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On W -S -permutable subgroups of finite groups

Gao, Jinxin (�) – Guo, Xiuyun (��)

Abstract – A subgroup H of a finite group G is said to be W -S-permutable in G if

there is a subgroup K of G such that G D HK and H \ K is a nearly S-permutable

subgroup of G. In this article, we analyse the structure of a finite group G by using

the properties of W -S-permutable subgroups and obtain some new characterizations

of finite p-nilpotent groups and finite supersolvable groups. Some known results are

generalized.
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1. Introduction

All groups considered in this paper are finite.

Recall that two subgroups A and B of a group G are said to permute if

AB D BA, i.e. AB is a subgroup of G. A subgroup H of G is called �-quasi-

normal in G if H permutes with every Sylow p-subgroup of G for all p 2 � ,

where � is a set of primes [11]. A subgroup T of G is said to be S -permutable

(S -quasinormal) in G if T is �.G/-quasinormal in G, where �.G/ denote a set of

primes dividing jGj. The relationship between the structure of a group G and its

S -permutable subgroups has been extensively studied by many authors (for exam-

ple, see [4], [5], [12], and [17]). On the other hand, a subgroup H of a group G is

C -supplemented in G if there exists a subgroup K of G such that G D HK and
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H \ K � HG , where HG is the core of H in G [6]. A subgroup H of a group G

is said to be weakly S -permutable in G if there is a subnormal subgroup T of G

such that G D HT and H \T � HsG , where HsG is the subgroup of H generated

by all those subgroups of H which are S -permutable in G [14]. Recently, Khaled

A. Al-Sharo introduced the concept of nearly S -permutable subgroups and ob-

tained many interesting results [1]. A subgroup H of a group G is said to be nearly

S -permutable in G if the normalizer NK.H/ contains some Sylow p-subgroup of

K for every subgroup K of G containing H and for every prime p with (p,jH j)= 1.

As inspired by the above research, it is good for us to give the following definition.

Definition 1.1. A subgroup H of a group G is said to be W -S -permutable

in G if there is a subgroup K of G such that G D HK and H \ K is a nearly

S -permutable subgroup of G.

Remark 1.2. It is clear that C -supplemented subgroups and nearly S -per-

mutable subgroups are W -S -permutable subgroups. However, the converses do

not hold in general, for example.

(1) Let G D S4, the symmetric group of degree 4. Take H D h.12/i. Then it is

easy to see H is W -S -permutable in G. But H is not nearly S -permutable in

G since NS3
.h.12/i/ does not contain any Sylow 3-subgroup of S3.

(2) Let P D hx; yjx16 D y4 D 1; xy D x3i. Then it is clear that ˆ.P / D

hx2i � hy2i and hy2i is S -permutable in G, and so hy2i is W -S -permutable

in G. But hy2i is not C -supplemented in G.

In the present paper, we first give some properties of W -S -permutable sub-

groups, and then we try to investigate the structure of groups. In fact, some new

conditions for a group to be p-nilpotent or supersolvable are given by using the

assumption that some kinds of subgroups of prime power order are W -S -per-

mutable, and many known results are generalized.

2. Preliminaries

In this section we will list some basic or known results which are useful for us in

the paper.

First we recall that a class F of groups is a formation if G 2 F and N E G,

then G=N 2 F, and if G=Ni 2 F, i D 1; 2; then G=N1 \ N2 2 F. Furthermore,

a formation F is said to be a saturated formation if G=ˆ.G/ 2 F implies G 2 F;

where ˆ.G/ is the Frattini subgroup of G. In this paper, U denotes the class of all

supersolvable groups. It is well-known that U is a saturated formation.
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Lemma 2.1 ([1, Lemma 2.2]). Let H be a nearly S -permutable subgroup of a

group G and N a normal subgroup of G. Then

(1) HN is nearly S -permutable in G;

(2) if H is a group of prime power order, then H \ N is nearly S -permutable in

G;

(3) if H is a group of prime power order, then HN=N is nearly S -permutable

in G=N ;

(4) if jH j D pn for some prime p, then H � Op.G/.

Lemma 2.2. Suppose that V is a W -S -permutable subgroup of a group G and

N is a normal subgroup of G.

(1) V is W -S -permutable in K whenever V � K � G.

(2) Suppose that V is a p-group for some prime p. If N � V , then V=N is

W -S -permutable in G=N .

(3) Suppose that V is a p-group for some prime p and N is p0-subgroup, then

VN=N is W -S -permutable in G=N .

