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Cyclic subgroup commutativity degrees of finite groups
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Abstract – In this paper we introduce and study the concept of cyclic subgroup commuta-

tivity degree of a finite group G. This quantity measures the probability of two random

cyclic subgroups of G commuting. Explicit formulas are obtained for some particular

classes of groups. A criterion for a finite group to be an Iwasawa group is also presented.
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1. Introduction

In the last years there has been a growing interest in the use of probability in

finite group theory. One of the most important aspects which have been studied

is the probability that two elements of a finite group G commute. It is called the

commutativity degree of G and has been investigated in many papers, such as [2, 3]

and [5]–[9]. Inspired by this concept, in [16] we introduced a similar notion for the

subgroups of G, called the subgroup commutativity degree of G. This quantity is

defined by

sd.G/ D
1

jL.G/j2
j¹.H; K/ 2 L.G/2 j HK D KH ºj

D
1

jL.G/j2
j¹.H; K/ 2 L.G/2 j HK 2 L.G/ºj
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(where L.G/ denotes the subgroup lattice of G) and it measures the probability

that two subgroups of G commute, or equivalently the probability that the product

of two subgroups of G be a subgroup of G (recall also the natural generalization

of sd.G/, namely the relative subgroup commutativity degree of a subgroup of G,

introduced and studied in [17]).

Another two probabilistic notions on L.G/ have been investigated in [20]

and [21]: the normality degree and the cyclicity degree of G. They are defined

by

ndeg.G/ D
jN.G/j

jL.G/j
and cdeg.G/ D

jL1.G/j

jL.G/j
;

where N.G/ and L1.G/ denote the normal subgroup lattice and the poset of cyclic

subgroups of G, and measure the probability of a random subgroup of G to be

normal or cyclic, respectively.

Clearly, in the definition of sd.G/ we may restrict to one of the above remar-

kable subsets of L.G/. In the case of N.G/ nothing can be said, since normal

subgroups commute with all subgroups of G. By taking L1.G/ instead of L.G/

in (1) a new significant quantity is obtained, namely

csd.G/ D
1

jL1.G/j2
j¹.H; K/ 2 L1.G/2 j HK D KH ºj

D
1

jL1.G/j2
j¹.H; K/ 2 L1.G/2 j HK 2 L.G/ºj:

This measures the probability that two cyclic subgroups of G commute and will

be called the cyclic subgroup commutativity degree of G. Its study is the purpose

of the current paper.

The paper is organized as follows. Some basic properties and results on cyclic

subgroup commutativity degree are presented in Section 2. Section 3 deals with

cyclic subgroup commutativity degrees for some special classes of finite groups:

P -groups, dihedral groups and p-groups possessing a cyclic maximal subgroup.

As an application, in Section 4 we give a criterion for a finite group to be an

Iwasawa group. In the final section some further research directions and a list of

open problems are indicated.

Most of our notation is standard and will usually not be repeated here. Ele-

mentary notions and results on groups can be found in [4, 14]. For subgroup lattice

concepts we refer the reader to [13, 15, 19].
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2. Basic properties of cyclic subgroup commutativity degree

Let G be a finite group. First of all, we remark that the cyclic subgroup commu-

tativity degree csd.G/ satisfies the following relation

0 < csd.G/ � 1:

Moreover, by consequence (9) on page 202 of [13], the permutability of a subgroup

H 2 L1.G/ with all cyclic subgroups of G is equivalent with the permutability of

H with all subgroups of G. This shows that

csd.G/ D 1 () sd.G/ D 1

and therefore the finite groups G satisfying csd.G/ D 1 are in fact the Iwasawa

groups, i.e. the nilpotent modular groups (see [13, Exercise 3, p. 87]). Notice that

a complete description of these groups is given by a well-known Iwasawa’s result

(see Theorem 2.4.13 of [13]). In particular, we infer that csd.G/ D 1 for all

Dedekind groups G.

