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Nunke’s problem

for abelian p-groups of uncountable length

Patrick Keef (�)

Abstract – Nunke’s problem asks when the torsion product of two abelian p-groups is a

direct sum of countable reduced groups. In previous work the author gave a complete

answer to this question when the groups involved have countable length. In this paper

a complete answer is given in the case of groups of uncountable length, at least in any

set-theoretic universe in which 2@1 D @2.
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1. An introduction to Nunke’s problem

All groups will be abelian p-groups for some fixed prime p. Our notation and

terminology will generally follow [2]. For an ordinal ˛ we will assume some

familiarity with the theory of p˛-purity, which can be found, for example, in [3].

We will also use some fairly basic set theory for which we refer the reader to [1].

If A and B are groups, then we will denote their torsion product by the convenient,

albeit unorthodox, notation A5 B .

A subgroup K � G is said to be p˛-high if it is maximal with respect to the

property that K\p˛G D 0, and G is said to be a C�-group if for every ˛ < �, the

p˛-high subgroups of G are all direct sums of countable reduced groups (or dsc

groups, for short). If � � !1 is a limit, then G will be a C�-group if and only if for

every ˛ < � the quotient G=p˛G is dsc group [see, for example, ([5], Theorem 8)].
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There is a strong connection between the torsion product and the class of dsc

groups. Nunke’s problem asks us for a description of when A5B is a dsc group of

length � � !1. The following was the first important result on Nunke’s problem,

which has been rephrased using our terminology:

Theorem 1.1 ([11], Theorem 6). Suppose A and B are reduced groups, B has

length � � !1 and p�A ¤ 0. Then A 5 B is a dsc group if and only if A is a

C�-group and B is a dsc group.

So the case of interest is where both A and B have length �. First, it is

straightforward to verify that A 5 B is a C� group of length at least � if and

only if both A and B are C�-groups of length at least � [see, for example, ([8],

Proposition 4) with n D 2]. So Nunke’s problem is really a question about

C�-groups.

It turns out that the countable case [i.e., � < !1] of Nunke’s problem behaves

very differently from the uncountable one [i.e., � D !1]. Let R be the class of

all uncountable regular cardinals and Rf be the class of all finite subsets of R.

Let 0R D ; � Rf , and if X;Y � Rf , let X � Y be the class of all disjoint unions

X [ Y where X 2 X and Y 2 Y. If � < !1, then in [9] for every C�-group G

there was defined an invariant L�
G � Rf . This definition was based on transfinite

induction using filtrations on subgroups of G. Its relevance to Nunke’s problem is

summarized in the following:

Theorem 1.2. Suppose � < !1 is countable and G, A and B are C�-groups.

(a) ([9], Theorem 1.6) G is a dsc group if and only if L�
G D 0R.

(b) ([9], Theorem 3.10) A5 B is a dsc group if and only if L�
A � L

�
B D 0R.

In other words, the elements of L�
G can be viewed as obstructions to G splitting

into countable summands, and the invariant behaves well enough with respect

to the torsion product to give a complete solution to Nunke’s problem in the

countable case.

Turning now to the uncountable case � D !1, in [7] it was shown that

Nunke’s problem leads us to consider a set-theoretic statement known as Kurepa’s

Hypothesis (KH). There are several equivalent ways to express KH. For example,

it asserts the existence of a tree of height !1 having at least !2 branches, but whose

levels are all countable. Equivalently, KH asserts the existence of a family K of

subsets of !1 such that jKj � !2, but for every countable � < !1, ¹X \�WX 2 Kº

is countable. KH is known to be true in the constructible universe, but to be

undecidable over ZFC [in fact, KH is a consequence of}C, which is true in V=L].
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It is easy to see that a C!1
-group G is a dsc group if and only if it is p!1-pro-

jective; i.e., its p!1-projective dimension (or p!1-p.d. for short) is 0. Let F be the

class of all C!1
-groups whose p!1-p.d. is at most 1. The connection between these

ideas stems from the following result:

Theorem 1.3 ([7], Theorem 13). The following statements are equivalent.

(a) :KH.

(b) Every p!1-bounded C!1
-group G is in F.

(c) For all p!1-bounded C!1
-groups A and B , A5 B is a dsc group.

These are only a few of a much longer list of algebraic statements that were

shown to be equivalent to :KH.

In [10] the following variation on Nunke’s problem was considered. If A and

B are C!1
-groups, describe exactly when A 5 B 2 F. If we let Q D R � ¹@1º

and Qf D Rf \Q, then for every C!1
-group G an invariant JG � Qf was defined

using techniques similar to the definition of L�
G in the countable case. It answered

the above variation by establishing the following:

Theorem 1.4. Suppose that � D !1 is uncountable and that G, A and B are

C!1
-groups.

(a) ([10], Theorem 1.12) G 2 F if and only if JG D 0Q.

(b) ([10], Theorem 1.15) A5 B 2 F if and only if JA � JB D 0Q.

In other words, the elements of JG can be viewed as obstructions to G being

in F, and the invariant behaves well enough with respect to the torsion product

to give a complete solution to this variation of Nunke’s problem. The purpose of

the present paper is to combine the above two threads to answer the following

questions.

(A) Given a C!1
-group G, JG tells us when G 2 F; is there an addition invariant

that tells us when a given G 2 F is actually a dsc group?

(B) If A and B are C!1
-groups, can we use the solution of (A) to answer Nunke’s

problem in the uncountable case, at least in some reasonable versions of set

theory, such as the constructible universe (V=L)?

We will give a complete answer to (A). If G 2 F, then we will define an

invariant FG � Qf in a manner similar to the definition of L�
G and JG using

transfinite induction on subgroups and filtrations. We will then show that the

invariant satisfies the following:
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Theorem 1.5. If G 2 F, then G is a dsc group if and only if FG D 0Q.

So using Theorems 1.4(a) and 1.5 we have the following:

Corollary 1.6. A C!1
-group G is a dsc group if and only if JG D 0Q and

FG D 0Q.

In other words, for a C!1
-group G, elements of JG are obstructions to G being

in F, and when G 2 F, elements of FG are obstructions to G being a dsc group.

Turning to question (B), if G is a p!1-bounded C!1
-group, we define an

invariant IG � Rf in a manner similar to that used in defining L�
G , JG and FG .

