19, Theorem 2.5] and [19, Proposition 2.8 (iv)].

i) H) iii) Since Spec R is Noetherian, clearly R satis�es the ascending chain

condition on prime ideals. On the other hand, as any closed subset of a Noetherian

space has �nitely many irreducible components, each ideal of R has a �nite

number of minimal prime ideals.

iii) H) i) See [16, p. 65, Exercise 25].

i) () iv) See [19, Corollary 2.4]. �

Our next two results show that, under some mild assumptions, the weakly

Laskerianness of R implies the Noetherianness of Spec R.
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Corollary 2.5. Let R be a �nite-dimensional weakly Laskerian ring. Then

Spec R is Noetherian. In particular, if X1; : : : ; Xn are n indeterminacies over R,

then Spec RŒX1; : : : ; Xn� is Noetherian.

Proof. Since by the hypothesis R has �nite dimension, it satis�es the ascend-

ing chain condition on prime ideals. Moreover, in view of Theorem 2.3 , each ideal

of R has a �nite number of minimal prime ideals. So by Lemma 2.4, Spec R is

Noetherian. The second assertion also follows by Lemma 2.4. �

Theorem 2.6. Let X be an indeterminate over R. Assume that the ring RŒX�

is weakly Laskerian. Then Spec R is Noetherian.

Proof. Suppose the contrary and look for a contradiction. Since the two rings

R and RŒX�=XRŒX� are isomorphic, it follows that the ring R is also weakly

Laskerian. Then, in view of Theorem 2.3 and Lemma 2.4, we deduce that there

exists a strictly increasing chain

p1 � p2 � � � � � pn � pnC1 � � � �

in Spec R. Set A WD RŒX� and let J denote the ideal of A generated by the set

¹aXnj n 2 N and a 2 pnº:

Also for each natural integer n, set Qn WD pnA C XA. Then one may check that

Q1 � Q2 � � � � � Qn � QnC1 � � � �

is a strictly increasing chain in Spec A.

We claim that ¹Qnºn2N � AssA A=J . This will provide the desired contradic-

tion. Let n 2 N, b 2 pnC1 n pn and set c WD bXn. We claim that Qn D .J WA c/.

One has

Qnc D b.pnXn/A C .bXnC1/A � J;

and so Qn � .J WA c/. Next, let

h D a0 C a1X C � � � C at X
t 2 .J WA c/:

Then hbXn 2 J , and so there are natural integers i1 < i2 < � � � < i` such that

ba0Xn C ba1XnC1 C � � � C bat X
nCt D hbXn

D
X̀

j D1

nj
X

kD1

fkj .bkj X ij /;
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where bkj 2 pij and fkj 2 A for all j; k. Comparing the coe�cients of Xn in the

�rst and the third terms of the above display gives

ba0 2 .bkj jk D 1; : : : ; nj ; ij � n/R �
n

[

iD1

pi D pn:

As b … pn one gets a0 2 pn, and so h 2 pnA C XA D Qn. Thus

Qn D .J WA c/ 2 AssA A=J: �

Definition 2.7 (see [13, De�nition 3.1]). Let I be an ideal of R. A prime

ideal p of R is said to be an associated prime of I in the Zariski-Samuel sense

if p D
p

I WR x for some x 2 R. Let ZS.I / denote the set of Zariski-Samuel

associated primes of I .

By using Lemma 2.4, one can easily deduce the following result:

Lemma 2.8. Let I be a proper ideal of R. If Spec R is Noetherian, then

Min I � ZS.I /.

In view of Lemma 2.8, Corollary 2.5 and Theorem 2.6 immediately yield the

following result.

Corollary 2.9. Let R be a weakly Laskerian ring and I a proper ideal of R.

Assume that either

i) dim R is �nite

or

ii) the ring RŒX� is weakly Laskerian for some indeterminate X over R.

Then Min I � ZS.I /.

Note that by Nagata’s celebrated example [18, Example 1, p 203], there exist

Noetherian integral domains of in�nite Krull dimension. So, the ring RŒX� can be

weakly Laskerian while dim R is in�nite.