Given H 2 L1.G/, we will denote by C1.H/ the set consisting of all cyclic

subgroups of G commuting with H , that is

C1.H/ D ¹K 2 L1.G/ j HK D KH º:

Then

(2) csd.G/ D
1

jL1.G/j2

X

H2L1.G/

jC1.H/j;

which leads to a precise expression of csd.G/ for finite groups G whose cyclic

subgroup structure is known.

Example 2.1. The alternating group A4 has eight cyclic subgroups, namely:

the trivial subgroup H1, three subgroups Hi Š Z2, i D 2; 3; 4, and four subgroups

Hi Š Z3, i D 5; 6; 7; 8. We can easily see that jC1.H1/j D 8, jC1.Hi /j D 4 for

i D 2; 3; 4, and jC1.Hi /j D 5 for i D 5; 6; 7; 8. Hence

csd.A4/ D
1

64
.8 C 3 � 4 C 4 � 5/ D

5

8
:

Clearly, we have L.H/ [ .N.G/ \ L1.G// � C1.H/, for all H 2 L1.G/,

implying that

csd.G/ �
1

jL1.G/j2

X

H2L1.G/

jL.H/ [ .N.G/ \ L1.G// j:
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By this inequality some lower bounds for csd.G/ can be inferred, namely

csd.G/ �
1

jL1.G/j2

X

H2L1.G/

jN.G/ \ L1.G/j D
jN.G/ \ L1.G/j

jL1.G/j

and

csd.G/ �
1

jL1.G/j2

X

H2L1.G/

jL.H/j �
2jL1.G/j � 1

jL1.G/j2
;

since jL.H/j � 2 for every non-trivial cyclic subgroup H of G. Another lower

bound for csd.G/ follows by the simple remark that for every subgroup M of G

we have

¹.H; K/ 2 L1.G/2 j HK D KH º � ¹.H; K/ 2 L1.M/2 j HK D KH º:

Thus

csd.G/ �
� jL1.M/j

jL1.G/j

�2

csd.M/:

In particular, if M is abelian, then csd.M/ D 1 and so

csd.G/ �
� jL1.M/j

jL1.G/j

�2

:

Assume next that G1 and G2 are two finite groups. If G1 Š G2, then csd.G1/ D

csd.G2/. The same thing cannot be said in the case when G1 and G2 are only

lattice-isomorphic, as shows the following elementary example.

Example 2.2. It is well known that the subgroup lattices of G1 D Z3 �Z3 and

G2 D S3 are isomorphic. On the other hand, we have csd.G1/ D 1 because G1

is abelian, but csd.G2/ ¤ 1 because G2 is not nilpotent (more precisely, we can

easily check that csd.G2/ D 19=25).

By a direct calculation, one obtains

csd.S3 � Z3/ D
85

121
¤

19

25
D csd.S3/ csd.Z3/

and consequently in general we don’t have csd.G1 � G2/ D csd.G1/ csd.G2/. A

sufficient condition in order to this equality holds is that G1 and G2 be of coprime

orders, because in this case any two cyclic subgroups H; K of G1 �G2 are of type

H D H1 � H2 and K D K1 � K2 with Hi ; Ki � Gi ; i D 1; 2

and

HK D KH () HiKi D KiHi ; i D 1; 2:

This remark can naturally be extended to arbitrary finite direct products.
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Proposition 2.3. Let .Gi /iD1;k
be a family of finite groups having coprime

orders. Then

(3) csd
� k

�
iD1

Gi

�

D

k
Y

iD1

csd.Gi /:

The following immediate consequence of Proposition 2.3 shows that comput-

ing the cyclic subgroup commutativity degree of a finite nilpotent group is reduced

to finite p-groups.

Corollary 2.4. If G is a finite nilpotent group and .Gi/iD1;k are the Sylow

subgroups of G, then

csd.G/ D

k
Y

iD1

csd.Gi /:

Remark 2.5. The condition in the hypothesis of Proposition 2.3 is not neces-

sary to obtain the equality (3). For example, we have

csd.S3 � Z2/ D
19

25
D csd.S3/ csd.Z2/;

even though the groups S3 and Z2 are not of coprime orders.

