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x to y if x¥ = y (mod n). Using the Chinese Remainder Theorem, the digraph
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1. Introduction

The digraphs G (n, k) were first studied extensively by L. Somer and M. KfiZek in
[13], [15], [12] and [14], and also later by other authors in [19], [5], and [7], based
on ideas of S. Bryant [1], G. Chassé [3], T.D. Rogers [10], and L. Szalay [16]. There
have also been extensions of these ideas to more general structures (see [6], [8],
[9], [17], and [18]).

Every component of G(n, k) has a cycle of length ¢, and attached to each cycle
vertex c is a tree, denoted by 7'(n, k, ¢), whose root is ¢ and the non-cycle vertices
b are such that b¥' = ¢ (mod n) for some positive integer i, but b " is not
congruent modulo # to any cycle vertex in G(n, k). Cycles of length 1 are called
fixed points. The trees attached to all cycle vertices in a component of G(n, k) are
isomorphic.

Let

,
— €
n=11p;,
i=1

where the p;’s are distinct primes, and consider the direct product G(p{', k) x
G(py?. k) x---xG(py", k). By the Chinese Remainder Theorem, there is a natural
isomorphism between G(n, k) and G(p;', k) x G(p52, k) x---x G(ps", k) written
as

G(n, k) = G(pi' k) x G(py?. k) x -+ x G(per, k),

and we say that the digraph G(n, k) can be factorized into a direct product of
digraphs G(p;’, k) forall i suchthat1 <i <r.

Let G;(n, k) denote the subdigraph of G(n, k) induced on the set of vertices
that are relatively prime to n, and G,(n, k) denote the subdigraph of G(n,k)
induced on the set of vertices not relatively prime to n. L. Somer and M. Ktizek
[15] proved that every fundamental constituent G, (n, k) of G(n, k) can be written
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as
(1.1) Gp(n,k) = Gi(n1,k) x T(n2,k,0),

where n = nin, with gcd(nq,n2) = 1, and p; | n, if and only if p; € P. Then it
becomes clear that each fundamental constituent G (n, k), where d # P C Q =
{p1, p2.-..., pr}, contains a tree attached to a cycle vertex of the form (1,0), and
the fundamental constituents Ga(n, k) and Gj(n, k) contain the trees T'(n, k,0)
and T'(n, k, 1), respectively. Since

(1.2) Gn.k)=|JGpn.k).
PcQ

where the union is disjoint, then using the fact (proved in [15]) that the trees
attached to all cycle vertices in a fundamental constituent of G(n, k) are iso-
morphic, we can conclude that any tree in G(n,k) is isomorphic to one of
T(n,k,(ai,as,...,a,)) where a; = 0,1 for all i. Thus it follows that G(n, k)
has exactly 29 fundamental constituents, where w(n) denotes the number of
primes dividing n.

A natural question that arises from the factorization of G(n, k) is its unique-
ness, in the sense that, if G(n, k1) = G(n, k) for k; # k,, then does G(pfi k) =
G( pf ", ko) holds for all i ? We give an answer to this question in Theorem 5.8. Our
strategy is to first establish the uniqueness of the factorization of trees attached to
the cycle vertices 1 and 0 in G(n, k), these are proved in Corollary 4.3 and The-
orem 4.6 , respectively, and finally we show that G(p;", k1) and G(p;’, k») have
the same cycle structure. The factorization of a tree attached to cycle vertices of
the type (1, 0) is not unique in general, although it becomes unique under a certain
condition. This is proved in Theorem 4.7 and the example preceding it.

A question was asked in [7] regarding the conditions for the isomorphism
of G(p,ky) and G(p, k) for all primes p and ki # k,, and it was answered
completely in a paper by G. Deng and P. Yuan [4]. In Theorem 5.4 of this paper, we
prove a somewhat generalization of this question in that we determine a necessary
and sufficient condition for the isomorphism of the fundamental constituents
Gp(n,ky) and Gy (n, k) of G(n, k1) and G(n, k) respectively for ky # k. It
was proved in [15] that the trees attached to all cycle vertices in a fundamental
constituent of G(n, k) are isomorphic. We extend this result and in Theorem 4.8
we prove a necessary and sufficient condition for the isomorphism of trees attached
to all cycle vertices in two distinct fundamental constituents of G(n, k).

Throughout the rest of this paper, we take n = []/_, pf " to be the prime
factorization of n > 1, and £ > 1 an integer.
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2. Cycles and Trees in G(n, k)

DEerintTION 2.1. The Carmichael function of a positive integer n, denoted by
A(n), is defined as the smallest positive integer m such that a” = 1 (mod n) for
every integer a relatively prime to n.

LemMma 2.2. Let n be a positive integer, and ¢ denote the standard Euler’s
totient function. Then

AQF) =¢@2%) fork=0,1,2, 1025 = %¢(2k) fork >3,

A(pk) = ¢(pk) for any odd prime p and k > 1,
MTT2i) = lemA{H. 252, APE)
i=1

where p1, pa, ..., pr are distinct primes and e; > 1 foralli = 1,2,...,r.

For more on the Carmichael function see [2].
The indegree of a vertex a in G(n, k), denoted by indegy (@), is the number
of solutions of the congruence x* = a (mod ).

LemMma 2.3 ([19]). Let a be a vertex of positive indegree in G1(n, k). Then
r
indegf (a) = [ ] esgcd(h(pf7). k),
i=1
where g; = 2if2 | k and 8 | p{’, and &; = 1 otherwise.
Lemma 2.4 ([19]). Leta= (a1, as,...,a,) beavertexin G(n,k)=G(p}', k)x
G(p52. k) x -+ x G(p;" k). Then

r ¢
indegj (a) = 1_[ indeg,' (aj).
i=1

Lemma 2.5 ([13] and [14]). Let p be a prime and e > 1 an integer. Suppose that
b # 0 is a vertex of positive indegree in Go(p¢, k) where p® || b. Then o = kr
for some integer r > 1, and

indeg?” (b) = §p*~ V" ged(A(p*~%). k),
where§ =2if p =2and e — o > 3, and § = 1 otherwise. Moreover,

indeg,’c’e (0) = pe 71
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LemMA 2.6. Let p be a prime and e > 1 an integer. Let 0 # a = p"c, where
p 1 ¢, be avertex in Go(p®,k). Then indeg,f (a) > Oifand only if k | r and
indeg,’(’é_r (c) > 0.

Proor. If indeg,fe (a) > 0, it is seen from Lemma 2.5 that r = k¢ for some
positive integer ¢. Also, there exists a positive integer s such that p” sk = (p's)* =
p"c (mod p¢) which implies that s* = ¢ (mod p¢™).

The converse is clear. O

Let A(n) = uv, where u is the largest divisor of A(n) relatively prime to k.

LemMma 2.7 ([19]). There is a cycle of length t in Gi1(n,k) if and only if
t = ordy (k) for some divisor d of u.

Notation. Let A(G(n, k)) denote the set of all cycle lengths in G(n, k).

LemMma 2.8 ([14]). Let A;(G(n, k)) denotes the number of t-cycles in G(n, k).
We have,

I~ ein 11
4G b)) = 7| TTGreed@(p{ ).k = 1) + 1) = 3 dAa(Gln. b)) |
i=1 d|t,d #t
and
Ir e 11
Ar(Gi(n.k) = | [T 6igedh(p{") k' = 1) = 3~ dAa(Gi (k) .

i=1 d|t,d#t

where §; =2 if2 | k' — 1 and 8 | p{’, and §; = 1 otherwise.

ProposiTiON 2.9. Let t1,ta,...,tm be distinct positive integers. There exist
integersn > 1 and k > 1 such that G(n, k) has a t;-cycle for all i.

Proor. Take t = #1t5...t,, and choose M = k* — 1, N; = k% — 1, where
k > 1, so we can have ordyyk = ¢ and ordy,k = ¢; for all i. By Dirichlet’s
Theorem on primes in arithmetic progression, we can choose a prime p such that
p = 1 (mod M). Then it follows immediately from Lemma 2.7 that G(p®, k)
contains a ¢;-cycle for all i and e > 1. Thus for any positive integer n with p¢ | n,
G(n, k) has a t;-cycle for all 7. O

As an application of the above Lemma, we now prove a generalization of a
result in [12]. But first we recall the definition of a Sophie Germain prime and a
Fermat prime. A prime number p is a Sophie Germain prime if 2p + 1 is also
a prime, and a Fermat prime is a prime number of the form 22" + 1 for some
non-negative integer n.
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ProrposiTion 2.10. There exist positive integers t, m, n, and | such
A(G1(m, k) > A1(Ga(m, k)),
A (Gi(n, k) < A (Ga(n, k)),
A1(G1(l. k) = A (Ga(l. k).

