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Some sufficient conditions for p-nilpotence of a finite group
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ABsTRACT — In this paper, we give some new characterizations of finite p-nilpotent groups
by using the notion of J{C-subgroups and extend several recent results.
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1. Introduction

In the present paper, we consider only finite groups. We use conventional notions
and notation, as in Huppert (see [9]). G always denotes a finite group, |G| is the
order of G, p denotes a fixed prime, i is the class of all supersoluble groups and
Z(G) is the product of all the normal subgroups of G whose G-chief factors
have prime order. A normal subgroup £ of G is said to be hypercyclically (resp.
p-hypercyclically) embedded in G if every chief factor (resp. p-chief factor) of
G below E is cyclic. If G/L is a supersoluble (resp. p-supersoluble), then G
is supersoluble (resp. p-supersoluble) if and only if L is hypercyclically (resp.
p-hypercyclically) embedded in G.

A subgroup H of G is said to be C-normal in G if G has a normal subgroup
T suchthat G = HT and H N T < Hg, where Hg is the normal core of
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H in G (see [16]). A subgroup H of G is said to be an H-subgroup of G if
H& N Ng(H) < H for all g € G (see [3]). Many people studied the structure of
finite groups based on those two concepts and a lot of research has been given; see
for example [1, 2, 3, 4, 6, 7, 11, 15, 16]. Recently, Wei and Guo (see [18]) introduced
the following concept:

DEerintTION 1.1. A subgroup H of G is said to be an JHC -subgroup of G if
there exists a normal subgroup 7' of G suchthat G = HT and HENNr(H) < H
forall g € G.

It is clear that each of C-normal subgroup and H-subgroup implies that
HC -subgroup. The converse does not hold in general, see Examples 1 and 2 in
[18]. In [17, 18], some conditions for a group to be supersolvable are given and
many known results are generalized. In this paper, we give some new criteria for
p-nilpotence of a finite group by assuming that some kind of subgroups having
some fixed prime power order are H{C-subgroups.

2. Preliminaries

LemMma 2.1 ([18, Lemma 2.2]). Suppose that H is an HC -subgroup of G.
(1) If H < K <G, then H is an HC -subgroup of K.
2) If N <Gand N < H <G, then H/N is an HC -subgroup of G/N.

(3) If H is a p-subgroup and N is a normal p’-subgroup of G, then HN is an
HC-subgroup of G and HN/N is an HC -subgroup of G/N.

Proor. (1) and (2) is [18, Lemma 2.3]. (3) is [18, Lemma 2.4]. O

Lemma 2.2 ([17, Lemma 2.8]). Let p be the smallest prime dividing |G| and P
a Sylow p-subgroup of G. If P is cyclic or P has a subgroup D with1 < |D| < | P|
such that every subgroup of P of order |D| or 4 (if |D| = 2) is an HC -subgroup
of G, then G is p-nilpotent.

LemMma 2.3. Let P be a nontrivial normal p-subgroup of G. If there exists a
subgroup D of P with 1 < |D| < | P| such that every subgroup of P of order |D |
or 4 (if ID| = 2) is C-normal in G, then P < Z«(G).

Proor. It is a corollary of [13, Theorem]. O

LemMma 2.4 ([18, Lemma 2.5]). Let K be a normal subgroup of G and H a
normal subgroup of K. If H is an HC -subgroup of G, then H is C-normal in G.
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LemMma 2.5 ([3, Theorem 6 (2)]). Let H be an H-subgroup of G. If H is
subnormal in G, then H is normal in G.

LemMa 2.6. Let P be a nontrivial normal p-subgroup of G. If there exists a
subgroup D of P with 1 < |D| < | P| such that every subgroup of P of order |D|
or 4 (if |D| = 2) is an H-subgroup of G, then P < Z(G).