The difference between the definitions of these various invariants is in the base

case and the type of subgroups we use in constructing our filtrations. If 2@1 D @2,

or if one of the groups A and B is actually in F, then we get a complete answer

to (B).

Theorem 1.7. Suppose A and B are p!1-bounded C!1
-groups.

(a) If 2@1 D @2, then A5 B is a dsc if and only if IA � IB D 0R:

(b) If B 2 F, then A5 B is a dsc if and only if JA � FB D 0Q:

In particular, this gives a complete solution to all countable and uncountable

cases of Nunke’s problem in any set-theoretic universe in which the generalized

continuum hypothesis holds, such as the constructible universe. We need this

assumption since the invariant IG behaves like a combination of both JG and

FG and it is not easy to see exactly how to combine them without some such

restriction. In particular, 2@1 D @2 will guarantee that the torsion product of any

two p!1-bounded C!1
-groups is in F, which is used frequently in our arguments.

Giving a quick outline of the paper, Section 2 is devoted to reviewing some

background information, leading to a particular formulation of Shelah’s Singular

Compactness Theorem which will be useful for our purposes. Section 3 is devoted

to proving Theorem 1.5, and Section 4 contains a proof of Theorem 1.7.

2. Preliminaries and singular compactness

We begin with a review of a few well-known properties of p!1-purity.

Lemma 2.1. Suppose G is a group and H is a dsc group of length !1.

(a) ([8], Theorem 2) G is a C!1
-group if and only if G 5H is a dsc.
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(b) ([8], Lemma 1) A short exact sequence, 0 ! K ! G ! .G=K/ ! 0,

is p!1-pure if and only if the corresponding sequence, 0 ! K 5 H !

G 5H ! .G=K/5H ! 0, is splitting exact.

(c) If G is a C!1
group and K is p!1-pure in G, then K and G=K are C!1

-groups.

Part (c) is an immediate consequence of (a) and (b). We quote a couple of other

simple results that are pertinent to our discussions.

Lemma 2.2. Suppose A, B and C are p!1-bounded C!1
-groups.

(1) ([4], Theorem 6) If A and B have cardinality at most @1, then A5B is a dsc

group.

(2) ([5], Theorem 25) If A, B and C have cardinality at most @2, then A5B5C

is a dsc group.

We pause to review some set theoretic terminology. If � is a regular cardinal,

then a subset C � � is a CUB if it is closed and unbounded in the order topology

on �. A subset S � � is said to be stationary if C \ S ¤ ; for all CUB subsets

C � �. If G is a group of regular cardinality �, then a filtration of G is a smoothly

ascending chain of subgroups, ¹Xiºi<� , whose union is G, such that jXi j < � for

all i < �.

Suppose C is a dsc group and we fix a particular decomposition of C into a

collection, D, of countable subgroups. A subgroup K of C will be a D-summand

if K is the direct sum of a subcollection of these terms. If K is any summand of

a dsc group C , then a decomposition of K into countable groups can be extended

to a similar decomposition of C , so that K will be a D-summand of C .

Now suppose H is a dsc group of length !1 and cardinality @1 (for example,

H!1
, the “generalized Prüfer group” of length !1). If G is a C!1

-group, then using

Lemma 2.1(a), fix a decomposition D of G 5 H into countable summands. Let

H be the collection of subgroups A � G such that A 5 H is a D-summand

of G 5 H ; we call this the H -system for G determined by D. It follows from

Lemma 2.1(b) that every element of an H -system is p!1-pure in G. The following

are straightforward consequences of this definition:

Lemma 2.3. Suppose G is a C!1
-group with H -system H.

(a) H is closed under unions of chains;

(b) If Z � G satisfies jZj � @1, then there is a K 2 H containing Z such that

jKj D jZj;

(c) If jGj D � > @1 and � is regular, then G has a filtration ¹Xiºi<� � H.
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In this work all topological terms will be with respect to the !1-topology;

for a group G this uses ¹p˛Gº˛<!1
as a neighborhood base of 0.

Suppose G is a p!1-bounded C!1
-group, � > @1 is a cardinal and K is a

p!1-pure subgroup of G with jKj D @1. We say K is a �-Kurepa subgroup if

� � j xKj (where xK is its closure in the !1-topology). In addition, we say K is

@1-Kurepa if either it is @2-Kurepa, or else it is closed in G but fails to be a

dsc. Let �G be the least cardinal � � @1 such that G does not have a �-Kurepa

subgroup. Let � be the supremum of �G over all p!1-bounded C!1
-groups G;

clearly �G � � � .2@1/C. By ([6], Theorem 5), � < � if and only if there is

a family K of subsets of !1 with jKj � � satisfying KH. We will primarily be

concerned with the situation where � � @3, which will follow if we have 2@1 D @2.

In particular, in the constructible universe, V=L, both KH and the generalized

continuum hypothesis hold, so that � D @3.

Suppose G is a p!1-bounded C!1
-group andH is an H -system for G. Consider

the set C of elements of H that are closed; we call this the C -system for G

determined by H. The next statement then follows directly from Lemma 2.3 and

some results from [6].

Lemma 2.4. Suppose G is a p!1-bounded C!1
-group and C is a C -system

for G.

(a) ([6], Theorem 3) C is closed under unions of chains;

(b) ([6], Theorem 8) If jGj D � � �G and � is regular, then G has a filtration

¹Xiºi<� � C.

(c) If K � G is p!1-pure and � WD jKj � �G , then j xKj D � and there is an

X 2 C such that K � X and jX j D �.

Proof. Regarding (c), if j xKj > �, we could find zG 2 H of cardinality �C

containing K such that j zG \ xKj D �C. This, however, would contradict (b).

To construct our X 2 C, find ¹Xmºm<ø � H, all of cardinality �, such that

K � X0 � X0 � X1 � X1 � X2 � � � � . By ([6], Theorem 3), X WD [m<øXm is a

closed element of H, i.e., X 2 C. And clearly K � X and jX j D �. �

Our next objective is to prove a variant on the Singular Compactness Theorem

of S. Shelah. It is similar to other versions (see, for example, [1]), but it appears to

be somewhat simpler than many.

Suppose 
 is a singular cardinal. If G is a p!1-bounded C!1
-group, then a

collection S of p!1-pure subgroups will be called a 
-dsc system if it satisfies the

following:
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(1) 0 2 S;

(2) every S 2 S is a dsc group with jS j < 
 ;

(3) if Z � G with @1 � jZj < 
 , then there is an S 2 S such that Z � S and

jS j D jZj;

(4) if S0 � S is a chain with union S , then jS j < 
 implies that S 2 S.