Proor. Let ¢ be a prime and take M = k' — 1.
By Proposition 2.9, there exists an integer m = pq p,, where p; and p, are
congruent to 1 modulo M, such that both G;(m, k) and G,(m, k) has a ¢-cycle.
We then compute the number of ¢-cycles in G(m, k), G1(m, k) and G,(m, k) and
obtained
2(M —k +1) - M? — (k —1)?
t t
Next, assume & to be odd and take n = p1(2¢g1 + 1)(2¢g> + 1), where ¢, ¢» are
Sophie Germain primes. The existence of a ¢-cycle is again assured by Lemma 2.9.
Then after some easy computations we get
5(k' —k) - 4(k" — k)
t t
If k is even, we choose n = p1¢2q3, where g3, g4 are Fermat primes, to obtain
3(k’[— k) - (k" t— k)

A (G2(m, k) =

= A:(G1(m, k)).

A (G2 (n, k) =

= A:(G1(n, k)).

A (G2(n, k) =

= A;(G1(n, k)).
Finally, let / = 2p; and we have 4,(G1(l,k)) = €8 = 4,(G, (. k). O

DeriniTiON 2.11. Let a be a vertex in G(n, k). We define height of a, denoted
by h(a), to be the least non-negative integer j such that a¥” is congruent modulo
n to a cycle vertex in G(n, k). We also define #1(C) = max,ec h(a) for every
component C of G(n, k).

For the rest of this section, unless stated otherwise, we let p be a prime, and
e > 1 an integer.

Lemma 2.12 ([5]). Let A(p®) = uv, where u is the largest factor of A(p€)
relatively prime to k. Then h(T (p¢,k,1)) = min{i:v | k'}.

LemMa 2.13. Let a # 0 be a vertex in Go(p¢, k) such that p“ki I a, where
gcd(k, o) = 1 for some positive integer i. Then a is at height h if and only if h is
the least positive integer such that ak" =1 < e < akhti,

Proor. The proof is straightforward. O
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LemwMma 2.14. Consider the trees T (p€,k,0) and T (p®,k",0) forr > 1.

(1) Suppose h(p"‘ki) = h"in T(p®, k,0), where ged(k,a) = landi > 1. Then
h(p*k'y = [h7—| in T(p¢,k",0). In particular, if h(T (p¢,k,0)) = h and
r < h then h(T (p¢. k", 0)) = [2].

(2) Suppose h(T (p®,k",0)) = h. Then h(T (p¢,k,0)) = Z;;(l,h(pki), where
the p*' 's in the sum are considered as vertices in T (p®,k",0). Moreover,
if h(p¥') = h(p¥') in T(pe.k",0) for all i,j < r — 1, then we have
h(T(p¢,k,0)) =rh.

Proor. Let h(p®*') = h' in T(p® k,0) and assume h(p®*') = m in

T(p¢, k",0). By Lemma 2.13 we have ak” 771 < ¢ < ak” ¥ and ak” ("~ D+ <

i L. . ’ KN _1H
e < ak”™*", which implies that r(m — 1) < h' < rm, and hence h(p**') = [L ]
in T(p¢,k",0).

For the second part, we note that indeg,fe (pki) = 0 foralli < r, and
indeg,’(’e (p¥’) > 0forall j > rin T(p®, k”,0). It is clear that h(T (p®, k,0)) =
ST ;(1, h(p*"), where the p*"’sin the sum are considered as vertices in T'(p¢, k", 0).
Furthermore, if h(p*)y = h(p*) in T(pe, k",0) for all i,j < r — 1, then
h(p¥') = h(p*¥’) = h(p) = h in T(p¢, k", 0). Thus the result follows. O

LemwMma 2.15. Consider the trees T (p€,k,1) and T (p®, k", 1) forr > 1.
(1) Suppose h = h(T(p¢,k,1))andr < h. Then h(T (p¢,k", 1)) = [%—|

(2) Suppose h(T (p¢,k",1)) = h > 1. Then h(T(p¢,k,1)) = rh — i for some i
such that 0 <i <r.

Proor. The proof is an application of Lemma 2.12. |

DEeriniTION 2.16. A tree of height /1 is complete if every vertex have positive
indegree except the vertices at height 4.

LemMma 2.17. Let k(T (p®,k,1)) = h > 1. T(p®, k, 1) is complete if and only
if ged(A(p®). k') = ged(A(p®). k) foralli < h.
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Proor. Let h(T'(p%,k,1)) = h > 1 and assume T'(p¢, k, 1) to be complete. It
is enough to show that gcd(A(p®), k") = ged(A(p®), k)". Since ged(A(p®), k") =
|T (p€, k, 1)|, then counting the number of vertices in T'(p¢, k, 1) by working our
way up from the cycle vertex 0, we obtain

ged(A(p®), k™)
=|T(p®. k. 1)
= 1 + (indeg?” (1) — 1) + indeg?” (1) x (indeg?" (1) — 1) + -
+ indeg,fe(l) XX (h—1)x---x indeg,fe(l) X (indeg,fe(l) -1)
— indeg? (1) + (indeg?” (1))? — indeg?" (1)
+ (indeg?” (1))® — (indeg?” (1))? +
+ (indeg?” (1)) — (indeg?” (1))~
= (indegf” (1)" = (ged(A(p*), k)"
Conversely, assume that 7(p®, k, 1) is not complete. Then there exists a vertex b
at some height j < h such that 1ndegk (b) = 0. If j is taken to be the least such

positive integer, then we must have gcd(A(p€).k’ 1) < gcd(A(p®).k)’*!, and
we are done. U

LemMma 2.18. Let h(T(p®,k,1)) = h > 1l andr < h. Then T(p®,k",1) is
complete if and only if T (p¢, k, 1) is complete and r | h.

Proor. First we observe thatif 7'(p¢, k", 1) is complete then gcd(A(p€), k’) =
gcd(A(p®), k). Now, if r + h then r[ ] > h and this yields ged(A(p¢), krT? =
ged(A(p9), k") < ged(A(p®), k’)r 1, which means that T'(p¢, k", 1) is not com-
plete. So by Lemma 2.17, it follows that if T (p¢, k", 1) is complete, T'(p®, k, 1)
must also be complete.

The converse is a direct application of Lemma 2.17. |

LemMa 2.19. Leta and b be two fixed points in G(n, k1) and G(n, k»), respec-
tively. Suppose that T (n,ky,a) = T (n, ko, b), then T(n, k{,a) = T(n,k},b) for
all r > 2.

Proor. Suppose ¢: T (n,ky,a) —> T(n, ko, b) be an isomorphism. Then we

have |T(n,k7,a)| = |T(n,k5,b)| for any r > 1, and they contain the same
vertices. Suppose there is an edge between x and y in T'(n, k7, a). Then there
exist vertices x5, X3, ..., Xp— 1 such that xk1 = x, (mod n), xf” = Xj+1 (mod n)

fori =2,3,..., and xr , =y (mod n) in T'(n, ky,a), which implies that
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d(x)2 = ¢(x2) (mod n), ¢(x;)*2 = ¢(xi41) (mod n) fori = 2,3,....r —2,
d(xr—1)*2 = ¢(y) (mod n), and thus ¢(x)*2 = ¢(y) (mod n) in T(n, ka, b).
Hence, the result follows. O

DeriniTION 2.20. Let O} denote a component of G(n, k) having a -cycle and
is of height 1, and every vertex of positive indegree has indegree m.

LemmA 2.21 ([S]). We have OT* x G = Of' x H ifand only if G = H for any
digraphs G and H.

3. Semiregularity

DEerintTIiON 3.1. A digraph G(n, k) is semiregular if there exists a positive
integer d such that every vertex of G(n, k) has indegree d or 0.

The semiregularity property is perhaps the most useful property that the di-
graphs G(n, k) or its components can have. We know that G1(n, k) and its com-
ponents are semiregular. The tree T(p;", k,0), which is not always semiregular,
has a nice simple structure whenever it is semiregular. This can be seen through
Lemma 3.2 below. The situation is similar with the tree 7' (n, k, 0) as we shall see
in this section. The semiregular digraphs G(n, k) was characterized in [13] and
[11], and it was proved that it has a close relationship with its tree structure. In this
section we state some important results on semiregularity that will be needed in
this paper, and we prove a new characterization for semiregular digraphs G(n, k).
We also provide a relationship between the symmetric property and semiregular-
ity property of G(n, k).