Proor. By Lemma 2.5, every subgroup of P of order |D| or 4 (if | D| = 2) is
normal in G. In view of Lemma 2.3, P < Z(G). O

LemwMma 2.7. Let P be a nontrivial normal p-subgroup of G. If every maximal
subgroup of P is an HC -subgroup of G, then P < Z(G).

Proor. By Lemma 2.4, every maximal subgroup of P is C-normal in G.
In view of Lemma 2.3, P < Z(G). O

LemMma 2.8. Let P be a nontrivial normal p-subgroup of G. If there exists a
subgroup D of P with 1 < |D| < |P| such that every subgroup of P of order |D |
or 4 (if |ID| = 2) is an HC -subgroup of G, then P < Zy(G).

Proor. If every subgroup of P of order | D| or 4 (if | D| = 2) is an H-subgroup
of G, then P < Zy(G) by Lemma 2.6. Hence we may assume that there exists
a subgroup H of P with |H| = |D| such that H is not an JH-subgroup of G. By
hypothesis, there exists a proper normal subgroup K of G such that G = HK and
H& N Nx(H) < H for all g € G. Then we can pick a normal subgroup M of G
such that K < M and |G : M| = p. Obviously, P N M is a maximal subgroup of
P.If |P : D| = p,then P < Zy(G) by Lemma 2.7. Hence we may assume that
|P : D| > p. Then every subgroup of P N M of order |D| or 4 (if |D| = 2) is
an HC-subgroup of G. By induction, P " M < Z«(G). Since |P/P N M| = p,
it follows that P < Z¢(G). O

LemMma 2.9 ([18, Theorem 3.3]). Let P be a Sylow p-subgroup of G. Then G
is p-nilpotent if and only if N (P) is p-nilpotent and every maximal subgroup of
P is an HC-subgroup of G.

Lemma 2.10 ([5, Theorem 8.3.1]). Let P be a Sylow p-subgroup of G, where p
is an odd prime divisor of |G|. Then G is p-nilpotent if and only if Ng(Z(J(P)))
is p-nilpotent, where J(P) is the Thompson subgroup of P.

Lemma 2.11 ([8, Lemma 3.3]). If G is p-supersoluble and O, (G) = 1, then
G is supersoluble.
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For any group G, the generalized Fitting subgroup F*(G) is the set of all
elements x of G which induce an inner automorphism on every chief factor of
G. Clearly, F*(G) is a characteristic subgroup of G (see [10, X, 13]).

Lemma 2.12 ([14, Theorem C]). Let E be a normal subgroup of G. If F*(E)
is hypercyclically embedded in G, then E is also hypercyclically embedded in G.

In the following, we shall denote by F,(G) the p-Fitting subgroup of G.
In fact, F,,(G) = Op p(G).

LemMma 2.13. A p-soluble normal subgroup E of G is p-hypercyclically em-
bedded in G if and only if F,(E) is p-hypercyclically embedded in G.

Proor. We only need to prove the sufficiency. Suppose that the assertion is
false and let (G, E) be a counterexample with |G||E| minimal. We claim that
O,/ (E) = 1. Indeed, since F,(E/Oy(E)) = Fp(E)/Op (E), it is easy to verify
that the hypothesis of the lemma holds for (G/ O, (E), E/Op (E)). If Oy (E) # 1,
then the minimal choice of (G, E) implies that £/O, (E) is p-hypercyclically
embedded in G/O, (E). Clearly O,/ (E) is p-hypercyclically embedded in G.
Therefore, E is p-hypercyclically embedded in G, a contradiction. Since E is
p-soluble and O,/(E) = 1, it follows that F*(E) = F(E) = Fp(E) = O,(E),
and so F*(E) is hypercyclically embedded in G. Applying Lemma 2.12, E is
hypercyclically embedded in G, a contradiction again. O

3. Main Results

THeOREM 3.1. Let L be a p-soluble normal subgroup of G such that G/L
is p-supersoluble, where p is a prime divisor of |G|. Suppose that for a Sylow
p-subgroup P of F,(L), there exists a subgroup D of P such that1 < |D| < |P|
and every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is an
HC-subgroup of G. Then G is p-supersoluble. In particular, if p is the smallest
prime divisor of |G|, then G is p-nilpotent.

