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1. Introduction and preliminaries

The aim of this paper is to investigate relations between the cohomology groups
of the tangential Cauchy Riemann complexes of n-reductive compact homoge-
neous CR manifolds and the corresponding Dolbeault cohomology groups of their
canonical embeddings. The class of n-reductive compact homogeneous CR man-
ifolds was introduced in [1]: its objects are the minimal orbits, in homogeneous
spaces of reductive complex groups, of their compact forms.

Results on the cohomology of the tangential CR complexes on general compact
CR manifolds of arbitrary codimension were obtained in [15] (see also [8]), under
suitable r-pseudoconcavity conditions, involving their scalar Levi forms, that were
first introduced in [3, 26]. In this paper we will restrain to the homogeneous case.

The CR structure of a homogeneous CR manifold M0 is efficiently described
by considering its CR algebra at any point p0 2M0: it is the pair .›0; v/ consisting
of the real Lie algebra ›0 of its transitive group K0 of CR-automorphisms and of
the subspace v D d��1.T

0;1
p0

M0/ of the complexification › of ›0 (see [23]). The
formal integrability of the partial complex structure T 0;1M0 of M0 is equivalent to
the fact that v is a complex Lie subalgebra of › : The intersection v\Nv (conjugation
is taken with respect to the real form ›0) is the complexification of the Lie algebra
of the stabilizer of p0 in K0 and the quotient v=.v\Nv/ represents the space T

0;1
p0

M0

of anti-holomorphic complex tangent vectors at p0:

We call n-reductive a homogeneous CR manifold for which vD .v\ Nv/˚ n.v/;

i.e. for which T
0;1

p0
M0 can be identified to the nilradical of v: It was shown

in [1] that the intersection of any pair of Matsuki-dual orbits in a complex flag
manifold M; with the CR structure inherited from M; is an n-reductive compact
homogeneous CR manifold. Moreover, when M0 is n-reductive, v is the Lie
algebra of a closed complex Lie subgroup V of K that contains the stabilizer of
p0 as its maximal compact subgroup, so that M0 D K0=V0 ,! M� D K=V

is a generic CR-embedding. Vice versa, if M� is a K-homogeneous complex
algebraic manifold, then a minimal K0-orbit M0 in M� is an n-reductive compact
homogeneous CR manifold.

Since K0 is a maximal compact subgroup of a linear algebraic complex
group K; the quasi-projective manifold M� can be viewed as a K0-equivariant
fiber bundle on the basis M0 (see [25]). We use this Mostow fibration of M� onto
M0 to construct a nonnegative smooth exhaustion ¥ of M�, with ¥�1.0/ D M0;

to relate the Dolbeault cohomology of M� to the cohomology of the tangential
CR-complex on M0: This requires some precision on the structure of the fibers
and forces us to introduce a further requirement on the CR algebra .›0; v/; namely
to ask that, if w is the largest complex subalgebra of › with v � w � .vC Nv/;
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(see [23, Theorem 5.4]), then n.w/ is the nilradical of a parabolic subalgebra
of › : This condition is satisfied in many examples coming from Matsuki dual-
ity (cf. [22]) and can always be satisfied by strengthening the CR structure of an
n-reductive M0:

When we drop this extra assumption, we are still able to construct a continuous
exhaustion, which, when M0 is r-pseudoconcave, is still strictly r-pseudoconcave,
allowing us to obtain results on the first .r � 1/ tangential Cauchy–Riemann and
Dolbeault cohomology groups of M0 and M� (or up to .r � hd.F/ � 1/ if we
discuss cohomology with coefficients in a coherent sheaf F).

Earlier versions of some results proved here were discussed in [20, 21].

The paper is organized as follows.

In §2 we discuss some basic facts on n-reductive CR manifolds. We skip from
basic stuff on CR manifolds and CR algebras, for which we refer, e.g., to [15, 23],
and only explain those special features which are necessary for the developments
of the next sections.

Cartan and Mostow fibrations are related to the structure of negatively curved
Riemannian symmetric space of the set of Hermitian symmetric matrices with
determinant one. Hence we found convenient to discuss in §3, as a preliminary,
some topics of the geometry of SLn.C/=SU.n/:

In §4 we study decompositions of K with Hermitian fibers.

Example 3.7 shows that a K0-equivariant fibration of M� with Hermitian
fibers, as in [24], is not always possible. In §5 we describe the general structure of
the fibers. To this aim, we consider a class of parabolic subalgebras associated to
the pair .›0; v/ and find a condition, that we call HNR from horocyclic nilradical,
under which we get a Mostow fibration of M� with Hermitian fibers.

In the final section §6 we apply these results to construct an exhaustion function
which permits to relate some cohomology groups of the tangential CR complexes
on M0 to the corresponding cohomology groups of the Dolbeault complexes on
M� and analogous results for Čech cohomology with coefficients in a coherent
sheaf. We conclude with the study of an example of a family of intersections of
Matsuki-dual orbits and an application of §4 to obtain a pseudoconcavity result
for which we do not require the validity of the HNR assumption.

2. Compact homogeneous CR manifolds and n-reductiveness

In this section we introduce the class of homogeneous CR manifold which is
the object of this investigation. We found convenient to recall, in an initial short
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subsection, the definition of reductive Lie group, as it is not completely standard
in the literature.

2.1 – Reductive Lie groups

We call reductive a Lie algebra › whose radical is abelian: its commutator subal-
gebra Œ›; ›� is its semisimple ideal and its radical a equals its center (see [6]).

Reductive ›’s are characterized by having faithful semisimple representations.
An involution ™ on a Lie algebra › yields a direct sum decomposition

› D ›0˚p0; with ›0 D ¹X 2 › j ™.X/ D Xº; p0 D ¹X 2 › j ™.X/ D �Xº:

A Lie group K is reductive (see [18]) if its Lie algebra › is reductive and,
moreover, there are an involution ™ and an invariant bilinear form b on › such
that

(i) ›0 ? p0 for b;

(ii) b < 0 on ›0 and b > 0 on p0;

(iii) ›0 is the Lie algebra of a compact subgroup K0 of K and

(2.1) K0 � p0 3 .x; X/ �! x � exp.X/ 2 K

is a diffeomorphism onto;

(iv) every automorphism Ad.x/ of the complexification ›C of ›, with x 2 K, is
inner, i.e. belongs to the analytic subgroup of the automorphis group of ›C

having Lie algebra ad.›/.

Then, ™ is a Cartan involution, › D ›0˚p0 and (2.1) are Cartan decompositions,
K0 is the associated maximal compact subgroup, b is the invariant bilinear form.
The maximal compact subgroup K0 of K intersects all connected component
of K (see [18, Proposition 7.19]). In particular, K has finitely many connected
components.

2.2 – Splittable Lie subalgebras

Let › be a reductive complex Lie algebra, and

› D z˚ s; with z D ¹X 2 › j ŒX; ›� D ¹0ºº; s D Œ›; ›�

its decomposition into the direct sum of its center and its semisimple ideal. An
element X of › is semisimple if ad.X/ is a semisimple derivation of ›, and nilpotent
if X 2 s and ad.X/ is nilpotent.
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An equivalent formulation is obtained by considering a faithful matrix rep-
resentation of › in which the elements of z are diagonal: then semisimple and
nilpotent elements correspond to semisimple and nilpotent matrices, respectively.

Each X 2 › admits a unique Jordan–Chevalley decomposition

X D Xs CXn; with Xs semisimple, Xn nilpotent, and ŒXs ; Xn� D 0.

A Lie subalgebra v of › is splittable if, for each X 2 v, both Xs and Xn belong
to v.

If v is a Lie subalgebra of ›, the set

n›.v/ D ¹X 2 rad.v/ j X is nilpotentº

is a nilpotent ideal of v, with

radn.v/ D rad.v/ \ Œv; v� � n›.v/ � nil.v/;

where nil.v/ is the nilradical, i.e. the maximal nilpotent ideal of v, and radn.v/

its nilpotent radical, i.e. the intersection of the kernels of all irreducible finite
dimensional linear representations of v. Note that the nilpotent ideal n›.v/, unlike
nil.v/ and radn.v/, depends on the inclusion v � › (cf. [7, §5.3]). We recall

Proposition 2.1 (see [7, §5.4]). Every splittable Lie subalgebra v admits a
Levi–Chevalley decomposition

(2.2) v D n›.v/˚ vr ;

with vr reductive and uniquely determined modulo conjugation by elementary
automorphisms of v, i.e. finite products of automorphisms of the form exp.ad.X//,
with X 2 v and nilpotent.

2.3 – Definition of n-reductive

Let › be the complexification of a compact Lie algebra ›0. Conjugation in › will be
understood with respect to its compact real form ›0. Note that all Lie subalgebras
of a compact Lie algebra are compact and hence reductive.

Proposition 2.2. For any complex Lie subalgebra v of ›, the intersection v\ Nv
is reductive and splittable. In particular, v\ Nv\n›.v/ D ¹0º. A splittable v admits
a Levi–Chevalley decomposition with a reductive Levi factor containing v \ Nv.
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Proof. We recall that v is splittable if and only if its radical is splittable ([7,
Ch.VII, §5, Théorème 2]). In this case, v admits a Levi–Chevalley decomposition
and all maximal reductive Lie subalgebras of v can be taken as reductive Levi
factors. The intersection v \ Nv is reductive, being the complexification of the
compact Lie algebra v\ ›0. Then the reductive Levi factor in the Levi–Chevalley
decomposition of v can be taken to contain v \ Nv (see e.g. [27]). �

Notation 2.1. In the following, for a complex Lie subalgebra v of ›, we shall
use the notation

L0.v/ D v \ ›0; L.v/ D v \ Nv:

Definition 2.1. Let K0 be a compact Lie group with Lie algebra ›0 and M0 a
K0-homogeneous CR manifold, with isotropy V0 and CR algebra .›0; v/ at a point
p0 2M0. We say that M0; and its CR algebra .›0; v/, are n-reductive if

v D n›.v/˚ L.v/;

i.e. if L.v/ D v\ Nv is a reductive complement of n›.v/ in v.

Remark 2.3. If .›0; v/ is n-reductive, then v is splittable. Indeed all elements
of n›.v/ are nilpotent and all elements of L.v/ are splittable, because L.v/ is
the complexification of L0.v/, which is splittable because consists of semisimple
elements. Then v is splittable by [7, Chapitre VII, §5, Théorème 1].

All submanifolds which are intersections of dual submanifold in the Matsuki
duality, with the CR structure inherited by the embedding in the ambient flag
manifold, are n-reductive (see [1, §1]). We exhibit here an example of a compact
homogeneous CR manifold M0 which is not n-reductive.

Example 2.4. Let K0 D SU.n/, n � 3. Fix a complex symmetric nondegener-
ate n� n matrix S and consider the subgroup V D ¹a 2 SL.n;C/ j atSa D Sº of
SL.n;C/, with Lie algebra v D ¹X 2 sl.n;C/ j X t SCSX D 0º. Set V0 D V\K0

and M0 D K0=V0. This is a K0-homogeneous CR manifold with CR algebra
.›0; v/, where ›0 ' su.n/, v ' so.n;C/. If S and S� are linearly independent,
then v is a semisimple Lie subalgebra of › distinct from v \ Nv.