LemMma 3.2 ([13], [5]). Let p be an odd prime and e > 1 an integer.

(1) Suppose p® || k and gcd(p—1,k) = 1. Then G,o(p®, k) is semiregular if and
onlyifl <e<k+4+a+1.

(2) Suppose ged(p(p — 1), k) = 1. Then Go(p®, k) is semiregular if and only if
l<e<k+1

(3) Suppose ged(p — 1,k) > 1. Then G,(p¢, k) is semiregular if and only if
l<e<k.

Furthermore, G(p®, k) is semiregular if and only if gcd(p®~(p — 1), k) = p¢~ L.
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Let p =2ande > 2. G»(2°, k) is semiregular if and only if one of the following
conditions hold:
(1) e€{1,2,3,4,6} wheneverk = 2;
2) 1 <e <9 wheneverk = 4;
(3) 1 <e <k +a+2wheneverk > 6 and 2% || k.

Moreover, G(2¢,k) is semiregular if and only if one of the following conditions
hold:

(1) e € {1,2,4} whenever k = 2;
(2) 1 <e <5wheneverk = 4;

(3) 1 <e <a+ 2wheneverk > 6 and 2% | k 2%.

Remark 3.3. (1) Let 2" || k, r > 0. If T(2% k,0) is not semiregular then
e>k+r+2.

(2) Let k > 2 be an odd integer. Then, looking at the indegrees of 0 and 2%
in T(2°,k,0) one can inspect that 7(2¢, k, 0) is semiregular if and only if
l<e=<k+1.

RemaRrk 3.4. Note that for all » > 1 and prime p, T (p®, k", 0) is semiregular
whenever T'(p¢, k,0) is semiregular. Thus we can conclude that for any cycle
vertex a, T'(n, k", a) is semiregular whenever 7' (n, k, a) is semiregular.

TueorewM 3.5 ([11]). The following statements are equivalent:
(1) the digraph G(n, k) is semiregular;
(2) the trees attached to all cycle vertices in G(n, k) are isomorphic;

(3) ged(p’(pi — 1),k) = pff_lfor alli suchthat1 <i <r.

REMARK 3.6. If G(n, k) is semiregular and m = [];_, pfi_l, then we can
write G(n, k) more explicitly as

G(n,k) = alO,"ll U azO,"Zl ... U alOZ’,
where a; = A;;(G(n,k)) for all ; € A(G(n, k)).

The following result is another characterization for the semiregular digraphs
G(n, k).

CoroLLARY 3.7. The digraph G(n, k) is semiregular if and only if T (n, k, 0) =
T(n, k,1).
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Proor. In view of Theorem 3.5 we only prove the converse. Since
r
[Tr™" =1T@.k.0) = [T@.k D] = ged(pf ™ (pi — 1).k%),

where s; = h(T(p;*, k)), we observe that k must be odd and ged(p; — 1,k) = 1
for all ;. We also have p¢ -1 | k£, and the semiregularity of T'(n, k, 0) implies
[%] < 2foralli.If [$] = 2 for some i, then pfi_2 < k < e which is a
contradiction. Using Theorem 3.5 again, the result will follow. |

LemMma 3.8. The tree T(n,k,0) is semiregular if and only if T (p{', k,0) is
semiregular for all i.

Proor. Suppose that T'(p;’, k,0) is not semiregular for some i. Then there

exists vertices a and b 1n T(p;",k,0) such that 1ndegk’ (a) # 1ndegk‘ (b),

and it follows that 1ndegk1 (0,0,. 5, 0) # 1ndegkl (0,0,...,b,...,0) in
T(n,k,0). Thus T(n, k,0) is not semlregular.
The converse is straightforward. |

DEerintTION 3.9. Let M > 2 be an integer. The digraph G(n, k) is symmetric
of order M if its set of components can be partitioned into subsets of size M each
containing M isomorphic components.

Symmetric digraphs G (n, k) have been characterized completely in [5] and [14].
The following results show the relationship between the symmetric property and
the semiregularity property of G(n, k).

Proposrtion 3.10 ([11]). Let p be an odd prime. G(p®, k) is symmetric of order
p if and only if G(p¢, k) is semiregular and k =1 (mod p — 1).

There was a result proved in [11], which says that if G(n,k) and G(n,, k)
are symmetric of order m; and m, respectively, where gcd(n;,n;) = 1, then
G(nyny, k) is symmetric of order m;m,. Using this, we can generalized Proposi-
tion 3.10 as follows:

THeoREM 3.11. Let n be an odd integer. Then G(n, k) is symmetric of order
[1i—, pi if and only if G(n, k) is semiregular and k = 1 (mod A([];—; pi)).
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Proor. Assume that G(n, k) is symmetric of order [];_, p;. Then there exists
at least ([, pi) — 1 components, say, Cy, Cs, ..., C(1r_, pi)—1> Which are iso-
morphic to T'(n, k,0). Now since |T'(n,k,0)| = |T(pi', k,0)| x |T(p52, k,0)| x
X |T(pf k. 0)| = [Ti—; p{"~". we obtain |Cy] + |Ca| + -+ + ICai_, -1l +
|T(0)] = n, and by Theorem 3.5, G(n,k) must be semiregular. Also, since
[Tiey pi = A1(G(n,k)) = [1i;[gedA(pi"), k — 1) + 1] it follows that k = 1
(mod A([Ti=; pi))-

The converse follows immediately from the result stated above. |

4. The trees T(n, k,0), T(n, k, 1), and T(n, k, (1, 0))

The study of the tree structure of G(n, k) basically comes down to analyzing the
structure of the trees attached to cycle vertices of the type 0, 1 and (1, 0). In this
section, we prove the uniqueness of the factorization of the trees 7'(n, k, 1) and
T (n,k,0). The factorization of a tree attached to cycle vertices of the type (1, 0)
is a little more delicate. Although it is not unique in general, but it does in most
cases.

NortaTioN. (1) For every integer a and a prime ¢, we denote v,(a) to be the
highest power of ¢ dividing a. Let C be a subdigraph of G(n, k). Then we define

Ug(C) = {vy(indegj (c)): for every vertex ¢ € C}.

(2) Let C be a component of G(n, k). We denote n(C, h) to be the number of
vertices of positive indegree at height 4 in C.

(3) We denote by F*(C), the set of all those vertices at height 7 in a subdigraph
C of G(n, k).

For the rest of this paper, we assume k; > 1 and k», > 1 to be integers such
that k; 75 k.

Prorosrition 4.1. T(n, k1, 1) = T(n,kz, 1) if and only if gcd(A(n), k1) =
ged(A(n), k).

Proor. Assume T'(n,k1,1) = T(n,kz,1). Since indegy (1) = indegy, (1),
then it follows easily that gcd(A(n), k1) = gcd(A(n), k). Now we prove the
converse. Assume that gcd(A(n), k1) = ged(A(n), k2), then

indeg (1) = [ [ ged(A(p{"). k1) = [ ] gcd(X(p}"). k2) = indegy, (1).

i=1 i=1
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Since ged(A(n), k7)) = ged(A(n), kL) we also have indegzi (1) = indegzé(l) for
allt > 1. If both T'(n, k1, 1) and T'(n, k,, 1) are complete trees then we are done.
So we consider T'(n, k1, 1) and T'(n, k», 1) to be non-complete trees. Now for all
t > 1, we have

|F(T (n, k1, 1)) = indegzi (1) — indegzi_l (1)
= indegy, (1) — indegZ£—1 (1) = |9(T(n, k2, D),

which follows that

| FHHNT (n, kD))
indegy, (1)

_ TN T ke, )]

N indegy, (1) B

n(T(n, ki, 1),h) =

n(T(n, k1), h),

at each height h of T'(n,k;,1) for j = 1,2. If T(n,ky,1) 22 T(n, k», 1) then at
some height / in T'(n,k;,1) and T (n, k», 1), chosen to be the least, there exist
vertices say a and b respectively, such that indegZ% (a) # indegzg (b), which is not
possible. Hence, the result follows. |

Remark 4.2. Using Lemma 2.19, the above Theorem is also true in more
general terms. That is, if both T'(n, k1, a) and T (n, k5, b), where a and b are fixed
points, are semiregular, then 7'(n, kq,a) = T (n, k», b) if and only if indegz{ (a) =
indegzé (b) forall r > 1.