3. Cyclic subgroup commutativity degrees for some classes of finite groups

In this section we will compute explicitly the cyclic subgroup commutativity

degree of several semidirect products for which we are able to describe the cyclic

subgroup structure.

3.1 – The cyclic subgroup commutativity degree of finite P -groups

First of all, we recall the notion of P -group, according to [13]. Let p be a prime,

n � 2 be a cardinal number and G be a group. We say that G belongs to

the class P.n; p/ if it is either elementary abelian of order pn, or a semidirect

product of an elementary abelian normal subgroup M of order pn�1 by a group

of prime order q ¤ p which induces a nontrivial power automorphism on M .

The group G is called a P -group if G 2 P.n; p/ for some prime p and some

cardinal number n � 2. It is well known that the class P.n; 2/ consists only of the

elementary abelian group of order 2n. Also, for p > 2 the class P.n; p/ contains

the elementary abelian group of order pn and, for every prime divisor q of p � 1,

exactly one non-abelian P -group with elements of order q. Moreover, the order
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of this group is pn�1q if n is finite. The most important property of the groups in

a class P.n; p/ is that they are all lattice-isomorphic (see Theorem 2.2.3 of [13]).

In the following, we will focus on finite non-abelian P -groups. So, assume that

p > 2 and n 2 N are fixed, and take a divisor q of p � 1. The non-abelian group

of order pn�1q in the class P.n; p/ will be denoted by Gn;p. By Remarks 2.2.1

of [13], it is of type

Gn;p D M hxi;

where M Š Z
n�1
p (i.e. the direct product of n � 1 copies of Zp), o.x/ D q and

there exists an integer r such that x�1yx D yr , for all y 2 M . Notice that we have

N.Gn;p/ D L.M/ [ ¹Gn;pº:

The set L1.Gn;p/ has been described in [15]: it consists of the trivial subgroup 1,

of the subgroups of order p in M and of the subgroups of type hyxi with y 2 M .

Then

jL1.Gn;p/j D 1 C
pn�1 � 1

p � 1
C pn�1 D 2 C p C p2 C � � � C pn�1:

On the other hand, we have

C1.H/ D L1.Gn;p/; for all H � M;

and

C1.hyxi/ D L1.M/ [ ¹hyxiº; for all y 2 M:

In this way, an explicit value of csd.Gn;p/ is obtained by using (2).

Theorem 3.1.1. The cyclic subgroup commutativity degree of the P -group

Gn;p is given by the following equality:

csd.Gn;p/ D
1

.2CpCp2 C � � � C pn�1/2
..2CpCp2 C � � � C pn�2/

.2CpCp2 C � � � C pn�1/

C pn�1.3CpCp2 C � � � C pn�2//:

We observe that for p D 3, q D 2 and n D 2 we have G2;3 Š S3, and hence

csd.S3/ D 19=25 can be also computed by the above formula. The following

consequence of Theorem 3.1.1 is immediate, too.

Corollary 3.1.2. limn!1 csd.Gn;p/ D .2p � 1/=p2.
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3.2 – The cyclic subgroup commutativity degree of finite dihedral groups

The dihedral group D2m .m � 2/ is the symmetry group of a regular polygon with

m sides and it has the order 2m. The most convenient abstract description of D2m

is obtained by using its generators: a rotation x of order m and a reflection y of

order 2. Under these notations, we have

D2m D hx; y j xm D y2 D 1; yxy D x�1i:

It is well known that for every divisor r or m, D2m possesses a subgroup isomor-

phic to Zr , namely H r
0 D hx

m

r i, and m
r

subgroups isomorphic to D2r , namely

H r
i D hx

m

r ; xi�1yi; i D 1; 2; : : : ; m
r

: The normal subgroups of D2m are

N.D2m/ D

8

<

:

