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On an open problem about x-quasi-§F-groups

ZHANG, CHI (*) — ZHANG, LI (**) — HUANG, JIANHONG (%)

ABsTRACT — Let § be a class of finite groups, p a prime and 7 a set of some primes.
A finite group G is called a p-quasi-§-group (respectively, by w-quasi-§-group) pro-
vided that for every §-eccentric G-chief factor H/K of order divisible by p (respec-
tively, by at least one prime in ), the automorphisms of H/K induced by all elements
of G are inner. In this paper, we obtain the characterizations of p-quasi-§-groups and
m-quasi-§-groups, which give a positive answer to an open problem in the book [3].
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1. Introduction

Throughout this paper, all groups are finite. G always denotes a group, p is a prime
and 7 (G) is the set of all prime divisors of |G|. As usual, we use &, and 91 to
denote the class of all p-groups and the class of all nilpotent groups, respectively.
All unexplained notation and terminology are standard, as in [2, 3, 9].
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Recall that a class § of groups is called a formation if § is closed under
taking homomorphic images and subdirect products. A formation § is said to
be (1) saturated (solubly saturated) if G € § whenever G/ ®(G) € § (respec-
tively, G/®(N) € § for some soluble normal subgroup N of G); (2) hered-
itary (normally hereditary) if H € § whenever H < G € § (respectively,
H < G € 3). Itis well known that a G-chief factor H/K is called §-central in G
provided that H/K x G/Cg(H/K) € §. Otherwise, it is called §-eccentric. Fol-
lowing [8], a normal subgroup N of G is said to be p§-hypercentral (respectively,
w§-hypercentral) in G if either N = 1 or N # 1 and every G-chief factor below
N of order divisible by p (respectively, by at least one prime in ) is F-central
in G. The symbol Z,5(G) denotes the p§-hypercentre of G, that is, the product
of all normal p§-hypercentral subgroups of G, and the symbol Z,z(G) denotes
the 7 §-hypercentre of G, that is, the product of all normal 7 §-hypercentral sub-
groups of G. Also, the §-hypercentre of G denoted by Z3z(G) (see [2, p. 389]), is
the product of all normal subgroups N of G, where N is p§-hypercentral in G for
every prime p. In particular, if § = 91, then Zn(G) is the hypercentre of G and
is often denoted by Zoo(G).

A group G is said to be quasinilpotent [9, Chapter X, Definition 13.2] if for
every G-chief factor H/K and x € G, x induces an inner automorphismon H/K.
A group G is said to be p-quasinilpotent [10] if for every G-chief factor R/L of
order divisible by p and x € G, x induces an inner automorphism on R/L.

As a important generalization of quasinilpotent groups and p-quasinilpotent
groups, Guo and Skiba [5, 6] introduced the following notion.

DEerintTION 1.1 ([5, 6], see also [3, Chapter 1, Definition 3.2]). Let § be a class
of groups, G a group and p a prime. Assume that @ # = C 7(G). G is called a
p-quasi-F-group (respectively, w-quasi-F-group) if for every §-eccentric G-chief
factor H/K of order divisible by p (respectively, at least one prime in ), the
automorphisms of H/K induced by all elements of G are inner. In particular, if
7 = P is the set of all primes, then a w-quasi-§-group is called a quasi-§-group.

Following [5, 3], we use §*, S; and §% to denote the class of all quasi-§-
groups, p-quasi-g-groups and w-quasi-§-groups, respectively. Clearly, §* < §7,
and §% = ﬂpen S;. For the details, one can refer to [3, Chapter I, §1.3].

In [5], Guo and Skiba have given the general theory of the quasi-§-groups
and obtained some characterizations of quasisoluble groups and quasisupersoluble
groups. In particular, they proved the following theorem.
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THeoreEM 1.2 ([5, Theorem B]). Let § be a saturated formation containing N.
Then G is a quasi-§-group if and only if for every §-eccentric G-chief factor
H/K between ®(F(G)) and F*(G), the automorphisms of H/K induced by all
elements of G are inner.

