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On an open problem about �-quasi-F-groups

Zhang, Chi (�) – Zhang, Li (��) – Huang, Jianhong (���)

Abstract – Let F be a class of finite groups, p a prime and � a set of some primes.

A finite group G is called a p-quasi-F-group (respectively, by �-quasi-F-group) pro-

vided that for every F-eccentric G-chief factor H=K of order divisible by p (respec-

tively, by at least one prime in �), the automorphisms of H=K induced by all elements

of G are inner. In this paper, we obtain the characterizations of p-quasi-F-groups and

�-quasi-F-groups, which give a positive answer to an open problem in the book [3].

Mathematics Subject Classification (2010). 20D10, 20D15, 20D20.

Keywords. Finite groups, p-quasinilpotent group, fitting formation, p-quasi-F-group,

�-quasi-F-group.

1. Introduction

Throughout this paper, all groups are finite. G always denotes a group, p is a prime

and �.G/ is the set of all prime divisors of jGj. As usual, we use Gp and N to

denote the class of all p-groups and the class of all nilpotent groups, respectively.

All unexplained notation and terminology are standard, as in [2, 3, 9].
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Recall that a class F of groups is called a formation if F is closed under

taking homomorphic images and subdirect products. A formation F is said to

be (1) saturated (solubly saturated) if G 2 F whenever G=ˆ.G/ 2 F (respec-

tively, G=ˆ.N / 2 F for some soluble normal subgroup N of G); (2) hered-

itary (normally hereditary) if H 2 F whenever H � G 2 F (respectively,

H E G 2 F). It is well known that a G-chief factor H=K is called F-central in G

provided that H=K Ì G=CG.H=K/ 2 F. Otherwise, it is called F-eccentric. Fol-

lowing [8], a normal subgroup N of G is said to be pF-hypercentral (respectively,

�F-hypercentral) in G if either N D 1 or N ¤ 1 and every G-chief factor below

N of order divisible by p (respectively, by at least one prime in �) is F-central

in G. The symbol ZpF.G/ denotes the pF-hypercentre of G, that is, the product

of all normal pF-hypercentral subgroups of G, and the symbol Z�F.G/ denotes

the �F-hypercentre of G, that is, the product of all normal �F-hypercentral sub-

groups of G. Also, the F-hypercentre of G denoted by ZF.G/ (see [2, p. 389]), is

the product of all normal subgroups N of G, where N is pF-hypercentral in G for

every prime p. In particular, if F D N, then ZN.G/ is the hypercentre of G and

is often denoted by Z1.G/.

A group G is said to be quasinilpotent [9, Chapter X, Definition 13.2] if for

every G-chief factor H=K and x 2 G, x induces an inner automorphism on H=K.

A group G is said to be p-quasinilpotent [10] if for every G-chief factor R=L of

order divisible by p and x 2 G, x induces an inner automorphism on R=L.

As a important generalization of quasinilpotent groups and p-quasinilpotent

groups, Guo and Skiba [5, 6] introduced the following notion.

Definition 1.1 ([5, 6], see also [3, Chapter 1, Definition 3.2]). Let F be a class

of groups, G a group and p a prime. Assume that ; ¤ � � �.G/. G is called a

p-quasi-F-group (respectively, �-quasi-F-group) if for every F-eccentric G-chief

factor H=K of order divisible by p (respectively, at least one prime in �), the

automorphisms of H=K induced by all elements of G are inner. In particular, if

� D P is the set of all primes, then a �-quasi-F-group is called a quasi-F-group.

Following [5, 3], we use F�, F�

p and F�

� to denote the class of all quasi-F-

groups, p-quasi-F-groups and �-quasi-F-groups, respectively. Clearly, F� � F�

� ,

and F�

� D
T

p2� F�

p. For the details, one can refer to [3, Chapter I, §1.3].

In [5], Guo and Skiba have given the general theory of the quasi-F-groups

and obtained some characterizations of quasisoluble groups and quasisupersoluble

groups. In particular, they proved the following theorem.
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Theorem 1.2 ([5, Theorem B]). Let F be a saturated formation containing N.

Then G is a quasi-F-group if and only if for every F-eccentric G-chief factor

H=K between ˆ.F.G// and F �.G/, the automorphisms of H=K induced by all

elements of G are inner.