Proof. By the hypotheses, there is a subgroup T of G such that G D T V and

T \V is a nearly S -permutable subgroup of G. It follows from that K D V.K \T /

and V \ .K \ T / D .V \ T / � K. Obviously, V \ T is nearly S -permutable in

K. Hence, V is W -S -permutable in K and .1/ is true.

Also, G=N D .V=N /.TN=N / and .V=N / \ .TN=N / D .V \ TN /=N D

.V \ T /N=N . By Lemma 2.1(3), .V \ T /N=N is nearly S -permutable in G=N .

Hence, V=N is W -S -permutable in G=N and .2/ is true.

It is clear that N � T , G=N D .VN=N /.T=N / and .VN=N / \ .T=N / D

.VN \ T /=N D .V \ T /N=N . By Lemma 2.1(3), .V \ T /N=N is nearly

S -permutable in G=N . Hence, VN=N is W -S -permutable in G=N and .3/ is

true. �

Lemma 2.3. Suppose that G is a group which is not p-nilpotent but whose

proper subgroups are all p-nilpotent for some prime p. Then

(1) G has a normal Sylow p-subgroup P and G D P Ì Q, where Q is non-

normal cyclic Sylow q-subgroup for some prime q ¤ p;

(2) the exponent of P is 2 or 4 if p D 2; the exponent of P is p if p ¤ 2;

(3) P=ˆ.P / is a minimal normal subgroup of G=ˆ.P /;

(4) ˆ.P / D Z1.G/ \ P .
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Proof. For (1)–(3) see [10, III, Satz 5.2 and IV, Satz 5.4].

.4/ According to Z1.G/ \ P E G and .3/, we have P \ Z1.G/ � ˆ.P /.

On the other hand, ˆ.P / � Z.G/. So (4) holds. �

Lemma 2.4 ([7, A, 1.2]). Let T , V and W are subgroups of a group G. Then

the following are equivalent:

(1) T \ V W D .T \ V /.T \ W /;

(2) V T \ W T D .V \ W /T .

Lemma 2.5 ([13, Lemma 2.6]). Let G be a group. Assume that N is a normal

subgroup of G (N ¤ 1) and N \ ˆ.G/ D 1, then the Fitting subgroup F.N / of

N is the direct product of minimal normal subgroups of G which are contained in

F.N /.

Lemma 2.6 ([2, Corollary 2]). Let P be a Sylow 2-subgroup of a group G. If

P has no section isomorphic to Q8 and �1.P / � Z.G/, then G is 2-nilpotent,

where Q8 is the quaternion group of order 8.

Lemma 2.7 ([9, Theorem A]). Suppose that a group G has a Hall �-subgroup,

where � is a set of primes not containing 2. Then all Hall �-subgroups of G are

conjugate.

Lemma 2.8 ([14, Lemma 2.16]). Let F be a saturated formation containing U ,

let G be a group with a normal subgroup H such that G=H 2 F. If H is cyclic,

then G 2 F.

Lemma 2.9 ([16, Lemma 2.8]). Let M be a maximal subgroup of a group G

and P be a normal p-subgroup of G such that G D PM , where p is a prime.

Then P \ M is normal in G.

Lemma 2.10 ([16, Theorem 3.1]). Let F be a saturated formation containing

U and G a group with a solvable normal subgroup H such that G=H 2 F. If for

every maximal subgroup M of G, either F.H/ � M or F.H/ \ M is a maximal

subgroup of F.H/, then G 2 F.

Lemma 2.11. Let p be the smallest prime divisor of the order of a group G.

If G has no section isomorphic to Q8 and every subgroup of G with order p is

W -S -permutable in G, then G is p-nilpotent.
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Proof. Suppose that the result is false and let G be a counterexample of min-

imal order. By Lemma 2.2(1), it is easy to see that G is a minimal non-p-nilpotent

group. By Lemma 2.3, G has a normal Sylow p-subgroup Gp such that G D

Gp Ì Gq for a cyclic Sylow q-subgroup Gq (q > p). Suppose that every subgroup

of Gp with order p is normal in G. Then �1.G/ � Z.G/. If p ¤ 2, then, by [10, IV,

Satz 5.5(a)], G is p-nilpotent, a contradiction. If p D 2, then G is p-nilpotent by

Lemma 2.6, again a contradiction. Therefore there exists some minimal subgroup

H of G such that H is not normal in G. So Gp is non-abelian and H ª ˆ.Gp/.

By the hypotheses, there is a subgroup K of G such that G D HK and H \ K

is nearly S -permutable in G. If H \ K D H , then H is nearly S -permutable

in G. By Lemma 2.1(3), Hˆ.Gp/=ˆ.Gp/ is nearly S -permutable in G=ˆ.Gp/.