If @1 � � < 
 is a cardinal, let S� D ¹S 2 SW jS j � �º. We note one

consequence of the above conditions.

(5) If Z � G with jZj � �, then there is an S 2 S� such that Z � S and

whenever S 0 2 S� with S � S 0, then S is a summand of S 0.

If (5) failed, then we could construct a smoothly ascending chain

Z � S0 � S1 � � � � � Si � SiC1 � � � � .i < �C/

of elements of S� such that for each i < �C, Si fails to be a summand of SiC1. Now,

if we let S D [i<�CSi , then jS j � �C < 
 . So by (4), S 2 S, and in particular,

S is a dsc group. Note that ¹Siºi<�C will be a filtration of S , so for a CUB subset

C � �C, Si is a summand of S for each i 2 C . However, this contradicts that this

Si is not even a summand of SiC1, let alone S .

Often, when we mention condition (5) we will assume that we extend a de-

composition of S to a decomposition of S 0; in this way S will be a D-summand of

S 0. More generally, if S0 � S1 � � � � � Sn is an ascending sequence of elements

of S� satisfying (5), then we can successively build up our decompositions so that

each Sk is a D-summand of SkC1.

This brings us to our version of the Singular Compactness Theorem.

Theorem 2.5. Suppose G is a p!1-bounded C!1
-group of cardinality 
 , where


 is a singular cardinal. Then G is a dsc group if and only if it has a 
-dsc system.

Proof. One direction is clear, so assume that S is a 
-dsc system for G. Let

� be the cofinality of 
 and let ¹�iºi<
 be a smoothly increasing sequence of

cardinals greater than � whose limit is 
 . We start by defining S0
i D 0 for all i < �

and letting ¹C 0
i ºi<� be a smoothly ascending chain of subgroups whose union is

G, such that each jC 0
i j � �i . Next, for each i < � let Ti � S�i

be a collection of

subgroups that satisfy (5) for � D �i .
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For some positive integer n suppose we have defined

(1) ¹Sn�1
i ºi<� where each Sn�1

i 2 Ti has a decomposition Dn�1
i into countable

subgroups;

(2) a smoothly ascending chain of subgroups ¹C n�1
i ºi<� whose union is G such

that Sn�1
i � C n�1

i and jC n�1
i j � �i for all i < �.

We now define ¹Sn
i ºi<� so that for all i < �:

(3) Sn�1
i is a summand of Sn

i 2 Ti and the decompositionDn�1
i for Sn�1

i extends

to a decomposition Dn
i for Sn

i ;

(4) Sn�1
i � C n�1

i � P n
i � Sn

i , where P n
i is a Dn

iC1-summand of Sn
iC1.

For all i < � let U n
i 2 Ti such that jU n

i j � �i and Sn�1
i � C n�1

i � U n
i ;

extend the decomposition Dn�1
i on each Sn�1

i to a decomposition En
i for each U n

i .

Now C n�1
i � C n�1

iC1 � U n
iC1, so there is an En

iC1-summand P n
i of U n

iC1 containing

C n�1
i for which jP n

i j � �i . We then find Sn
i 2 Ti such that U n

i C P n
i � Sn

i . If

we extend the decomposition En
i of each U n

i to a decomposition Dn
i for each Sn

i ,

then (3) and (4) follow.

Now, given ¹Sn
i ºi<� as above, we show how to define a smoothly ascending

chain of subgroups ¹C n
i ºi<� with union G so that

(5) jC n
i j � �i and Sn

i � C n
i .

For each i < �, let our decomposition Dn
i of Sn

i be written
L

j <�i
Xi;j . For

each i < �, define

C n
i D hXk;j W k < �; j < min¹�i ; �kºi:

Clearly jC n
i j � �i , and ¹C n

i ºi<� is a smoothly ascending chain with union G.

In addition, Sn
i D

L
j <�i

Xi;j � C n
i .

So by induction, for all n < ! and i < � we have defined Sn
i , C n

i and P n
i .

Observe that if we let Si D [n<!Sn
i , then Si is a dsc group with a decomposition

Di determined by its inductive construction. Next, since Sn
i � C n

i � SnC1
i ,

we can conclude that Si D [n<!C n
i , so that ¹Siºi<� is a smoothly increasing

chain of subgroups with union G.

Finally, by (4), Sn�1
i � P n

i � Sn
i and P n

i is a Dn
iC1 summand of Sn

iC1, and so a

DiC1 summand of SiC1. Therefore, Si D [n<!P n
i will also be a DiC1-summand

of SiC1. This readily implies that G is a dsc group. �
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3. When is G 2 F actually a dsc group?

For a C!1
-group G we now review how JG � Qf was defined in [10]. Suppose

T 2 Qf ; if T D ;, let �.T / D @1, and if T ¤ ;, let �.T / be its greatest element.

Let T 0 D T � ¹�.T /º, and if i < �.T /, let Ti D .T 0 [¹iº/\Q (that is, Ti D T 0 if

i 62 Q and Ti D T 0 [ ¹iº when i 2 Q). In particular, if T 2 Qf is non-empty and

i < �.T /, then �.Ti/ < �.T /.

For every C!1
-group G and every T 2 Qf we decide whether T 2 JG by

induction on �.T / WD �. First the base case:

(J-0) if � D @1 (i.e., T D ;), then T 2 JG if and only if p!1G ¤ 0.

Suppose now that � � @2, and that for all S 2 Qf with �.S/ < � and for all

C!1
-groups yG we have defined when S 2 J yG

. Then T 2 JG if and only if one of

following conditions holds:

(J-1) ‡J
T .G/ D ¹i < �WTi 2 JGº is stationary in �; or

(J-2) G has a p!1-pure subgroup A of cardinality � with a p!1-pure filtration

¹Xiºi<
 such that ƒJ
T .A/ D ¹i < �WTi 2 JA=Xi

º is stationary in �.

We include the following example to give a simple illustration of the compu-

tation of this invariant:

Proposition 3.1 ([10], Corollary 1.20). Suppose that G is a p!1-bounded

C!1
-group, and � 2 Q is a successor cardinal. Then T WD ¹�º 2 JG if and

only if G has a �-Kurepa subgroup.