L.H m
0 / [ ¹Gº; m � 1 .mod 2/;

L.H m
0 / [ ¹G; H

m

2

1 ; H
m

2

2 º; m � 0 .mod 2/;

while the cyclic subgroups of D2m are

L1.D2m/ D L.H m
0 / [ ¹H 1

i j i D 1; 2; : : : ; mº:

It follows that

jL1.D2m/j D �.m/ C m;

where �.m/ denotes the number of divisors of m. Clearly, we have

jC1.H/j D �.m/ C m; for all H 2 L.H m
0 /:

On the other hand, it is easy to see that

C1.H 1
i / D

8

<

:

L.H m
0 / [ ¹H 1

i º; m � 1 .mod 2/;

L.H m
0 / [ ¹H 1

i ; H 1
iC m

2

º; m � 0 .mod 2/;

and therefore

jC1.H 1
i /j D

8

<

:

�.m/ C 1; m � 1 .mod 2/;

�.m/ C 2; m � 0 .mod 2/;

for all i D 1; 2; : : : ; m. Then (2) leads to the following result.

Theorem 3.2.1. The cyclic subgroup commutativity degree of the dihedral

group D2m is given by the following equality:

csd.D2m/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�.m/.�.m/ C m/ C m.�.m/ C 1/

.�.m/ C m/2
; m � 1 .mod 2/

�.m/.�.m/ C m/ C m.�.m/ C 2/

.�.m/ C m/2
; m � 0 .mod 2/:
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The cyclic subgroup commutativity degree of the dihedral group D2n is ob-

tained directly from Theorem 3.2.1.

Corollary 3.2.2. We have

csd.D2n/ D
n2 C .n C 1/2n

.n C 2n�1/2

and in particular

csd.D8/ D
41

49
:

We are also able to compute the limit of csd.D2n/ when n ! 1.

Corollary 3.2.3. limn!1 csd.D2n/ D 0:

3.3 – The subgroup commutativity degree of finite p-groups possessing a cyclic

maximal subgroup

Let p be a prime, n � 3 be an integer and denote by G the class consisting of all

finite p-groups of order pn having a maximal subgroup which is cyclic. Obviously,

G contains finite abelian p-groups of type Zp � Zpn�1 whose cyclic subgroup

commutativity degree is 1, but some finite non-abelian p-groups belong to G, too.

They are exhaustively described in [14, II, Theorem 4.1]: a non-abelian group is

contained in G if and only if it is isomorphic to the modular p-group

M.pn/ D hx; y j xpn�1

D yp D 1; y�1xy D xpn�2C1i

when p is odd, or to one of the following groups:

� M.2n/ .n � 4/;

� the dihedral group D2n ,

� the generalized quaternion group

Q2n D hx; y j x2n�1

D y4 D 1; yxy�1 D x2n�1�1i;

� the quasi-dihedral group

S2n D hx; y j x2n�1

D y2 D 1; y�1xy D x2n�2�1i .n � 4/

when p D 2.
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In the following the cyclic subgroup commutativity degrees of the above

p-groups will be determined. As we observed in Section 2, we have

csd.M.pn// D 1:

Because csd.D2n/ has been obtained in §3.2, we need to focus only on computing

csd.Q2n/ and csd.S2n/.

Theorem 3.3.1. The cyclic subgroup commutativity degree of the generalized

quaternion group Q2n is

csd.Q2n/ D
n2 C .n C 1/2n�1

.n C 2n�2/2
:

In particular, we have

csd.Q16/ D
7

8
:

Proof. Under the above notation, it is easy to see that L1.Q2n/ consists

of all subgroups contained in hxi and of all subgroups of type hxkyi, k D

0; 1; : : : ; 2n�2 � 1. Moreover, we have

jC1.H/j D jL1.Q2n/j D n C 2n�2; for all H � hxi:

We also remark that

hxk1yihxk2 yi D hxk2 yihxk1 yi () k1 D k2 or jk1 � k2j D 2n�3:

This leads to

jC1.hxkyi/j D n C 2; for all k D 0; 1; : : : ; 2n�2 � 1:

One obtains

csd.Q2n/ D
1

.n C 2n�2/2

X

H2L1.Q2n /

jC1.H/j

D
1

.n C 2n�2/2

h

X

H2L1.Q2n /

H�hxi

jC1.H/j C

2n�2�1
X

kD0

jC1.hxkyi/j
i

D
1

.n C 2n�2/2
Œn.n C 2n�2/ C .n C 2/2n�2�

D
n2 C .n C 1/2n�1

.n C 2n�2/2
;

as desired. �
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Corollary 3.3.2. limn!1 csd.Q2n/ D 0.

The same type of reasoning will be used to calculate csd.S2n/.

Theorem 3.3.3. The cyclic subgroup commutativity degree of the quasi-

dihedral group S2n is

csd.S2n/ D
n2 C 3n � 2n�2 C 5 � 2n�3

.n C 3 � 2n�3/2
:

In particular, we have

csd.S16/ D
37

50
:

Proof. It is a simple exercise to check that the poset L1.S2n/ of cyclic sub-

groups of S2n consists of

L.hxi/ [ ¹hx2kyi j k D 0; 1; : : : ; 2n�2 � 1º [ ¹hx2kC1yi j k D 0; 1; : : : ; 2n�3 � 1º:

Again, we have

jC1.H/j D jL1.S2n/j D n C 3 � 2n�3; for all H � hxi:

In order to study the commutativity of the other two types of subgroups of S2n ,

the following remarks are essential:

� hx2k1yihx2k2 yi D hx2k2yihx2k1 yi () 2n�3 j k1 � k2;

� hx2k1C1yihx2k2C1yi D hx2k2C1yihx2k1C1yi () 2n�3 j k1 � k2

() k1 D k2;

� hx2k1yihx2k2C1yi ¤ hx2k2C1yihx2k1 yi; for all k1; k2.

We infer that

jC1.hx2kyi/j D n C 2; for all k D 0; 1; : : : ; 2n�2 � 1

and

jC1.hx2kC1yi/j D n C 1; for all k D 0; 1; : : : ; 2n�3 � 1:
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Hence

csd.S2n/ D
1

.n C 3 � 2n�3/2

X

H2L1.S2n /

jC1.H/j

D
1

.n C 3 � 2n�3/2

h

X

H2L1.S2n /

H�hxi

jC1.H/j C

2n�2�1
X

kD0

jC1.hx2kyi/j

C

2n�3�1
X

kD0

jC1.hx2kC1yi/j
i

D
1

.n C 3 � 2n�3/2
Œn.n C 3 � 2n�3/ C .n C 2/2n�2 C .n C 1/2n�3�

D
n2 C 3n � 2n�2 C 5 � 2n�3

.n C 3 � 2n�3/2
;

completing the proof. �

Corollary 3.1. limn!1 csd.S2n/ D 0.

4. A criterion for a finite group to be Iwasawa

A famous result by Gustafson [3] concerning the commutativity degree states

that if d.G/ > 5=8 then G is abelian, and we have d.G/ D 5=8 if and only if

G=Z.G/ Š Z2 � Z2. In this section a similar problem is studied for the cyclic

subgroup commutativity degree, namely: is there a constant c 2 .0; 1/ such that

if csd.G/ > c then G is Iwasawa?

The answer to this problem is negative, as shows the following theorem.

Theorem 4.1. The cyclic subgroup commutativity degree of the non-Iwasawa

group Z2n � Q8, n � 2, tends to 1 when n tends to infinity.