CoroLLARY 4.3. T(n,k1,1) = T(n,ka, 1) if and only if T(Pfi,kl, ) =~
T(p{' k2, 1) for all i.

Before proving the uniqueness of the factorization of 7'(n, k, 0), we first study
the structure of 7'(p¢, k, 0), particularly when it is not semiregular.

Let p be a prime. If T(p¢, k,0) is semiregular and is of height 2, then the
vertices a of positive indegree at height 1 are of the type where p* || a, and
n(T(p¢,k,0),1) = p — 1. We now look at the structure of T'(p®, k, 0), having
height m, when it is not semiregular. Observe that |_k%-| > k for all i such that 1 <
i <m—2,and [ =] < k. Also one can see that ([ 5] — 1)k’ <e < ([&])k'
for all i suchthat 1 <i <m — 1. Denote a; = [k%} —1.
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We claim that

min{u, (T (p*. k,0))} = v, (indeg?” (p¥))
and
max{v, (T (p°. k.0))} = vp(indeg (0)),

whenever [ £] > 2, and
maX{UP(T(pey k, O) — {O})} = Up(indegie (palk)),

whenever [ £] > 3. The claim is obvious if [ £] = 2. So we take | £] > 3. First
we consider the case when p* || k, where « > 0. Because of Lemmas 2.5 and 2.6,
it is enough to consider the indegrees of the vertices of the form

k 2k ark
pr,p~, ..., pth,
k2 2k2 ark?
P pT P
km—l 2km_1 a 1km—l
p , P yee e, PO .

Since e > ([£] — 1)k it follows that e — Ik > k > a whenever 1 < [ <
(|_%-| — 1), and thus for an odd prime p we obtain

indegf” (p™%) = p* =V *oged(p — 1.k)
forall / suchthat 1 <1 < ([§£] —1) = a;. Also,
indeg,fe (p@1ky = pk=Dartaged(p —1,k) or p¢~*ged(p — 1,k).

Since (k—1)(a;—1)4+a < e—aj—1, then in either case we have indeg,’c’e (p@ky >

indeg,fe (p@1~Yk) and so we can write
(4.1) indeg? (p™*) < indeg? (pU*+V¥) foralll such that 1 </ <a; — 1.
Thus we can conclude that

min{v, (T (p, k,0))} = v,(indeg?” (p*)),
and
max{v, (T (p®, k,0) — {0})} = v (indeg?” (p*1¥))
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Finally, it is easy to verify a;(k — 1) + min{e —a;1k — 1, &} < e — [£], and hence
the remaining claim follows.

If p ¢ k, the claim is obvious.

Now let p = 2. The claim is again obvious if k is odd. So we take 2" || &,
and since T(2¢, k, 0) is not semiregular we must have indeg? (2/¥) = 2(k—DI+r+1
whenever / < ([£] — 1) = ay. Using Lemma 2.5, we can compute

2e—a1—1 or 2a1(k—1)+r+1 if e —alk > 3’
indegie 24k = Jpa1(k=1)+1 ife—aik =2,
i ife—aik =1,
and it can be easily checked in all the cases that
vy(indeg;” (0)) > va(indegy” (21%)),
and
vy(indegy” (241%)) > va(indegy” (217 1)),

as required.

ReMARK 4.4. Using the fact thate > ([ £ ] — 1)k, the following results can be
obtained easily.

(1) v, (indeg,fe 0)) > v, (indeg,’c’e (1)) for every odd prime p.

2) vy (indegie 0)) > v, (indegie (1)), whenever e # 3.

3) vz(indegie(l)) > vg(indeg,zf (0)) whenever e = 3. Moreover, the equality
holds if k > 3. This can be proved directly using the definition.

LemMa 4.5. Let p be a prime, and e > 1 be an integer. Let h(T (p¢, k;,0)) > 1
fori = 1,2. Then T (p®,k1,0) = T(p®, k2,0) ifandonlyiff%-| = fé} = 2and
indeg,’c’f (pk1) = indeg,’(’j (p*2).

Proor. Assume that T'(p¢, k1,0) = T(p®, k»,0). Since

4.2) vp(indeg?” (p¥1)) = vp(indegl, (p*2)).

then p must divide at least one of k; or k5.

Without any loss, take p® || kj, where « > 0. The result is clear if both
T(p¢,k1,0) and T(p®, k,,0) are semiregular. So we assume 7 (p®, k;,0) and
T (p®, k3, 0) to be non-semiregular. If f%} = |—k‘42-| > 4, then

2(ky — 1) + & = yy(indegf’ (p?*1)) = vy(indegl (p*2)) = 2(k2 — 1) + B.

where pﬂ | k2, B = 0, which along with (4.2) yields k; = k», a contradiction.
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Let [£] = [5] = 3, and first take p to be an odd prime such that PP | ks,
B > 0. Without any loss of generality, take k; < k,. Then it must follow that
e —2k; — 1 > a. This is because, using (4.2) and the fact that p# || a« — B,
e—2k1—1 < aimpliesthate <2k;4+a+1 =k +k1+B+1 = ka+kr+28—a+1
which leads to [é] = 2, acontradiction. S0 2(k;—1)+a = vp(indeg,f: (p¥r)) =
Up (indeg,f; (p*2)) = 2(ky — 1) + min{e — 2k, — 1, B}, which in any case leads to
a contradiction. Next, if p } k, then using (4.2) again we automatically have
k1 < k. Similarly in this case we must have e — 2k; — 1 > «, and since
Up (indeg,f: (p%1)) = v, (indeg,fj (p?*2)) then solving it with (4.2) we get another
contradiction.

Hence, |_k‘41-| = [é} =2.

Finally,

e—2
LD e k00,1
1ndegk1 (pr1) B . B pe—2(p —1)
=n(T(p®. k2,0),1) = ————,
indegy, (p*2)
implies ged(p — 1, k1) = ged(p — 1, k2).

Now consider p = 2, and let 28 || k, for B > 0. By inspection it is easy to see
that k; # 2 and k, # 2. Again, without any loss of generality, take k1 < k,. If
e — 2k, > 3,0re — 2k, < 2ande — 2k; < 2, then arguing exactly as in the odd
prime case we will get a contradiction. If e — 2k, < 2 and e — 2k; > 3 then

2(k1 — 1) + & + 1 = v(indegf, (2%1))
= vy(indegf, (22%2)) = 2(k> — 1) + min{e — 2k> — 1, B},
which implies that e = 2k; + « + 2, a contradiction, or with (4.2), ¢ = 8 + 1,
again a contradiction as 2P | @ — B. Next, assume k, to be odd, then (4.2) implies
ki+a=ky—1andso kq < ky.If e —2k; > 3 then
2(ky — 1) + o + 1 = va(indegf, 2%1))
= va(indeg}, (2%%2)) = 2(k, — 1),

which leads to k1 = k», a contradiction. If e — 2k; < 2 then it similarly follows
that ky = k5 + 1, which is also a contradiction. Thus in this case we must also
have |_k‘41-| = |_k‘42-| =2.

We now prove the converse. Since f%} = f%} = 2and ged(p — 1,k;) =
gcd(p — 1, kp), it is enough to show that n(T (p¢, k1,0), 1) = n(T (p¢, k2,0), 1).

e _ 12T k10| _ |FRT (0% k2,00 e
But, n(T(p% k1, 0). 1) = indeg/ (pK1)  indegl’ (p%2) = n(T(p* k2.0). 1),

as desired. O
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NotEe. Let p be a prime, and p t ky and p } k. Then T(p% k;,0) =~
T(p¢, ky,0)if and only if k1 > e and k, > e.

TueoreM 4.6. Thetrees T (n, k1,0) = T(n, k2, 0) ifand only if T (p;", k1, 0) =
T(p;’,k2,0) for all i.