Proor. We distinguish two cases.

Casel: Oy (L) # 1.

We consider the factor group G/ O,/ (L). Obviously, (G/Op (L))/(L/Oy (L)) =
G/L is p-supersoluble. Since O,/ (L/O, (L)) = 1, we have

Fp(L/Op (L)) = Op(L/Op (L)) = Fp(L)/Op (L) = POy (L)/Op(L).
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In view of Lemma 2.1(3), every subgroup of F,(L/O, (L)) with order |D| is
an HC-subgroup of G/O, (L). Thus G/O, (L) satisfies the hypothesis of the
theorem. By induction, we have G/O,/ (L) is p-supersoluble and so G is p-
supersoluble.

Casell: Oy (L) = 1.

Obviously, F,(L) = F(L) = O,(L) = P. Applying Lemma 2.8, F,(L) is hyper-
cyclically embedded in G. In particular, F, (L) is p-hypercyclically embedded in
G. In view of Lemma 2.13, L is p-hypercyclically embedded in G. Since G/L is
p-supersoluble by hypothesis, it follows that G is p-supersoluble. |

THEOREM 3.2. Let L be a normal subgroup of G such that G/L is p-super-
soluble, where p is the smallest prime divisor of |L|. Suppose that for a Sylow
p-subgroup P of L, there exists a subgroup D of P such that 1 < |D| < |P| and
every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is an HC -sub-
group of G. Then G is p-supersoluble. In particular, if p is also the smallest prime
divisor of |G|, then G is p-nilpotent.

Proor. By Lemma 2.1(1), it is easy to see that every subgroup H of P with
|H| = |D]| (and order 4 if |D| = 2) is an HC-subgroup of L. Applying
Lemma 2.2, L is p-nilpotent. Then O,/ (L) is the normal Hall p’-subgroup of L.

We distinguish two cases.

Casel: Oy (L) # 1.
We consider the factor group G/ O,/ (L). Obviously,

(G/Op (L))/(L/Op(L)) = G/L

is p-supersoluble. In view of Lemma 2.1(3), every subgroup of PO,/ (L)/O, (L))
with order |D| is an HC-subgroup of G/O,/(L). Thus G/O, (L) satisfies the
hypothesis of the theorem. By induction, we have G/O,/(L) is p-supersoluble
and so G is p-supersoluble.

Casell: Oy (L) = 1.

Then L is a normal p-subgroup of G. Applying Lemma 2.8, L is hypercyclically
embedded in G. Since G/L is p-supersoluble by hypothesis, it follows that G is
p-supersoluble. |
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THEOREM 3.3. Let p be an odd prime divisor of |G|. Suppose that G has a
normal subgroup L such that G/ L is p-nilpotent and P is a Sylow p-subgroup of
L. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup
H of P with |H| = |D|is an HC-subgroup of G and Ng(P) is p-nilpotent, then
G is p-nilpotent.

Proor. Suppose that the theorem is false and let G be a counterexample of
minimal order.

ey

2)

3)

“)

®)

O, (G) = 1.

Denote T = Op(G). If T > 1, consider G/T. It is obvious that
(G/T)/(LT/T) = G/LT is p-nilpotent. Let HT/T be a subgroup of
PT/T with order | D|, where H is asubgroup of P with order | D|. Since H is
an HC-subgroupof G, HT/ T is an HC -subgroup of G/ T by Lemma 2.1(3).
Again, Ng/7(PT/T) = Ng(P)T/T is p-nilpotent since Ng (P) is p-nilpo-
tent. Hence G/ T satisfies the hypothesis of the theorem. The choice of G
implies that G/ T is p-nilpotent, and hence G is p-nilpotent, a contradiction.