Theorem 2.3 and Corollary 2.5 are some instances of the situations in which

weakly Laskerian rings behave like Noetherian rings. However, there are the cases

when they behave completely di�erent from Noetherian rings. See the following

example.
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Example 2.10. Let R be a weakly Laskerian ring and M an R-module. One

may guess that M D 0 if and only if AssR M D ;. Also, one may conjecture that

Min.0/ � AssR R. But, the previous two properties do not hold in general. To this

end, let k be a �eld, T WD kŒX1; X2; : : : � and J WD .X1; X2
2 ; : : : ; Xn

n ; : : : /T . Let

R WD T=J and m D .X1; X2; : : : ; Xn; : : : /R. Then we have Spec R D ¹mº; and so

obviously the ring R is weakly Laskerian. We claim that AssR R D ;. Assume the

contrary. Then there is a polynomial f 2 T nJ such that m D 0 WR .f CJ /. There

exists a positive integer t such that f 2 kŒX1; X2; : : : ; Xt �. Then as f 2 T n J; it

is easy to see that .XtC1 C J /.f C J / ¤ J which is a contradiction. Thus R ¤ 0,

AssR R D ; and Min.0/ ª AssR R:

3. Trivial ring extensions

Let M be an R-module. In this section, we establish a characterization for the

weakly Laskerianness of the trivial ring extension R Ë M ; see Theorem 3.4.

Recall that R Ë M WD R � M with addition .r1; m1/ C .r2; m2/ WD .r1 C r2;

m1 C m2/ and multiplication .r1; m1/.r2; m2/ WD .r1r2; r1m2 C r2m1/ is a com-

mutative ring with identity .1; 0/ and is called the idealization of M . Note that R

naturally embeds into R Ë M via r ! .r; 0/ and if N is a submodule of M , then

0 Ë N is an ideal of R Ë M . For the ideal I WD 0 Ë M of R Ë M; one has I2 D 0.

Every ideal of R Ë M that contains 0 Ë M has the form I Ë M for some ideal

I of R. In particular, since any prime ideal P of R Ë M contains all nilpotent

elements of R ËM and hence contains 0ËM , it follows that P D pËM for some

prime ideal p of R. Moreover, every ideal of R Ë M that is contained in 0 Ë M has

the form 0 Ë K for some submodule K of M . Some basic results on idealization

can be found in [15].

[3, Proposition 2.2] and [12, Theorem 1.7] yield the following characterization

for the Noetherianness of the trivial ring extension R Ë M .

Proposition 3.1. Let M be an R-module. Then the ring R Ë M is Noetherian

if and only if the ring R is Noetherian and the R-module M is �nitely generated.

Lemma 3.2. Let T be a quotient ring of R and X a T -module. Then X is weakly

Laskerian as an R-module if and only if it is weakly Laskerian as a T -module. In

particular, R is a weakly Laskerian ring if and only if any quotient ring of R is

weakly Laskerian.
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Proof. We may assume that T D R=J for some ideal J of R. A subset Y of

X is a submodule of X as an R-module if and only if it is a submodule of X as a

T -module. On the other hand, for any T -module Z one has AssR Z � V.J / and

AssT Z D
° p

J

ˇ

ˇ

ˇ p 2 AssR Z
±

:

Thus j AssR Zj D j AssT Zj, and so X is weakly Laskerian as an R-module if and

only if it is weakly Laskerian as a T -module. �

Lemma 3.3. Let J be an ideal of R such that J 2 D 0. Assume that the ring

R=J is weakly Laskerian and the R=J -module J is weakly Laskerian. Then the

ring R is weakly Laskerian.

Proof. By Lemma 3.2 both R-modules J and R=J are weakly Laskerian.

Hence by the exact sequence

0 �! J �! R �! R=J �! 0;

we deduce that the ring R is weakly Laskerian. �

Our next result is the analogues of Proposition 3.1 for the weakly Laskerian-

ness.

Theorem 3.4. Let M be an R-module. The ring R Ë M is weakly Laskerian if

and only if R is a weakly Laskerian ring and M is a weakly Laskerian R-module.

Proof. Set J WD 0ËM . Note that the two rings R and .RËM/=J are naturally

isomorphic and also J and M are naturally isomorphic as R-modules.

First, assume that R is a weakly Laskerian ring and M is a weakly Laskerian

R-module. Then Lemma 3.3 yields that R Ë M is a weakly Laskerian ring.