Proor. Assume T'(n,k1,0) = T(n,k»,0). Then indegy (0) = indeg;, (0)
which implies that [7-] = [f] for all /. By Lemma 2.21 we can assume
|_Z—’1-| = ,i—’z-| > 1 for all i, and so we obtain /(T (p;’, k;,0)) = 2 for all i and for
j = 1,2. For all primes p; and p # p;, we observe that

Up: (indeg,’f (p¥")) = min{u,, (T(n. k1, 0))}
(4.3) = min{u,, (T (n. k2. 0))}

. Tk
= vy, (indegy’ (p;?)).

up, ([T eed(pj — 1.%1)) = max{uy, (T, k1.0))}

J#i
“4.4) = max{vp, (T'(n,k»,0))}
= vy, ([T ecd(p) = 1.k2).
J#i
and
up ([ Tecd(p; = 1.k1)) = maxfu, (T (1, k1,0))}
vij
4.5) = max{u,(T(n, k2. 0))}
= vp([Tecd(p; — 1.k2)).
vj

Then it is easy to see that both ged(p; — 1, k1) and ged(p; — 1, k») have the
same prime divisors. Furthermore, if both gcd(p; — 1, k1) and ged(p; — 1, k) are
greater than 1 for odd primes p;, and using the fact that

min{vp{a € T'(n, kq,0): vy, (indeg;(’1 (@) < vy, (indeg21 (b)), for all b}}
= min{vp{a € T'(n, k3,0): vp, (indegz2 (@) < vy, (indeg;c’2 (b)), for all b}}

for every prime p # p;, we obtained ged(p; — 1, k1) = ged(p; — 1, k2).
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Now we are left to prove that |_£—’1-| = [;—’21 = 2 for all i. If both T (p;’, k1,0)
and T'( pf !, ko, 0) are semiregular then by Lemmas 3.2 and 4.5 they must be iso-
morphic. Suppose for some i, T(p;", k1,0) is semiregular but not T(p;", k>, 0).
Then using (4.3) we get max{vp, (T(p;’,k2,0))} = min{v,, (T(p{", k2,0))},
which is not possible as gcd(p; — 1,k2) = 1. Thus we can assume both
T(p{,ky1,0)and T(p;’, k»,0) to be non-semiregular for all i.

Suppose [ 7] = [ ] > 2 for some i. As seen in the proof of Lemma 4.5, it
is enough to prove that

(4.6) Up, (indegiil (P,'Zkl)) = Uy, (indegf{’;’l (piZkz))’

as this will lead to a contradiction. Now, because of (4.3), every prime p; | n
must divide at least one of k; or k5. If some prime p; divides exactly one of them,
say, k1, then every other such primes must also divide only k1, with vy, (k1) = &
for all such primes p;. Then it follows that k1 + « = k», and thus k; — 1 >
Up ([T ged(py — 1,kp)) for I = 1,2.1f [7] = [{£] = 4, then we look at
the ordering of the elements in the sets vy, (T'(n, k1, 0)) and vy, (T (n, k2, 0)) while
observing that

up, (indegf, (p}")) > vy, (indegf, (p") + vy, ([T zed(p; = 1.k1))
J#i
for [ = 1,2, to obtain (4.6) as desired. Finally, let [,‘:—ﬂ = [,‘:—’21 = 3 and notice
that we already have
up, (indegf (p71)) = 20k — 1) + vy, (k1)

> vy, (indegf, (") + vy, ( [ ] ged(p; = 1.k0)).
JF#i

From this, and using the hypothesis, it will also imply that
. k . k
up, (indeg, (p7*)) > vy, (indeg, (p}2)) + vy, ( [T ecd(p; = 1.k2)),
J#i
and we are done. The proof is now complete. |
Even though the factorization of a tree attached to the cycle vertices 0 and 1

in G(n, k) is unique, however, this is not always true for trees attached to a cycle
vertex of the form (1, 0). To illustrate this we give the following examples.
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ExampLEs. (1) Consider 7(19% x 3'1,9,(1,0)) and T(19% x 31, 15,(1,0)),
where A(T(192,9,1)) = 1 < 2 = h(T(192,15,1)) and h(T(3!1,15,0)) =
1 < 2 = WT@3",9,0)). Since indeg}?™*"'(1,0) = indeg!%,*" (1,0) for
i = 1,2, and T(3'!,9,0) is semiregular, then by Remark 4.2 the isomorphism
T(192 x 311,9,(1,0)) = T(19% x 31,15, (1,0)) holds.

(2) Similarly, we have T'(5% x 2!3,12,(1,0)) = T(5% x 213,14, (1,0)), but
h(T(52,12, 1)) # h(T(5% 14, 1)) and h(T(2'3, 12,0)) # h(T(2'3, 14,0)).

In the above two examples showing the isomorphism of the trees attached to
a cycle vertex of the type (1,0), instead of using Remark 4.2, one can show the
isomorphism directly by looking into the structure of the trees as they all have
height less than or equal to 2.

In the following theorem we show that the only situation preventing the unique-
ness of the factorization of trees attached to a cycle vertex of the type (1, 0) is the
property where h(T(ple’,kl,O)) =1< h(T(ple’,kz, 0)) .

For the rest of this paper, unless stated otherwise, we take n = nin,, where
ng(fll, I’lz) = 1.

NotatioN. Denote a, to be a vertex in G(n, k).

THEOREM 4.7. Consider the trees T (n, k;, (1n,,0p,)) such that, for all primes
pj | naandl = 1.2, either h(T(p;’ .k;.0)) > 1 or h(T(p;’ .k;.0)) = 1.
Then T (n,kq, (1,,1,0”2)) ~ T(n,k,, (1,,1',0,,2)) if and only if T(pfi,kl, 1) =~
T(p{' k2, 1) and T(p;’,kl,O) ~ T(p ky,0) for all primes pit |l ny and

o
Pj] | 2.

Proor. Supposethat T'(n, ki, (1,,,0,,)) =T (n, k2, (1,,.0,,)). By Lemma 2.21
we can assume h(T(p;j,kl, 0)) > 1 for all primes p; | n, and / = 1, 2. Since

o e~
[Tecdri ™" (pi =Dk [T 2, ©

pilni pjlna
= 1ndegk2 (14,,0p,)

- e; T
=[Jecdpi ™ (pi = .k [[p,” ™.

pilny pjlna
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and

[ Tecd(pi ™" (pi — 1), K7

pilny
= |T(n, k1, (1n,,0n,))|
= |T(n, k2, (1n,,0n,))|
= chd(pfi_l(pi —1),k3),
pilni

where r; = h(T(p;", k1,1)), si = h(T(p;’, k2, 1)), then it follows that p; | k; if
and only if p; | k, for all primes p; | n.
Note that for all primes p; | n,, we have

4.8)

. . n €
Up, (indegy, (1, 0n,)) = v, (indegi! (1)) + ¢; — (ﬁ]
4.9) = vy, (indegi (1)) + ¢ = | 2 |
2
= UPj (lndegiz(lnl ) Onz))

min{vp, (T(n. k1. (1n,. 0ny)))} = vp, (indegy (1)) + vy, (lndegk’j (P;")

(4.10) = vy, (indegy! (1)) + up, (indegkg (P,’-Cz))
= min{v,, (T (n. k2, (1n,,0n,)))}.
and
max{vp, (T'(n, k1, (1n,,0n,)))} = max {Upj (T(%’kl’o))}
J
4.11) = max {Upj (T(%,kz,()))}

= max{vp; (T'(n, k2, (1n, 0n,)))}.
Then it is easy to see that gcd(p; — 1, k1) and ged( p, 1, k») have the same prime
divisors for all primes p; | n>. Next, the trees T'(p; ®/ k1,0) and T(p, %7 k»,0) are
either both semiregular or both non-semiregular for all primes p; | n,. Because

if for some prime p; | n», say T(p]’ ,k1,0) is semiregular but not T(p]’ ,k2,0),
then from (4.9) and (4.10) we obtain

max{vp, (T (p;’ , k2,0))} = ¢; — (;i_ﬂ

=ky— 1+ vy, (1ndegk2 (p]kz))
= min{uy, (T(p$ , k2,0))}.

which is a contradiction.
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Since

min{vp{a € T'(n, k1, (1n,,0n,)): Up, (indegy (a)) < vp, (indegy (b)), for all b}}
= min{v,{a € T(n, k2, (1,,,04,)):
Up, (indegy, (a)) < vp, (indegy, (b)), for all b}}

for every primes p; | n, and p # p;, then we can deduce that ged(p; — 1, k1) =
ged(p; — 1, k»). Finally, we claim that it suffices to show that [Z—’l] = [Z—’Z] =2
for all e; such that p;j | n2. Because this would imply, using (4.9) and (4.10),
that T(pfj  k1,0) = T(p$ ko, 0) for all primes p; | n,, and from (4.7), Propo-
sition 4.1 and Corollary 4.3 it follows that T(p;", k1,1) = T(p{', ko, 1) for all
primes p; | ny, as desired.

ej

Now we proceed to prove the claim, that is proving [ ] = [£] = 2.

Caske 1. For some prime p; | ny, let p; + ki or p; t ko, but not both.