Proof. Let a D .a1; a2/ 2 Z2n � Q8. Then o.a/ D 2k if and only if either

o.a1/ D 2k and o.a2/ � 2k or o.a1/ < 2k and o.a2/ D 2k . We infer that Z2n �Q8

has one element of order 1, 3 elements of order 2, 28 elements of order 4, and 2kC2

elements of order 2k, for all k D 3; 4; : : : ; n. These generate one cyclic subgroup

of order 1, 3 cyclic subgroups of order 2, 14 cyclic subgroups of order 4, and 8

cyclic subgroups of order 2k , for all k D 3; 4; : : : ; n. Consequently,

jL1.Z2n � Q8/j D 1 C 3 C 14 C 8.n � 2/ D 8n C 2:
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Then

csd.Z2n � Q8/ D
1

.8n C 2/2
j¹.H; K/ 2 L1.Z2n � Q8/2 j HK D KH ºj

D 1 �
1

.8n C 2/2
j¹.H; K/ 2 L1.Z2n � Q8/2 j HK ¤ KH ºj:

One the other hand, by Theorem 2.15 of [1] we know that Z2n � Q8 has 24.n C 2/

pairs of subgroups which do not permute. This implies that

csd.Z2n � Q8/ � 1 �
24.n C 2/

.8n C 2/2

and so lim
n!1

csd.Z2n � Q8/ D 1, completing the proof. �

Corollary 4.2. There is no constant c 2 .0; 1/ such that if csd.G/ > c then

G is Iwasawa.

However, we can get a positive answer to the above problem if we replace the

condition “csd.G/ > c” by the stronger condition “csd�.G/ > c,” where

csd�.G/ D min¹csd.S/ j S section of Gº:

This was suggested by the fact that a p-group is modular if and only if each of

its sections of order p3 is. Moreover, if a p-group is not modular then it contains

a section isomorphic to D8 or to E.p3/, the non-abelian group of order p3 and

exponent p for p > 2 (see Lemma 2.3.3 of [13]).

Lemma 4.3. Let G be a finite p-group such that csd�.G/ > 41=49. Then G is

modular, and consequently an Iwasawa group.

Proof. Assume that G is not modular. Then there is a section S of G such

that S Š D8 or S Š E.p3/ for p > 2. We can easily check that

csd.E.p3// D
p3 C 5p2 C 4p C 4

.p2 C p C 2/2
<

41

49
D csd.D8/:

Therefore csd.S/ � 41=49, contradicting our assumption. �

Lemma 4.4. Let G be a finite group such that csd�.G/ > 19=25. Then G is

nilpotent.
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Proof. We will show by induction on jGj that if G is not nilpotent then

csd�.G/ � 19=25, i.e. there is a section S of G with csd.S/ � 19=25. For jGj D 6

we have G Š S3 and the desired conclusion follows by taking S D G. Assume

now that it is true for all non-nilpotent groups of order < jGj. We distinguish the

following two cases.

If G contains a proper non-nilpotent subgroup H , then H has a section S with

csd.S/ � 19=25 by the inductive hypothesis and we are done since S is also a

section of G.

If all proper subgroups of G are nilpotent, then G is a Schmidt group. By [12]

(see also [10]) it follows that G is a solvable group of order pmqn (where p and

q are different primes) with a unique Sylow p-subgroup P and a cyclic Sylow

q-subgroup Q, and hence G is a semidirect product of P by Q. Moreover, we

have:

� if Q D hyi then yq 2 Z.G/;

� Z.G/ D ˆ.G/ D ˆ.P / � hyqi, G0 D P , P 0 D .G0/0 D ˆ.P /;

� jP=P 0j D pr , where r is the order of p modulo q;

� if P is abelian, then P is an elementary abelian p-group of order pr and P

is a minimal normal subgroup of G;

� if P is non-abelian, then Z.P / D P 0 D ˆ.P / and jP=Z.P /j D pr .

We infer that S D G=Z.G/ is also a Schmidt group of order prq which can be

written as a semidirect product of an elementary abelian p-group P1 of order pr

by a cyclic group Q1 of order q (note that S3 and A4 are examples of such groups).