Conversely, assume that the ring R Ë M is weakly Laskerian. As

R Š R Ë M

J
;

it turns out that the ring R is weakly Laskerian. Moreover, as J is a weakly

Laskerian R Ë M -module and J2 D 0, it follows that J is a weakly Laskerian

.R Ë M/=J-module. So, M is a weakly Laskerian R-module. �
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As an immediate consequence, we record the following corollary.

Corollary 3.5. Let M be a weakly Laskerian module over a Noetherian ring

R. Then the ring R Ë M is weakly Laskerian.

We end this section with the following two examples. In the �rst one, we

present a non-Noetherian weakly Laskerian ring. The second one exhibits a

weakly Laskerian ring that is not Laskerian.

In what follows, for an R-module M , ER.M/ stands for the injective envelope

of M .

Example 3.6. Let R be a Noetherian semi-local ring and p a prime ideal of

R with dim R=p � 1. Since V.p/ is �nite, the R-module ER.R=p/ is weakly

Laskerian. Hence, Corollary 3.5 yields that the ring R Ë ER.R=p/ is weakly

Laskerian. Note that if ht p > 0, then the R-module ER.R=p/ is not �nitely

generated, and so by Proposition 3.1 the ring R Ë ER.R=p/ is not Noetherian.

Example 3.7. Let M be a Laskerian module and r an element in the Jacobson

radical of R. Then [14, Corollary 3.2] implies that
T1

nD1 rnM D 0. Now, let

.R;m; k/ be a Noetherian local domain of dimension d > 0 and let E WD ER.k/.

Then S WD R Ë E is a weakly Laskerian local ring with the unique maximal ideal

m Ë E. Let 0 ¤ x 2 m and put r WD .x; 0/ 2 S . Then r is an element in the

Jacobson radical of S . Since xE D E; we have rnS D xnR Ë E. In particular,

one has

0 Ë E �
1
\

nD1

rnS:

Thus
T1

nD1 rnS ¤ 0, which implies that S is not a Laskerian ring.

4. Polynomial ring extensions

Let R be a weakly Laskerian ring and ¹X
º
2� a set of indeterminates over R.

One may guess that the rings RŒ¹X
º
2� � and RŒŒ¹X
º
2� �� are weakly Laskerian.

Theorems 4.1 and 4.5 below show that the �niteness of � is a necessary but not

su�cient condition for the weakly Laskerianness of these two rings.

Theorem 4.1. Let X
1
; X

2
; : : : be a countable set of indeterminates over any

ring R .even weakly Laskerian/. Then the rings RŒX
1
; X

2
; : : : � and RŒŒX

1
; X

2
; : : : ��

are not weakly Laskerian.
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Proof. We only prove the claim for the ring RŒX
1
; X

2
; : : : �, because our

argument below can be used also for the ring RŒŒX
1
; X

2
; : : : ��.

Set A WD RŒX
1
; X

2
; : : : � and let m be a maximal ideal of R. By Lemma 3.2 if

A is a weakly Laskerian ring, then the ring A=mA is also weakly Laskerian. But,

there is an isomorphism of rings:

A=mA Š .R=m/ŒX
1
; X

2
; : : : �:

As R=m is a �eld, it is enough to prove that the ring A D kŒX
1
; X

2
; : : : � is not

weakly Laskerian, where k is a �eld and X
1
; X

2
; : : : are indeterminates over k.

In view of Theorem 2.3, it su�ces to �nd an ideal I of A such that the set

Min I is in�nite. To this end, let

I WD
�

¹X
1
º [ ¹X

2
º [

�

1
[

nD1

¹X
2nC1

X
2nC2

: : : X
2nC1

º
��

:

Let

B WD ¹p 2 Spec A jp D .X
j

1
; X

j
2
; X

j
3
; : : : /;

where j
1

D 1; j
2

D 2

and 2k�2 < j
k

� 2k�1 for all k � 3º:

Then it is clear that B is an in�nite subset of Spec A. So, it is enough to prove that

Min I D B. To do this, �rst let p 2 Min I . Then we have I � p. In particular,

X
1
; X

2
2 p and for each integer k � 3,

X
2k�2C1

X
2k�2C2

: : : X
2k�1

2 p

which implies Xj
k

2 p for some integer 2k�2 < j
k

� 2k�1. Now, put j
1

D 1 and

j
2

D 2. Then q WD .X
j

1
; X

j
2
; X

j
3
; : : : / is a prime ideal of A such that I � q � p.