Using (4.8) we get vp, (T'(n1,k1,1)) = vp, (T (n1, k2, 1)) = {0}, and it then

J
follows from (4.9) and (4.10) that [£] = [#£] and vy, (indeg,’j{ (P =
i . .
Up; (indeg,f; (pjl.cz)), respectively. If [z—fl] = [z_fz] = a > 3, then arguing

similarly as in the proof of the corresponding part of Theorem 4.6 we will get
a contradiction.

Case 2. Let p} || k1, pjﬁ | ka2, where a > 0, B > 0 for some prime p; | n,.

Denote a; = [Z—ﬂ —l,a, = [Z—ﬂ — 1. Consider the sets
S1 = {vp, (indegzl (@)):a € T(n,k;, (1,,,0,,))}, wherel =1,2.

Since the trees T'(n, k1, (14,.04,)) and T (n,k>,(1,,,0,,)) are isomorphic we
must have S; = S,. If we assume, without any loss, that k; < k, and fﬁ} > 3,
then arguing similarly as in the proof of Theorem 4.6, it can be proved that

ki—1> vpj<l_[gcd(pi - 1,k1)> forl =1,2.
i#j

pilna



206 A. Sawkmie — M. M. Singh

Also, since e¢; —a1k; — 1 > « then after denoting

r = up, (indeg}’ (1)) and ¢ = v, (chd(pi — 1,k1)),
i#j

pilna

we can order the elements of the set .S; as follows:
. pY
r + Up, (indeg; (') <+

. pjj k1 X

<71+ (1ndegk1 (p;') +c
Y Ty

<r+up; (1ndegk{ (p; )

< ve
. p;j 2k

<71+ (1ndegk1 (p;") +c

< e
¢ _
< T+ Up, (indeg,f{ (p](-a1 DR e

: ij aik;
<1+ vp,(indeg,’ (p;'""))
< oo
py
<r+vp, (indegkf (0))

< e

€j

<7+ vy, (indeg;” (0)) +c.

Again using the hypothesis that T'(n, k1, (1,,.05,)) = T(n,k2,(1,,,0p,)), and
after denoting s = v, (indegZ; (1)), the elements in the set S, can also be ordered
as

e
s + vp, (indeg, (p;*)) <---
j
<s+ Up; (indegg (p]’fz)) +c
ok
<S5+ Up, (1ndegk; (p; 2))
< ee

N e
<5+ Up, (1ndegk; (pj ) +c

< e
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¢
<s+ vp.(indeg,f’ (p/(-az_l)kz)) +c

py’ k
<5+ Up; (mdegk2 (p]2 2))

< e

e
<5 + vy, (indeg,’ (0))

< e
o
<5+ Uy, (1ndegk; (0)) +c.

If[ -] > 4 and [e’] > 4, or if [e’] —3and[ 1 =3, thenfromtheabove

two sequences we obtain r + vp, (mdegk’ (P; kl)) =5+ Up, (1ndegk’ (p; kz))
which along with (4.10) yields k; = k,, a contradiction. Also, if [ 1] > 4 and
|_,i—12-| < 3, orif |'Ie€_]1'| =3 arelq |—,e€—12-| e; 2, then S; # S, which is not possible.
Thus we can conclude that [ 2] = [ ] = 2. The proof is now complete O

Recall a result proved in [15] that the trees attached to all cycle vertices in a
fundamental constituent of G (n, k) are isomorphic. We end this section by proving
a necessary and sufficient condition on the isomorphism of trees in two distinct
fundamental constituents of G(n, k). Let P = {p1, p2,..., pr} and Py, P, P1 #
P, be subsets of P. We write

n=MNR,
where
e; e; e;
m=[1p" ~=[]n". rR=[]r"
Di€P1,pi £P> Pi€P2,pi¢ P Di€PIUP,
and so

Gp, (n,k) = T(M,k,0)x G1(N, k) x T(R,k,0),
Gp,(n,k) = G1(M,k) x T(N,k,0) x T(R, k,0).
THEOREM 4.8. Then the trees attached to all cycle vertices in G;l (n,k) U

G;‘,Z (n, k) are isomorphic if and only if T(pfi,k, 0) is semiregular for all p; ¢
P1 N P, and indegy, (1pr,0n) = indegy, (Opr, 1n) forall r > 1.
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Proor. Assume that the trees in G;‘,1 (n,k)yu G1*>2 (n, k) are isomorphic. Since
T(MN,k,(1p,0n5)) =2 T(MN, k, (Op, 1)) then by Lemma 2.19 it follows that
indeg%N(lM, Oy) = indeg%N (Opz, 1) for all » > 1. Also note that,

v, (indeg (1)) = v, (indeg™ (137, 0x))
4.12) = Uy, (indegg"™ (Opr, 13))

= vy, (indeg;’ (0)) + vy, (indegy (1)),

Up, (indegg! (1)) = min{vy, (T(MN. k. (13.08)))}
(4.13) = min{vy, (T(MN,k, (Op, 1n)))}
= min{vy, (T(p{", k,0))} + vy, (indegy (1)),

ej
U, (indegf! (1)) + vy, (indeg;” (0)) = v, (indegt!™ (1y7.0x))
(4.14) = vy, (indegy Y (O, 1))
= vy, (indegy (1)),

(4.15)
Up, (indegg! (1)) +min{vy, (T(p;’ . k.0))} = min{uy, (T(MN. k. (131.0x5)))}

= min{v,, (T(MN, k, (Opr, 15)))}
= vp, (indegy (1)),

for all primes p; | M and p; | N.

If for some prime p;, T'( ple’ ,k,0) has height greater than 1, then we get
max{vy, (T (p{’. k. 0))} = min{uy, (T(p{". k.0))}.
So we are left to show that gcd(p; — 1, k) = 1. Since

min{vy{a € T(MN. k, (1p,0n)):
up, (indeg N (a)) < vy, (indeg ¥ (b)), for all b}}
= min{vp{a € T(MN. k,(Op. 1n)):
up, (indeg}™ (a)) < vy, (indeg™ (b)), for all b}},

then using (4.12)—(4.15), one can deduce v,(ged(p; — 1, k)) = 0 for every prime

p # pi, as required.
The converse follows immediately from Remark 4.2. |
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S. Isomorphism of G (n, k1) and G (n, k2), and factorization of G(n, k)

We start this section by proving a necessary and sufficient condition for the
isomorphism of the trees in fundamental constituents G5 (n,k;) and G (n, k»)
of G(n, k1) and G(n, k,), respectively.

THEOREM 5.1. The trees T'(n, k1, (14,.04,)) = T(n, k2, (1,,,0y,)) if and only
if all the following conditions are satisfied:

(1) T(p¥ ,k1,0) = T(p% . ks, 0) whenever

o W(T(p7 ky,0)) > 1,
o W(T(py . ka.0)) > 1,

for primes pj | n,.
() indegzi-(l,,1 ,0p,) = indegzg(ln1 ,O0n,) forall r > 1.

(3) Forprimes p; | n1, T(p;".ki1,1) = T(p{', ko, 1) whenever gcd(A(p;"). k1) =
ged(A(p]"), ka).

(4) Forprimes pj | n,, T(p;j, ki,,0) is semiregularwheneverh(T(p;j, ki,,0)) =1,
where i | is.

Proor. Suppose that T'(n, k1, (1,,,0,,)) = T(n,kz, (1,,.0s,)). Because of
Lemma 2.21 we can assume [Z—” > 1or [,i—ﬂ > 1.

For some prime p; | na, let h(T(p7 . k1,0)) > 1 and h(T(p; ,k».0)) > 1.
Running through the arguments of the proof of Theorem 4.7, part 1 follows
immediately.

Part 2 follows directly from Lemma 2.19, and part 3 also follows immediately
from Proposition 4.1.

Now we prove the last part. For some prime p; | n,, assume, without any loss,
that 1(T(p$’,k1,0)) = 1. So we have to prove that T(p;j ,k2,0) is semiregular.

To avoid triviality we can take /(T ( p;j ,k2,0)) > 1. First, solving the equalities
min{Upj (T(l’l, kl, (1n1 ) Onz)))} = min{vpj (T(n7 k21 (1n1 ) Onz)))}

and vy, (indegy (15, 04,)) = vp, (indegy (1, 0n,)) We obtain

min{v,, (T (p;’ . k2.0))} = max{v,, (T (p;’ . k2.0))}.
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Also, since
min{vy{a € T(n, k1, (1,,,04,)):
Up, (indegy, (a)) < vp; (indegg (b)), for all b}}
= min{up{a € T(n, kz, (1n,, On,)):
Up; (indegy, (a)) < vp, (indegy, (b)), for all b}}

S.D

for every prime p # p;, we must have gcd(p; — 1, k) = 1, which means that
T (p;j ,k2,0) is semiregular.