Then there exists some Sylow q-subgroup Qˆ.Gp/=ˆ.Gp/ of G=ˆ.Gp/ such

that Qˆ.Gp/=ˆ.Gp/ � NG=ˆ.Gp/.Hˆ.Gp/=ˆ.Gp//. Since Gp=ˆ.Gp/ is abelian,

Hˆ.Gp/=ˆ.Gp/ E G=ˆ.Gp/. By Lemma 2.3(3), Hˆ.Gp/=ˆ.Gp/ D Gp=ˆ.Gp/

is a cyclic group. Burnside’s Theorem[10, IV, Satz 2.6] implies that G=ˆ.Gp/ is

p-nilpotent and so G is p-nilpotent by [10, VI, Hilfssatz 6.3], a contradiction. If

H \K D 1, then K E G. The choice of G implies that K is p-nilpotent and there-

fore G is p-nilpotent, a contradiction. The proof of the lemma is complete. �

3. Main Results

Theorem 3.1. Let P be a Sylow p-group of a group G, where p is the smallest

prime divisor of the order of G. If every cyclic subgroup H of P with prime order

or order 4 (P is non-abelian 2-group and H ª Z1.G/) either is W -S -permutable

or has a supersolvable supplement in G, then G is p-nilpotent.

Proof. Suppose that G is not p-nilpotent. Then G has a minimal non-p-nilpo-

tent subgroup L. By Lemma 2.3, L D Lp Ì Lq , where Lp is a normal Sylow

p-subgroup of L and Lq is a cyclic Sylow q-subgroup of L for some prime

p ¤ q. We may assume that Lp � P . Let H D hxi, x 2 Lpnˆ.Lp/:

Then jH j D p or 4 by Lemma 2.3(2). If H � Z1.G/ \ L D Z1.L/, then

ˆ.Lp/ ¤ Lp \ Z1.L/, which contradicts Lemma 2.3(4). Suppose that H is

W -S -permutable in G, then H is also W -S -permutable in L by Lemma 2.2(1).

Let T be a subgroup of L such that L D TH and H \ T is nearly S -per-

mutable in L. If jL W T j D 4, then hx2iT E L, and so Lq E L, a contradic-

tion. If jL W T j D p, we also get Lq E L, the same contradiction. Therefore

L D T and H is nearly S -permutable in L. By Lemma 2.1(3), Hˆ.Lp/=ˆ.Lp/

is also nearly S -permutable in L=ˆ.Lp/. Then there exists some Sylow q-sub-

group Q of L such that Qˆ.Lp/=ˆ.Lp/ � NL=ˆ.Lp/.Hˆ.Lp/=ˆ.Lp//. Hence
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Hˆ.Lp/=ˆ.Lp/ E L=ˆ.Lp/. Since Lp=ˆ.Lp/ is a minimal normal subgroup

of L=ˆ.Lp/, Lp D Hˆ.Lp/ D H . In view of the hypotheses and Burnside’s

Theorem [10, IV, Satz 2.6], L is p-nilpotent, a contradiction. If H has a su-

persolvable supplement K in G, then G D HK and L D H.L \ K/. Since

Lp=ˆ.Lp/ is abelian, .Lp \ K/ˆ.Lp/=ˆ.Lp/ E L=ˆ.Lp/. By Lemma 2.3(3),

.Lp \ K/ˆ.Lp/=ˆ.Lp/ D Lp=ˆ.Lp/ or 1. If .Lp \ K/ˆ.Lp/=ˆ.Lp/ D 1,

then Lp D H . Again applying Burnside’s Theorem [10, IV, Satz 2.6 ], then L is

p-nilpotent, a contradiction. Thus Lp � K, and so L � K. Since p is the smallest

prime divisor of jKj, K is p-nilpotent and so L is p-nilpotent, a contradiction.

The proof is complete. �

Remark 3.2. In Theorem 3.1, the hypotheses that subgroups of order 4 are

W -S -permutable in G if P is non-abelian 2-group and H ª Z1.G/ could not be

removed. For example, let G D LÌ h˛i, where L D Q8 is a quaternion group and

˛ is an automorphism of L with order 3. Then G has a unique minimal normal

subgroup H of order 2. Evidently, H is W -S -permutable in G. But G is non-

p-nilpotent.

Theorem 3.3. Let P be a Sylow p-group of a group G, where p is the

smallest prime divisor of the order of G. If every maximal subgroup of P is

W -S -permutable in G, then G is p-nilpotent.