Let K be a proper subgroup of G such that with P < K. Then K is
p-nilpotent.

By Lemma 2.1(1), every subgroup H of P with order |D| is an HC -sub-
group of K. Since Ng(P) < Ng(P) and Ng(P) is p-nilpotent, it follows
that Nx (P) is p-nilpotent. Hence K satisfies the hypothesis of the theorem.
Then K is p-nilpotent by the minimal choice of G.

L=gG.

If L < G, then L is p-nilpotent by step (2). Let T be the normal p-com-
plement of L. Then T char L <1 G,so T < G and T = 1 by step (I).
It follows that L = P and G = Ng(P) is p-nilpotent, a contradiction.

0,(G) # 1.

Consider the group Z(J(P)), where J(P) is the Thompson subgroup of P.
If N6 (Z(J(P))) < G, then Ng(Z(J(P)) is p-nilpotent by step (2). Then G
is p-nilpotent by Lemma 2.10, a contradiction. Hence Ng(Z(J(P))) = G
and 1 < Z(J(P)) < 0p(G) < P.

G/0,(G) is p-nilpotent. In particular, G/O,(G) is p-supersoluble.

Let G = G/0,(G), P = P/0,(G), K = Z(J(P)) and G,/0,(G) =
Ng(Z(J(P))).Since 0,(G) = 1, wehave Ng(Z(J(P)) < G.Thus G, < G.
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By step (2), we have Gy is p-nilpotent. Then Ng(Z(J (P)) is p-nilpotent.
Thus G is p-nilpotent by Lemma 2.10.

(6) G = PQ, where Q is a Sylow g-subgroup of G with p > q.

Step (5) shows that G is p-soluble. Then there exists a Sylow g-subgroup
0 of G such that PQ is a subgroup of G for any ¢ € n(G) with ¢ # p by
[5, Theorem 6.3.5]. If PQ < G, then PQ is p-nilpotent by step (1). Hence
0 < C6(0,(G)) < 0,(G) by [12, Theorem 9.3.1], a contradiction. Thus
PQ = G. By virtue of Lemma 2.2, p > g.

(7) |P| > p|Dl|.

This follows from Lemma 2.9.

(8) 0,(G) is a maximal subgroup of P.

By step (5), we may assume that G/ O, (G) has a normal Hall p’-subgroup
T/0p,(G). Obviously, T is normal in G and G/ T is p-group. Then there ex-
ists a normal subgroup M of G suchthat T < M and |G : M| = p. Itis easy
to see that P N M is a maximal subgroup of P and also a Sylow p-subgroup
of M.If No(P N M) < G, then, by step (1), Ng (P N M) is p-nilpotent and
so is Ny (P N M). From step (7) and Lemma 2.1(1), every subgroup H of
P N M with order |D| is an HC -subgroup of M. Consequently, M satis-
fies the hypothesis of our theorem. Hence M is p-nilpotent by the minimal
choice of G. Then G is p-nilpotent. This contradiction shows that P N M is a
normal p-subgroup of G. Since 0,(G) < P, it follows that PNM = O,(G)
and so O,(G) is a maximal of P.

(9) 0,(G) is hypercyclically embedded in G.

By steps (7) and (8), |D| < |O,(G)|. By the hypothesis of the theorem,
every subgroup H of O,(G) with order |D| is an HC-subgroup of G.
Applying Lemma 2.8, we have step (9).

(10) G is supersoluble.

Since G/ O, (G) is p-supersoluble and O, (G) is hypercyclically embedded
in G, it follows that G is p-supersoluble. By Lemma 2.11 and step (1), G is
supersoluble.
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(11) Final contradiction.

Since G possesses a Sylow tower of supersolvable type, it follows that P is
normal in G by step (6). Therefore, G = Ng(P) is p-nilpotent by hypothesis,
a contradiction. O

THEOREM 3.4. Let p be an odd prime divisor of |G|. Suppose that G has a
normal subgroup L such that G/ L is p-nilpotent and P is a Sylow p-subgroup of
L. If there exists a subgroup D of P with 1 < |D| < | P| such that every subgroup
H of P with |H| = |D| is an HC -subgroup of G and Ng(H) is p-nilpotent, then
G is p-nilpotent.