The CR manifolds of Definition 2.1 have canonical complex realizations:
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Theorem 2.5 ([1, Theorem 4.3]). Let M0 be an n-reductive K0-homogeneous
CR manifold, with CR algebra .›0; v/ and isotropy V0 at some point p0 2 M0:

Then there is a closed complex Lie subgroup V of the complexification K of K0

with K0 \V D V0 and Lie.V/ D v such that the canonical map

(2.3) M0 ' K0=V0 �! M� D K=V

is a generic CR embedding.

Remark 2.6. Vice versa, if M� D K=V is the homogeneous complex manifold
of the complexification K of K0, it is shown in [1, Prop.2.9] that any K0-orbit M0

of minimal dimension in M�, with the CR structure induced by the ambient space,
is n-reductive.

3. Some remarks on SLn.C/=SU.n/

Keep the notation of §2. As we explained in the introduction, we need to precise
the structure of the fibers of the K0-equivariant Mostow fibration M� !M0:

Mostow fibration ([24, 25]) extends to homogeneous spaces the Cartan de-
composition of reductive Lie groups. Both are related to the fact that the positive
definite n � n Hermitian symmetric matrices with determinant one are the points
of a Riemannian symmetric space Mn with negative sectional curvature. We will
discuss some topics on the geometry of Mn (see e.g. [11]).

Any compact Lie group K0 has, for some integer n > 1, a faithful linear
representation in SU.n/; which extends to a linear representation K ,! SLn.C/.
Thus decompositions in SLn.C/ are preliminary to the general case.

The linear group SLn.C/ has the Cartan decomposition

SU.n/ � p0.n/ 3 .x; X/ �! x � exp.X/ 2 SLn.C/;

where SU.n/ D ¹x 2 SLn.C/ j x�x D Inº is its maximal compact subgroup
consisting of n�n unitary matrices with determinant one, and p0.n/ the subspace
of the traceless Hermitian symmetric n � n matrices in sln.C/.

The quotient Mn D SLn.C/=SU.n/ is a symmetric space of the noncompact
type and rank .n�1/, endowed with a Riemannian symmetricmetric with negative
curvature. We can identify Mn with the set P0.n/ of positive definite Hermitian
symmetric matrices in SLn.C/; which in turn is diffeomorphic to p0.n/ via the
exponential map. In this way Mn can be considered as an open subset of p0.n/

and its tangent bundle T Mn is naturally diffeomorphic to the subbundle

T Mn D ¹.p; X/ 2Mn � p.n/ j p�1X 2 p0.n/º

of the trivial bundle Mn � p.n/; where we set p.n/ D ¹X 2 C
n�n j X� D Xº:
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The special linear group SLn.C/ acts on Mn as a group of isometries, by

SLn.C/ �Mn 3 .z; p/ �! zpz� 2Mn;

and SU.n/ is the stabilizer of the identity e D In, that we choose as the base point.
The metric tensor on Mn is

.X; Y /p D gp.X; Y / D trace.p�1Xp�1Y /; for all p 2Mn; X; Y 2 TpMn:

The curves

R 3 t �! z exp.tX/z� 2Mn; for X 2 p0.n/; z 2 SLn.C/

are the complete geodesics in Mn issued from p D zz� and

dist.p1; p2/D
� nX

iD1

j log.œi .p
�1
1 p2//j2

�1=2

;

where œi .p
�1
1 p2/ are the eigenvalues of the matrix p�1p2; which are real and

positive, the Riemannian distance on Mn:

3.1 – Killing and Jacobi vector fields

Since Mn is a Riemannian symmetric space of SLn.C/, the Lie algebra of its
Killing vector fields is isomorphic to sln.C/: The correspondence is

sln.C/ 3 Z �! —Z D ¹p �! Zp C pZ�º 2 X.Mn/:

For H in p0.n/; the restriction to Œ0; 1� of the geodesic t ! ”H .t / D exp.tH/

is the shortest path from e D ”H .0/ to h D exp.H/ D ”H .1/: We will denote by
J.H/ the space of Jacobi vector fields on ”H and by J0.H/ its subspace consisting
of those vanishing at t D 0: For each Z 2 sln.C/, the restriction of —Z� to ”H is a
Jacobi vector field, that we denote by ™Z:

¹R 3 t �! ™Z.t / D Z� exp.tH/C exp.tH/Zº 2 J.H/:

To describe J.H/ it is convenient to consider the commutator of H

C.H/ D ¹Z 2 sln.C/ j ŒZ; H� D 0º D Cu.H/˚ C0.H/;

with

Cu.H/ D C.H/ \ su.n/; C0.H/ D C.H/ \ p0.n/:
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Proposition 3.1. The correspondence ™W sln.C/ 3 Z ! ™Z 2 J.H/ is a
linear map with kernel Cu.H/: For each T 2 C0.H/, J.t/ D t � ™T .t / is a Jacobi
vector field and

J.H/ D ¹™Z C t �™T j Z 2 sln.C/; T 2 C0.H/º;(3.1)

J0.H/ D ¹™Y C t �™T j Y 2 su.n/; T 2 C0.H/º:(3.2)

Fix Z 2 sln.C/ and T 2 C0.H/: Then

(3.3) J.t/ D ™Z.t /C t �™T .t / D Z� exp.tH/C exp.tH/Z C 2t � T � exp.tH/

is the Jacobi vector field on ”H satisfying the initial conditions:

(3.4)

8
<
:

J.0/ D Z CZ�;

PJ.0/ D 1
2
ŒH; Z �Z��C 2T;

and we have

(3.5)

8
<̂

:̂

PJ.t/ D 1
2
™ŒH;Z�C2T .t /;

DkJ.t/

dtk
D 2�k™adk

H .Z/
.t /; for k � 2:

Proof. If T 2 C0.H/; then ™T is parallel and therefore also t �™T is Jacobi on
”H : To compute the covariant derivatives of the Jacobi vector field J.t/ defined
in (3.3), we use the parallel transport

T”H .t/Mn 3 X �! exp.sH=2/X exp.sH=2/ 2 T”H .tCs/Mn

along ”H . Then

P™Z.t / D
� d

ds

�
sD0

Œexp.�sH=2/¹Z� exp.Œt C s�H/

C exp.Œt C s�H/Zº exp.�sH=2/�

D 1
2
ŒZ�; H � exp.tH/C 1

2
exp.tH/ ŒH; Z� D 1

2
™ŒH;Z�.t /:

By iteration we obtain (3.5) and, in particular, (3.4).

Finally, we need to show that all J in J.H/ have the form (3.3). Since adH

is semisimple, sln.C/ decomposes into the direct sum of its image and its kernel.
Hence p0.n/ D ŒH; su.n/�˚ C0.H/; and this yields (3.1) and (3.2).
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�

For X 2 p0.n/; we will denote by JX the geodesic on ”H with

(3.6)

´
JX .0/ D 0;

PJX .0/ D X;

while ™X 2 J.H/ satisfies ™X.0/ D 2X; P™X.0/ D 0:

The nonconstant geodesics of a manifold with negative curvature have no
conjugate points. Hence the map J0.H/ 3 J ! J.t/ 2 T”H .t/Mn is a linear
isomorphism for all t ¤ 0. Moreover, for every J 2 J.H/, the real map1
t ! kJ.t/k is nonnegative and convex and therefore a nonzero J.t/ 2 J.H/

vanishes for at most one value of t 2 R; corresponding to a minimum of kJ.t/k2
and thus to a solution of .J.t/j PJ.t//D 0:

Lemma 3.2. If J 2 J.H/ is not parallel along ”H and .J.0/j PJ.0// D 0, then

kJ.0/k < kJ.t/k for all t ¤ 0.

Lemma 3.3. The quadratic form

(3.7) kJ k2H D
Z 1

0

.1�t /.k PJ.t/k2C .J.t/; RJ.t///dt

is positive semidefinite on J.H/ and

kJ k2H D 0 () J D ™T for all T 2 C0.H/:

Proof. Let J 2 J.H/: Then . RJ; J / D �.R.J; P”H/ P”H jJ / � 0 for all t by the
Jacobi equation, because Mn has negative sectional curvature. Hence kJ k2H D 0

if and only if PJ.t/ D 0 for all t . The statement follows because ¹™T j T 2 C0.H/º
is the space of the Jacobi vector fields that are parallel along ”H . �

Lemma 3.4. We have

kJ.1/k2 D kJ.0/k2C2.J.0/j PJ.0//C 2 kJ k2H ; for all J 2 J.H/:(3.8)

Proof. We apply the integral form of the reminder in the first order Taylor’s
expansion to f .t/ D kJ.t/k2: �

1 Here and in the following we drop the subscript indicating where norms and scalar products
are computed, when we feel that this simplified notation does not lead to ambiguity.
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For further reference, we state an easy consequence of Lemma 3.4.

Lemma 3.5. Let Z 2 sln.C/, X 2 p0.n/, and trace.X � Z/ D 0: Then

(3.9) k™Z.1/ � JX .1/k2 D kZ CZ�k2 C 2.H jŒZ; Z��/C k™Z � JXk2H :

Proof. We apply (3.8) to J D ™Z � JX :

Then

J.0/ D Z CZ�; PJ.0/ D 1
2
ŒH; Z �Z�� �X:

yields

k™Z.1/ � JX .1/k2 D kJ.1/k2

D kZ CZ�k2 C 2.Z CZ�jX C 1
2
ŒH; Z � Z��/C .J jJ /H

D kZ CZ�k2 C .ŒH; Z � Z��jZ CZ�/C .J jJ /H

D kZ CZ�k2 C 2.H jŒZ; Z��/C .J jJ /H : �

Let J.t/ D ™Z.t /Ct™T .t /; with Z 2 sln.C/ and T 2 C0.H/: The two commut-
ing Hermitian symmetric matrices H and T can be simultaneously diagonalized
in an orthonormal basis of Cn : Let œ1; : : : ; œm be the distinct eigenvalues of H ,
with multiplicities n1; : : : ; nm and choose an orthonormal basis ofCn to get matrix
representations

(3.10)

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

H D

0
BBBB@

œ1In1

œ2In2

: : :

œmInm

1
CCCCA

; T D

0
BBBB@

£1

£2

: : :

£m

1
CCCCA

;

Z D

0
BBBB@

z1;1 z1;2 : : : z1;m

z2;1 z2;2 : : : z2;m

:::
:::

: : :
:::

zm;1 zm;2 : : : zm;m

1
CCCCA

;
with £i 2 R

ni �ni diagonal,

and zi;j 2 C
ni �nj :

Let us extend the trace norm of p0.n/ to a norm in sln.C/; by setting

jkAkj D
p

trace.AA�/ � 0; for all A 2 sln.C/:
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Then

kJ.t/k2 D trace.Z2 CZ�2C2etHZe�tH Z�C4t.Z CZ�/TC4t2T 2/

D trace
�
2 Re

mX

i;j D1

zi;j zj;iC2

mX

i;j D1

zi;j z�
i;j et.œi �œj /

C8t Re
mX

iD1

£izi:iC4t2

mX

iD1

£2
i

�

D
X

i¤j

jk zi;j et.œi �œj /=2 C z�
j;ie

t.œj �œi /=2 kj2

C
mX

iD1

jk 2t£i C zi;i C Nzi;i jk2:

Set
Z.t/ D exp.tH=2/Z exp.�tH=2/ D .zi;j .t //;

with zi;j .t /Dzi;jet.œi �œj /=2 2 C
ni �nj : We obtain the expression

(3.11) kJ.t/k2 D
X

i¤j

jkzi;j .t /Cz�
j;i.t /jk2C

mX

iD1

jk2t£i C zi;iCz�
i;i jk2:

If J.t/ D 0, then each summand in (3.11) equals zero. For the terms in the first sum
this amounts to the fact that ŒH; Z.t/� D ..œi � œj /zi;j .t //1�i;j�m is Hermitian
symmetric. Since ŒH; Z.t/� and ŒH; Z� are similar, we obtain:

Lemma 3.6. Let Z 2 sln.C/ and H 2 p0.n/: A necessary condition in order
that there exists T 2 C0.H/ such that the Jacobi vector field J.t/ D ™Z.t /Ct™T .t /

on ”H vanishes at some t 2 R is that ŒH; Z� is semisimple with real eigenvalues.