Proof. Suppose that theorem is false and let G be a counterexample of mini-

mal order.

(1) G has a unique minimal normal subgroup 1 ¤ N such that G=N is

p-nilpotent. Moreover, ˆ.G/ D 1.

Let 1 ¤ N be a minimal normal subgroup of G. Consider the factor group

G=N . If P � N , then it is obvious that G=N is p-nilpotent. Suppose that P ª N .

Let L=N be a maximal subgroup of PN=N . Then there exists a maximal subgroup

P1 of P such that L D NP1. By the hypotheses, G has a subgroup T such

that G D TP1 and P1 \ T is nearly S -permutable in G. We have G=N D

.TN=N /.L=N / D .TN=N /.P1N=N /. Since .jN W N \ P1j; jN W N \ T j/ D 1,

.N \ P1/.N \ T / D N D N \ TP1. By Lemma 2.4, P1N \ TN D .P1 \ T /N .

It follows from Lemma 2.1(3) that .TN=N /\.P1N=N / D .P1 \T /N=N is nearly

S -permutable in G=N . Therefore, the theorem is true for G=N . The minimality

of G implies that G=N is p -nilpotent. Since the class of all p-nilpotent groups

is a saturated formation, we may assume that N is the unique minimal normal

subgroup of G and ˆ.G/ D 1.
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(2) Op0 .G/ D 1.

Assume that Op0.G/ > 1. Then N � Op0 .G/ by (1). Since G=Op0 .G/ '

.G=N /=.Op0 .G/=N /, it follows that G is p-nilpotent, a contradiction.

(3) Op.G/ D 1.

If Op.G/ > 1, then, by (1), N � Op.G/ and ˆ.Op.G// � ˆ.G/ D 1.

Therefore G has a maximal subgroup M such that G D MN and M \ N D 1.

Since Op.G/ \ M is normalized by N and M , the uniqueness of N yields

N D Op.G/. Pick some maximal subgroup P1 of P such that P \ M � P1.

Then P D NP1. By the hypotheses, there exists a subgroup T of G such that

G D TP1 and P1 \ T is nearly S -permutable in G. Suppose that P1 \ T ¤ 1.

According to the nearly S -permutability of P1 \ T and the minimality of N , we

have N � .P1 \ T /G D .P1 \ T /hQ1;Q2;:::;QsiP D .P1 \ T /P � P P
1 D P1,

where Qi is some Sylow qi -subgroup of G contained in NG.P1 \T / with p ¤ qi ;

i D 1; 2; : : : ; s. Thus P D P1N D P1, a contradiction. Hence P1 \ T D 1.

This shows that the Sylow p-subgroup of T is cyclic. By Burnside’s Theorem [10,

IV, Satz 2.6], T is p-nilpotent. Let Tp0 be the normal complement of T . Then

G D P1T D P1NG.Tp0/. By (1), M ' G=N is p-nilpotent. Let Mp0 be the

normal complement of M . By (2) and the maximality of M , NG.Mp0/ D M .

By Lemma 2.7, there exists an element x 2 P1 such that T x
p0 D Mp0 . Then

G D .P1NG.Tp0//x D P1NG.T x
p0/ D P1NG.Mp0/. Thus P D P \ G D

P \ P1NG.Mp0/ D P1.P \ NG.Mp0// D P1.P \ M/ D P1, a contradiction

and so (3) holds.

The final contradiction.

Let P1 be a maximal subgroup of P . By the hypotheses, there exists a subgroup

T of G such that G D TP1 and P1 \ T is nearly S -permutable in G. By (3),

.P1 \ T /G D .P1 \ T /hQ1;Q2;:::;QsiP D .P1 \ T /P D 1 , where Qi is some

Sylow qi -subgroup of G contained in NG.P1 \T / and p ¤ qi ; i D 1; 2; : : : ; s. So

P1 \T D 1. This implies that the Sylow p-subgroup of T is cyclic. By Burnside’s

Theorem [10, IV,Satz 2.6], T is p-nilpotent. Let Tp0 be the normal complement

of T . Then G D P1T D P1NG.Tp0/. In view of (2), P \ NG.Tp0/ is a proper

subgroup of P . Consequently, there exists another maximal subgroup P2 of P

such that P \ NG.Tp0/ � P2. By the hypotheses, there exists a subgroup H of G

such thatG D HP2 and P2 \ H is nearly S -permutable in G. By the above proof,

we can get P2\H D 1 and H is p-nilpotent. Let Hp0 be the normal p-complement

of H . Then G D P2NG.Hp0/. By Lemma 2.7, there exists g 2 P2 such that

.Hp0/g D Tp0 . Now, G D .P2NG.Hp0//g D .P2/g.NG.Hp0//g D P2NG.Tp0/.