Here, F*(G) is the generalized Fitting subgroup of G (see [9, Chapter X, Def-
inition 13.9]) , that is, the set of all elements of G which induce inner automor-
phisms on every G-chief factor. Clearly, F*(G) is a characteristic subgroup of G.

In connection with this, the author in the book [3] proposed the following open
problem.

ProBLEM ([3, Chapter I, Problem 6.1]). Could we generalize the result in
Theorem 1.2 to p-quasi-§-groups and w-quasi-§-groups ?

The following theorem and its corollary give the affirmative answer to this
problem.

THeOREM 1.3. Let § be a saturated formation containing W and @ # w C
7(G). Then G is a mw-quasi-§-group if and only if for every §-eccentric G-chief
factor H/ K between ®(Fy(G)) and F} (G) of order divisible by at least one prime
in 7, the automorphisms of H/K induced by all elements of G are inner.

In particular, if we let = = {p}, then we directly obtain the following corollary.

CoroLLARY 1.4. Let § be a saturated formation containing ) and p a prime.
Then G is a p-quasi-§-group if and only if for every §-eccentric G-chief factor
H/K between ®(F,(G)) and F, (G) of order divisible by p, the automorphisms
of H/K induced by all elements of G are inner.

In the above Theorem and Corollary, F,(G) (respectively, F(G)) is the
p-Fitting subgroup of G (respectively, the w-Fitting subgroup of G), that is, the
maximal normal p-nilpotent subgroup of G (respectively, the maximal normal
w-nilpotent subgroup of G); F7(G) is the product of all normal p-quasinilpotent
subgroups of G and F}(G) is the product of all normal w-quasinilpotent sub-
groups of G. By the definitions of Z,n(G) and Z,x(G), itis clear that Z,5n (G) <
Fy(G) and Zzn(G) < F;(G). Recall that a class § of groups is called a Fitting
formation if § is both a formation and a Fitting class (see [2, p. 276]). The follow-
ing three propositions are the main steps of the proof of Theorem 1.3.
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ProposiTioN 1.5. The class M of all p-quasinilpotent groups is a Fitting
Jormation.

ProrosiTioN 1.6. The class N of all w-quasinilpotent groups is a Fitting
Jormation.

The following results follow directly from Proposition 1.5 and Proposition 1.6.

CoroLLary 1.7. F(G) is the largest normal p-quasinilpotent subgroup of G,
and F}(G) is the largest normal m-quasinilpotent subgroup of G.

Clearly, Fy(G) and F;;(G) are characteristic subgroups of G. We call F;(G)
and F}(G) the generalized p-Fitting subgroup and the generalized x-Fitting
subgroup of G, respectively.

ProrosiTiON 1.8. FX(G/On (G)) = F}X(G)/Ox(G).
In particular, if we let 7 = {p}, then we directly obtain the following corollary.

Cororrary 1.9 ([1, Lemma 2.10(2)]). F;(G/O0p(G)) = F;(G)/Op (G).

2. Preliminaries

Recall that a group G is called semisimple if G is the direct product of non-abelian
simple groups (see [9, Chapter X, Definition 13.5]). Let 7(F) = (g5 7(G).

Lemma 2.1 ([3, Chapter I, Theorem 3.7, Theorem 3.12 and Corollary 3.13]).
Let § be a normally hereditary saturated formation containing N, p € n(§) and
@ # n C w(G). Then:

(1) the classes §, and § are normally hereditary solubly saturated formations;
(2) a group G is a w-quasi-§-group if and only if G/ Z5(G) is semisimple and

the order of each composition factor of G/ Z 5(G) is divisible by at least one
prime p € 1.