Here, F �.G/ is the generalized Fitting subgroup of G (see [9, Chapter X, Def-

inition 13.9]) , that is, the set of all elements of G which induce inner automor-

phisms on every G-chief factor. Clearly, F �.G/ is a characteristic subgroup of G.

In connection with this, the author in the book [3] proposed the following open

problem.

Problem ([3, Chapter I, Problem 6.1]). Could we generalize the result in

Theorem 1.2 to p-quasi-F-groups and �-quasi-F-groups ‹

The following theorem and its corollary give the affirmative answer to this

problem.

Theorem 1.3. Let F be a saturated formation containing N and ; ¤ � �

�.G/. Then G is a �-quasi-F-group if and only if for every F-eccentric G-chief

factor H=K between ˆ.F�.G// and F �

� .G/ of order divisible by at least one prime

in � , the automorphisms of H=K induced by all elements of G are inner.

In particular, if we let � D ¹pº, then we directly obtain the following corollary.

Corollary 1.4. Let F be a saturated formation containing N and p a prime.

Then G is a p-quasi-F-group if and only if for every F-eccentric G-chief factor

H=K between ˆ.Fp.G// and F �

p .G/ of order divisible by p, the automorphisms

of H=K induced by all elements of G are inner.

In the above Theorem and Corollary, Fp.G/ (respectively, F�.G/) is the

p-Fitting subgroup of G (respectively, the �-Fitting subgroup of G), that is, the

maximal normal p-nilpotent subgroup of G (respectively, the maximal normal

�-nilpotent subgroup of G); F �

p .G/ is the product of all normal p-quasinilpotent

subgroups of G and F �

� .G/ is the product of all normal �-quasinilpotent sub-

groups of G. By the definitions of ZpN.G/ and Z�N.G/, it is clear that ZpN.G/ �

F �

p .G/ and Z�N.G/ � F �

� .G/. Recall that a class F of groups is called a Fitting

formation if F is both a formation and a Fitting class .see [2, p. 276]). The follow-

ing three propositions are the main steps of the proof of Theorem 1.3.
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Proposition 1.5. The class N�

p of all p-quasinilpotent groups is a Fitting

formation.

Proposition 1.6. The class N�

� of all �-quasinilpotent groups is a Fitting

formation.

The following results follow directly from Proposition 1.5 and Proposition 1.6.

Corollary 1.7. F �

p .G/ is the largest normal p-quasinilpotent subgroup of G,

and F �

� .G/ is the largest normal �-quasinilpotent subgroup of G.

Clearly, F �

p .G/ and F �

� .G/ are characteristic subgroups of G. We call F �

p .G/

and F �

� .G/ the generalized p-Fitting subgroup and the generalized �-Fitting

subgroup of G, respectively.

Proposition 1.8. F �

� .G=O�0.G// D F �

� .G/=O�0.G/.

In particular, if we let � D ¹pº, then we directly obtain the following corollary.

Corollary 1.9 ([1, Lemma 2.10(2)]). F �

p .G=Op0.G// D F �

p .G/=Op0 .G/.

2. Preliminaries

Recall that a group G is called semisimple if G is the direct product of non-abelian

simple groups .see [9, Chapter X, Definition 13.5]). Let �.F/ D
T

G2F �.G/.

Lemma 2.1 ([3, Chapter I, Theorem 3.7, Theorem 3.12 and Corollary 3.13]).

Let F be a normally hereditary saturated formation containing N, p 2 �.F/ and

; ¤ � � �.G/. Then:

(1) the classes F�

p and F�

� are normally hereditary solubly saturated formations;

(2) a group G is a �-quasi-F-group if and only if G=Z�F.G/ is semisimple and

the order of each composition factor of G=Z�F.G/ is divisible by at least one

prime p 2 � .

Lemma 2.2 ([5, Lemma 2.4] or [3, Chapter I, Lemma 3.5]). Let H=K be a

chief factor of G. Suppose that the automorphism of H=K induced by an element

g 2 G is inner. Then gK 2 .H=K/CG=K.H=K/.
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Lemma 2.3 ([7, Lemmas 2.13 and 2.14] or [3, Chapter I, Proposition 1.15 and

Lemma 2.26]). Let F be a saturated .solubly saturated/ formation and f the

canonical local .the canonical composition, respectively/ satellite of F.

