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A note on S -semipermutable subgroups of finite groups

Haoran Yu (%)

ABSTRACT — In this note, we obtain some criteria for p-supersolvablity of a finite group and
extend some known results concerning weakly S-semipermutable subgroups.
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1. Introduction

Throughout the paper, we suppose G is a finite group and p is a prime. Let 7(G)
be the set of all the prime divisors of |G|. Let O?(G) = (\{N | N < G and G/N
is a p-group}. To state our results, we need to recall some notation. According
to Kegel (see [6]), let H be a subgroup of a finite group G; then H is called
an S-permutable subgroup of G if H permutes with every Sylow subgroup of G.
According to Chen (see [2]), let H be a subgroup of a finite group G; then H is said
to be S-semipermutable in G if HQ = QH for all Sylow g-subgroups Q of G for
all primes ¢ not dividing | H |. According to Li et al. (see [7]), let H be a subgroup
of a finite group G; then H is called a weakly S-semipermutable subgroup of G if
there exist 7 1<t G and H; < Gsuchthat G = HT,HNT < H; < H and H;
is S-semipermutable in G. Following Yakov Berkovich and I. M. Isaacs (see [1]),
iff G is a finite group and p is a prime divisor of |G|, we write G to denote the
unique smallest normal subgroup of G for which the corresponding factor group
is abelian of exponent dividing p — 1. It is well known that G is p-supersolvable
if and only if G; is p-nilpotent (see Lemma 3.6 of [1]).
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Recently, we proved the following theorem.

THeorREM 1.1 (Theorem 1.2, [9]). Let p be a prime dividing the order of a
finite group G, e be a positive integer and P € Syl (G) with |P| > p¢TL. Then
G is p-supersolvable if and only if |[P N OP(G;)| < p°® and Py N OP(Gy) is
S-permutable in G for all subgroups Py < P with |P,| = p°.

In this note, at first, we generalize Theorem 1.2 of [9] as follows.

THEOREM 1.2. Let p be a prime dividing the order of a finite group G, e be
a positive integer, P € Syl,(G) with |P| > p**' and L 4 G with O?(Gy) <
L < G. Suppose that |P N L| < p® and Py N L is S-semipermutable in G for all
subgroups P1y < P with |P1| = p¢. Then G is p-supersolvable.

Using Theorem 1.2, we prove the following results which generalize Theo-
rem 1.3 and Theorem 1.4 of [9].

THEOREM 1.3. Let p be a prime dividing the order of a finite group G, e > 2
be an integer, P € Syl,(G) with |P| > p¢Tland L < G with 0?(G,) <L <G.
Suppose that Py N L is S-semipermutable in G for all subgroups Py < P with
|P1| = p€. Then G is p-supersolvable.

Let p be a prime and P be a nonidentity p-group with |P| = p". We define
the set Q(P).If p = 2 and P is non-abelian, let

Q(P)={P1| Pir<Pand|P| =2}
U{P, | P, < P and P; is a cyclic subgroup of order 4}.

Otherwise, let Q(P) = {Pl | Pl < P and |P1| = p}

THEOREM 1.4. Let p be a prime dividing the order of a finite group G,
P € Syl,(G) and L < G with OP(G,) < L < G. Suppose that Py N L is
S-semipermutable in G for all subgroups P, € Q(P). Then G is p-supersolvable.

Note that Theorem 1.3 and Theorem 1.4 also generalize Theorem 3.5 of [7] and
Theorems 3.1 and 3.4 of [8].

2. Preliminaries

LemwMma 2.1. Let p be a prime dividing the order of a finite group G. Then the
Jollowing results hold.
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(a) (Lemma 3.1, [1]) Let Py < G be a p-group and N < G. If Py is S-semiper-
mutable in G, then P1N/N is S-semipermutable in G/N.

(b) (Lemma 3.2, [1]) Let Py < G be a p-group and N be a normal p-subgroup
of G. If Py is S-semipermutable in G, then Py N N is normalized by OP (G).
In particular, if Py < N, then Py is normalized by OP (G).

(¢c) (Lemma3.3,[1]) Let X < H < G. If X is S-semipermutable in G, then X is
S-semipermutable in H.

LemMma 2.2 (Lemma 2.1, [9]). Let p be a prime dividing the order of a finite
group G, P € Syl,(G), N 2 G and let e be a positive integer. Write Py = PN N.
Assume that Py < N and N is not p-nilpotent. Also assume that |P1| < p® and
|P| > p¢*TL. Then P has a normal subgroup P, of order p® with [Py : PyN Py] = p.

LemMma 2.3 (Lemma 2.2, [9]). Let p be a prime dividing the order of a finite
group G and P € Syl,(G). Write P=Pn 0?(Gp). Assume that P >1and P
has a maximal subgroup T with T < G. Then P 4 G.

LemMma 2.4 (Lemma 2.8, [9]). Let p be a prime dividing the order of a finite
group G and Py be a p-subgroup of G. Let L < G and N be a normal p'-subgroup
of G. Then PIN/N N LN/N = (PN L)N/N.