Proof. If 
 is a cardinal with � D 
C, then C WD ¹i < �W i > 
º is certainly

a CUB in �. Since Ti D ; for all i 2 C , our definition is simplified considerably.

Now, if zG is any C!1
group, then ; 2 J zG if and only if p!1 zG ¤ 0. In particular,

for all i 2 C , Ti D ; 62 ‡J
T .G/. Therefore, T 2 JG if and only if (J-2) holds for T .

Suppose, then, that G has a �-Kurepa subgroup, K. Let A � G be a p!1-pure

subgroup containing K such that � D jAj D jA\ xKj: So, if ¹Xiºi<� is a p!1-pure

filtration of A, then A=Xi is never p!1-bounded. In other words, ƒJ
T .A/ D �, so

that (J-2) holds and T 2 JG .

On the other hand, suppose that G does not have a �-Kurepa subgroup and

A � G is any p!1-pure subgroup of cardinality �. Certainly, A cannot have a �-

Kurepa subgroup, so by Lemma 2.4(b), we can find a closed p!1-pure filtration

¹Xiºi<� of A. Since A=Xi is p!1-bounded for every i < �, we can conclude that

ƒJ
T .A/ \ C D ;. Since A was arbitrary, (J-2) does not hold. �
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A little more intuitively, a statement such as ¹�; �0º 2 JG (where @2 � � < �0)

indicates that either G has a �-Kurepa subgroup, or it has some p!1-pure subgroup

A � G of cardinality �0 such that when ¹Xiºi<�0 is any filtration of A, at least

one of the quotients A=Xi has a �-Kurepa subgroup. More generally, the more

elements an element of JG contains, the more we are looking at filtrations of

subgroups that are themselves embedded in filtrations of subgroups, etc. If in this

kind of dissection it is inevitable that we encounter a �-Kurepa subgroup, then by

Theorem 1.4(a) we have an obstruction to G being a member of F.

So in computing JG we are searching deep inside of G for �-Kurepa subgroups

with � � @2. If JG D 0Q, then there are no such embedded subgroups and G 2 F.

And when this happens we will need an additional invariant to detect the presence

of similarly embedded @1-Kurepa subgroups. The elements of this invariant will

then be obstructions to G 2 F actually being a dsc group. This will require some

preliminary work.

The group M is an !1-elementary S -group if there is a dsc group H containing

M as a p!1-pure subgroup such that H=M ' Zp1 . From now on we will let

M be some fixed !1-elementary S -group of cardinality !1 (it does not matter

exactly which one is chosen). If G is any group, then 0! G 5M ! G 5H !

G Œ' G 5 Zp1 �! 0 is a p!1-projective resolution of G.

The following summarizes some well-known properties of the class F.

Lemma 3.2. Suppose G, A and B are C!1
-groups.

(a) G 2 F if and only if G 5M is a dsc group.

(b) If G 2 F, then G is p!1-bounded.

(c) If jGj � @1, then G 2 F if and only if it is p!1-bounded.

(d) If B 2 F, then A5 B 2 F.

(e) If G 2 F and K � G is a p!1-pure subgroup, then K 2 F.

(f) If A and B are p!1-bounded and of cardinality at most @2, then A5B 2 F.

(g) ([6], Theorem 19 with n D 2) If � � @3 and A and B are p!1-bounded, then

A5 B 2 F.

Proof. (a): Follows from the above resolution of G. (b): If G 5M is a dsc

group, then G must be p!1-bounded by Theorem 1.1. (c): One direction is (b),

the other follows from Lemma 2.2(a) with A D G and B D M . (d): If B 2 F,

then B 5M is a dsc group so that A5 B 5M is also a dsc group. (e): By (d),

.G5M/=.K5M/ ' .G=K/5M 2 F. So, since G5M is a dsc, so is K5M .

(f): Follows from Lemma 2.2(b) with C DM . �
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If G 2 F, then a p!1-pure subgroup A � G will be F-pure if G=A 2 F. By

Lemma 3.2(b) any F-pure subgroup is closed. In addition, if G is a dsc and A � G

is an F-pure subgroup, then since G=A 2 F, we can conclude that A is also a dsc

group, i.e., an F-pure subgroup of a dsc group is also a dsc group.

Now if G 2 F, then G5M will be a dsc group. So A � G is F-pure if and only

if A � G is p!1-pure and .G=A/5M is a dsc group if and only if the sequence

0! A5M ! G5M ! .G=A/5M ! 0 splits. [Since M has a summand that

is a dsc group of length !1, if this latter sequence splits, then A will automatically

be a p!1-pure subgroup of G.] This characterization clearly implies that F-purity

is transitive; i.e., if B is F-pure in A and A is F-pure in G, then B is F-pure in G.

If G 2 F, then fix a decomposition D of G 5 M into countable groups.

Consider the collection M of all subgroups A � G such that A5M � G 5M

is a D-summand. We call this the F -system determined by D. As in Lemma 2.4,

we have the following:

Lemma 3.3. Suppose G 2 F and M is an F -system for G.

(a) M is closed under unions of chains;

(b) If A � G has cardinality � � @1, then there is an X 2 M such that A � X

and jX j D �.

(c) If jGj D � � @2 and � is regular, then G has a filtration ¹Xiºi<� �M.

Note that Lemma 3.3(b) implies that a group G 2 F cannot have a �-Kurepa

subgroup for any � > @1. We also note the following simple idea.

Lemma 3.4. If G 2 F, then G has an @1-Kurepa subgroup if and only if it has

an F-pure subgroup A of cardinality @1 that fails to be a dsc group.

Proof. Since an F-pure subgroup is closed, sufficiency is obvious. Con-

versely, if A � G is an @1-Kurepa subgroup, then by Lemma 3.3(b) we can find a

F-pure subgroup X � G containing A with jX j D @1. Since A is closed in X , by

Lemma 3.2(c), X=A 2 F. Therefore, X also fails to be a dsc group, as desired. �

If G 2 F, we define our invariant FG � Qf by induction on �.T / WD � as

follows:

(F-0) if � D @1 (i.e., T D ;), then T 2 FG if and only if G has an F-pure

subgroup A of cardinality !1 that is not a dsc group; or equivalently, an

@1-Kurepa subgroup.
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Suppose now that � � @2, and that for all S 2 Qf with �.S/ < � and for all

groups zG 2 F we have defined when S 2 F zG . Then T 2 FG if and only if one of

the following two conditions holds:

(F-1) ‡F
T .G/ D ¹i < �WTi 2 FGº is stationary in �; or

(F-2) G has an F-pure subgroup A of cardinality � with an F-pure filtration

¹Xiºi<
 such that ƒF
T .A/ D ¹i < �WTi 2 FA=Xi

º is stationary in �.