(1) A G-chief factor H=K is F-central in G if and only if G=CG.H=K/ 2 f .p/

in the case where H=K is a abelian p-group, and G=CG.H=K/ 2 F in the

case where H=K is non-abelian.

(2) Let E be a normal p-subgroup of G. Then E � ZF.G/ if and only if

G=CG.E/ 2 f .p/.

Lemma 2.4 ([3, Chapter I, Proposition 3.6] or [5, Proposition 2.5]). Let F D

LF.f / a saturated formation, where f is the canonical local satellite of F and

; ¤ � � �.F/. Then the canonical composition satellite f �

� of F�

� satisfies

f �

� .p/ D f .p/ D Gpf .p/ � F for all primes p 2 � and f �

� .0/ D F�

� D f �

� .p/

for all primes p … � .

Lemma 2.5 ([7, Theorem A(ii)], see also [3, Chapter I, Theorem 2.8(ii)]). Let

F be any formation and E a normal subgroup of G. If F �.E/ � ZF.G/, then

E � ZF.G/.

Lemma 2.6 ([4, Theorems 1.8.20 and 1.8.23]). (1) G is �-nilpotent if and only

if G has a normal �-complement, and any Hall �-subgroup is nilpotent.

(2) F� .G/ � O��0 .G/.

3. Proofs of the main theorems

Proof of Proposition 1.5. By Lemma 2.1(1), N�

p is a normally hereditary

solubly saturated formation. So we only need to prove that if M and N are normal

p-quasinilpotent subgroups of G, then MN is also a p-quasinilpotent subgroup

of G. Assume that the assertion is false and let G be a counterexample of minimal

order. We proceed via the following steps.

(1) G D MN .

Assume that MN < G. Then the choice of G implies that MN is p-quasinilpo-

tent, a contradiction. Thus (1) holds.

(2) M \ N > 1 and there exists a unique minimal normal subgroup L of G

contained in M \ N . Moreover, G=L 2 N�

p .

If M \ N D 1, then G D M � N . It follows that G is p-quasinilpotent since

N�

p is a formation. This contradiction shows that M \ N > 1. Let L be a minimal



190 Zhang, C. – Zhang, L. – Huang, J.

normal subgroup of G contained in M \ N . Then G=L D .M=L/.N=L/ and both

M=L and N=L are p-quasinilpotent. So G=L is p-quasinilpotent by the choice of

G, that is, G=L 2 N�

p. If G has another minimal normal subgroup K contained in

M \ N , then L \ K D 1 and, analogously, we have G=K 2 N�

p. In this case, we

have G 2 N�

p for G Š G=.L \ K/ Š G=L � G=K. This contradiction shows that

L is the unique minimal normal subgroup of G contained in M \ N .

(3) L is a non-abelian group of order divisible by p.

If p − jLj, then G has a normal series such that all G-chief factors in this series

of order divisible by p are above L. Note that G=L 2 N�

p . By the Jordan–Hölder

theorem, we have that G 2 N�

p , a contradiction. Hence p j jLj.

Assume that L is abelian and let A=B be any M -chief factor below L. If A=B is

N-eccentric in M , then M 2 N�

p implies that the automorphisms of A=B induced

by all elements of M are inner. By Lemma 2.2, M=B D .A=B/CM=B.A=B/.

This implies that M=B D CM=B.A=B/, that is, A=B is N-central in M . This

contradiction shows that every M -chief factor of L is N-central, so L � Z1.M/.

Note that the canonical local satellite F of N satisfies F.q/ D Gq for any prime

q (see [3, p. 3]). Hence M=CM .L/ 2 Gp by Lemma 2.3(2). Moreover, by the

G-isomorphism M=CM .L/ D M=.M \ CG.L// Š MCG.L/=CG.L/ we get

MCG.L/=CG.L/ 2 Gp . Analogously, NCG.L/=CG.L/ 2 Gp. This implies

that G=CG.L/ D MCG.L/=CG.L/ � NCG.L/=CG.L/ 2 Gp . Consequently,

L � Z1.G/ by Lemma 2.3(2) again. But since L is a minimal normal subgroup

of G, we have that L � Z.G/. Hence the automorphism of L induced by any

element of G is the identity. It follows from (2) that G 2 N�

p. This contradiction

implies that L is non-abelian.