Example 3.7. We consider the matrices

H D

0
@

œ1 0 0

0 œ2 0

0 0 œ3

1
A 2 sl3.R/; Z D

0
@

0 a 0

b 0 c

0 d 0

1
A ; Y D

0
@

0 ’ 0

�N’ 0 “

0 �N“ 0

1
A :

We impose the conditions that Z be nilpotent and orthogonal to X D ŒH; Y � and
that ™ZCY .1/ D 0: This translates into the set of equations

8
ˆ̂̂
<̂
ˆ̂̂
:̂

ab C cd D 0;

.œ2 � œ1/.a N’C b’/C .œ3 � œ2/.c N“C d“/ D 0;

’ D .aeœ1 C Nbeœ2/=.eœ2 � eœ1/;

“ D .ceœ2 C Ndeœ3/=.eœ3 � eœ2/:
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By using the last two equations we reduce to the system
8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

ab C cd D 0;

œ2 � œ1

eœ2 � eœ1
.jaj2eœ1 C ab.eœ1 C eœ2/C jbj2eœ2/

C œ3 � œ2

eœ3 � eœ2
.jcj2eœ2 C cd.eœ2 C eœ3/C jd j2eœ3/ D 0

Assuming ab ¤ 0 we obtain from the first equation d D �ab=c and, as
œ3 D �œ1�œ2; the system reduces to
(�)8
ˆ̂<
ˆ̂:

œ2 � œ1

eœ2 � eœ1
.jaj2eœ1 C ab.eœ1 C eœ2/C jbj2eœ2/

C œ1 C 2œ2

eœ2 � e�œ1�œ2

�
jcj2eœ2 � ab.eœ2 C e�œ1�œ2/C jabj2

c2 e�œ1�œ2
�
D 0:

Let us restrict to the case where a; b; c are real. For any fixed a; b; c with ab ¤ 0;

the left hand side of (�) is positive when ab > 0 and jœ1 C 2œ2j is sufficiently
small. Let us keep now œ1 fixed and consider the left hand side of (�) as a real
valued function f .œ2/ of the parameter œ2. Then

lim
œ2!C1

œ�1
2 f .œ2/ D jbj2 C jcj2 � ab:

If ab > 0; this is negative for jaj � 1: Then we can choose the parameters to
satisfy (�). In conclusion: we can find H; Z; Y with H 2 p0.3/; Z 2 sl3.C/

nilpotent, and Y 2 su.3/ with X D ŒH; Y � 2 p0.3/ trace-orthogonal to Z such
that ™ZCY .0/ ¤ 0 and ™ZCY .1/ D 0:

Jacobi vector fields are used to compute the differential of the exponential map.
In fact, for H; X 2 p0.n/, the covariant derivative D

dt
exp.H C tX/jtD0 is the value

at t D 1 of the Jacobian vector field JX 2 J0.H/: If X D ŒH; Y � C T; with
Y 2 su.n/ and T 2 C0.H/; then

(3.12)
D

dt
exp.H C tX/jtD0 D JX .1/ D Œexp.H/; Y �C T exp.H/:

4. Decompositions with Hermitian fibers

4.1 – Decomposition of SLn.C/

Throughout this section, V is a closed complex Lie subgroup of SLn.C/, that
admits a Levi–Chevalley decomposition V D Vr �Vn, with Vr algebraic reductive
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and Vn unipotent (cf. [12, Chapter I, §6.5]). We choose the embedding V ,!
SLn.C/ in such a way that V0 D V \ SU.n/ is a maximal compact sugbroup
of V and a real form of Vr and set

v D Lie.V/; vr D Lie.Vr/; vn D Lie.Vn/; v0 D .v \ su.n// D Lie.V0/;

(4.1)

and

m0 D .vC v�/? \ p0.n/; v D v0 ˚ v0; with v0 D .v \ p0.n//˚ vn:(4.2)

Remark 4.1. We have

.vC v�/ \ p0.n/ D ¹Z CZ� j Z 2 vº:

Indeed, if Z1; Z2 2 v and Z1 C Z�
2 2 p0.n/, then Z D .Z1 C Z2/=2 2 v and

Z1 CZ�
2 D Z CZ�: Hence the maps

(4.3)

´
v0 3 Z �! .Z CZ�/ 2 .vC v�/ \ p0.n/;

v0 ˚m0 3 .Z; X/ ! .Z� CX CZ/ 2 p0

are R-linear isomorphisms. Often we will write Z 2 v as a sum Z D Z0 C Zn;

where it will be understood that Z0 2 .v \ p0.n// and Zn 2 vn:

By (4.3), the Euclidean subspace exp.m0/ is a natural candidate for the typical
fiber F0 of an SU.n/-covariant fibration of SLn.C/=V: As we will see, this is in
fact the case for some important classes of V’s.

Being algebraic, V admits the decomposition

(4.4) V0 � v0 3 .u; Z0 C Zn/ ! u � exp.Z0/ � exp.Zn/ 2 V;

which is a consequence of the Levi–Chevalley decomposition of V and of the polar
Cartan decomposition of Vr : Set

(4.5) N D ¹p 2Mn j p D v�v; for some v 2 Vº:

Lemma 4.2. The map v ! v�v defines, by passing to the quotients, an
isomorphism

(4.6) V=V0 3 Œv�
���! v�v 2 N:

Proof. In fact the right action v � — D v� � — � v of V on N is transitive and V0

is the stabilizer of e D In: �
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Lemma 4.3. The map

(4.7) v0 3 .Z0 CZn/ �! exp.Z�
n/ � exp.Z0/ � exp.Zn/ 2 N

is a diffeomorphism. In particular, N is diffeomorphic to a Euclidean space.

Proof. In fact, (4.7) is smooth and bijective and its inverse can be computed
by using the diffeomorphisms V=V0 ' v0 of (4.4), and (4.6). �

Lemma 4.4. We can find a real r > 0 such that the map
(4.8)

œW v0 �m0 3 .Z0CZn; H/ �! exp.Z�
n/ exp.Z0/ exp.H/ exp.Z0/ exp.Zn/ 2Mn

is a diffeomorphism of ¹kHk < rº onto ¹p 2Mn j dist.p; N / < rº:

Proof. By (4.3), œ is a local diffeomorphism at all points where it has an
injective differential. By using the isometries p ! z� �p � z of Mn, we may
reduce to points .0; H/, where, to compute the differential, we can use the Jacobi
vector fields ™Z and JX on ”H , that where defined in §3.1. Indeed, for .Z; X/ 2
v0 � m0; dœ.0; H/.Z; 0/ D ™Z.1/ and dœ.0; H/.0; X/ D JX .1/: Moreover, the
maps v0 3 Z ! ™Z.1/ 2 Texp.H/Mn and m0 3 X ! JX .1/ 2 Texp.H/Mn both are
injective. Thus it suffices to verify that ™Z.1/ ¤ JX .1/ when Z and X are not zero.
By Lemma 3.5,

kJX .1/ � ™Z.1/k2 � kZ C Z�k2 C 2.H jŒZ; Z��/; for all .Z; X/ 2 v �m0:

For Z 2 v0; we have kZk D kZ�k � kZ CZ�k: Thus

j.H jŒZ; Z��/j � kHk � kZ CZ�k2:

This implies that, for some r > 0; (4.8) defines a local diffeomorphism, and hence
a smooth covering, of v0 � ¹kHk < rº onto ¹p 2Mn j dist.p; N / < rº: This is in
fact a global diffeomorphism because both spaces are simply connected. �

Set

V0 D ¹exp.Z0/ exp.Zn/ j Z0 CZn 2 v0º(4.9)

and consider the map

�WSU.n/ �m0 �V0 3 .u; X; v/ �! u � exp.X/ � v 2 SLn.C/:(4.10)
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Proposition 4.5. The map (4.10) is onto.
There is a real r > 0 for which � is a diffeomorphism of ¹kXk < rº onto the

open manifold ¹— 2 SLn.C/ j dist.—�—; N / < 2rº:

Proof. The set N D ¹z�z j z 2 Vº is a properly embedded smooth submani-
fold of Mn. Hence, for each p 2Mn, there is a zp 2 V with

dist.p; z�
pzp/ D dist.p; N /:

The geodesic joining z�
p zp to p has the form Œ0; 1� 3 t ! ”.t/ D z�

p exp.tH/zp

for some H 2 p0.n/, and P”.0/ is orthogonal to N at z�
p zp. The isometry q !

z�
p

�1q z�1
p maps N into itself, z�

p zp to e and P”.0/ to H . Thus H 2 TeMn D p0.n/

belongs to m0.
This shows that, if — 2 SLn.C/ and z�

p zp is the nearest point in N to p D —�—;

then
p D —�— D z�

p exp.H/zp; for some zp 2 V0 and H 2 m0:

The matrix u D — � z�1
p � exp.�H=2/ belongs to SU.n/. Indeed

u�u D exp.�H=2/ � Œz�1
p �� � —� � — � z�1

p � exp.�H=2/

D exp.�H=2/ � Œz�1
p �� � z�

p � exp.H/ � zp � z�1
p � exp.�H=2/

D In:

Since — D u � exp.H=2/ � zp; this proves that (4.10) is onto.
The second part of the statement is then a consequence of Lemma 4.4. �

Corollary 4.6. The map

(4.11) SU.n/ �m0 3 .x; X/ �! �.x � exp.X// 2 SLn.C/=V;

where � WSLn.C/ ! SLn.C/=V is the projection onto the quotient, is onto. By
passing to the quotient, it defines a surjective smooth map

(4.12) SU.n/ �V0
m0 �! SLn.C/=V;

where SU.n/�V0
m0 is the quotient of SU.n/�m0 modulo the equivalence relation

.x; X/ � .x � u; u�Xu/ for x 2 SU.n/; X 2 m0 and u 2 V0:

4.2 – Decomposition of K

Let V be a closed subgoup of the complexification K of a compact Lie group K0:

We can assume that in turn K is a linear subgroup of SLn.C/, with K0 D
K\ SU.n/; and V0 D V\ SU.n/ a maximal compact subgroup of V. We obtain:
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Proposition 4.7. With f0 D m0 \ ›; we have the commutative diagram with
surjective arrows

(4.13)

K0 � f0
//

$$■
■■

■■
■■

■■
K0 �V0

f0

yyss
ss
ss
ss
s

K=V;

where the horizontal arrow is the projection onto the quotient, the left one is
obtained by restricting (4.11), and the right one by passing to the quotient.