Then P D P \ P2NG.Tp0/ D P2.P \ NG.Tp0// D P2, a contradiction. �
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Remark 3.4. In Theorem 3.3, the assumption that p is the smallest prime

divisor of the order of a group G is essential, for example, let G D ha; bja9 D

b2 D 1; b�1ab D a�1i. Clearly, every maximal subgroup of Sylow 3-subgroup of

G is W -S -permutable in G. But G is not 3-nilpotent.

Corollary 3.5. Let p be the smallest prime factor of the order of a group G

and N a normal subgroup of G such that G=N is p-nilpotent. If N has a Sylow

p-subgroup P such that every maximal subgroup of P is W -S -permutable in G,

then G is p-nilpotent.

Proof. By Theorem 3.3 and Lemma 2.2, N is p-nilpotent. Let Np0 be the

normal p0-complement of N . Then Np0 E G. If Np0 ¤ 1, then, by Lemma 2.2,

G=Np0 satisfies the hypotheses of the corollary. Hence G=Np0 is p-nilpotent by

the induction on jGj, and so G is p-nilpotent. Suppose that Np0 D 1. Then N

is p-group. Let L=N be the normal Hall p0-complement of G=N . By Schur-

Zassenhaus Theorem, there is a Hall p0-subgroup Lp0 of L such that L D N ÌLp0 .

Then L is p-nilpotent by Lemma 2.2 and Theorem 3.3. This implies that Lp0 is

normal p0-subgroup of G. Therefore G is p-nilpotent. �

Theorem 3.6. Let G be a group which has no section isomorphic to A4 or Q8

and let P be a Sylow p-subgroup of G, where p is the smallest prime divisor of

jGj. Suppose that NG.P / is p-nilpotent and there exists a positive integer m with

1 < pm < jP j such that all subgroups H of P with order pm are W -S -permutable

in G, then G is p-nilpotent.

Proof. Suppose that theorem is false and let G be a counterexample of mini-

mal order.

(1) Op0 .G/ D 1.

Suppose that Op0 .G/ ¤ 1. Let POp0.G/=Op0 .G/ be a Sylow p-subgroup of

G=Op0 .G/. By Lemma 2.2(3), every subgroup of POp0.G/=Op0 .G/ with order

pm is W -S -permutable in G=Op0 .G/. Clearly, NG=Op0.G/.POp0.G/=Op0.G// D

NG.P /Op0.G/=Op0.G/ is p-nilpotent and G=Op0.G/ has no section isomorphic

to A4 or Q8. Hence G=Op0.G/ satisfies the hypotheses of the theorem. By the

minimality of G, G=Op0 .G/ is p-nilpotent and so G is p-nilpotent, a contradiction.

(2) m > 1 and jP j ¤ pmC1.

Assume that m D 1. Then, by Lemma 2.11, G is p-nilpotent, a contradiction.

If jP j D pmC1, then G is p-nilpotent by Theorem 3.3, again a contradiction.

(3) H is p-nilpotent for every subgroup H of G such that P � H < G.
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By Lemma 2.2(1), every subgroup of P with order pm is W -S -permutable

in H . Obviously, NH .P / is p-nilpotent and H has no section isomorphic to A4

or Q8. Consequently, H is p-nilpotent by the choice of G.

(4) Op.G/ ¤ 1, G=Op.G/ is p-nilpotent and G is solvable.

Suppose that Op.G/ D 1. Obviously, NG.J.P // < G and CG.Z.P // < G.

Since P � NG.J.P // and P � CG.Z.P //, NG.J.P // and CG.Z.P // are

p-nilpotent by (3). It follows from Glauberman–Thompson Theorem [8] that G

is p-nilpotent, a contradiction. Hence Op.G/ ¤ 1. Let xG D G=Op.G/; xP D

P=Op.G/; N xG.J. xP // D L1=Op.G/, C xG.Z. xP // D L2=Op.G/. Then P � L1 <

G and P � L2 < G. By (3), L1 and L2 are p-nilpotent. Again applying

Glauberman–Thompson Theorem [8], G=Op.G/ is p-nilpotent. In view of Feit–

Thompson Theorem on groups of odd order, G is solvable.

(5) Let N be a normal p-subgroup of G such that 1 < jN j < pm. Then G=N

is p-nilpotent.