Lemma 2.2 ([5, Lemma 2.4] or [3, Chapter I, Lemma 3.5]). Let H/K be a
chief factor of G. Suppose that the automorphism of H/ K induced by an element
g € G isinner. Then gK € (H/K)Cg/x(H/K).
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LemMma 2.3 ([7, Lemmas 2.13 and 2.14] or [3, Chapter I, Proposition 1.15 and
Lemma 2.26]). Let § be a saturated (solubly saturated) formation and f the
canonical local (the canonical composition, respectively) satellite of §.

(1) A G-chief factor H/ K is §-central in G if and only if G/Cg(H/K) € f(p)
in the case where H/K is a abelian p-group, and G/Cg(H/K) € § in the
case where H/ K is non-abelian.

(2) Let E be a normal p-subgroup of G. Then E < Zz(G) if and only if
G/Cg(E) € f(p).

LemMma 2.4 ([3, Chapter I, Proposition 3.6] or [5, Proposition 2.5]). Let § =
LF(f) a saturated formation, where f is the canonical local satellite of § and
0 # w < n(F). Then the canonical composition satellite f of T satisfies
£2(p) = f(p) = ®,f(p) < § for all primes p € = and £(0) = §% = f(p)
for all primes p ¢ .

LemwMma 2.5 ([7, Theorem A(ii)], see also [3, Chapter I, Theorem 2.8(ii)]). Let
§ be any formation and E a normal subgroup of G. If F*(E) < Zz(G), then
E < Z3(G).

LemMma 2.6 ([4, Theorems 1.8.20 and 1.8.23]). (1) G is w-nilpotent if and only
if G has a normal -complement, and any Hall w-subgroup is nilpotent.

(2) Fx(G) S Oxn(G).

3. Proofs of the main theorems

ProoF oF ProposiTiON 1.5. By Lemma 2.1(1), 917 is a normally hereditary
solubly saturated formation. So we only need to prove that if M and N are normal
p-quasinilpotent subgroups of G, then M N is also a p-quasinilpotent subgroup
of G. Assume that the assertion is false and let G be a counterexample of minimal
order. We proceed via the following steps.

(1)G =MN.

Assume that M N < G. Then the choice of G implies that M N is p-quasinilpo-
tent, a contradiction. Thus (1) holds.

2) M NN > 1 and there exists a unique minimal normal subgroup L of G
contained in M N N. Moreover, G/L € ‘ﬁ;.

IfM NN =1,then G = M x N. It follows that G is p-quasinilpotent since
‘J‘(; is a formation. This contradiction shows that M N N > 1. Let L be a minimal
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normal subgroup of G containedin M N N. Then G/L = (M/L)(N/L) and both
M/L and N/L are p-quasinilpotent. So G/ L is p-quasinilpotent by the choice of
G, thatis, G/L € 9. If G has another minimal normal subgroup K contained in
M N N, then L N K = 1 and, analogously, we have G/ K € 917. In this case, we
have G € M7 for G = G/(L N K) = G/L x G/K. This contradiction shows that
L is the unique minimal normal subgroup of G contained in M N N.

(3) L is a non-abelian group of order divisible by p.

If p 4 |L|, then G has anormal series such that all G-chief factors in this series
of order divisible by p are above L. Note that G/L € 917. By the Jordan-Holder
theorem, we have that G € 97, a contradiction. Hence p | [L].

Assume that L is abelian and let A/ B be any M -chief factor below L.If A/B is
Ot-eccentric in M, then M € 917 implies that the automorphisms of 4/B induced
by all elements of M are inner. By Lemma 2.2, M/B = (A/B)Cp/p(A/B).
This implies that M/B = Cuy/p(A/B), that is, A/B is M-central in M. This
contradiction shows that every M -chief factor of L is 91-central, so L < Z,(M).
Note that the canonical local satellite F of 91 satisfies F(qg) = &, for any prime
q (see [3, p.3]). Hence M/Cy(L) € &, by Lemma 2.3(2). Moreover, by the
G-isomorphism M/Cpy (L) = M/(M N Cg(L)) = MCg(L)/Cg(L) we get
MCg(L)/Cg(L) € &,. Analogously, NCg(L)/Cg(L) € ®,. This implies
that G/Cg(L) = MCg(L)/Cg(L) - NCg(L)/Cg(L) € &,. Consequently,
L < Z(G) by Lemma 2.3(2) again. But since L is a minimal normal subgroup
of G, we have that L < Z(G). Hence the automorphism of L induced by any
element of G is the identity. It follows from (2) that G € ‘ﬁ;. This contradiction
implies that L is non-abelian.