The following gives some basic properties of this invariant. It is similar to

results for L�
G and JG given in earlier works.

Lemma 3.5 (cf. [9], Lemma 1.4). Suppose G 2 F, T 2 Qf and � D �.T /.

(a) If T 2 FG , S 2 Qf and T � S , then S 2 FG .

(b) If K is an F-pure subgroup of G, then FK � FG .

(c) If G D G1 ˚G2, then FG D FG1
[ FG2

.

(d) If T 2 FG , then there is an F-pure subgroup K � G such that jKj � � and

T 2 FK .

(e) If T 2 FG is minimal under inclusion, then �.T / � jGj.

(f) If K is an F-pure subgroup of G and jKj D jGj D � � @2, then there are

F-pure filtrations of K and G such that ƒF
T .K/ � ƒF

T .G/.

Proof. As in [9], all but (f) follow from a straightforward induction. For

example, consider (e). If � D @1 and T 2 FG , then it follows immediately from

(F-0) that G has cardinality at least @1. Suppose now that � > @1. If (F-1) holds,

consider any i 2 E WD ‡F
T .G/. Find Si � Ti with Si 2 FG minimal under

inclusion. Since T is also minimal under inclusion, we must have i 2 Si . Therefore

by induction, jGj � sup¹�.Si/ºi2E D ¹iºi2E D �. If (F-2) holds, we know that G

has an F-pure subgroup A of cardinality �, giving the result.

Finally, consider (f). Note that G=K 2 F. Let ¹Zi � G=Kºi<� be defined as

follows: If jG=Kj D �, then let it be an F-pure filtration of G=K; otherwise, let

each Zi D G=K. Now, let ¹Xiºi<� be an F-pure filtration of K and ¹Yiºi<� be an

F-pure filtration of G. It is clear that the set of i < � such that Xi D Yi \K and

Zi D ŒYi CK�=K is a CUB in �. Restricting our filtration to the members of this

CUB, the result easily follows from (b). �

We will have use for the following elementary property:

Lemma 3.6. If A and B are p!1-bounded C!1
-groups, then A5 B does not

have a �-Kurepa subgroup for any cardinal �.



Nunke’s problem for abelian p-groups of uncountable length 273

Proof. If K is any p!1-pure subgroup of A 5 B of cardinality @1, then we

can find p!1-pure subgroups X � A and Y � B of cardinality @1 such that

K � X 5 Y . It easily follows that X 5 Y is closed in X 5 B , which is closed in

A5B . This implies that j xKj D @1; so A5B does not have �-Kurepa subgroups

for any � � @2. So assume � D @1. Lemma 2.2(a) implies that X 5 Y is a dsc

group. If K were closed in A5B , then by Lemma 3.2(c), .X 5 Y /=K 2 F. This

would imply that K would be a dsc group. Therefore, A5 B has no @1-Kurepa

subgroups. �

Before we state and prove the main result of this section, we mention a useful

variation on Fodor’s Lemma. Suppose 
 is a regular cardinal and V � 
 is a

stationary subset. A function f WV! Qf such that f .i/ � i for all i 2 V will be

called regressive.

Lemma 3.7 ([9], Lemma 1.5). Suppose 
 2 Q andV � 
 is a stationary subset.

If f WV ! Qf is a regressive function, then there is a stationary subset V0 � V

such that f .i/ D f .j / for all i; j 2 V0.

So we have arrived at the solution to the question in the title of this section and

one of the main results of the paper.

Proof of Theorem 1.5. Suppose first that G is a dsc group. We show T 62 FG

for each T 2 Qf by induction on � D �.T /. First, if � D @1, then T D ; and we

are in the base case (F-0). However, we observed that any F-pure subgroup of a

dsc group is actually another dsc group, so that T 62 FG . Now, if � > @1, then we

show (F-1) cannot hold. By induction, for all i < �, �.Ti/ < �, so that Ti 62 FG .

Therefore, ‡F
T .G/ D ; and (F-1) fails. Finally, suppose A � G is as in (F-2).

There is clearly a decomposition G D G1 ˚ G2, where A � G1 and jG1j D �.

It follows from Lemma 3.5(f) that ƒI
T .A/ � ƒI

T .G1/. But G1 has a filtration by

summands, so by induction, ƒI
T .G1/ is empty. So (F-2) fails, and this completes

one direction of the argument.

Conversely, we show by induction on 
 WD jGj that FG D 0Q implies that G is

a dsc group. Consider first the case where 
 D @1. Since ; 62 FG , G cannot have

an F-pure subgroup of cardinality @1 which is not a dsc group. In particular, G

itself must be a dsc group.

So, suppose the result holds for all groups in F of cardinality strictly less than


 > @1. Suppose K is an F-pure subgroup of G with jKj < 
 . By Lemma 3.2(e),

K 2 F, and by Corollary 3.5(b), FK � FG D 0Q; and by induction, this implies

that K is a dsc group. In particular, every group in an F -system for G of strictly

smaller cardinality than 
 will be a dsc. We now divide the argument into two

cases.
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Suppose first that 
 is singular. If M is an F -system for G, then clearly

S D ¹S 2 MW jS j < 
º is a 
-dsc system for G. So by Theorem 2.5, G is a

dsc group, as desired.

Suppose now that 
 is regular and ¹Xiºi<
 �M is a filtration of G; so each Xi

is a dsc group. Let U � 
 be the collection of all i < 
 such that Xi is a summand

of Xj whenever i � j < 
 . If U contains a CUB subset E, then replacing our

filtration by restricting to the elements of E, we may assume that each Xi is a

summand of XiC1. This easily implies that G itself is a dsc group, as required.

We show that if U fails to contain a CUB, then we are led to a contradiction.

Let V D 
 � U; so we are assuming that V is stationary. Again replacing our

filtration by restricting our attention to the terms in some CUB, we may assume

that for every i 2 V, that Xi fails to be a summand of XiC1. In addition, since

W WD ¹i < 
 W jXi j D ji jº is a CUB, replacing V by the stationary set V \W, we

may assume that jXi j D ji j for all i 2 V.