By Lemma 2.2(2), every subgroup of P=N with order pm=jN j is W -S -per-

mutable in G=N . Clearly, NG=N .P=N / D NG.P /=N and G=N has no section

isomorphic to A4 or Q8. Consequently G=N is p-nilpotent by the choice of G.

(6) If 1 < jˆ.G/j ¤ pm, then G is p-nilpotent.

Assume that 1 < jˆ.G/j < pm. Then, by (5), G=ˆ.G/ is p-nilpotent and so

G is p-nilpotent by [10, VI, Hilfssatz 6.3], a contradiction. If jˆ.G/j > pm, let

H be a subgroup of ˆ.G/ of order pm and H E P . By the hypotheses, there

exists a subgroup K of G such that G D HK and H \ K is nearly S -permutable

in G. Since H � ˆ.G/, G D HK D K and so H is nearly S -permutable in G.

Therefore, for every prime divisor q of the order of G with q ¤ p, there exists

some Sylow q-subgroup Q of G such that Q � NG.H/. Since H E P , H E G.

By (5) and Burnside’s Theorem [10, IV,Satz 2.6], H is non-cyclic. Now take a

subgroup L of ˆ.G/ of order pmC1 such that H � L. Since H is non-cyclic,

so is L. Hence L contains a subgroup H2 of order pm such that H ¤ H2. As

above, H2 is nearly S -permutable in G. Hence, for every prime factor q of the

order of G with q ¤ p, there exists some Sylow q-subgroup Q1 of G such that

Q1 � NG.H2/. Then LQ1 D hH; H2iQ1 D Q1hH; H2i D Q1L is a subgroup

of G. By Theorem 3.3, LQ1 is p-nilpotent and so Q1 � NG.L/. Since H E G,

Q1 � CG.H/. Then jG=CG.H/j D p˛ for some integer ˛. It follows from [18,

Appendix C, Theorem 6.3] that H � Z1.G/, and so G contains a cyclic normal

subgroup T of order p. By (2), (5) and Burnside’s Theorem [10, IV,Satz 2.6], we

have G is p-nilpotent, a contradiction.
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(7) Op.G/ is a maximal subgroup of P .

Assume that Op.G/ is not maximal in P . Since G is solvable by (4), G contains

a normal maximal subgroup of M such that jG=M j D r , where r is a prime divisor

of the order of G. Pick a Sylow p-subgroup L of M such that L � P . If r D p,

then we have P � NG.L/ < G. By (3), NG.L/ is p-nilpotent and so NM .L/

is p-nilpotent. Then, by Lemma 2.2(1), every subgroup of L with order pm is

W -S -permutable in M . So we have M is p-nilpotent by the minimality of G.

Hence Op0.M/ � Op0.G/, which is impossible by (1). If r ¤ p, then P � M , and

so M is p-nilpotent by (3). The same contradiction is obtained. So we have (7).

(8) If jˆ.G/j D pm, then G is p-nilpotent.

Suppose that ˆ.G/ is cyclic. Then ˆ.G/ contains a normal subgroup L of

G with order p. By (2), (5) and Burnside’s Theorem [10, IV,Satz 2.6], G is

p-nilpotent, which contradicts the choice of G. Hence ˆ.G/ is non-cyclic. Now

let T=ˆ.G/ be any subgroup of Op.G/=ˆ.G/ with order p. Since ˆ.G/ is non-

cyclic, T is non-cyclic. So T has a maximal subgroup F with F ¤ ˆ.G/. Then

we have T D F ˆ.G/. By the hypotheses, there exists a subgroup K of G such

that G D KF and K \F is nearly S -permutable in G. If K D G, then F is nearly

S -permutable in G. By Lemma 2.1(3), F ˆ.G/=ˆ.G/ is nearly S -permutable

in G=ˆ.G/. If K ¤ G, then G=ˆ.G/ D .Kˆ.G/=ˆ.G//.F ˆ.G/=ˆ.G// D

.Kˆ.G/=ˆ.G//.T=ˆ.G//. Obviously, .Kˆ.G/=ˆ.G// \ .T=ˆ.G// D 1 and so

T=ˆ.G/ is W -S -permutable in G=ˆ.G/. Thus we get that any subgroup T=ˆ.G/

of Op.G/=ˆ.G/ with order p is W -S -permutable in G=ˆ.G/. By Lemma 2.2(1),

T=ˆ.G/ is W -S -permutable in Op.G/K=ˆ.G/, where K is a Hall p0-subgroup of

G. By Theorem 2.11, Op.G/K=ˆ.G/ is p-nilpotent and so Op.G/K is p-nilpotent

by [10, VI, Hilfssatz 6.3]. By (7), Op.G/K E G and so G is p-nilpotent, a

contradiction.