We denoted by K0�V0
f0 the quotient of the product K0� f0 by the equivalence

relation .x; X/ � .x � u; Ad.u�1/.X// for x 2 K0; X 2 f0 and u 2 V0. The right
arrow maps the equivalence class of .x; X/ to �.x �exp.X// 2 K=V � SLn.C/=V:

Proof. It is sufficient to follow the proof of Proposition 4.5 and check that,
for — 2 K, we obtain X 2 f0 and x 2 K0:

In fact, in this case, —�— D z� exp.2X/z 2 K\P0.n/; with z 2 V; implies that
exp.2X/ D z��1—� — z�1 2 exp.m0/ \K D exp.f0/. �

We have the analogous of Proposition 4.5.

Proposition 4.8. The map

(4.14) K0 � f0 �V0 3 .u; X; v/ �! u � exp.X/ � v 2 K

is always surjective and there is r0 > 0 such that, for all 0 < r � r0; it is a
diffeomorphism of ¹kXk < rº onto a tubular neighborhood of M0 D K0=V0

in M�:

It is known that the right arrow in (4.13) is the Mostow fibration of K=V when
V is reductive (see e.g. [24, 30]). We give here a simple proof relying on the
preparation done in §3.

Proposition 4.9. If V is reductive, then the natural surjective map

(4.15) K0 �V0
f0 �!M� D K=V

is a diffeomorphism.
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Proof. In this case V; being algebraic and self-adjoint, has the Cartan decom-
position V D V0 � exp.v0/; with v0 D v \ p0.n/. By Lemma 3.2, the map

œ› W v0 � f0 3 .Z; H/ �! exp.Z�/ � exp.H/ � exp.Z/ 2 K\ P0.n/

is surjective. Moreover, it is a local diffeomorphism at every point of v0 � f0. In
fact, we can reduce to prove this fact at points .0; H/, where the differential at
.Z; X/ is J.1/ for J.t/ D ™Z C JX 2 J.H/: Then kJ.1/k � kJ.0/k D 2kZk > 0

for Z ¤ 0; while JX .1/ ¤ 0 if X ¤ 0: Since ›\p0.n/ D v0 ˚ f0, this proves that
dœ›.0; H/ is a linear isomorphism. Thus, being a connected covering of a simply
connected space, œ› is a global diffeomorphism.

Hence, for every — 2 K, there is a unique pair .Z; H/ 2 v0 � f0 such that

—� � — D exp.Z�/ � exp.H/ � exp.Z/I

then u D — � exp.�Z/ � exp.�1
2
H/ 2 K0 and we obtain the direct product

decomposition

(4.16) K D K0 � exp.f0/ � exp.v0/;

from which the statement follows. �

The complex K-homogeneous M� of Proposition 4.9 corresponds to an M�

which is the Stein complexification of a totally real K0-homogeneous compact
M0. An M0 having a positive CR dimension corresponds to a V having a nontrivial
unipotent radical.

Before investigating cases where, even though vn ¤ 0; (4.15) is nevertheless
a diffeomorphism, we observe that, when we know that decomposition (4.10)

is unique, we can extract some extra information from the minimal distance
characterization of z�

p zp in the proof of Proposition 4.5. For instance, as a corollary
of Proposition 4.5, we obtain the following

Proposition 4.10. For h 2 P0.n/, denote by D`.h/ the minor determinant of
the first ` rows and columns of h. Set D0.h/ D 1 and let 0 < œ1.h/ � � � � � œn.h/

be the eigenvalues of h. Then

(4.17) dist.h; e/ D
nX

`D1

j log.œ`.h//j2 �
nX

`D1

j log.D`.h/=D`�1.h//j2:

If h is not diagonal, we have strict inequality.
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Proof. We take V equal to the group of unipotent upper triangular matrices in
GLn.C/. The element • D e� 2 Nh D ¹z�hz j z 2 Vº, with � 2 p0, at minimal
distance from e satisfies trace.ŒZ C Z���/ D 0 for all nilpotent upper triangular
Z and hence is diagonal. The unique diagonal • D z�hz in Nh is the one obtained
by the Gram–Schmidt orthogonalization procedure. The proof is complete. �

The orbit of a point p 2Mn by the group of unipotent upper triangular matrices
of SLn.C/ is an example of a horocycle of maximal dimension in a symmetric
space of noncompact type. We will generalize this situation while outlining a class
of subroups V for which F0 D exp.f0/ can be taken as the fiber of the K0-covariant
fibration.

Following [32, p.17], we call horocyclic in › the nilpotent subalgebras which
are nilradicals of parabolic subalgebras of › :

Lemma 4.11. Let q be a parabolic subalgebra of sln.C/; with nilradical qn:

Assume that q \ q� is a reductive Levi factor of q. Let H 2 q \ p0.n/: Then, for
Z0 2 q\q�; T 2 C0.H/\q and Zn 2 qn the Jacobi vector fields J1 D ™Z0

C t™T

and J2 D ™Zn
are orthogonal at all points of ”H :

Proof. We show, separately, that ™Z0
and ™T are both orthogonal to ™Zn

at all
points of ”H : We have

.™T .t /j™Zn
.t // D trace.2Te�tH .etH Z�

n C ZnetH //

D 2trace.T Zn C T Z�
n/

D 0;

.™Z0
.t /j™Zn

.t // D trace..e�tH Z�
0 CZ0e�tH /.etH Zn C Z�

netH //

D trace.Z�
0 .etH Zne�tH /CZ�

0 Z�
n CZ0Zn C .etH Z0e�tH /Z�

n/

D 0

because q\ q� and qn are orthogonal for the trace form of the canonical represen-
tation of sln.C/: Indeed, the expression in the last line is twice the sum of the real
parts of the product of Z0 and Zn and of e�tH Z�

0 etH 2 q\ q� and Zn: �

Proposition 4.12. If vn is horocyclic in ›, then

(4.18) V0 � f0 3 .v; H/ �! v� exp.H/ v 2M.K/ D P0.n/ \K

is a diffeomorphism.
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Proof. In fact, we can find a parabolic q in sln.C/ such that q \ q� is its
reductive Levi factor and vn D qn \ › : Then we can reduce to proving the
proposition in the case where K D SLn.C/ and f0 D m0: We want to show
that (4.8) is a local diffeomorphism. To this aim, with the notation of §3.1, it
suffices to prove that, for Z 2 v and H; X 2 m0; we have ™Z.1/ ¤ JX .1/ when
Z C X ¤ 0: We split Z into the sum Z D Z0 C Zn; with Z0 2 v \ p0.n/

and Zn 2 vn: Then the fact that ™Z0
.1/ C JX .1/ ¤ 0 if Z0 C X ¤ 0 follows

from Lemma 3.2 because of Lemma 4.11. Hence (4.8) is a connected covering of
a simply connected manifold and thus a global diffeomorphism. �

Proposition 4.12 can be slightly generalized. It was shown in [23, p.251] that
there is a unique maximal complex Lie subalgebra w of › with v � w � v C Nv:

The CR-algebra .›0; v/ and the corresponding K0-homogeneous CR manifold M0

are called weakly nondegenerate when w D v: If this is not the case, M0 turns out
to be the total space of a complex CR-bundle with nontrivial fibers over a weakly
nondegenerate K0-homogeneous CR manifold M 0

0; having CR algebra .›0;w/:

Proposition 4.13. Let w be the largest complex Lie algebra with v � w �
vC Nv: If wn D n.w/ is horocyclic in ›; then (4.18) is a diffeomorphism.

Proof. As above, we reduce the proof to the case where K D SLn.C/: The
proof follows the same pattern of the proof of Proposition 4.12. We denote by q

a parabolic Lie subalgebra of sln.C/ with qn D wn and use the notation of §3.1.
We need to prove that, for Z 2 v0 D .v \ p0.n// ˚ vn and X; H 2 m0; we have
™Z.1/CJX.1/ ¤ 0 if ZCX ¤ 0. To this aim it is convenient to split Z into a sum
Z D U CW; with U 2 v0\w\ xw and W 2 qn: Let us consider first J D ™uCJX .
We note that PJ.0/ D X C 1

2
ŒX; U �U �� is orthogonal to J.0/ D U CU �: Indeed

.X jU C U �/ D 0 because wC xw D vC Nv and, since ŒU; U �� 2 w \ p0.n/;

.UCU �jŒH; U �U ��/ D trace.ŒH; U �U ��.UCU �// D 2trace.H �ŒU; U ��/ D 0:

By Lemma 3.2, this implies that J.1/ ¤ 0 if Z C X ¤ 0: Finally, we note
that ™W .0/ and P™W .0/ are orthogonal to both J.0/ and PJ.0/ to conclude, using
again Lemma 3.2, that JZ.1/ C JX .1/ D J.1/ C JW .1/ ¤ 0 when X C Z D
.X C U /CW ¤ 0:

This shows that (4.18), being a connected smooth covering of a simply con-
nected manifold, is a global diffeomorphism. �
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By using the argument in the proof of Proposition 4.9, we conclude:

Theorem 4.14. Letw be the largest complex Lie algebra with v � w � vCNv: If
wn D n.w/ is horocyclic in ›; then (4.15) is a global diffeomorphism and therefore
we obtain the K0-equivariant Mostow fibration of M� over M0

(4.19)

K0 �V0
f0

//

$$❏
❏❏

❏❏
❏❏

❏❏
M�

}}④④
④④
④④
④④

M0

with Hermitian fiber.

We keep the notation of §2.3 and denote by w the largest Lie subalgebra
of › with

(4.20) v � w � vC Nv:

Definition 4.1. We say that .›0; v/ is HNR if wn D n.w/ is horocyclic.

For further reference, we reformulate the result obtained so far in the following
form.

Theorem 4.15. If .›0; v/ is HNR, then we have the direct product decomposi-
tion

(4.21) K D K0 � exp.f0/ �V0:

Example 4.16 (minimal orbit of SU.2; 2/ in F1;2.C4/). We fix in C
4 the

Hermitian form associated to the matrix
�

I2

�I2

�
:

We let the corresponding group SU.2; 2/ operate on the flag manifold F1;2.C4/,
consisting of the pairs .`1; `2/ of a line `1 and a 2-plane `2 with 0 2 `1 � `2 � C

4 :

The minimal orbit is

M0 D ¹.`1; `2/ j `1 � `2 D `?
2 º;

where the orthogonal is taken with respect to the fixed Hermitian form. It is the
total space of a CP

1-bundle over a smooth real manifold and in particular is Levi-
flat of CR dimension 1: With K0 D S.U.2/�U.2//; K D S.GL2.C/�GL2.C//,
the stabilizer

V D
²�

a

a

� ˇ̌
ˇ̌ a 2 STC

2 .C/

³
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of the base point p0 D .he1 C e3i; he1 C e3; e2 C e4i/ (here TC
2 .C/ is the group

of upper triangular 2 � 2 complex matrices with non vanishing determinant and
STC

2 .C/ its normal subgroup consisting of those having determinant 1) has Lie
algebra

v D

8
ˆ̂̂
<
ˆ̂̂
:

0
BBB@

œ ’

0 �œ

œ ’

0 �œ

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œ; ’ 2 C

9
>>>=
>>>;

:

Clearly vn is not horocyclic. We note that

w D vC Nv D
´ 

X 0

0 X

! ˇ̌
ˇ̌
ˇ X 2 sl2.C/

µ
D v0

is a complex Lie algebra. Thus, although V is not HNR, nevertheless we have a
Mostow fibration with Hermitian fibers by Theorem 4.14.