If i 2 V, then there is a decomposition XiC1 D Y ˚ Z, where Xi � Y and

jY j D jXi j D ji j < 
 . Now Y=Xi 2 F, but since Xi is not a summand of Y , Y=Xi

will not be a dsc group. It follows from induction and Lemma 3.5(e) that there is

a T i 2 FY=Xi
� FXiC1=Xi

� FG=Xi
such that �.T i / � ji j � i .

The mapping i 7! T i � ¹iº will be regressive, so by Lemma 3.7, there is

a stationary subset V0 � V on which this assignment is constant. If yT is this

constant value, then we let T D yT [ ¹
º. It follows that V0 � ƒF
T .G/ so that

by (F-2), T 2 FG . This means that FG ¤ 0Q and this contradiction completes the

proof. �

4. Nunke’s problem when 2@1 D @2

We would like to somehow combine JG and FG into a single invariant to address

Nunke’s problem. Our construction needs to detect �-Kurepa subgroups, both for

� � @2, as does JG , but also for � D @1, as does FG in the case where G 2 F.

Recall R D ¹@1º [ Q. Given a p!1-bounded C!1
-group G, we define a

collection of non-empty finite subsets of R, IG � Rf , by induction on �.T / WD �

as follows:

(I-0) If � < � and � is the least element of T , then T 2 IG if and only if G has an

�-Kurepa subgroup.

Suppose now that � � �, and that for all ; ¤ S 2 Rf with �.S/ < � and for

all p!1-bounded C!1
-groups yG we have defined when S 2 I yG

. Then T 2 IG if

and only if one of the following two conditions holds:
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(I-1) ‡I
T .G/ D ¹i < �WTi 2 IGº is stationary in �; or

(I-2) G has a closed p!1-pure subgroup A of cardinality � with a closed p!1-pure

filtration ¹Xiºi<
 such that ƒI
T .A/ D ¹i < �WTi 2 IA=Xi

º is stationary in �.

The following summary of the basic properties of IG is proved in an almost

identical manner to the corresponding result for FG (that is, Lemma 3.5).

Lemma 4.1. Suppose G is a p!1-bounded C!1
-group, T 2 Rf and � D �.T /.

(a) If T 2 IG , S 2 Rf and T � S , then S 2 IG .

(b) If K is a closed p!1-pure subgroup of G, then IK � IG .

(c) If G D G1 ˚G2, then IG D IG1
[ IG2

.

(d) If T 2 IG and � � �, then there is a closed p!1-pure subgroup K � G such

that jKj � � and T 2 IK .

(e) If T 2 IG is minimal under inclusion, then �.T / � jGj.

(f) If K is a closed p!1-pure subgroup of G and jKj D jGj D � � �, then there

are closed p!1-pure filtrations of K and G such that ƒI
T .K/ � ƒI

T .G/.

It also follows easily from induction that if G is a p!1-bounded C!1
-group and

T 2 IG has least element �, then � < � (since this holds for the base case).

We now turn to our main objective, addressing the uncountable case of Nunke’s

problem. The following result will be the base cases of our inductions:

Lemma 4.2. If A and B are p!1-bounded C!1
-groups of cardinality at most

@2, then A5 B 2 F and the following are equivalent:

(a) A5 B is not a dsc;

(b) ¹@2º 2 FA5B ;

(c) one of A, B has an @1-Kurepa subgroup and the other has an @2-Kurepa

subgroup;

(d) ¹@1;@2º 2 IA � IB .

Proof. By Lemma 3.2(f) we know that A5B 2 F. Clearly, (b) implies (a) by

Theorem 1.5. Assuming (a), by Lemma 3.5(e) there is T 2 FA5B with �.T / � @2.

By Lemma 3.6, ; 62 FA5B . Therefore, T D ¹@2º, so that (b) follows. The

equivalence of (c) and (d) is due to the definitions of IA; IB and the fact that every

element of these invariants is non-empty. Finally, the equivalence of (a) and (c) is

due to the n D 2 case of ([6], Theorem 15). �
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If T 2 Qf , let zT D ¹@1º [ T 2 Rf . This brings us to half our main result:

Theorem 4.3. Suppose A and B are p!1-bounded C!1
-groups.

(a) If � � @3, then A5 B 2 F and IA � IB � zFA5B WD ¹ zT WT 2 FA5Bº:

(b) If B 2 F, then A5 B 2 F and JA � FB � FA5B .

Proof. Observe that in case (a), if S 2 IA � IB , then since the least elements

of the sets in IA and IB are at most @2, we can conclude that ¹@1;@2º � S , and in

particular, that S D zT for some unique T 2 Qf .

We begin with a crucial observation. We will often consider p!1-pure sub-

group X � A and Y � B . We have containments X5Y � X5B � A5B with

quotients Q1 WD X5 .B=Y / and Q2 WD .A=X/5B . In the context of part (a) we

will further suppose X and Y are closed, i.e., A=X and B=Y are p!1-bounded.

Therefore by Lemma 3.2(g), Q1; Q2 2 F. In the context of part (b) we will further

suppose that Y is F -pure in B , i.e., B=Y 2 F. Since both B and B=Y are both

in F, by Lemma 3.2(d) we will have Q1; Q2 2 F. In either case, it follows that

X 5 Y is F-pure in A 5 B . In particular, if X D Y D 0, we can conclude that

A5 B ' .A5 B/=.05 0/ 2 F.

By induction on � WD �.T /, for each T 2 Qf we show that if (a) zT 2 IA � IB ;

or (b) T 2 JA � FB , then T 2 FA5B . For our base case, suppose � D �.T / � @2.

(a): Since every element of IA and IB is non-empty, zT 2 IA � IB exactly if
zT D ¹@1;@2º 2 IA � IB . We can find closed p!1-pure subgroups X � A and

Y � B of cardinality at most @2 such that ¹@1;@2º 2 IX � IY . And since X 5Y is

F-pure in A5 B , by Lemma 4.2, T D ¹@2º 2 FX5Y � FA5B .

(b): Since A is p!1-bounded, every element of JA is non-empty. So if T 2

JA � FB and � � @2, then we must have ¹@2º 2 JA and ; 2 FB . By Lemma 3.5(d)

and Proposition 3.1, this means that A has a p!1-pure subgroup X of cardinality @2

that has an @2-Kurepa subgroup; and B has an F-pure subgroup Y of cardinality

@1, that is not a dsc group. Since X 5 Y is an F-pure subgroup of A 5 B , by

Lemma 4.2 we can conclude that T D ¹@2º 2 FX5Y � FA5B .