Hence, p D q 2 B. Therefore, we have Min I � B. Next, let p 2 B. Then it is

clear that I � p. So, p contains a minimal prime ideal q of I . Then q 2 Min I � B.

So, q � p and p; q 2 B which implies p D q. Note that the elements of B are

pairwise incomparable under inclusion. �

We will use the following result in the proof of Theorem 4.5. For its proof see

[11, Theorem].

Proposition 4.2. Let X
1
; X

2
; : : : ; X

n
be n indeterminates over R. If A WD

RŒX
1
; X

2
; : : : ; X

n
�, then AssA A D ¹pA j p 2 AssR Rº:



250 K. Bahmanpour – K. Divaani-Aazar

Next, we record the following immediate corollary.

Corollary 4.3. Let X
1
; X

2
; : : : ; X

n
be n indeterminates over R and A WD

RŒX
1
; X

2
; : : : ; X

n
�. Then for any ideal I of R, the two sets AssR R=I and

AssA A=IA have the same cardinality. In particular, if the ring A is weakly Laske-

rian, then the ring R is weakly Laskerian too.

Proof. Since A=IA Š .R=I /ŒX
1
; X

2
; : : : ; X

n
�, the claim is clear by Propo-

sition 4.2. Note that if J is an ideal of a ring T and X is a T=J -module, then

j AssT X j D j AssT=J X j. �

Lemma 4.4. Let .R;m; k/ be a Noetherian local ring and set S WD R Ë ER.k/

and B WD SŒŒX��. For any prime ideal p of R, there is a prime ideal Q 2 AssB B

such that Q \ S D p Ë ER.k/.

Proof. Let p be a prime ideal of R. As

ER=p.k/ D .0 WER.k/ p/ D
1
[

nD1

.0 WER=p.k/ m
n/

and for every n � 1 the R-module .0 WER=p.k/ m
n/ is �nitely generated, it follows

that the R-module ER=p.k/ has a countable generator set ¹aiºi2N0
’say. Now, set

f WD
P

i2N0
.0; ai/X

i 2 B . As AnnR.ER=p.k// D p, we deduce that the ideal

.0 WB f / belongs to the set

� WD ¹J E B j .0 WB f / � J and J \ S D p Ë ER.k/º:

Because of the natural ring isomorphisms

B

.p Ë ER.k//ŒŒX��
'

� S

p Ë ER.k/

�

ŒŒX�� '
�R

p

�

ŒŒX��;

one gets that the ring B=.p Ë ER.k//ŒŒX�� is Noetherian. So, it turns out that �

has a maximal element P . We claim that P 2 Spec B . Assume the opposite. Then

there are �; � 2 BnP such that �� 2 P . So, by the choose of P there are elements

x 2 .P C B�/ \ Sn.p Ë ER.k//

and

y 2 .P C B�/ \ Sn.p Ë ER.k//:

Thus

xy 2 .P C B�/.P C B�/ \ S � P \ S D p Ë ER.k/
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which is a contradiction. So, P is a prime ideal of B . Since .0 WB f / � P ,

it follows that P contains a minimal prime ideal Q of .0 WB f /. Now as

p Ë ER.k/ D .0 WB f / \ S � Q \ S � P \ S D p Ë ER.k/;

it follows that Q \ S D pË ER.k/. Since the ring T WD B=.0 WB f / is Noetherian

and Q=.0 WB f / is a minimal prime ideal of T , it follows that

Q

.0 WB f /
2 AssT T:

Therefore, there is an element h 2 Bn.0 WB f / such that

Q D ..0 WB f / WB h/ D .0 WB hf /;

and so Q 2 AssB B and Q \ S D p Ë ER.k/, as required. �

The next result provides an example of a weakly Laskerian ring S such that

the rings SŒX� and SŒŒX�� are not weakly Laskerian.

Theorem 4.5. Let .R;m; k/ be a Noetherian local ring of dimension d and let

S WD R Ë ER.k/. Then the following statements hold:

i) S is a weakly Laskerian ring;

ii) if d � 1, then the ring A WD SŒX� is not weakly Laskerian for any indetermi-

nate X over S ;

iii) if d � 2, then the ring B WD SŒŒX�� is not weakly Laskerian for any

indeterminate X over S .