Remark 4.17. Example 3.7 shows that (4.18) is not, in general, a diffeomor-
phism when .›0; v/ is not HNR.

5. Mostow fibration in general and the HNR condition

5.1 – The set P0.v/

To better understand the notion introduced in Definition 4.1 and to characterize the
fiber of the Mostow fibration of M� on M0 in general, it is convenient to rehearse
some notions that were introduced in [1, §3]. We simply assume, at the beginning,
that › is any reductive Lie algebra over C.

For a Lie subalgebra a of ›, let us denote by n.a/ the ideal consisting of the
ad›-nilpotent elements of its radical. Starting from any splittable Lie subalgebra
v of › we construct a sequence ¹v.h/º of Lie subalgebras by setting recursively
(5.1)́

v.0/ D v;

v.hC1/ D N›.n.v.h/// D ¹Z 2 › j ŒZ; n.v.h//� � n.v.h//º; for all h � 0:

Each v.h/, with h � 1, is the normalizer in › of the ideal of ad›-nilpotent
elements of the radical of v.h�1/: It was shown in [1] that v.h/ j v.hC1/ and
n.v.h// j n.v.hC1// for all h � 0; and that the union e D

S
h�0v.h/ is a parabolic

subalgebra of ›; with v � e and n.v/ D vn � n.e/: We call e the parabolic
regularization of v: Hence

(5.2) P.v/ D ¹q j q is parabolic in › and v � q, n.v/ � n.q/º

is nonempty. Let us prove a general simple lemma on parabolic Lie subalgebras.
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Lemma 5.1. If q1; q2 are parabolic Lie subalgebras of ›, then the Lie subalge-
bra q D q1 \ q2 C n.q1/ is parabolic in ›.

Proof. We know (see e.g. [7, Ch.VIII,Prop.10]) that q1\q2 contains a Cartan
subalgebra h of ›. If R is the corresponding set of roots, then each qi (i D 1; 2)
decomposes into a direct sum

qi D h˚
X

’2R;
’.Ai /�0

›’;

where A1; A2 2 hR and, for each ’ 2 R;

›’ D ¹Z 2 › j ŒA; Z� D ’.A/Z; for all A 2 hRº

is the root space of ’:

Take � > 0 so small that � � j’.A2/j < ’.A1/ if ’.A1/ > 0. Then

q D h˚
X

’2R;
’.A1C�A2/>0

›’;

is parabolic. In fact, if L.qi / are the h-invariant reductive summands of qi and
n.qi / the ideals of nilpotent elements of their radicals, we have

q D .L.q1/ \ L.q2//˚ .L.q1/ \ n.q2//˚ n.q1/: �

From now on we assume that › is the complexification of its compact real
form ›0. Conjugation in › will be understood with respect to ›0 : Using parabolic
regularization and Lemma 5.1 we obtain

Proposition 5.2. If .›0; v/ is n-reductive, then P.v/ contains a q having a
conjugation-invariant reductive Levi subalgebra.

Proof. We can take q D .e \ Ne/ C n.e/, for the parabolic regularization e

of v. �

This shows that, for an n-reductive .›0; v/; the set

(5.3) P0.v/ D ¹q 2 P.v/ j q D .q\ Nq/˚ n.q/º

is nonempty. For q 2 P0.v/ we will useL.q/ D q\Nq. The parabolic regularizazion
produces a small e and a corresponding smaller .e \ Ne/ ˚ n.e/ in P0.v/. We are
however more interested in the maximal elements of P.v/. To explain the meaning
of maximality, we prove (cf. [1, Proposition 20])
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Proposition 5.3. If .›0; v/ is n-reductive and q any maximal element of P0.v/,
then

(5.4) q D Lie
�
n.v/C L.q/

�
and n.q/ D

X

h

adh.L.q//.n.v//:

Proof. Let q 2 P0.v/ and denote by z the center of L.q/. Being invariant
under conjugation, it is the complexification of the Lie subalgebra z0 of a maximal
torus t0 of ›0. Set zR D iz0. Following the construction of Konstant in [19], we
consider the set Z consisting of the nonzero elements ā of the dual z�

R
for which

›ā D ¹X 2 › j ŒZ; X� D ā.Z/X for all Z 2 zRº ¤ ¹0º:

This set Z shares many properties of the root system of a semisimple Lie algebra.
With the scalar product defined on zR by the restriction of the trace form of a
faithful linear representation of › and the corrisponding dual scalar product on
z�
R

, we have

ā 2 Z H) � ā 2 Z; and ›ā D ›�ā;(i)

ā1; ā2; ā1 C ā2 2 Z H) Œ›ā1
; ›ā2

� D ›ā1Cā2
;(ii)

ā1; ā2 2 Z and .ā1jā2/ > 0 H) ā1 � ā2 2 Z;(iii)

for all ā 2 Z; ›ā is an irreducible L.q/-module,(iv)

n.q/ D
X

ā>0

›ā; for some lexicographic order in Z;(v)

there exists a basis ¹�1; : : : ; �`º � Z of positive simple roots of z�
R

.(vi)

The Lie subalgebra Lie.n.v/C L.q// is contained in q and is a direct sum

Lie.n.v/C L.q// D L.q/˚
X

ā2E

›ā;

for a subset E of ZC D ¹ā > 0º. Assume that there is a positive simple root �i

which does not belong to E . Since �i is simple, q0 D q˚ ›��i
is still a parabolic

Lie subalgebra. Let us show that it is an element of P0.v/. We have

q0 D L.q0/˚ n.q0/; with L.q0/ D L.q/˚ ›�i
˚ ›��i

and n.q0/ D
X

ā2.ZCn¹�i º/

›ā :

Note that L.q0/ D q0 \ Nq0. An element X 2 n.v/ can be written in a unique way as
a sum X D

P
ā2E

Xā with Xā 2 ›ā. Then X 2 n.q0/, because E � ZCn¹�iº: This
shows that n.v/ � n.q0/, i.e that q0 2 P0.v/. Thus, if q is maximal in P0.v/, then
Lie.n.v/C L.q// contains all ›�i

for i D 1; : : : ; ` and thus is equal to q, because
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.i i/ and the fact that every positive root is a sum o simple positive roots yield that
Lie.

P`
iD1 ›�i

/ D n.q/: Finally, it follows from the discussion above that n.q/ is
the ad.L.q//-module generated by n.v/. �

Analogously, we obtain

Proposition 5.4. If q is any maximal element of P.v/, then

(5.5) q D Lie.n.v/C L.q//;

for any reductive Levi factor L.q/ of q, and n.q/ is the ad.L.q//-module generated
by n.v/.

5.2 – A remark on the HNR condition

Assume that .›0; v/ is n-reductive and let Q be the parabolic subgroup of K

corresponding to a q in P0.v/. Let Qn be the unipotent radical of Q and set
V0 D V � Qn: Then V0 \ V

0 D V \ V and therefore the minimal K0 orbits in
M� D K=V and M 0

� D K=V0 are diffeomorphic as K0-homogeneous manifolds:
the CR algebras .›0; v/ and .›0; v C qn/ define two CR structures on the same
M0 D K0=V0; the latter being stronger than the first. These are the CR structures
inherited from the embeddings M0 ,! M� and M0 ,! M 0

�: Note that M 0
� is the

basis of a complex fiber bundle M� ! M 0
�; with Stein fibers bi-holomorphic to

C
k for some nonnegative integer k (cf. [1, Thm.30]). The choice of a maximal q in

P0.v/ leads to a minimal vC qn, while a minimal q 2 P0.v/ to a maximal vC qn,
defining, when .›0; v/ is not HNR, a maximal K0-homogeneous CR structure on
M0 which is HNR and stronger than the original one.

Example 5.5 (minimal orbit of SU.2; 3/ in F1;3.C5/). We denote by F1;3.C5/

the flag manifold consisting of the pairs .`1; `3/ of a line `1 and a 3-plane `3 of C5

with 0 2 `1 � `3: We fix the Hermitian symmetric form of signature .2; 3/ in C
n;

corresponding to the matrix
�

I2

�I3

�
;

and consider the minimal orbit for the action of the real Lie group SU.2; 3/ in
F1;3.C5/ W

M0 D ¹.`1; `3/ 2 F1;3.C5/ j `1 � `?
3 � `3º:
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Fix on M0 the base point p0 D .he1 C e3i; he1 C e3; e2 C e5; e5i/: Its stabilizer
in K is

V D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 z1

0 œ2

œ1 0 z1

0 œ3 z2

0 0 œ2

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; zi 2 C; œ2
1 � œ2

2 � œ3 D 1

9
>>>>>=
>>>>>;

;

with Lie algebra

v D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 z1

0 œ2

œ1 0 z1

0 œ3 z2

0 0 œ2

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; zi 2 C; 2œ1 C 2œ2 C œ3 D 0

9
>>>>>=
>>>>>;

:

The normalizer of vn in › is the parabolic

q D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 z1

0 œ2

œ3 ’1 z2

’2 œ4 z3

0 0 œ5

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; zi ; ’i 2 C;

5X

iD1

œi D 0

9
>>>>>=
>>>>>;

;

which is also a maximal element in P0.v/ and hence .s.u.2/ � u.3//; v/ is not
HNR.

The Lie algebra

Qv D vC qn D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 z1

0 œ2

œ1 0 z2

0 œ3 z3

0 0 œ2

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; zi 2 C; 2.œ1 C œ2/C œ3 D 0

9
>>>>>=
>>>>>;

is the Lie algebra of the stabilizer �V in K D S.GL2.C/ � GL3.C// of p0
0 2

F1;2;4.C5/ for p0
0 D .he1Ce3i; he1Ce3; e4i; he1; e3; e4; e2Ce5i/. This corresponds

to the intersection of the SU.2; 3/-orbit

M 0
C D ¹.`1; `2; `4/ 2 F1;2;4.C5/ j `1 D `2 \ `?

2 ; dim.`4 \ `?
4 / D 1º
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with its Matsuki dual K-orbit M 0
�. With L2 D he1; e2i and L3 D he3; e4; e5i; we

have

M 0
� D ¹.`1; `2; `4/ 2 F1;2;4.C5/ j dim.`1 \ L2/ D 0; dim.`1 \ L3/ D 0;

dim.`2 \ L2/ D 0; dim.`2 \ L3/ D 1;

dim.`4 \ L2/ D 1; dim `4 \ L3 D 2º

This shows that, in this case, the strengthening of the CR structure on M0 corre-
sponds to considering the compact intersection with its Matsuki dual of an inter-
mediate orbit in some complex flag manifold of the same complex semisimple Lie
group (in this case of SL5.C/).

Proposition 5.6. Assume that .›0; v/ is n-reductive. Then, if w is a complex
Lie subalgebra of › with v � w � v˚ Nv; then also .›0;w/ is n-reductive.