Proor. We consider the following two case.

Casel: L =G.

Assume the theorem is not true and let G be a counterexample of minimal order.
With a similar argument as in steps (1) and (2) of the proof of Theorem 3.3, we
have the following steps (1) and (2).

(1) 0y(G) = 1.

(2) Let K be a proper subgroup of G such that with P < K. Then K is p-
nilpotent.

(3) P is anormal subgroup of G.

If Ng(P) < G, then Ng(P) is p-nilpotent by step (2). Applying Theo-
rem 3.3, G is p-nilpotent. This contradiction implies P is normal in G.

(4) P is hypercyclically embedded in G.

By hypothesis every subgroup H of P with order | D] is an HC -subgroup
of G, then, from Lemma 2.8, (4) holds.

(5) Let N be a minimal normal subgroup of G. Then |N| < |D| < |P|.

In view of step (3), G is p-soluble. Then N is a p-subgroup by step (1) and
so N < P.Byvirtue of step (4), |[N| = p.If [N| = |D|,then G = Ng(N) is
p-nilpotent by the hypothesis of the theorem. This contradiction shows that
IN| < |D].
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(6) Final contradiction.

By Lemma 2.1(2), it is easy to see that G/ N satisfies the hypothesis of the
theorem. Hence G/ N is p-nilpotent by the minimal choice of G. Since the
class of all p-nilpotent groups is a saturated formation, it follows that N is a
unique minimal subgroup of G and ®(G) = 1. Consequently, F(G) = N.
By steps (1) and (3), F(G) = O,(G) = P.Hence N = P, contrary to
step (5).

Casell: L < G.

By Lemma 2.1(1), every subgroup H of P with order |D| is an HC -subgroup
of L. Obviously, N (H) is p-nilpotent. By virtue of Case I, L is p-nilpotent.
It follows that L,/ is the normal Hall p’-subgroup of L. Clearly, L,y < G. If
L, # 1, then it is easy to see that G/ L, satisfies the hypothesis of the theorem
by virtue of Lemma 2.1(3). Hence G/L, is p-nilpotent by induction. It follows
that G is p-nilpotent. Hence we may assume that L, = 1. Then L = P. Since
G/ P is p-nilpotent, we may let V/P be the normal Hall p’-subgroup of G/P.
By Schur-Zassenhaus Theorem, V' has a Hall p’-subgroup V,/. By Lemma 2.1(1),
every subgroup H of P with order |D| is an H{C-subgroup of V. Obviously,
Ny (H) is p-nilpotent. In view of Case I, V' = PV} is p-nilpotent and so V)
is normal in V. Obviously, V, is also a normal p-complement of G and so G is
p-nilpotent. O

Remark 3.5. Frobenius asserts that G is p-nilpotent if Ng(H) is p-nilpotent
for every p-subgroup H of G (see [9, Satz. IV.5.8]). In Theorem 3.4, we replace a
condition of the Frobenius’ theorem, namely, H is restricted to be a p-subgroup of
a fixed order and we assume that H is an H{C-subgroup of G. Hence Theorem 3.4
can be considered as an extension of the Frobenius’ theorem.

CoroLLARY 3.6 ([1, Theorem 1.1]). Let P be a Sylow p-subgroup of G. Then
G is p-nilpotent if and only if Ng (P) is p-nilpotent and every maximal subgroup
of P is an H-subgroup of G.

CoroLLARY 3.7 ([6, Theorem 3.1]). Let p be an odd prime dividing |G| and P
a Sylow p-subgroup of G. If every maximal subgroup of P is C-normal in G and
Ng (P) is p-nilpotent, then G is p-nilpotent.
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