LemMma 2.5 (Lemma 2.9, [9]). Let p be a prime dividing the order of a finite
group G and N 9 G. Then (G/N);, = G,N/N, OP(G/N) = OP(G)N/N and
OP((G/N),) = OP(G,)N/N.

Recently, I. M. Isaacs proved the following significant theorem.

LemMma 2.6 (Theorem A, [5]). Let p be a prime dividing the order of a finite
group G and P; be an S-semipermutable p-subgroup of G. Then PIG is solvable.

Recently, Yakov Berkovich and I. M. Isaacs proved the following powerful
results.

Lemma 2.7 (Yakov Berkovich and I. M. Isaacs). Let p be a prime and P be a
nonidentity finite p-group. Let A act on P via automorphisms.

(@) (Lemma 2.1(a), [1]) If P is cyclic, then OP(A}) acts trivially on P.
(b) (Theorem A, [1]) Fix an integer e > 3. If P is a noncyclic p-group with

|P| > p¢T1 and every noncyclic subgroup of P with order p® is stabilized
by OP(A), then OP(Ay) acts trivially on P.
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(c) (Corollary B, [1]) If P is a noncyclic p-group with |P| > p> and every
subgroup of P with order p? is stabilized by OP(A), then OP (Ay) acts
trivially on P.

Lemma 2.8 (Yakov Berkovich and I. M. Isaacs). Let p be a prime dividing the
order of a finite group G and P € Syl,(G).

(1) (Lemma 3.8, [1]) If P is cyclic and some nonidentity subgroup U < P is
S-semipermutable in G, then G is p-supersolvable.

(2) (TheoremD, [1]) Fix aninteger e > 3. If P is a noncyclic p-group with |P| >
p¢t1 and every noncyclic subgroup of P with order p® is S -semipermutable
in G, then G is p-supersolvable.

(3) (Corollary E, [1]) If P is a noncyclic p-group with |P| > p3 and every
subgroup of P with order p? is S-semipermutable in G, then G is p-super-
solvable.

LemMma 2.9 (Lemma 2.12, [9]). Let p be a prime and P be a nonidentity finite
p-group. Let A act on P via automorphisms. Assume that for all Py € Q(P),
Py is stabilized by OP(A). Then O?(Ay) acts trivially on P.

3. Main results
Proor oF THEOREM 1.2. Suppose that G is a counterexample with minimal

order; we complete the following steps to obtain a contradiction. Since G is not
p-supersolvable, it follows that 07 (G) is not p-nilpotent.

Step 1. PNL > PNOPGy) > L1

Since 0”(G) is not p-nilpotent, it follows that P N O?(G,) > 1. Since
L > 0?(Gp), it follows that P N L > P N OP(G,) > 1.

Step 2. Oy (G) = 1.
By Lemma 2.1(a), Lemma 2.4 and Lemma 2.5, the hypotheses are inherited

by G/O0,(G). If O, (G) > 1, then G/O,(G) is p-supersolvable, and thus G is
p-supersolvable. This is a contradiction. Hence O,/ (G) = 1.
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Step3. Let P = P N 0?(Gp). Then P <G.

Let U = PN L. Then U < P and |U| < p°. Hence P has a normal
subgroup P; of order p® with U < P;. By the hypotheses, U = P; N L is
S-semipermutable in G. By Lemma 2.6, UG is solvable. By Step, U® > U > 1.
By Step 2, OP/(UG) = 1. Since U9 is solvable, it follows that OP(UG) > 1. Let
N = 0,(U%). Since UY < L, it follows that N < U. Hence |N| < |U| < p®.

Assume that 1 < |N| < p¢. Recall that N < P N L. By Lemma 2.1(a) and
Lemma 2.5, the hypotheses are inherited by G/ N. Hence G/ N is p-supersolvable.
By Lemma 2.5, it follows that O”(G,)N/N = O?((G/N),) is a p’-group, and
thus N N OP(G,) is the normal Sylow p-subgroup of O”(G,). Hence P =
N N O0P(G}),and thus P < G.

Assume that |N| = p¢. Since N < U and |U| < p¥¢, it follows that U = N is
a normal subgroup of G. Hence P=rn 07(G,) =UnNO0?(G,) 1G.

Step 4. The final contradiction.

Recall that P is the normal Sylow p-subgroup of O?(G,) (Step 3), OP(G,)
is not p-nilpotent, |[P| > p¢Tland 1 < |P| < |U| < p®. By Lemma 2.2, P has a
normal subgroup P, of order p¢ with [ﬁ PN P>] = p. Note that PNnpP, < P. By
the hypotheses, P, N L is S-semipermutable in G. By Lemma 2.1(b), PNPp,=
Pn P> N L is normalized by O”(G). Hence PN P, < G.ByLemma2.3, P 4G.
This is a contradiction since P < G. Hence we obtain the final contradiction. [