For the converse, we take n/1 = []p;’, where the product runs over all
those primes p; | ny such that T(p{' k1, 1) 2 T(p{, kz, 1), and n, = []p;’,
where the product runs over all those primes p; | n, such that [Z—’l] = 1or

[Z—ﬂ = 1, but not both. Then it is enough to show that T'(nn,. ky, (1,70, /)) =
1 2
T(n'yny.ka, (1 7,0 /)). But then, this follows immediately from Remark 4.2. O
172 nytonyp

CoroLLARY 5.2. Suppose that T(n,k1,(1,,,0,,)) = T(n,ka, (1n,,0p,)).
Then T(p{".k3.1) = T(p{'.k3.1) and T(p; .k?.0) = T(p;’.k3.0) for all
primes p; | ny and p; | n».

Since the trees attached to all cycle vertices in a fundamental constituent of
G(n, k) are isomorphic, then looking at the structure of G (n,k), we have the
following result.

THEOREM 5.3. Leta; = (b1, ba, ..., b;), where b; = 0, 1, be the fixed point of
Gp(n,ki)fori =1,2.Then Gy (n, k1) = Gp(n, k) if and only if all the following
conditions are satisfied:

(1) T(n,ki,a1) = T(n, ka,az),
(2) A(Gy(n. k1)) = A(G3(n,kp)) = A, and
(3) A:(Gp(n, k1)) = Ai(Gp(n, ko)) forallt € A.

Now we can prove the following theorem.

TueOREM 5.4. Let P be the set of all primes dividing ny. Then Gp(n, ki) =
G}y (n, kz) if and only if the following conditions are satisfied:
(1) T(n,k1,(1n,,0n,)) = T(n, k2, (1n,,0n,));
(2) there exists a factorization A(n1) = uv, where u is the largest factor such
that gcd(u, k1) = ged(u, k) = 1. Furthermore, ordgk, = ordgk, for every
divisor d of u.
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Proor. We make use of Theorem 5.3. First we assume G (1, k1) = G5 (n, k»).
Since part 1 is obvious, we prove only the second part. Using the factorization of
Gp(n, k) givenin (1.1), we have

A(G1(n, k1)) = A(G1(n, k2)) = A,
and
A (G1(n,ky)) = A;(G1(n, ky)) for all t € A.

Now because of Corollary 5.2, the existence of the factorization A(n;) = uv,
where u is the largest factor of A(n1) such that ged(u, k1) = ged(u,ky) = 1is
obvious. Since A;(G1(n1,k1)) = A¢(G1(n1,k»)) for all t € A, then by induction
on 7, it is easy to see that ged(A(n1), k] — 1) = ged(A(ny), k5 — 1) for all 1 € A.
Thus it subsequently follows that ordy k1 = ord,k, for every divisor d of u.

For the converse, it suffices to show that

A(G1(n1, k1)) = A(Gr(n1, k2)) = A,
and
At(Gl(I’ll,kl)) = At(Gl(fll,kz)) forall t € A.

Since ordgk; = ordgk, for every divisor d of u, then by definition the first
condition is obvious. For the second part, we note that gecd(A(n1),k} — 1) =
ged(A(ny), k5 — 1) for all # € A, which then implies that

[] ecda(py). ki = 1) = [] ged(p{"). k5 — 1),

pilni pilni

and hence the desired result follows by induction on z. |

LeEmMA 5.5. Let p be an odd prime, and e > 1 be an integer. Ifindeg,fe (1) =
indeg,’(’é (0) then T (p®,k,1) = T(p®, k,0). Moreover, if k is even the same holds
for p =2, except when k =2 and e = 5.

Proor. Let p be an odd prime, and assume indeg,’c’e(l) = indeg,fe (0). Then
we must have [ £ = 1. Because, if [ £ | > 1 then it follows from Lemma 3.2 that
T(p®. k,0) is not semiregular, that is e > k +e— [ £ | 42, which is a contradiction
ase — |_%-| +2 < pe TRl <k.

Let p = 2 and k be an even integer. Since the case when e = 1,2 is trivial, we
take e > 3. By inspection we see that 7(2°, 2, 0) is not semiregular even though
indeg%s(l) = indeg%5 (0). Now assume indegie (1) = indegie (0), then we claim
that this would imply the semiregularity of G(2¢, k). First it is easy to verify that
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the claim holds when k = 2, 4. So we take k > 6 and assume 7'(2°, k, 0) is not
semiregular. Then

ezk+e—{£]+2>2e—(2(ﬂ—z),

which is a contradiction as 2[ £ | —2 < e.

Next, using Lemma 2.12 it can be proved, by treating the cases when |_%-| =1
and [£] = 2 separately, that h(T(2°,k, 1)) = h(T(2°,k,0)) = 1 or 2. Since
G(2¢, k) has exactly two components, 7(2¢, k, 0) and 7' (2¢, k, 1) respectively, then
we can see that n(T(2%,k,1),1) = n(T(2¢%,k,0), 1), and hence the isomorphism
T(2% k,1) = T(2¢%k, 0) follows. O

RemMaARrk 5.6. It is obvious that any fixed point of G(n, k) will also be a fixed
point of G(n, k") for all »r > 2. If C(n, k) is a component of G(n, k) containing
a t-cycle, then C(n, k") is the union of gcd(¢, r) number of components each
containing a m—cycle for all r > 2. Conversely, if a vertex c is a fixed point
in G(n, k") for some r > 2, then ¢ as a vertex in G(n, k) is either a fixed point or
in a ¢-cycle, where ged(z,r) = ¢.

Lemmas 2.14 and 2.15 together with Remark 5.6 gives us an idea about the
cycle and tree structure of G(n, k") in terms of the cycle and tree structure of
G(n, k).

ProposiTION 5.7. Suppose that G(n, k1) = G(n, k»). Then we have G(n, k) =
G(n,kb) forallr > 2.

Proor. Assume G(n,k;) = G(n, k;). We write
G(n’kl) = Jl(n7kl) U JZ(n’kl) U---u Js(l’l,k]),

where each J; (n, k;) is aunion of components of G (n, k;) having isomorphic trees,
and any two trees from J; (n, k;) and J;(n, k;), where i # j, respectively, are not
isomorphic. Then J;(n, k1) = J;(n, k) for all i, and so it is enough to prove that
Ji(n,k})and J;(n, k%) for all r > 2. From Lemma 2.19 it immediately follows that
the trees attached to all cycle vertices in J; (n, k7) and J; (n, k%) foralli and r > 2,
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are isomorphic. Using Remark 5.6 we obtained A(J;(n, k7)) = A(J;i(n,k})) =
Al foralli and r > 1, and

Am(Ji(n kD)) = Y ged(r, 1) A (Ji(n, k1))
teAl

t —
ged(r.1) =m

=Y ged(r.0) A, (Ji(n.k2))
teAl

t —
ged(r.1) =m

= Am(Ji(n.k3))

forall m € Ai, i and r > 2. Hence, the result follows. O

Finally we prove the uniqueness of the factorization of G(n, k).

THEOREM 5.8. Suppose that G(n, k1) = G(n, k;). Then
G(P,?i,kl) ~ G(Pfi,kz),

whenever they are not semiregular, and

G(T1r k1) =6([1ry ko).

where the products run over all those primes p; such that both G(p;j k1) and

G(p;j , ko) are semiregular.

We note that in this theorem we are not able to prove completely the uniqueness
of the factorization of G(n, k), in particular, it does not say anything about the
uniqueness of the semiregular factors of G(n, k). But still we are more or less
satisfied because the structure of semiregular digraphs is well known and have
been characterized (see Theorem 3.5), and as seen in Remark 3.6 we can actually
write them explicitly. One important observation about semiregular digraphs is
its tree structure, that is, trees attached to all its cycle vertices are isomorphic.
Ironically, as far as the techniques employed in this proof are concerned, this very
property of semiregular digraphs prevents us from having a complete uniqueness
on the factorization of G (n, k).
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Proor. Assume G(n, k1) = G(n, k;). We divide the proof into two parts.

Cram 1. Inview of Corollary 4.3 and Theorem 4.6, we claim that T (n, kq,1) =
T(n, ko, 1)and T(n,k1,0) = T(n, ks, 0).