Proof. i) holds by Example 3.6.

ii) As

Spec S D ¹p Ë ER.k/ j p 2 Spec Rº;

it follows that S is a local ring with the unique maximal ideal n WD m Ë ER.k/.

In addition for the ideal J WD 0 Ë ER.k/ of S , we have J2 D 0, and so for the

ideal J WD JŒX� of the polynomials ring A WD SŒX� we have J 2 D 0. So, J has

an A=J -module structure. But, by the ring isomorphisms

A

J
'

�S

J

�

ŒX� ' RŒX�;

it turns out that A=J is a Noetherian ring. Now, we claim that the ring A is not

weakly Laskerian. In contrary assume that the ring A is weakly Laskerian. Then

the ideal J of A is a weakly Laskerian A-module and hence by the A=J -module
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structure of J , it follows that J is also a weakly Laskerian A=J -module. Hence,

by [5, Theorem 3.3], the A=J -module J is an FSF module. So, by the de�nition

there exists a �nitely generated submodule L of J such that the A=J -module

J=L has �nite support. But, in this situation L is a �nitely generated ideal of

A. Then there are elements f1; f2; : : : ; fn 2 J such that L D .f1; f2; : : : ; fn/A:

Next, let fi D †
ki

j D0.0; bij /Xj for i D 1; 2; : : : ; n. Then B WD †n
iD1†

ki

j D0Rbij

is a �nitely generated submodule of the Artinian R-module E WD ER.k/. Since

d � 1, the R-module E is not �nitely generated, and hence AssR E=B D ¹mº.
Moreover it is obvious that L � .0 Ë B/ŒX�, and so the A=J -module J

.0ËB/ŒX�

has �nite support. Thus, the A-module J
.0ËB/ŒX�

has �nite support too. Since

m 2 AssR E=B it easily follows that n 2 AssS . J
.0ËB/

/, and so by Proposition 4.2,

we have nŒX� 2 AssA. J
.0ËB/ŒX�

/. This implies that

V.nŒX�/ � SuppA

� J

.0 Ë B/ŒX�

�

:

Since the PID kŒX� has in�nitely many non-associated irreducible elements, it be-

comes clear that Spec kŒX� is in�nite. Hence, from the natural ring isomorphisms

A

nŒX�
'

�S

n

�

ŒX� ' kŒX�;

we deduce that V.nŒX�/ is an in�nite subset of Spec A. Now, we have achieved the

desired contradiction.

iii) Since dim R D d � 2, it follows that Spec R and consequently Spec S

is in�nite. By Lemma 4.4, for any prime ideal p of R, there is a prime ideal

Q 2 AssB B such that Q \ S D pË ER.k/. Thus the �niteness of AssB B implies

the �niteness of Spec S . Therefore, the ring B is not weakly Laskerian. �

5. Integral ring extensions

Theorem 5.2 below is the main result of this section. To prove it, we need the

following result which might be of independent interest.

Lemma 5.1. Let X be an indeterminant over R and A WD RŒX�. Let J be

an ideal of A, q 2 AssA A=J and p D q \ R. For each integer k � 0, let

bk denote the set of all a 2 R for which there exists a polynomial of the type

a0 C a1X C � � � C ak�1Xk�1 C aXk in J . Then b0 � b1 � b2 � � � � is a chain of

ideals of R and there exists an integer n � 0 such that p 2 AssR R= bn.
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Proof. It is easy to see that b0 � b1 � b2 � � � � is a chain of ideals of R.

By the de�nition, there is an element f 2 A n J such that q D .J WA f /. We can

choose an element f D a0 C a1X C � � � C anXn 2 A of the minimum degree

with the property q D .J WA f /. Next, we claim that .bn WR an/ D p. Assume the

contrary. Then as p � .bn WR an/, there is an element a 2 .bn WR an/np. As a 2 R

and a 62 q \ R D p, it follows that a 62 q. Since aan 2 bn, there exists g 2 J of

degree at most n such that the degree of af � g is less than n. As

q D .J WA f / � .J WA af / D J WA .af � g/;

by the choose of f , it follows that q ¤ .J WA af /. Hence, there exists an element

h 2 .J WA af / n q. Now, we have ha 2 .J WA f / D q, h 62 q and a 62 q which is a

contradiction. Thus we have .bn WR an/ D p, and so p 2 AssR R= bn. �

Theorem 5.2. Let R be a weakly Laskerian ring and A a ring extension of R

which is �nitely generated as an R-module. Then A is also a weakly Laskerian

ring.