Proof. The reductive Lie group › has an invariant nondegenerate bilinear
form “; which is real and negative definite on ›0 : We observe that, if the pair
.›0; v/ is n-reductive, then vn D v \ v?; where v? D ¹Z 2 › j “.Z; Z0/ D
0; for all Z0 2 vº; and that vC Nv has the direct sum decomposition

vC Nv D v˚ Nvn:

If w is a complex Lie subalgebra with v � w � vC Nv, then w D v˚ .w \ Nvn/:

Since “ defines a duality pairing between vn and Nvn; we obtain the decomposition

w D .w\ xw/˚wn;

with

wn D vn \ .w \ Nvn/?; w\ xw D .v \ Nv/˚ .vn \ xw/˚ .Nvn \w/;

showing that also .›0;w/ is n-reductive. �

Remark 5.7. If .›0; v/ is n-reductive, then v is the Lie algebra of an algebraic
Lie subgroup V of K: This is the content of [1, Thm.26]. In particular, all Lie
subalgebras w with v � w � vC Nv are Lie.W/ for an algebraic Lie subgroup W

of K:

Example 5.8 (minimal orbit of SU.2; 3/ in F1;2.C5/). We partly use the
notation of Example 5.5. Denote by M0 the minimal orbit of SU.2; 3/ in the flag
F1;2.C5/ of nested lines and 2-planes.

M0 D ¹.`1; `2 2 F1;2.C5/ j `2 � `?
2 º
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is a CR manifold of type .3; 4/: It is the total space of a CP
1-bundle on the CR

manifold M 0
0 of isotropic 2-planes in the Grassmannian Gr2.C4/; which has type

.2; 4/: The stabilizer V of the base point p0 D .he1C e3i; he1C e3; e2C e4i/; has
Lie algebra

v D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 z1

0 œ2

œ1 z1 z2

0 œ2 z3

0 0 œ3

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; zi 2 C

2œ1 C 2œ2 C œ3 D 0

9
>>>>>=
>>>>>;

:

The largest q 2 P0.v/ has

qn D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

0 z1

0 0

0 z2 z3

0 0 z4

0 0 0

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

zi 2 C

9
>>>>>=
>>>>>;

and hence .s.su.2/ � su.3//; v/ is not HNR. We note however that

w D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0
BBBBB@

œ1 —1

—2 œ2

œ1 —1 z1

—2 œ2 z2

0 0 œ3

1
CCCCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

œi ; —i ; zi 2 C

2œ1 C 2œ2 C œ3 D 0

9
>>>>>=
>>>>>;

� vC Nv

has a horocyclic wn: The orthogonal m0 of vC Nv in s.p.2/ � p.3// is

m0 D

8
<
:

0
@

X

�X

0

1
A
ˇ̌
ˇ̌
ˇ̌ X 2 p.2/

9
=
;

and, according to Theorem 4.14 it can be used to describe the typical fiber of the
Mostow fibration M� !M0 in this case.

5.3 – Decomposition of unipotent Lie groups

A unipotent Lie group is a connected and simply connected Lie group N having
a nilpotent Lie algebra n: Then the exponential map expW n ! N is an algebraic
diffeomorphism and each Lie subalgebra e of n is the Lie algebra of an analytic
closed subgroup E of N.
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Proposition 5.9. Let N be a unipotent Lie group and S a group of automor-
phisms of its Lie algebra n; which acts on n in a completely reducible way. If E

a Lie subgroup of N with an S-invariant Lie algebra e; then we can find an S-
invariant linear complement l of e in n such that

(5.6) l � E 3 .X; x/ �! exp.X/ � x 2 N

is a diffeomorphism onto.

Proof. We argue by recurrence on the sum of the dimension n of n and the
codimension k of e in n. The statement is indeed trivial when n D 1, or k D 0: If
k D 1, then e is an ideal in n and has a 1-dimensional S-invariant complement l in
n: Since l is a Lie subalgebra, using e.g. [31, Lemma 3.18.5] we conclude that (5.6)

is a diffeomorphism in this case.
Assume now that k > 1 and that the statement has already been proved

for subalgebras e of codimension lesser than k or nilpotent Lie algebras n of
dimension lesser than n. Since n is nilpotent, its center c has positive dimension
and is S-invariant. If c \ e ¤ ¹0º, then A D exp.c \ e/ is a nontrivial normal
subgroup of N: Since dim.N=A/ < n and S acts in a completely reducible
way on n=.c \ e/; by the recursive assumption we can find an S-invariant linear
complement l of e in n such that, for its projection l0 in n=.c \ e/; the map

f 0W l0 � .E=A/ 3 .X 0; x0/ �! exp.X 0/ � x0 2 N=A

is a diffeomorphism. This implies that (5.6) is also a diffeomorphism. In fact,
if — 2 N, by the surjectivity of f 0 there is a pair .X; y/ 2 l � E such that
exp.X/ � y D — � a; for some a 2 A. This shows that — D exp.X/ � .y � a�1/ and
therefore (5.6) is onto. If — D exp.X1/ � .x1/ D exp.X2/ � .x2/ � a, with X1; X2 2 l,
x1; x2 2 E and a 2 A, then X1 D X2 D X because the projection l! l0 is a linear
isomorphism. Moreover, the correspondence —! X is C1-smooth, because f 0�1

is smooth. Then —! x D exp.�X/�— 2 E is also smooth, and —! .X; exp.�X/—/

yields a smooth inverse of (5.6).
If c \ e D ¹0º, then by the recurrence assumption, we can take an S-invariant

linear complement l of e in n containing c and such that

f 0W .l=c/ � ..E � C/=C/ 3 .X 0; x0/ �! exp.X 0/ � x0 2 N=C:

is a diffeomorphism. We claim that, with this choice, (5.6) is a diffeomorphism.
Indeed, .E � C/=C ' E and therefore for — 2 N there is a unique x 2 E, with
x D ¥.—/ for a smooth function ¥WN! E, such that, for some Z 2 c and Y 2 l,

— � exp.Z/ D exp.Y / � x H) — D exp.Y �Z/ � x:
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The exponential is a diffeomorphism of n onto N. If we denote by logWN! n its
inverse, we obtain X D Y � Z D log.— � x�1/ 2 l and

N 3 —!
�
log.— � Œ¥.—/��1/; ¥.—/

�
2 l � E

is a smooth inverse of (5.6). This completes the proof. �

With the notation of the previous section, we will apply Proposition 5.9 to the
case where N D Qn and n D qn; for a minimal q 2 P0.w/; while e D vn and
S D Ad.V0/: Since V0 is compact, its adjoint action on qn is completely reducible.

5.4 – Structure of the typical fiber

The quotient K=Q of K by a parabolic subgroup Q is compact and thus a homo-
geneous space of its compact form K0: Thus

(5.7) K D K0 �Q:

Set › D Lie.K/; q D Lie.Q/; and choose K0 to contain a maximal compact
subgroup of Q. Then Q has a Levi–Chevalley decomposition Q D L.Q/ � Qn;

whose reductive factor L.Q/ has Lie algebra L.q/ D q \ Nq: The conjugation is
taken with respect to the real compact form ›0 and Qn is the unipotent factor of
Q; with Lie algebra qn: We consider the Cartan decomposition › D ›0˚p0; with
p0 D i �›0 : Using the Cartan decomposition of L.Q/; we obtain the direct product
decomposition

(5.8) Q D L.Q/ � exp.n.q// D L0.Q/ � exp.p0\q/ � exp.n.q//:

We keep the notation of the previous sections, with w the maximal complex
Lie subalgebra with v � w � vC Nv and take q in P0.w/: Then e D vC qn is a
Lie subalgebra of › and the pair .›0; e/ has the HNR property. Set

(5.9) f0 D p0 \ .vC qn/?:

By (4.21), we obtain the direct product decomposition

(5.10) K D K0 � exp.f0/ � exp.vn C qn/ � exp.v \ p0/:

We use Proposition 5.9 to decompose exp.vn C qn/: we can find an Ad.V0/-in-
variant linear subspace l of .vn C qn/ such that vn C qn D l˚ vn and

(5.11) l˚ vn 3 .X; Y / �! exp.X/ � exp.Y / 2 Vn �Qn D exp.vn C qn/

is a diffeomorphism. We obtained:
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Theorem 5.10. Let f0 and l be defined by (5.9) and (5.11). Then we have a
direct product decomposition

(5.12) K D K0 � exp.f0/ � exp.l/ �V0;

where V0 D exp.vn/ � exp.v\ p0/:

Then F0 D exp.f0/ � exp.l/; with the adjoint action of V0; is the typical fiber of
the Mostow fibration:

(5.13) M� ' K=V ' K0 �V0
F0:

Lemma 5.11. If N is a unipotent subgoup of K; then, for every p 2 P0.n/, the
map

(5.14) N 3 z �! z�pz 2 Np D ¹z�pz j z 2 Nº

is a diffeomorphism.

Proof. In fact the stabilizer Stab.p/ of p for the right action

K �P0.›/ 3 .z; x/ �! z� � x � z 2 P0.›/

of K on P0.›/ is a compact group and hence has trivial intersection with N.
Thus (5.14) is a diffeomorphism with the image, being the restriction to N '
N=¹eKº of the diffeomorphism K=Stab.p/! P0.›/. �

Corollary 5.12. Fix q 2 P0.w/ and let f0 and l be the corresponding
subspaces of › of Theorem 5.10. Then the elements X 2 f0 and Z 2 l of the
decomposition

— D u � exp.X/ � exp.Z/ � v; with u 2 K0, v 2 exp.vn/ � exp.v \ p0/

are obtained in the following way:

(a) Œ0; 1� 3 t ! exp.2tX/ is the geodesic in P0.›/ joining eK to the unique point
p0 of zN—� �— D ¹z� � —� � — � z j z 2 V �Qnº at minimal distance from eKI

(b) Z is the unique element of l such that exp.Z�/ � p0 � exp.Z/ belongs to
Np0
D ¹z� � p0 � z j z 2 Vº.

Proof. Indeed the Mostow fibration of M 0
� D K=.V � Qn/ can be taken to

have a hermitian typical fiber exp.f0/ and correspondingly we obtain a unique
decomposition

— D u � exp.X/ � Ÿ � exp.Y / with Ÿ 2 Qn and Y 2 v \ p0;

The characterization of X coming from the proof of Proposition 4.5 yields (a).
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Next we consider pŸ D Ÿ� � exp.2X/ � Ÿ D Ÿ� � p0 � Ÿ. By Lemma 5.11 and
the choice of l we know that the element pŸ of ¹z� � p0 � z j z 2 Qnº uniquely
decomposes as a product w� � exp.Z�/ � p0 � exp.Z/ � w with w 2 Vn and Z 2 l.
This completes the proof. �

6. Application to Dolbeault and CR cohomologies

The cohomology groups of the tangential Cauchy–Riemann complex on real-
analytic forms on M0 is the inductive limit of the corresponding Dolbeault co-
homology groups of its tubular neighborhoods in M�: We know by [14] that in
some degrees these groups coincide with those computed on tangential smooth
forms or on currents. We will employ Andreotti–Grauert theory to compare the
tangential CR cohomology on M0 with the corresponding global Dolbeault co-
homology of M�: To this aim we will use the Mostow fibration M� ! M0 to
construct a non negative exhaustion fuction for M�, vanishing on M0; and having
a complex Hessian whose signature reflects the pseudoconvexity/pseudoconcavity
of M0: In this way we prove relations of the CR cohomology of M0 with the Dol-
beault cohomololy of the K-orbit M�, similar to what J.A.Wolf did in [28] for the
relationship of the open orbits MC of a real form G0 of a complex semisimple Lie
group G in a flag M of G with the structure of their Matsuki duals M� D M0;

which in this case are compact complex manifolds.