Proor or THEOREM 1.3. We proceed by induction on |G|. By Lemma 2.1(a),
Lemma 2.4 and Lemma 2.5, the hypotheses are inherited by G/O0,(G).
If 0O,(G) > 1, by induction, G/O,/(G) is p-supersolvable, and thus G is
p-supersolvable. So we can assume O,/ (G) = 1.LetU = PNL.If |U| < p®, by
Theorem 1.2, G is p-supersolvable. Assume that |U| > p¢*!. For any subgroup
Py < U with |P1| = p®, P;is S-semipermutable in G. By Lemma 2.1(c), P;
is S-semipermutable in L. By Lemma 2.8, L is p-supersolvable, and thus L is
p-solvable with p-length 1. Since O,/(G) = 1, it follows that U is the normal
Sylow p-subgroup of L, and thus U < G. Note that for all subgroups Py < U
with | P1| = p¢, P; is S-semipermutable in G. By Lemma 2.1(b), it follows that
Py is normalized by O?(G). By Lemma 2.7, U is centralized by O?(G,). Let
P = PN OP(G}). Note that P = U N OP(G}), and thus P < Z(0?(G})). By
Burnside’s Theorem (see Theorem 5.13 of [4]), O7(G) is p-nilpotent, i.e., G, is
p-nilpotent. Hence G is p-supersolvable. |
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Proor oF THEOREM 1.4. By Lemma 2.1(a), Lemma 2.4 and Lemma 2.5, it is
no loss to assume that O,/ (G) = 1. Assume G is not p-supersolvable; we work
to obtain a contradiction. Since G is not p-supersolvable, it follows that O?(G)
is not p-nilpotent. Let P=Pn 0?(Gp). Then P > 1. Since 0?(G,) < L, it
follows that for any P; € Q(ﬁ), Py is S-semipermutable in G. By Lemma 2.6,
PC is solvable. Let M = [] P en(P) PC. Then M is a solvable normal subgroup
of Gand M < OP(G;;). Since P > 1 and for any P; € Q(f’), P; < M, it follows
that M > 1. Since Op(G) = 1and M < G, we have Oy (M) = 1. Since M > 1
is solvable and O,/ (M) = 1, we have O,(M) > 1. Note that O,(M) < P N L.
Hence for any P, € Q(0,(M)), P, is S-semipermutable in G. By Lemma 2.1(b),
P is normalized by O?(G). By Lemma 2.9, 0,(M) is centralized by O (G).
Recall that M < O?(Gp). Hence Op(M) < Z(M). Since M is solvable and
O,/ (M) = 1, by Hall-Higman’s Lemma (see Theorem 3.21 of [4]), it follows that
M = Op(M).Hence M is centralized by O? (G ). Recall that for any Py € Q(P),
P; < M. Hence for any P; € Q(f’), P, is centralized by OP(G;). By Satz
IV.5.5 of [3], OP(G,) is p-nilpotent. This is the desired contradiction. Hence G is
p-supersolvable. O

4. Final remarks

Theorem 1.3 and Theorem 1.4 have the following corollaries.

CoroLLARY 4.1. Let p be a prime dividing the order of a finite group G, e > 2
be an integer and P € Syl (G) with |P| > p**'. Suppose that Py N O?(G) is
S-semipermutable in G for all subgroups Py < P with |P1| = p°. Then G is
p-supersolvable.

CoroLLARY 4.2. Let p be a prime dividing the order of a finite group G
and P € Syl (G). Suppose that Py N O?(G) is S-semipermutable in G for all
subgroups Py € Q(P). Then G is p-supersolvable.

Note that Corollary 4.1 and Corollary 4.2 generalize Theorem 3.5 of [7].

Remark 4.3. For any odd prime p and any positive integer e, there exists
a finite group G with p an odd prime divisor of |G|, P € Syl,(G) and |P| >
p¢T1 such that for every subgroup P; of P with order p¢, Py N OP(G) is
S-semipermutable in G, but P has a subgroup P; of order p¢ such that P; is
not weakly S-semipermutable in G. Hence our Corollary 4.1 and Corollary 4.2
are stronger than Theorem 3.5 of [7]. See the following example.
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ExampLE 4.4. Let n be an integer with n > e, p be an odd prime and
T ={a,b|a?”" =b*>=1,b""ab =a™') = Dy n. There exists ¢ € Aut(T) such
that a° = a and b¢ = ba. Consider G = T x (¢) = (a,b,c | a?" = b2 = ¢?" =
1,b7'ab =a= ', ¢ lac = a,c 'bc = ba).

Let P = (a) x {(c). Then P is the normal Sylow p-subgroup of G with
order p?". Then b € OP(G), so ba = b¢ € OP(G). Hence a € OP(G), so
OP?(G) = T. Hence for any subgroup P; of P with order p¢, P; N O?(G) is
normal in G, and thus S-semipermutable in G. Let ¢ = ¢?" . Consider (¢).
Note that [(¢)| = p¢. Then (¢) is not weakly S-semipermutable in G. To see
this, assume that (¢) is weakly S-semipermutable in G, since (¢) < ®({c)), it
follows that (¢) is S-semipermutable in G. Hence (¢) normalizes (b). This is a
contradiction since ¢~'bé = ba?"" ‘. Hence (¢) is not weakly S-semipermutable
inG.
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