(9) If N is a minimal normal p-subgroup of G, then jN j � pm.

Suppose that jN j > pm. Take a subgroup H of N such that jH j D pm and

H E P . By the hypotheses, there exists a subgroup K of G such that G D HK

and H \ K is nearly S -permutable in G. Since N is abelian, N \ K E G. By

the minimality of N , we have N \ K D 1 or N \ K D N . If N \ K D 1, then

N D N \ G D H.N \ K/ D H , a contradiction. Thus N \ K D N . It follows

from G D HK and H � N � K that K D G. This implies that H is nearly

S -permutable in G. Then, for every prime factor q of jGj with q ¤ p, there exists

some Sylow q-subgroup Q of G such that Q � NG.H/. Since H E P , H E G,

which contradicts the minimality of N .
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(10) If H1 and H2 are two distinct minimal normal p-subgroups of G, then

jH1j < pm or jH2j < pm.

If jH1j � pm and jH2j � pm, then, by (9), jH1j D pm and jH2j D pm. In view

of (6) and (8), we have ˆ.G/ D 1. Thus G contains a maximal subgroup M such

that G D MH1 and M \ H1 D 1. Obviously, P \ M is a Sylow p-subgroup of

M and let xG D G=H1, xP D P=H1. Then N xG. xP / D NG.P / is p-nilpotent and so

NM .P \M/ is p-nilpotent. By Lemma 2.2(1), every subgroup of P \M with order

pm is W -S -permutable in M . Furthermore, M has no section isomorphic to A4 or

Q8. It follows that M is p-nilpotent by the minimality of G, and so G=H1 ' M is

p-nilpotent. As above, we also have G=H2 is p-nilpotent. Since G D G=H1 \ H2

is isomorphic to a subgroup of G=H1 � G=H2, G is p-nilpotent, a contradiction.

(11) Op.G/ is a minimal normal subgroup of G.

Suppose that Op.G/ is not a minimal normal subgroup of G. In view of (6)

and (8), we have ˆ.G/ D 1. By Lemma 2.5, we may assume that N1 and N2

are two distinct minimal normal subgroups of G contained in Op.G/. By (10), if

jN1j < pm and jN2j < pm, then G=N1 and G=N2 are p-nilpotent by (5), and so

G is p-nilpotent, a contradiction. Therefore we may assume that jN1j < pm and

jN2j � pm. Since G=N1 is p-nilpotent by (5), G=N1 D .P=N1/.T=N1/, where

T=N1 is normal Hall p0-subgroup of G=N1. Then P \ T D N1, and therefore

N2 \ .P \ T / D N2 \ T D 1 and T � CG.N2/. Then, by [18, Appenix C,

Theorem 6.3], N2 � Z1.G/. This implies that G contains a normal subgroup L

of order p. By (5), G=L is p-nilpotent and so G is p-nilpotent, a contradiction.

The final contradiction.

By (11), Op.G/ is a minimal normal subgroup of G. Then jOp.G/j � pm by

(9). In view of (7), jP j � pmC1, which contradicts (2). The proof is complete. �

Remark 3.7. In Theorem 3.6, the assumption that G has no section isomorphic

to A4 or Q8 is necessary, for example, let x=
�

0 1
1 1

�

, y=
�

2 0
2 1

�

, z=
�

1 0
1 1

�

be three

generators of G D GL.2; 3/ and x, y, z satisfies the following relation:

x8 D y2 D z3 D 1;

y�1xy D x3;

z�1x2z D xy;

z�1xyz D xyx2;

y�1zy D z2:

Then P D hx; yi is a Sylow 2-subgroup of G and G00 D hx2; xyi is a quaternion

group of order 8. We see that P D NG.P / and SL.2; 3/=Z.G00/ ' A4. Obviously,

all subgroups of P with order 2 are W -S -permutable in G. However, G is not

2-nilpotent.
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Theorem 3.8. Let F be a saturated formation containing U and let E be a

normal subgroup of a group G such that G=E 2 F. Suppose that all maximal

subgroups of Sylow subgroups of E are W -S -permutable in G, then G 2 F.

Proof. Suppose that the theorem is false and let G be a counterexample of

minimal order. By Lemma 2.2 and Theorem 3.3, E is a Sylow tower group of

supersolvable type. Let Q be a Sylow q-subgroup of E, where q is the largest

prime divisor of the order of E. Then we have Q E G. Let N be a minimal normal

subgroup of G contained in Q. In view of Lemma 2.2, the theorem holds for G=N .