6.1 – An Exhaustion Function for M�

In [13] H. Grauert noticed that a real-analytic manifold admits a fundamental
systems of Stein tubular neighborhoods in any of its complexifications. In fact, a
homogeneous analogue of Grauert’s theorem is the fact that the complexification
K of a compact Lie group K0 is Stein, and the isomorphism provided by the Cartan
decomposition

K0 � k0 3 .x; X/ �! x � exp.iX/ 2 K

also yields the exhaustion function

K 3 x � exp.iX/ �! kXk2 D �k.X; X/ 2 R;

which is zero on K0, positive on K nK0 and strictly pseudo-convex everywhere.
Here and in the following we shall denote by k both the negative definite invariant
form of a faithfull unitary representation of k0 and its C-bilinear extension to ›.
When ›0 is semisimple, the adjoint representation is faithful and we may take as
k the Killing form.
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We proceed in a similar way to construct an exhaustion function on M� for the
canonical embedding M0 ,! M� of a n-reductive K0-homogeneous compact CR
manifold M0. We use the notation of the previous sections.

Assume that the pair .›0; v/ is n-reductive and HNR. We already noticed that
the last condition is natural if we consider on M0 maximal K0-invariant CR
structures. Then, by Corollary 5.12, we have a direct product decomposition

K D K0 � exp.f0/ � exp.vn/ � exp.v\ p0/(6.1)

with p0 D i �›0 and f0 D .vC Nv/? \ p0 : Moreover, the exp.f0/-term in (6.1) is
characterized by

´
if — D u � exp.X/ � v; with u 2 K0; X 2 f0 and v 2 V, then

kXk D 1
2

dist.—�—; N /; for N D ¹v� � v j v 2 Vº � P0.›/:
(6.2)

This is indeed a consequence of Corollary 5.12 when l D ¹0º:
By passing to the quotient, the map

K0 � f0 3 .x; X/ �! kXk2 D k.X; X/ 2 R:

defines a smooth exhaustion function (as usual square brackets mean equivalence
classes)

(6.3) ¥WM� ' K0 �V0
f0 3 Œx; X� �! kXk2 2 R :

We have:

Lemma 6.1. If .›0; v/ is n-reductive and HNR, then the map ¥ of (6.3) has the
properties:

(1) ¥ 2 C
1.M�;R/ and ¥ � 0 on M�;

(2) ¥�1.0/ DM0 and d¥ ¤ 0 if ¥ > 0 ;

(3) ¥ is invariant under the left action of K0 on M� :

¥.x � p/ D ¥.p/; for all p 2M�; x 2 K0:

Notation 6.1. The level and sublevel sets of ¥ will be denoted by

(6.4) ˆc D ¹p 2M� j ¥.p/ D cº b M� and �c D ¹p 2M� j ¥.p/ < cº:
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6.2 – K0-Orbits in M�

The level sets ˆc are foliated by K0-orbits. Since all points of M� have repre-
sentatives of the form x � exp.X/ with x 2 K0 and X 2 f0, then every K0-orbit
intersects the fiber F0 over the base point p0 at a point pX D Œexp.X/�; for some
X 2 f0. An x 2 K0 stabilizes pX if and only if x � exp.X/ is still a representative
of pX , and this, by the equivalence relation defining K0�V0

f0, means that x 2 V0

and Ad.x/.X/ D X . Indeed the equation x exp.X/z D exp.X/ with z 2 V im-
plies, by the uniqueness of the Mostow decomposition, that z D x�1 2 V0 and
x exp.X/x�1 D exp.Ad.x/.X// D exp.X/; yielding Ad.x/.X/ D X .

Thus the K0-orbit

MX D ¹x � pX D Œx � exp.X/� j x 2 K0º(6.5)

in M� through pX can be identified with the homogeneous space K0=VX , where

VX D ¹x 2 V0 j Ad.x/.X/ D Xº;

is the stabilizer of pX in K0: It is a closed Lie subgroup of K0 with Lie algebra

vX D ¹Y 2 v0 j ŒY; X� D 0º:

Lemma 6.2. MX is a compact K0-homogeneous CR-manifold with CR-algebra�
›0; Ad.exp.X//.v/

�
at pX D Œexp.X/�:

Remark 6.3. In general, MX may not be diffeomorphic to M0. Indeed, M0 is
a minimal K0-orbit in M� and MX is diffeomorphic (and CR-diffeomorphic) to
M0 if and only if MX and M0 have the same dimension.

For X 2 f0, the left translation M� 3 p ! exp.X/ � p 2 M� is a biholomor-
phism of M� which transforms M0 onto a CR-diffeomorphic submanifold

(6.6) zMX D exp.X/ �M0:

Lemma 6.4. For X 2 f0, we have

(6.7) zMX � ¹¥ � kXk2º D x�kXk2 :
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Proof. Let � WK 3 — ! Œ—� 2 K=V ' M� be the canonical projection. Any
point of M0 is �.u/ for some u 2 K0 and then the points p of zMX have the form
p D exp.X/�.u/ D �.exp.X/ � u/. Set — D exp.X/ � u. We know that ¥.p/ is the
square of the half-distance in P0.K/ from the base point eK to

N—�— D ¹v� �—� �—�v j v 2 Vº:

Since the point .—� � —/ belongs to N—��— and has distance 2kXk from eK, (in
fact t ! u� �exp.2tX/�u is the geodesic joining eK to .—� �—/), it follows that
¥.p/ � kXk2. �

We summarize:

Proposition 6.5. Let c > 0. Then

(6.8) ˆc D
[

X2f0;

kXk2Dc

MX (disjoint union); zMX � ¹¥ � kXk2º; for all X 2 f0 :

In particuar, for c > 0, we can draw through each point of ˆc a translate zMX

of M0; which is CR-diffeomorphic to M0 and tangent to ˆc from inside, i.e. lying
in x�c : This means that the boundary Uc of �c is at each point less convex than
M0:

6.3 – Application to Dolbeault and CR cohomologies I

By Andreotti–Grauert theory (see [4]) we know that for every coherent sheaf F
on an r-pseudoncave complex manifold X we have

Hj .X;F/ <1; for all j < r � hd.F/;

where hd.F/ is the homological dimension of F:

We obtain the following:

Theorem 6.6. Let M0 be a compact n-reductive homogeneous CR manifold,
with .›0; v/ HNR and canonical complex embedding M0 ,! M�.

If M0 is an r-psudoconvave CR-manifold, then M� is an r-pseudoconcave
complex manifold and for every coherent sheaf F we have

(6.9) dim.Hj .M0;F/ ' Hj .M�;F// <1; for all j < r � hd.F/:

In particular,

(6.10) dim.Hp;j .M0/ ' Hp;j .M�// <1; for all j < r:
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Here we used the notation Hp;j for the N@ and N@M0
-cohomologies on forms

of type .p; �/. Because of the validity of the Poincaré lemma in degree j , for
0 < j < r (see [26]), they coincide with the Čech cohomology with coefficients
in the sheaf of germs of CR or holomorphic p-forms. Moreover, in this range, the
tangential Cauchy–Riemann complexes on currents, C1-smooth forms and real-
analytic forms on M0 have isomorphic finite dimensional cohomology groups.

Proof. By the HNR assumption, the exhaustion function ¥ in (6.3) is well de-
fined. Then to verify (6.9) we can apply Andreotti–Grauert’s theory, after showing
that, for c > 0; each subdomain �c D ¹¥ < cº is r-pseudoconcave.To this aim, we
prove that the complex Hessian of ¥ admits at least r negative eigenvalues on the
analytic tangent to ˆc D @�c : By exploiting the K0-invariance of ¥, we can, with-
out any loss of generality, restrict our consideration to points p0 D Œexp .X/� 2 ˆc ;

with kXk2 D c 2 R. We may consider .0; 1/-vector fields which are tangent to the
submanifold zMX , defined in (6.6) and that are also tangent to @�c at p0; because
zMX is tangent to ˆc at p0: By Lemma 6.4, zMX is contained in x�c D ¹¥ � kXk2º:

Since zMX is CR-diffeomorphic to M0, it is r-pseudoconcave. Being zMX � x�c,
the restriction of the complex Hessian of ¥ to the analytic tangent to zMX at p0

has at least as many negative eigenvalues as the Levi form of zMX in the codirec-
tion Jd¥.Œexp.X/�/; which, by the assumption, are at least r: This completes the
proof. �

6.4 – Application to Dolbeault and CR cohomologies II

In this section we want to exploit the amount of pseudo-convexity of the exhaus-
tion function ¥: We keep the assumption that .›0; v/ is n-reductive and HNR and
set q D ¹Z 2 › j ŒZ; vn� � vnº for the maximal parabolic subalgebra in P0.v/:

We recall that vn D qn is the nilradical of q: Let Q be the parabolic subgroup
of K with Lie.Q/ D q and Qr its conjugation-invariant reductive factor. Let
$ WK!M� D K=V be the quotient map. The image of Qr by $ is a Qr -homo-
geneous complex submanifold Q� of M�:

Lemma 6.7. For every X 2 f0; the CR manifold zMX and the complex manifold
Q� are transversal at pX and their analytic tangent spaces at pX are orthogonal
for the complex Hessian of ¥:

Proof. The pull-backs of T
0;1

pX
zMX and T

0;1
pX

Q� to the base point p0 by the
bi-holomorphic map p ! exp.X/ � p are, respectively, vn and qr=.v\ Nv/: This is
a consequence of the fact that X 2 qr : The statement follows from the fact that
qr D Nqr and Œqr ; vn� � vn; Œqr ; Nvn� � Nvn: �
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Theorem 6.8. Let M0 be a compact n-reductive homogeneous CR manifold of
type .n; k/; with .›0; v/ HNR and canonical complex embedding M0 ,! M�.