So we may assume � > @2. For the remainder of the proof we will concentrate

on part (a), indicating parenthetically the very minor changes needed to establish

part (b). Suppose zT 2 IA � IB . It follows that zT will be a disjoint union of the

non-empty sets U 2 IA and V 2 IB . Suppose first that � 2 U . If U satisfies

(I-1), then ‡I
U .A/ is stationary. However, if i 2 ‡I

U .A/ and �.V / < i < �,

then by induction zTi D Ui [ V 2 IA � IB implies that Ti 2 FA5B . In other

words, ‡I
U .A/ � ‡F

T .A 5 B/, and since the left is stationary, so is the right;

i.e., T 2 FA5B . The case where � 2 V is identical. [(b): We assume T is the
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disjoint union of U 2 JA and V 2 FB . If � 2 U and U satisfies (J-1), it follows

that ‡J
U .A/ � ‡F

T .A 5 B/ and if � 2 V and V satisfies (F-1), it follows that

‡F
U .B/ � ‡F

T .A5 B/.]

Now, if � 2 U and U 2 IA satisfies (I-2), then we can find a closed p!1-pure

subgroup X � A such that jX j D � and ƒI
U .X/ is stationary. By Lemma 3.5(d)

we can find a closed p!1-pure subgroup Y � B such that V 2 IY and jY j �

�.V / < �. If ¹Ziºi<� is a closed p!1-pure filtration of X , then ¹Zi 5 Y ºi<�

will be an F-pure filtration of X 5 Y . So if i 2 ƒI
U .X/ with i > �.V /, then

by induction Ti D Ui [ V 2 F.X=Zi /5Y D F.X5Y /=.Zi 5Y /. This means that

ƒI
U .X/ � ƒF

T .X 5 Y /, so that T 2 FX5Y � FA5B . By symmetry, this also

works when � 2 V and V 2 IB satisfies (I-2). [(b): Again, supposing T is

the disjoint union U [ V , if � 2 U and U 2 JA satisfies (J-2), then we can

find a p!1-pure subgroup X � A and an F-pure subgroup Y � B such that

jY j < jX j D �, U 2 IX , V 2 IY . This time using a p!1-pure filtration ¹Ziºi<�

of X shows that ƒJ
U .X/ � ƒF

T .X 5 Y /, so that T 2 FX5Y � FA5B . Similarly,

if � 2 V and V 2 FB satisfies (F-2), in the above, jX j < jY j D �. If ¹Ziºi<� is

an F-pure filtration of Y , we can conclude that ƒF
V .Y / � ƒF

T .X 5 Y /, so that

T 2 FX5Y � FA5B . ] �

We now conclude the proof of the main result of this paper. For simplicity, in

the statement of Theorem 1.7(a) we included 2@1 D @2 as a hypothesis; what we

really need is that � � @3, as in Theorem 4.3(a).

Proof of Theorem 1.7. Suppose first that A 5 B is a dsc. In part (a), by

Theorems 1.5 and 4.3(a) we have IA � IB � zFA5B D z0Q D 0R; and in part (b), by

Theorem 4.3(b) we have JA � FB � FA5B D 0Q.

To prove the converse, in either case, since A5 B 2 F, we need to show that

FA5B D 0Q. In (a) we are assuming IA � IB D 0Q and in (b) we are assuming that

JA � FB D 0Q. As above, these two arguments are similar and we will concentrate

on (a), indicating parenthetically the very minor changes needed to address (b).

We prove the following using induction on � WD �.T /. If T 2 FA5B , then

there is an S 2 Qf such that zS 2 IA � IB and �.S/ � �. [(b): S 2 JA � FB .]

Suppose first that � D @1, i.e., T D ;. By Lemma 3.6, T D ; 62 FA5B , so the

implication is vacuously true.

Suppose next that �.T / D @2, i.e., T D ¹@2º. Using Lemmas 3.5(d) and 2.4(c)

we can find closed p!1-pure subgroups X � A and Y � B such that jX5Y j � �

and T 2 FX5Y . So by Lemma 4.2, zT D ¹@1;@2º 2 IX � IY � IA � IB , as required.

[(b): Here X � A would be p!1-pure and Y � B would be F-pure. We would

still have T D ¹@2º 2 FX5Y . Since Y 2 F cannot have an @2-Kurepa subgroup,
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by Lemma 4.2 we could conclude that X has an @2-Kurepa subgroup and Y an

@1-Kurepa subgroup. So again, by Proposition 3.1, zT D ¹@2º [ ¹@1º 2 JX � FY �

JA � FB , as required.]

Now suppose � > @2, so T 2 FA5B must satisfy (F-1) or (F-2). Suppose first

that T satisfies (F-1), i.e., ‡F
T .A 5 B/ is stationary. For any i 2 ‡F

T .A 5 B/,

by induction Ti 2 FA5B implies that there is an element zS 2 IA � IB with

�.S/ � �.Ti/ < �. [(b): Here S 2 JA � FB .]

Finally suppose T satisfies (F-2). We can find closed p!1-pure subgroups

A0 � A, B 0 � B such that jA0 5 B 0j D � and T 2 FA05B0 . Replacing A by

A0 and B by B 0, from Lemma 3.5(f) we can conclude that E WD ƒF
T .A 5 B/

is stationary. Define ¹Xiºi<� as follows. If jAj D �, let it be a closed p!1-pure

filtration of A; otherwise, let each Xi D A. And if jBj D �, let ¹Yiºi<� be a closed

p!1-pure filtration of B; otherwise let each Yi D B . It follows that ¹Xi 5 Yiºi<�

is an F-pure filtration of A5B . [(b): We assume that A0 and each Xi is p!1-pure

in A; and B 0 and each Yi is F-pure in B .]