(4) The automorphism of L induced by an elements of M or N is inner.

By (2) and 3), L = M; x My x -+ x My = Ny x Ny x --- x N;, where
My, M,, ..., Mg are M-isomorphism non-abelian minimal normal subgroups of
M and N3, N,, ..., N; are N-isomorphism minimal normal subgroups of N for
some integers s and ¢. Also, p divides the order of M; fori = 1,2,...,s5 by (3)
again. Obviously, M; is M-eccentric in M. By the definition, the automorphisms
of M; induced by all elements of M are inner. Hence for every element m € M
and every i € {1,2,...,s}, there exists an element m; € M; such that x]" = xlmi
for any x; € M;. Now assume that (x,x2,...,x5) € L, where x; € M, for
i=1,2,...,s. Then

(X1, X2, ..., x0)" = (X7, x5, ... xy)
= (x]" Xy, x]

= (X1, X2, .. ”xs)(mwru ----- ms)
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Since (my,ma,...,ms) € My x My x---x My = L, we see that the automorphism
of L induced by m € M is inner. This shows that the automorphisms of L induced
by all elements of M are inner. With a similar argument, we can prove that the
automorphisms of L induced by all elements of N are inner.

(5) The final contradiction.

For any g € G, by (1) we may assume that g = mn € G, for some m € M and
n € N. By (4), there exists two elements /; and /, of L such that for any x € L,
x™ = xM and x* = x2. Hence x8 = x™" = x"12 for any x € L. This show
that the automorphism of L induced by g is inner. Now, in view of (2) and the
Jordan—Holder theorem, we obtain that G € 91;. This contradiction completes the
proof. O

Proor oF PropositioN 1.6. Clearly, 07 = ()¢, 91;. Since the intersection
of Fitting formations is a Fitting formation, 91} is a Fitting formation by the
Proposition 1.5 U

Proor oF ProprosiTioN 1.8. By Corollary 1.7, F}(G) is m-quasinilpotent.
From the definition of w-quasinilpotent groups, we see that FX(G)/ O,/ (G) <
FX(G/Ox(G)). Now let F}(G/Ox/(G)) = T/Ox/(G), then T/ O (G) € N by
Corollary 1.7 again. As O,/ (G) is a 7’-group, T € N by the Jordan—Holder theo-
rem. Hence F;(G/O, (G)) < F}(G)/ Oy (G). It follows that FX(G/O, (G)) =
F}(G)/0x(G). O

Proor oF THEOREM 1.3. The necessity is obvious. We only need to prove the
sufficiency. Suppose that the assertion is false and let G be a counterexample of
minimal order. Let F = F(G) and F* = F}(G). We proceed via the following
steps.

(1) F7(G/®(F)) = F*/®(F).

By Lemma 2.1(1) and Corollary 1.7, we have that F*/®(F) < FY(G/®(F)).
Let F(G/®(F)) =T/®(F). By Lemma 2.6, F = N x H, where N = O»/(G)
and H a nilpotent Hall w-subgroup of F. By Proposition 1.6 and Corollary 1.7,
(T/N)/(®(F)N/N) € 2. Since ®(F)N/N < ®(F/N) (see [2, Chapter A,
Theorem 9.2(e)]), (T/N)/P(F/N) € M. Note that F/N = H is nilpotent, and
so H is soluble. Hence by Lemma 2.1(1), T/N € 9M%. But as N is a n’-group,
we have T' € 917 by the Jordan—-Holder theorem. This shows that F7 (G/®(F)) <
F*/®(F). Thus (1) holds.
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(2) ®(F) = 1, so for every §-eccentric G-chief factor H/ K below F* of order
divisible by at least one prime in 7, every automorphism of H/K induced by an
element of G is inner.