If M0 is an r-psudoconvave CR-manifold, then M� is n � r-pseudoconvex
complex manifold and for every coherent sheaf F we have

dim.Hj .M0;F/ ' Hj .M�;F// <1; for all j > n � r:(6.11)

In particular,

dim.Hp;j .M0/ ' Hp;j .M�// <1; for all j > n � r:(6.12)

Proof. By [14, Theorem 2.1], under the r-pseudoconcavity assumption, the
tangential CR cohomology groups on M0 are the inductive limits of the corre-
sponding groups of sheaf and Dolbeault cohomology of the tubular neighborhoods
of M0 in M�: While computing the Levi form of ¥, it suffices to note that its restric-
tion to Q� is strictly pseudo-convex, since it is the exhaustion function associated
to the canonical CR-embedding M0 \ N� ,! N� of a totally real .K0 \ Qr /-
homogeneous manifold. Indeed, by [5, Theorem 4.1], the distance from the totally
geodesic submanifold N 0 D ¹—�— j — 2 V \ Qrº in the negatively curved space
M0 D Qr=.Qr \K0/ is strictly convex on M0 nN 0; and ¥jQ�

pulls back on Qr to
the composition of —! —�— with the square of the distance from N 0:

Hence, for X ¤ 0; the complex Hessian of ¥ restricts to a Hermitian symmetric
form having, by Lemma 6.7, at least rCk� 1 positive eigenvalues on the analytic
tangent of ˆc at pX :

The thesis is then a consequence of the isomorphisms proved in [4, §20]. �

Example 6.9. Fix integers 1 � p < q � n and consider the real action of
SLnC1.C/ on the Cartesian product Grp.CnC1/�Grq.CnC1/ of the Grassmannians
of p and q planes, described by

a � . p̀; `q/ D .a. p̀/; Na.`q//;

for all a 2 SLnC1.C/; p̀ 2 Grp.CnC1/; `q 2 Grq.CnC1/. The orbits of the real
form G0 D SLnC1.C/ are parametrized by the dimension of the intersection

p̀ \ Ǹq W with k0 D max¹0; pC q � n � 1º we have the orbits

MC.k/ D ¹. p̀; `q/ 2 Grp.CnC1/ � Grq.CnC1/ j dimC. p̀ \ Ǹq/ D kº;

for k0 � k � p. The complexification K D SLnC1.C/ of the compact form
K0 D SU.nC 1/ acts on Grp.CnC1/ � Grq.CnC1/ by

a � . p̀; `q/ D .a. p̀/; Ta�1.`q//;
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for all a 2 SLnC1.C/; p̀ 2 Grp.CnC1/; `q 2 Grq.CnC1/. Consider the polarity
Grh.CnC1/ 3 `h ! `0

h
2 GrnC1�h.CnC1/ defined by the symmetric bilinear form

b.v; w/ D .Tw/ � v D
nX

iD0

viwi :

Then the orbits of K in Grp.CnC1/ � Grq.CnC1/ are parametrized by

M�.k/ D ¹. p̀; `q/ 2 Grp.CnC1/ � Grq.CnC1/ j dimC. p̀ \ `0
q/ D p � kº;

for k0 � k � p. The manifolds MC.k/ and M�.k/ are Matsuki-dual to each
other. In fact, since SU.nC 1/ preserves Hermitian orthogonality in C

nC1 and Ǹq
and `0

q are Hermitian orthogonal in C
nC1; the pair . p̀; `q/ belongs to M0.k/ D

MC.k/ \M�.k/ if and only if

p̀ D . p̀ \ Ǹq/˚ . p̀ \ `0
q/;

and either

dim. p̀ \ Ǹq/ D k; or dim. p̀ \ `0
q/ D p � k:

Set n1 D p � k; n2 D k; n3 D nC 1C k � p � q; n4 D q � k: Then, taking as
base point, with obvious notation, p0 D .Cn1 ˚C

n2 ;Cn2 ˚C
n4/; the stabilizer of

p0 in K D SLnC1.C/ has Lie algebra

v D

8
ˆ̂̂
<
ˆ̂̂
:

0
BBB@

Z1;1 Z1;2 Z1;3 Z1;4

0 Z2;2 0 Z2;4

0 0 Z3;3 Z3;4

0 0 0 Z4;4:

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Zi;j 2 C
ni �nj

9
>>>=
>>>;
\ slnC1.C/:

Indeed, in the block matrix Z D .Zi;j /1�i;j �4 se have Z3;1 D 0; Z3;2 D 0;

Z4;1 D 0; Z4;2 D 0 because Z.he1; : : : ; epi/ � he1; : : : ; epi: Moreover, the
inclusion TZ.Cn2 ˚C

n4/ � C
n2 ˚C

n4 is equivalent to

0
BBB@

TZ1;1
TZ2;1 0 0

TZ1;2
TZ2;2 0 0

TZ1;3
TZ2;3

TZ3;3
TZ4;3

TZ1;4
TZ2;4

TZ3;4
TZ4;4

1
CCCA

0
BBB@

0

X2

0

X4

1
CCCA D

0
BBB@

0

Y2

0

Y4

1
CCCA for all X2 2 C

n2 ; X4 2 C
n4 ;

and this yields Z2;1 D 0; Z2;3 D 0; Z4;3 D 0: The compact CR manifold M0.k/

has CR dimension equal to ā D .n1n2 C n1n3 C n1n4 C n2n4 C n3n4/ and CR
-codimension d D 2n2n3: The case k D k0; where n3 D 0; is the one where v is
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parabolic, and M0.k0/ DM�.k0/ is a complex flag manifold. In general, .›0; vn/

is HNR because

vn D

8
ˆ̂̂
<
ˆ̂̂
:

0
BBB@

0 Z1;2 Z1;3 Z1;4

0 0 0 Z2;4

0 0 0 Z3;4

0 0 0 0

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Zi;j 2 C
ni �nj

9
>>>=
>>>;
\ slnC1.C/

is the nilpotent radical of

q D

8
ˆ̂̂
<
ˆ̂̂
:

0
BBB@

Z1;1 Z1;2 Z1;3 Z1;4

0 Z2;2 Z2;3 Z2;4

0 Z3;2 Z3;3 Z3;4

0 0 0 Z3;4

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Zi;j 2 C
ni �nj

9
>>>=
>>>;
\ slnC1.C/

Then

(6.13) f0 D m0 D

8
ˆ̂̂
<
ˆ̂̂
:

0
BBB@

0 0 0 0

0 0 Z2;3 0

0 �Z�
2;3 0 0

0 0 0 0

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Z2;3 2 C
n2�n3

9
>>>=
>>>;
' C

n2�n3 :

The CR algebra .›0; v/ is weakly degenerate when k < p and strictly nondegen-
erate, according to [23], when k D p: The vector valued Levi form is

.Z1;2; Z1;3; Z1;4; Z2;4; Z3;4/ �! Z�
1;2Z1;3 CZ2;4Z�

3;4

and hence all the nonzero scalar Levi form have a Witt index equal to � D
.n1Cn4/ D .p�k/C.q�k/ D p C q � 2k: The complex manifold M�.k/ has
dimension N D n1n2 C n1n3 C n1n4 C n2n3 C n2n4 C n3n4 and, according to
Theorems 6.6 and 6.8 is �-pseudoconcave and .ā � �/-pseudoconvex.

6.5 – Application to Dolbeault and CR cohomologies III

In this section we extend Theorem 6.6 to the case where we do not assume that
.›0; v/ is HNR. To this aim we utilize an r-pseudoconcave exhausting functions
which is only continuous (see [9, 10, 17, 29]). Namely, we will consider the
function

(6.14) ¥.Œ—�/ D dist2.—�—; N /; for — 2 K;

where N D ¹v�v j v 2 Vº as in (4.5) and Œ—� is the element of M� D K=V

corresponding to — 2 K:
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We recall that a continuous function ¥; defined on a complex ā-dimensional
manifold M�, is said to be weakly r-pseudoconcave if, for every point p 2 M�;

we can find a coordinate neighborhood .U; z/; centered at p; such that, for every
.ā� r C 1/-dimensional linear subspace ` of Cā; for every coordinate ball B b U

and § plurisubharmonic on a neighborhood of xB; with ¥ � § on ` \ @B we also
have ¥ � § on ` \ B:

We say that ¥ is strictly r-pseudoconcave if, for each p 2 M�; we can find
an open coordinate neighborhood .U; p/ centered in p and an � > 0 such that
¥C �jzj2 is weakly r-pseudoconcave in U:

By Bungart’s approximation theorem ([9, Theorem 5.2]) strictly r-pseudo-
concave functions can be uniformly approximated on compacts by piece-wise
smooth strictly r-pseudoconcave functions. Thus (see e.g. [2, Chapter IV]) we can
still apply the Andreotti–Grauert theory when we have a strictly-r-pseudoconcave
exhaustion function which is only continuous.

Our application relies then on the following lemmas.

Lemma 6.10. Let ¥ be a continuous exhaustion function on M� and assume
that, for all c > 0 and p0 2 ˆc D ¹p 2 M� j ¥.p/ D cº there is a germ
of CR generic r-pseudoconcave CR submanifold M0.p0/ of M� through p0 with
M0.p0/ � ¹¥p � cº: Then ¥ is weakly r-pseudoconcave.

Proof. We argue by contradiction, assuming that, for every coordinate neigh-
borhood .U; z/ centered at a point p0 2M; we can find a .ā� r C 1/-dimensional
linear subspace ` of C

ā and a plurisubharmonic §; defined on a neighborhood
of the closure xB of a coordinate ball in U , and a point p1 2 ` \ B where
¥.p1/ < §.p1/; while ¥.p/ � §.p/ for all p 2 @B\`: Clearly the same condition
is satisfied by any linear .ā � r C 1/-plane sufficiently close to `; so that we can
assume that ` intersects M0.p1/ transversally. The intersection M0.p1/\` is then
a 1-pseudoconcave CR submanifold of `, but the restriction of § to `\M0.p1/\ xB
contradicts then the maximum principle, since takes at the interior point p1 a value
larger than the supremum of the values taken on the boundary ` \M0.p1/ \ xB
(see e.g. [16]). The contradiction proves that ¥ is weakly r-pseudoconcave. �

Lemma 6.11. The exhaustion function ¥ defined by (6.14) is strictly r-pseu-
doconcave on M� nM0:

Proof. By Proposition 4.8, there is c0 > 0 such that ¥ is strictly r-pseudo-
concave when 0 < ¥.p/ � c2

0 , since, by [17, Lemma 2.6], for a smooth function
the notion of strict r-pseudoconcavity coincides with the requirement about the
signature of its complex Hessian.
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For — 2 K; we can consider the function ¥—.p/ D ¥.—�1 � p/; which is contin-
uous and weakly r-pseudoconcave on M� n .— �M0/ and strictly r-pseudoconcave
when it takes positive values smaller than c2

0 : Let p0 2 M� with ¥.p0/ > c2
0 and

fix a relatively compact coordinate neighborhood .U; z/ in M�; centered at p0: We
can assume, for a fixed • with 0 < 2• < c0; that U � ¹p j j¥.p/ � ¥.p0/j < •2º:
We observe that ¥.p/ D inf¥.Œ—�/D¥.p0/�•.

p
• C

p
¥—.p//2: The functions p !

˜—.p/ D .
p

• C
p

¥—.p//2; when ¥.—/ D ¥.p0/ � •2; are uniformly strictly r-
pseudoconcave on a neighgorhood of NU: Thus, for a small � > 0; the functions
˜— C �jz � z0j2; for ¥.—/ D ¥.p0/� •2; are still r-pseudoconcave on U: Passing to
the infimum, we deduce, by using [10, Proposition 2.2. (ii)] that ¥C �jz � z0j2 is
weakly r-pseudoconcave on U: The proof is complete. �

From this and the remarks at the beginning of this subsection, we obtain:

Theorem 6.12. Let M0 be a compact n-reductive homogeneous CR manifold,
with canonical complex embedding M0 ,! M�.

If M0 is an r-psudoconvave CR-manifold, then M� is an r-pseudoconcave
complex manifold and for every coherent sheaf F we have

dim.Hj .M0;F/ ' Hj .M�;F// <1; for all j < r � hd.F/:(6.15)

In particular,

dim.Hp;j .M0/ ' Hp;j .M�// <1; for all j < r:(6.16)
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