(4) The automorphism of L induced by an elements of M or N is inner.

By (2) and (3), L D M1 � M2 � � � � � Ms D N1 � N2 � � � � � Nt , where

M1; M2; : : : ; Ms are M -isomorphism non-abelian minimal normal subgroups of

M and N1; N2; : : : ; Nt are N -isomorphism minimal normal subgroups of N for

some integers s and t . Also, p divides the order of Mi for i D 1; 2; : : : ; s by (3)

again. Obviously, Mi is N-eccentric in M . By the definition, the automorphisms

of Mi induced by all elements of M are inner. Hence for every element m 2 M

and every i 2 ¹1; 2; : : : ; sº, there exists an element mi 2 Mi such that xm
i D x

mi

i

for any xi 2 Mi . Now assume that .x1; x2; : : : ; xs/ 2 L, where xi 2 Mi for

i D 1; 2; : : : ; s. Then

.x1; x2; : : : ; xs/
m D .xm

1 ; xm
2 ; : : : ; xm

s /

D .x
m1

1 ; x
m2

2 ; : : : ; xms

s /

D .x1; x2; : : : ; xs/
.m1;m2;:::;ms/:
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Since .m1; m2; : : : ; ms/ 2 M1 �M2 �� � ��Ms D L, we see that the automorphism

of L induced by m 2 M is inner. This shows that the automorphisms of L induced

by all elements of M are inner. With a similar argument, we can prove that the

automorphisms of L induced by all elements of N are inner.

(5) The final contradiction.

For any g 2 G, by (1) we may assume that g D mn 2 G, for some m 2 M and

n 2 N . By (4), there exists two elements l1 and l2 of L such that for any x 2 L,

xm D xl1 and xn D xl2 . Hence xg D xmn D xl1l2 for any x 2 L. This show

that the automorphism of L induced by g is inner. Now, in view of (2) and the

Jordan–Hölder theorem, we obtain that G 2 N�

p . This contradiction completes the

proof. �

Proof of Proposition 1.6. Clearly, N�

� D
T

p2� N�

p. Since the intersection

of Fitting formations is a Fitting formation, N�

� is a Fitting formation by the

Proposition 1.5 �

Proof of Proposition 1.8. By Corollary 1.7, F �

� .G/ is �-quasinilpotent.

From the definition of �-quasinilpotent groups, we see that F �

� .G/=O�0.G/ �

F �

� .G=O�0.G//. Now let F �

� .G=O�0 .G// D T=O�0.G/, then T=O�0.G/ 2 N�

� by

Corollary 1.7 again. As O�0.G/ is a � 0-group, T 2 N�

� by the Jordan–Hölder theo-

rem. Hence F �

� .G=O�0 .G// � F �

� .G/=O�0.G/. It follows that F �

� .G=O�0.G// D

F �

� .G/=O�0.G/. �

Proof of Theorem 1.3. The necessity is obvious. We only need to prove the

sufficiency. Suppose that the assertion is false and let G be a counterexample of

minimal order. Let F D F�.G/ and F � D F �

� .G/. We proceed via the following

steps.

(1) F �

� .G=ˆ.F // D F �=ˆ.F /.

By Lemma 2.1(1) and Corollary 1.7, we have that F �=ˆ.F / � F �

� .G=ˆ.F //.

Let F �

� .G=ˆ.F // D T=ˆ.F /. By Lemma 2.6, F D N Ì H , where N D O�0.G/

and H a nilpotent Hall �-subgroup of F . By Proposition 1.6 and Corollary 1.7,

.T=N /=.ˆ.F /N=N / 2 N�

� . Since ˆ.F /N=N � ˆ.F=N / (see [2, Chapter A,

Theorem 9.2(e)]), .T=N /=ˆ.F=N / 2 N�

� . Note that F=N Š H is nilpotent, and

so H is soluble. Hence by Lemma 2.1(1), T=N 2 N�

� . But as N is a � 0-group,

we have T 2 N�

p by the Jordan–Hölder theorem. This shows that F �

� .G=ˆ.F // �

F �=ˆ.F /. Thus (1) holds.
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(2) ˆ.F / D 1, so for every F-eccentric G-chief factor H=K below F � of order

divisible by at least one prime in � , every automorphism of H=K induced by an

element of G is inner.