By the choice of G, G=N 2 F. Since F is a saturated formation, N ª ˆ.G/ and

N D Q is the unique minimal normal subgroup of G. Hence there is a maximal

subgroup M of G such that G D NM and N \ M D 1. Let Mq be a Sylow

q-subgroup of M . Then Gq D NMq . Pick a maximal subgroup L of Gq such that

Mq � L. Then Q\L D Q1 is a maximal subgroup of Q. By the hypotheses, there

exists a subgroup T of G such that G D TQ1 and T \ Q1 is nearly S -permutable

in G. On the other hand, N D N \ G D N \ TQ1 D .N \ T /Q1. We have

N \ T E G since N is abelian. In view of the minimality of N , N \ T D T and

N � T . Consequently, G D T and T \Q1 D Q1 is W -S -permutable in G. Then,

for every prime p of the order of G with q ¤ p, the normalizer NG.Q1/ contains

some Sylow p-subgroup P of G. Consequently, Q1 E G. We have Q1 D 1 by

the minimality of N and so N is cyclic. By Lemma 2.8, G 2 F, which contradicts

the choice of G. The proof of the theorem is complete. �

Theorem 3.9. Let F be a saturated formation containing U and let E be a

solvable normal subgroup of a group G such that G=E 2 F. Suppose that all

maximal subgroups of Sylow subgroups of F.E/ are W -S -permutable in G, then

G 2 F.

Proof. Let M be a maximal subgroup of G not containing F.E/. We only

prove that M \ F.E/ is a maximal subgroup of F.E/ by Lemma 2.10. Since

F.E/ ª M , there exists a Sylow p-subgroup Op.E/ of F.E/ such that Op.E/ Š

M and G D MOp.E/. Let Gp be a Sylow p-subgroup of G and Mp a Sylow

p-subgroup of M . Then Gp D MpOp.E/. Pick a maximal subgroup L of Gp

such that Mp � L. Then R D L \ Op.E/ is a maximal subgroup of Op.E/, and

R \ M D .L \ Op.E// \ M D Op.E/ \ Mp D Op.E/ \ M . By Lemma 2.9,

Op.E/ \ M E G and so Op.E/ \ M � RG . Furthermore, Op.E/ \ M D RG .

By the hypotheses, there is a subgroup T of G such that G D TR and T \ R is

nearly S -permutable in G. For some Sylow qi -subgroup Qi of G with qi ¤ p; i D

1; 2; : : : ; n, we have Qi � NG.T \ R/: We may assume that ˆ.Op.E// D 1. Thus
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Op.E/\T E G. On the other hand, T \R D T \Op.E/\L E Gp. Consequently

T \ R E G and T \ R � RG . Let H D TRG. Then H \ R D RG . Since M

is a maximal subgroup of G, .Op.E/ \ H/M D M or .Op.E/ \ H/M D G. If

.Op.E/ \ H/M D M , then Op.E/ \ H � M \ Op.E/ D RG D H \ R. This

implies that R D Op.E/, a contradiction. Thus we have .Op.E/ \ H/M D G. In

view of Op.E/\M D Op.E/\H \M D RG , Op.E/ � H . Thus R D R\H D

RG D M \ Op.E/ and so jF.E/ W F.E/ \ M j D jOp.E/ W Op.E/ \ M j D p.

This completes the proof. �

4. Some applications

In the literature one can find the following special case of our main theorems.

Corollary 4.1 ([15, Theorem 3.3]). Let G be a group and E a normal

subgroup of G such that G=E is supersolvable. If all maximal subgroups of each

Sylow subgroup of E are C -supplemented in G, then G is supersolvable.

Corollary 4.2 ([16, Theorem 4.1]). Let F be a saturated formation containing

U and G a group and E a solvable normal subgroup such that G=E 2 F. If all

maximal subgroups of each Sylow subgroup of F.E/ are C -supplemented in G,

then G 2 F.

Corollary 4.3 ([3, Theorem 1.3]). Let G be a group and E a normal subgroup

of G with supersolvable quotient G=E. Suppose that all maximal subgroups of any

Sylow subgroup of E are S-permutable in G, then G is supersolvable.

Corollary 4.4 ([3, Theorem 1.4]). Let F be a saturated formation contain-

ing U . Suppose that G is a solvable group with a normal subgroup H such that

G=H 2 F. If all maximal subgroups of all Sylow subgroups of F.H/ are S -quasi-

normal in G, then G 2 F.
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