For each i < � there is a commutative diagram with F-pure rows and columns:

0 0 0

 
�

 
�

 
�

0 �! Xi 5 Yi �! Xi 5 B �! Xi 5 .B=Yi / �! 0

 
�

 
�

 
�

0 �! A 5 Yi �! A 5 B �! A 5 .B=Yi / �! 0

 
�

 
�

 
�

0 �! .A=Xi / 5 Yi �! .A=Xi / 5 B �! .A=Xi / 5 .B=Yi / �! 0

 
�

 
�

 
�

0 0 0

So the following push-out of both the right column and bottom row is F-pure:

0 �! .A5 B/=.Xi 5 Yi/ �! .ŒA=Xi �5 B/˚ .A5 ŒB=Yi �/

�! ŒA=Xi �5 ŒB=Yi � �! 0:

For any i 2 E, Ti 2 F.A5B/=.Xi 5Yi /. And by Lemma 3.5(c) and the above

sequence we can conclude that

Ti 2 FŒA=Xi �5B [ FA5ŒB=Yi �:

Since there are only two choices, there is a stationary subset E0 � E such that

either Ti 2 FŒA=Xi �5B for all i 2 E0, or Ti 2 FA5ŒB=Yi � for all i 2 E0. Assume
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Ti 2 FŒA=Xi �5B for all i 2 E0 (the other case, again, is symmetric). By induction

we can conclude that whenever i 2 E0, there is a disjoint union zS i D U i [ V i ,

where U i 2 IA=Xi
and V i 2 IB , with �.S i/ � �.Ti/ � i < �. [(b): We will have

S i D U i [ V i , with our two possibilities being U i 2 JA=Xi
and V i 2 FB ; or else

U i 2 JA and V i 2 FB=Yi
- in either case with �.S i/ � �.Ti/ � i < �.]

The map i 7! U i � ¹iº is regressive, so by Lemma 3.7 there is a stationary

subset E00 � E0 such that for all i; j 2 E00, U i � ¹iº D U j � ¹j º WD yU . If we

define U D yU [ ¹�º, it follows that E00 � ƒI
U .A/, so that U 2 IA. If we choose

any i 2 E00 with �. yU / < i < �, then it follows that zS WD U [ V i 2 IA � IB and

�.S/ D �, completing the argument. [(b): Again, replace I by the appropriate J

or F .] �

5. Examples and further discussion

We start with a straightforward observation.

Proposition 5.1. If K is a closed p!1-pure subgroup of the dsc group G, then

IK D 0R.

Proof. If we can show IG D 0R, then this follows from Lemma 4.1(b).

As in the first paragraph of Theorem 1.5, we show T 62 FG for each T 2 Rf

by induction on � D �.T /. First, if � < �, then we are in the base case (I-0).

As was noted previously, a dsc group cannot have a �-Kurepa subgroup for any

� < �, so T 62 IG .

Now, if � � �, then the fact that (I-1) cannot hold follows easily by induction.

Finally, suppose A � G is as in (I-2). There is clearly a decomposition G D

G1˚G2, where A � G1 and jG1j D �. It follows from Lemma 4.1(f) that ƒI
T .G1/

is stationary. But G1 has a filtration by summands, so by induction, ƒI
T .G1/ is

empty. This contradiction completes the argument. �

If � D @3, then there is a p!1-pure short exact sequence 0 ! G ! H !

H=G ! 0 where H is a dsc group of cardinality @2 and H=G is a p!1-bounded

C!1
-group with p!1-p.d. equaling 2. So G is a closed p!1-pure subgroup of H ,

but not an F-pure subgroup. It follows that this G is not a dsc group, but by

Proposition 5.1, we know that IG D 0R. In other words, the invariant IG does

not necessarily tell us when an individual p!1-bounded C!1
-group is a dsc group;

this is in contrast to Theorems 1.2(a) and 1.4(a). In addition, for every p!1-bounded

C!1
-group A we will have IA � IG D IA � 0Q D 0Q; so by Theorem 1.7(a), A5G is

always a dsc group even though G itself is not [this fact was previously observed

in ([6], Theorem 20)].
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Staying with this G � H , note that G 2 F, and since it fails to be a dsc group,

FG ¤ 0Q. Since IG D 0Q, we know that G cannot have an @1-Kurepa subgroup.

Therefore, we can conclude that ; 62 FG . If T 2 FG is minimal under inclusion,

then by Lemma 3.5(e) we must have �.T / � @2; so T D ¹@2º is the only minimal

set and FG D ¹S 2 Qf W @2 2 Sº: Notice that this shows that when G � H

is F-pure we can conclude that FG � FH , but this does not necessarily hold if

G � H is only assumed to be a closed p!1-pure subgroup.

We now show that a naive generalization of Theorem 1.7(a) for � D @4

does not hold. Suppose A is a p!1-bounded C!1
-group of cardinality @3 with

an @3-Kurepa subgroup. Let B D A5 A. It follows from ([6], Theorem 15 with

n D 3) that A 5 B D A5 A5 A is not a dsc. On the other hand, if T 2 IB is

minimal under inclusion, then �.T / � @3 < � D @4. However, by Lemma 3.6,

B does not have a �-Kurepa subgroup for any �; so no such T exists. Therefore,

IA � IB D IA � 0R D 0R: So in any possible generalization of Theorem 1.7(a) for

� � @4 it will be necessary to amend the definition of IG .

We next observe that Theorem 1.7(b) holds even when A is p!1-unbounded.

In this case, then JA D 1Q WD Qf . So by Theorems 1.1 and 1.5, if B 2 F, then

A 5 B is a dsc group if and only if B is a dsc group if and only if JA � FB D

1Q � FB D FB D 0Q. In fact, Theorem 1.5 is simply one case of Theorem 1.7(b),

where A D Zp1 and B D G, so that A5 B ' G 2 F and JA � FB D FG .

In Theorems 4.3 and 1.7 we would clearly prefer the following hold: (a) IA�IB D
zFA5B (for � � @3); and (b) JA �FB D FA5B . In both cases Theorem 4.3 gives one

containment, the question is the reverse containment. The problems come in the

presence of regular cardinals � that are weakly Mahlo, i.e., S D ¹
 2 Q W 
 < �º is

stationary in �. As in ([9], Theorem 2.3), these inclusions will in fact be equalities

when we restrict to the class of non-weakly Mahlo regular cardinals.

Finally, when 2@1 D @2 we have stated that Theorem 1.7(a) solves Nunke’s

problem. It would perhaps be more accurate to say that the result shifts the

problem from a question regarding the torsion product, to a question of computing

invariants whose values, even in easy cases, depend upon undecidable statements

from set theory. Still, it gives a way to analyse the problem by considering each

group as a separate entity without any reference to their torsion product.
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