Then L1.S/ D L1.P1/ [ ¹Qx
1 j x 2 Sº and

jL1.S/j D
pr � 1

p � 1
C 1 C pr D

prC1 C p � 2

p � 1
:

One obtains:

(a) csd.S/ D
5p C 4

.p C 2/2
for r D 1

and

(b) csd.S/ D
p2r C 3prC2 � 4prC1 � pr C p2 � 4p C 4

.prC1 C p � 2/2
for r � 2:

In both cases (a) and (b) we can easily check that

csd.S/ �
19

25
;

as desired. �
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We are now able to prove the main result of this section.

Theorem 4.5. Let G be a finite group such that csd�.G/ > 41=49. Then G is

an Iwasawa group. Moreover, we have csd�.G/ D 41=49 if and only if G Š X �Y ,

where X is a 2-group with csd�.X/ D 41=49 and Y is an Iwasawa group of odd

order.

Proof. Since csd�.G/ > 41=49 > 19=25, Lemma 4.4 implies that G is

nilpotent. Then it can be written as

(4) G D
k

�
iD1

Gi ;

where Gi is a Sylow pi -subgroup of G, i D 1; 2; : : : ; k. For each i we have

csd�.Gi/ � csd�.G/ >
41

49
;

and therefore Gi is an Iwasawa group by Lemma 4.3. Consequently, G is also an

Iwasawa group.

Suppose now that csd�.G/ D 41=49. Then G is nilpotent by Lemma 4.4,

and therefore it has a direct decomposition of type (4), where we can assume

p1 < p2 < � � � < pk . Remark that p1 D 2. Indeed, if p1 > 2 then all pi ’s

are odd, which implies that Gi cannot have sections isomorphic with D8, for

all i D 1; 2; : : : ; k. On the other hand, Gi cannot also have sections isomorphic

with E.p3
i / because csd�.Gi / � csd�.G/ D 41=49. Thus Gi is Iwasawa, for all

i D 1; 2; : : : ; k, and the same thing can be said about G, a contradiction. Hence

p1 D 2 and we are done by taking

X D G1 and Y D
k

�
iD2

Gi :

Conversely, since X and Y are of coprime orders, every section S of G Š X�Y

is of type S Š SX � SY , where SX and SY are sections of X and Y , respectively.

Then

csd.S/ D csd.SX / csd.SY / D csd.SX/

because Y is Iwasawa. This shows that

csd�.G/ D csd�.X/ D
41

49
;

completing the proof. �

We end this section by noting that the problem of finding the structure of

2-groups X with csd�.X/ D 41=49 remains open.
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5. Conclusions and further research

Similarly with our previous concepts of subgroup commutativity degree, norma-

lity degree or cyclicity degree of a finite group, the cyclic subgroup commutativity

degree can also constitute a significant aspect of probabilistic finite group theory.

Clearly, the study started in this paper can successfully be extended to other classes

of finite groups and all problems on sd.G/, ndeg.G/, cdeg.G/ (see e.g. [16]–[20])

can be investigated for csd.G/, too. On the other hand, the connections between

the above concepts seem to be very interesting. These will surely constitute the

subject of some further research.

Finally, we formulate several specific open problems on cyclic subgroup com-

mutativity degrees.

Problem 5.1. Compute explicitly the cyclic subgroup commutativity degree

of ZM.m; n; r/ (see [21]), or, more generally, the cyclic subgroup commutativity

degree of an arbitrary metacyclic group.

Problem 5.2. Let G be a finite group. Study the properties of the map

csdW L.G/ �! Œ0; 1�; H 7�! csd.H/:

Is it true that for every H; K 2 L.G/, we have H � K H) csd.H/ � csd.K/?

Problem 5.3. For many finite groups G, the commutativity of x; y 2 G is

strongly connected with the commutativity of hxi; hyi 2 L1.G/. Can be extended

this to a connection between d.G/ and csd.G/?

Problem 5.4. Do there exist finite groups G such that csd.G/ D sd.G/ ¤ 1?
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