Proof. There are elements �1; : : : ; �n 2 A such that A D RŒ�1; : : : ; �n� and

�i ’s are integral over R. As

RŒ�1; �2; : : : ; �n� D .RŒ�1; �2; : : : ; �n�1�/Œ�n�;

by induction on n, we may assume that A D RŒ�� and � is integral over R.

Let X be an indeterminant over R and de�ne � W RŒX� ! A with

�.c0 C c1X C � � � C ckXk/ D c0 C c1� C � � � C ck�k :

Then � is a surjective ring homomorphism, and so A Š RŒX�=J , where J WD
ker.�/. Hence, it is enough to prove that T WD RŒX�=J is a weakly Laskerian

ring. To this end, let J1=J be an ideal of T . We have to show that the set

AssT .RŒX�=J1/ is �nite. Set a WD J1 \ R. Then by [4, Proposition 5.6 i)], the

extension R=a � RŒX�=J1 is integral and �nitely generated. Since � is integral

over R, there exists a polynomial

a0 C a1X C � � � C at�1X t�1 C X t 2 J � J1:

For each integer k � 0, set

bk WD ¹a 2 R j there exists an element a0 Ca1X C� � �Cak�1Xk�1 CaXk 2 J1º:

Then, b0 � b1 � b2 � � � � is a chain of ideals of R, and as 1
R

2 bt it follows that

R D bt D btC1 D btC2 D � � � .
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Assume that AssRŒX�.
RŒX�

J1
/ is in�nite. Set

D WD
°

q \ R
ˇ

ˇ

ˇ q 2 AssRŒX�

�RŒX�

J1

�±

:

Then as R D bt D btC1 D btC2 D � � � , Lemma 5.1 implies that D �
St�1

nD0 AssR R= bn. In particular, as R is a weakly Laskerian ring, we deduce that

D is a �nite set. So, there exists an element p 2 D such that there are in�nitely

many elements in AssRŒX�.
RŒX�

J1
/ lying over p. But for each q 2 AssRŒX�.

RŒX�
J1

/

with q \ R D p, q=J1 is a prime ideal of RŒX�=J1 lying over p=a. So, there are

in�nitely many prime ideals of RŒX�=J1 lying over p=a. But this a contradiction

with [17, Exercise 9.3]. So, A is a weakly Laskerian ring. �

As an easy conclusion, we bring the following result.

Corollary 5.3. Let R be a weakly Laskerian ring and X an indeterminant

over R. Let J be an ideal of the ring RŒX� which contains a monic polynomial f .

Then the ring RŒX�=J is weakly Laskerian.

Proof. The ring RŒX�=J is a quotient of the ring A WD RŒX�=fRŒX�. As A is

a �nitely generated ring extension of R, the claim follows by Theorem 5.2. �

We end the paper with the following result.

Proposition 5.4. Let R be a Noetherian ring and M a weakly Laskerian R-

module. Let T be a Noetherian semi-local R-algebra which is integral over R.

Then M ˝R T is a weakly Laskerian T -module.

Proof. By [5, Theorem 3.3], there exists a �nitely generated submodule

N of M such that SuppR M=N is �nite, and so dimR M=N � 1. Set J WD
T

p2SuppR M=N p. Then dim R=J � 1 and SuppR M=N D V.J /. It is easy to

check that

SuppT .M=N ˝R T / � V.JT /:

Because T is integral over R, [4, Proposition 5.6 i)] yields that T=JT is integral

over R=JT \ R, and so we deduce that

dim
T

JT
D dim

R

JT \ R
� dim

R

J
� 1:

So as T is a semi-local ring, V.JT / and, consequently, SuppT .M=N ˝R T / is

�nite. Now by applying [5, Theorem 3.3] again, we conclude that M ˝R T is a

weakly Laskerian T -module. �
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