In view of (1) and the hypothesis, for every F-eccentric G=ˆ.F /-chief factor

H=K below F �

� .G=ˆ.F // of order divisible by at least one prime in � , every

automorphism of H=K induced by an element of G=ˆ.F / is inner. This implies

that G=ˆ.F / satisfies the hypothesis. If ˆ.F / > 1, then the choice of G implies

that G=ˆ.F / 2 F�

� . Using the symbols in (1), F D N ÌH . With a similar argument

as in (1), we have that .G=N /=.ˆ.F /N=N / 2 F�

� and ˆ.F /N=N � ˆ.F=N /.

Hence .G=N /=ˆ.F=N / 2 F�

� . Therefore, G=N 2 F�

� by the isomorphism

F=N Š H and Lemma 2.1(1). Note that N is � 0-group. By the Jordan–Hölder

theorem, G 2 F�

� . This contradiction shows that ˆ.F / D 1.

(3) O�0.G/ D 1, so F�.G/ � O�.G/.

Assume that O�0.G/ > 1. By Proposition 1.8, F �

� .G=O�0.G// D F �=O�0.G/.

Thus by (2), for every F-eccentric G=O�0.G/-chief factor H=K of F �

� .G=O�0 .G//

of order divisible by at least one prime in � , every automorphism of H=K induced

by an element of G=O�0.G/ is inner. This implies that G=O�0.G/ satisfies the

hypothesis for G. The choice of G implies that G=O�0.G/ 2 F�

� and consequently

G 2 F�

� . This contradiction shows that O�0.G/ D 1. Thus by Lemma 2.6(2),

F� .G/ � O�.G/.

(4) The order of each G-chief factor below F � is divisible by at least one prime

in � .

By Lemma 2.1(2) and Corollary 1.7, F �=Z�N.F �/ is semisimple and the

order of each composition factor of F �=Z�N.F �/ is divisible by at least prime

in � . Since Z�N.F �/ � F�.F �/ � O�.F �/ � O�.G/ by (3), F �=O�.G/ is

semisimple and the order of each composition factor of F �=O�.G/ is divisible by

at least one prime in � . Hence we have (4).

(5) F � � ZF�

�
.G/, which gives the final contradiction.

By Lemmas 2.1(1) and 2.4, F�

� is a solubly saturated formation and so it

has the unique canonical composition satellite f �

� satisfying f �

� .p/ D f .p/ D

Gpf .p/ � F for all primes p 2 � and f �

� .0/ D F�

� D f �

� .p/ for all primes

p … � . Let H=K be a G-chief factor below F �. Assume that H=K is F-eccentric

in G. Then by (4) and the hypothesis, every automorphism of H=K induced by

an element of G is inner. Hence by Lemma 2.2, G=K D .H=K/GG=K.H=K/.
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If H=K is abelian, then it is a p-group for some p 2 � by (4), and G=K D

GG=K.H=K/. This implies that G=GG.H=K/ Š .G=K/=GG=K.H=K/ D 1 2

f �

� .p/. Now assume that H=K is non-abelian. Then G=K D H=K �GG=K.H=K/

and H=K is a direct product of some isomorphism non-abelian simple groups.

In this case, H=K is semisimple. Hence H=K is quasinilpotent .see [9, p. 125]),

and so H=K 2 N� � F�

� . Therefore G=GG.H=K/ 2 F�

� D f �

� .0/ by the

G-isomorphism G=GG.H=K/ Š .G=K/=GG=K.H=K/ Š H=K. Combining

with Lemma 2.3(1), the above shows that H=K is F�

�-central in G. Hence F � �

ZF�

�
.G/. But since F �.G/ � F �

� .G/, we obtain that F �.G/ � ZF�

�
.G/. It follows

from by Lemma 2.5 and 2.1(1) that G � ZF�

�
.G/. Consequently, G 2 F�

� . The

final contradiction completes the proof. �
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