In view of (1) and the hypothesis, for every §-eccentric G/ ®(F)-chief factor
H/K below F}(G/®(F)) of order divisible by at least one prime in 7, every
automorphism of H/K induced by an element of G/ ®(F) is inner. This implies
that G/ ®(F) satisfies the hypothesis. If ®(F) > 1, then the choice of G implies
that G/ ®(F) € §». Using the symbolsin (1), F = N xH. With a similar argument
as in (1), we have that (G/N)/(®(F)N/N) € §» and ®(F)N/N < ®(F/N).
Hence (G/N)/®(F/N) € 3F;. Therefore, G/N € §F, by the isomorphism
F/N =~ H and Lemma 2.1(1). Note that N is n’-group. By the Jordan—Hd6lder
theorem, G € §». This contradiction shows that ®(F) = 1.

(3) Ox/(G) =1, 50 Fr(G) € 0:(G).

Assume that O,/(G) > 1. By Proposition 1.8, F}(G/Ox/(G)) = F*/ 0/ (G).
Thus by (2), for every §-eccentric G/ O,/ (G)-chief factor H/K of F}(G/Ox/(G))
of order divisible by at least one prime in 7, every automorphism of H/K induced
by an element of G/O5/(G) is inner. This implies that G/ O,/ (G) satisfies the
hypothesis for G. The choice of G implies that G/O,/(G) € ;. and consequently
G € 3. This contradiction shows that O,/(G) = 1. Thus by Lemma 2.6(2),
Fz(G) € 07(G).

(4) The order of each G -chief factor below F* is divisible by at least one prime
inm.

By Lemma 2.1(2) and Corollary 1.7, F*/Z m(F™*) is semisimple and the
order of each composition factor of F*/Z,n(F*) is divisible by at least prime
in . Since Zn(F*) < Fr(F*) < Ox(F*) < 0,(G) by 3), F*/0:(G) is
semisimple and the order of each composition factor of F*/0,(G) is divisible by
at least one prime in . Hence we have (4).

(5) F* < Zz+(G), which gives the final contradiction.

By Lemmas 2.1(1) and 2.4, §» is a solubly saturated formation and so it
has the unique canonical composition satellite /¥ satistying f*(p) = f(p) =
&, f(p) € § for all primes p € 7 and f}(0) = §; = f,7(p) for all primes
p ¢ n. Let H/K be a G-chief factor below F*. Assume that H/K is §-eccentric
in G. Then by (4) and the hypothesis, every automorphism of H/K induced by
an element of G is inner. Hence by Lemma 2.2, G/K = (H/K)Gg/k(H/K).
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If H/K is abelian, then it is a p-group for some p € = by (4), and G/K =
Gg/k(H/K). This implies that G/Gg(H/K) = (G/K)/Gg/k(H/K) =1 €
/7 (p). Now assume that H /K is non-abelian. Then G/K = H/K xGg/x(H/K)
and H/K is a direct product of some isomorphism non-abelian simple groups.
In this case, H/K is semisimple. Hence H/K is quasinilpotent (see [9, p.125]),
and so H/K € M* < §r. Therefore G/Gg(H/K) € 5 = f7F(0) by the
G-isomorphism G/Gg(H/K) = (G/K)/Gg/k(H/K) = H/K. Combining
with Lemma 2.3(1), the above shows that H/K is §-central in G. Hence F* <
Z5+(G). Butsince F*(G) < F7(G), we obtain that F*(G) < Zz= (G). It follows
from by Lemma 2.5 and 2.1(1) that G < Zzx(G). Consequently, G € §. The
final contradiction completes the proof. |
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