First we note that k1 and k, are of the same parity. This is because if say k; is
even and k» is odd; then for an odd n, the indegree of every cycle vertex in G(n, k»)
is odd but the indegree of the cycle vertex 1 in G(n, k1) is even, and similarly for
an even n, the indegree of every cycle vertex in G(n, k1) is even but the indegree
of the cycle vertex 1 in G(n, k,) is odd.

First take n, k1, k, to be odd integers. Since

min{vp, {a = (ay,...,ar):a; =0,1}}
= min{vp, {a € G(n,ky):ais a cycle vertex}}
= min{vp, {b € G(n,k>):bis a cycle vertex}}
= min{vy, {b = (b1,....b):b; =0,1}}

for all i, and using the fact that Up (1ndegk (0)) > vp (mdegk (1)) for any odd

prime p, we obtain v, (1ndegk’ 1) = vpl (mdegk (1)) for all i. Now letn =

niny, where p;* || ny if and only if p;’ | k; for [ = 1,2. By an application
of Theorem 3.5 and Corollary 3.7, it can be seen that T'(n, k;,0) cannot be
isomorphic to any other trees in G(ny,k;) for /| = 1,2. Next, by comparing
the indegrees of the cycle vertices in G(n, k1) and G(n,k,), we observe that
gced(p; — 1,ky) = 1if and only if gcd(p; — 1, k) = 1. Then from Lemma 5.5 we
see that the tree T'(n5, k1, 0) is not isomorphic to T (n5, k2, c¢) for any cycle vertex
¢ # 0in G(ny, k3), and vice versa. Thus one can deduce that the only option we
have is

c;—1
l_[pl |n1

T(n kl,O) XT(I’lz,kl,O)

e;—1
~ Onp,lnl

= T(n, k2, 0).

X T(l’lz, kz, O)

Next we show that T'(n, k1, 1) = T'(n, ks, 1). Since
indeg;c’1 (1n,,0p,) = max{indegﬁ1 (c1,¢2,...,¢r)ici = 0,1}
= max{indegzz(dl, ds,....dy):d; =0,1}
= indegzz(ln1 ,0n,),
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and
indegz1 Onys 1ny) = min{indegz1 (c1,¢2,...,¢7):¢c; = 0,1}
= min{indegzz(dl, dy,....dy):d; = 0,1}
= indegz2 Ony s 1ny),

then it follows that T(ny,k1,1) = T(n1,k2,1) and T (ny,kq,1) = T(nz, ko, 1),
respectively.
Now let n be odd and k, k, be even integers. Since

vz (indegy, (0)) < va(indegy, (a1, az,...,a,)) < va(indegg, (1)),

where a; = 0,1, not all equal to 0 or 1, and / = 1,2, then we must have
Tn,k1,0) =T(n,k2,0)and T (n, k1, 1) = T(n, ka, 1).
Letn = 2¢[/_, p;’ be even and k1, k, be odd integers. Then T(2%, k;, 1) is
trivial, and we have
n n
G1(2°. k1) x G(;,kl) > G1(2° ky) x G(?,kz)
and
n n
G2(2. k1) x G 55.k1) = 622 ka) x G55 k2)-
Similar to the first case, it follows that
n n
T(n, ki, 1) = T(n,ky, 1) and T(z—e,kl,o) ~ T(z—e,kz,O),
and since vy (G(n, k7)) = v2(T (2%, k;,0)) for [ = 1,2, we derive
T (2% k1,0) = T (2% k3, 0).

Finally, let n = 2° H;=1 pf ', k1, ky be even integers. In this case, G(2¢, k1)
and G(2¢, k) consist of only two components. Also note that

IT(n, k1, (12¢,0,...,0))| = |T(n, ki, (0,0, ...,0))]

r
— 0e l_[ piel'—l
i=1

75 |T(n’kly(626’617C2""7C7))|7
where at leastone ¢; = 1, and/ = 1,2, and

max{vy(|T(n,k;, (cze,c1,¢2,...,¢,)))ic; = 0,1}

={v2(IT(n. k1, (O2e, 1. 1,.... 1)), 02(IT (1, Ky, (e, 1, ... D)},



216 A. Sawkmie — M. M. Singh

where [ = 1,2. If e # 3 then by comparing the indegrees of the cycle vertices in
G(n, k;) and using Lemma 5.5 we can conclude that 7'(n, k;, 1) = T(n, k2, 1) and
T(n,k1,0) = T(n,ks,0). In view of Remark 4.4(3) and Lemma 5.5, let e = 3
and say k; = 2. Comparing the indegrees again, we have

T(n,ky, (13,0, ...,0)) 2= T(n, ka, (0se,0, ..., 0)),
and
T(n,kl, (026,0, .. ,0)) = T(n,kz, (126,0, .. .,0)),

which impies that indegy (1) = indegg,(0) = indegg, (1) = indeg, (0),
a contradiction. Thus 7T'(n, k1, (02¢,0,...,0)) and T'(n, k2, (02¢,0,...,0)) must
be isomorphic. Next, we have T'(n, k1, (12¢,1,...,1)) = T(n,k2(0z¢,1,1,...,1))
and T'(n,kq, (0ze, 1,...,1)) = T(n,ka(lze,1,1,..., 1)), and since indeg,%Z(O) =
indegi;(l), it follows from Lemma 5.5 that indeg,zcj 0) = indegij (1), which is
again a contradiction. Hence, the claim.

Cramm 2. If G(p{', k1) and G(p;", k») are not semiregular, then

A(G1(p{'. k1)) = A(G1(p{" . k2)) = Ai,
and
A (Gr(pfi k1)) = A(Gi(p k2)) forallt € A;.

Also, G(]_[p?j,kl) o~ G(]_[p;j,kz), where the products run over all those
primes p; such that both G(p;j k1) and G( p;j ,k2) are semiregular.

For the first part, it suffices to prove G1([] pi’. k1) = G1([] p;’. k2), where
the products run over all those primes p; such that both G( pf " k1) and G( pf " k)
are not semiregular. Because this would imply, under the same products, that

A(er(Ts#0)) = afon (T 712).
a(Gi(TTpi k) = (G ([T o5 k2)) foratlr,

and as seen in the proof of Theorem 5.4, ord;k; = ordgzk, must hold for every
positive divisor d of u, where A(]] pf ") = wv and u is the largest factor such
that gcd(u, k1) = ged(u, k2) = 1. Then by a property of the Carmichael function
given in Lemma 2.2, it is easy to see that ord; k; = ord, k, for every positive
divisor d’ of u;, where A(pf "y = wu;v; and u; is the largest factor such that
ged(ui, ki) = ged(ui, ko) = 1. Since ged(A(p;?), k1) = ged(A(p;7), k2) holds

and
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for all 7, then using the same arguments as in the proof of Theorem 5.4 we get the
desired result.

Now we prove G1([] p;". k1) = G1([1 p{’. k2), where the products run over
all those primes p; such that both G(pf ", k1) and G(pf ', ko) are not semireg-
ular. First, using equations (1.1) and (1.2), we obtain A(G([]p/". k1)) =
A(Gq ( I1 pf i kz)), over the same products. Let k1, k» be even integers. Then all
factors of G(n, k) and G(n, k,), corresponding at least to odd primes, are non-
semiregular. If # is odd then for / = 1,2, we have

max{v,(|T(n, ky;, (a1,az,...,a,)|):a; = 0,1} = va(|T(n, k;, (1,1,..., 1)),

which is unique. Since the trees attached to all cycle vertices in a fundamental
constituent of G (n, k) are isomorphic, the condition A;(G(n, k1)) = A;(G(n, k»))
must hold for all 7 as desired. Let n = 2°[[i_, pf  be even. If indeg,z;(l) #*
indegij(O) then T'(n,k;, 1) is not isomorphic to any T(n,k;, (a1,az,...,a,)),
where at least one a; = 0, for [ = 1,2, and so we must have Gi(n,k;) =
G1(n, ky). However, if indegif ()= indeg,zcj (0) then after applying Lemma 5.5 it
follows that the trees attached to all cycle vertices in G{*z} (n,k;) U Gy(n,k;) are
isomorphic, and thus

Gy (1, K1) U Gy (1, k1) = Gy (1, k2) U Gy (n, k).
This implies that
2x Ai(Gi(n, k1)) = Ai(G 5y (n. k1) U Gi(n, k1))
= 4Gy (1, k2) U Gy (1, K2))
=2x A:(G1(n. k2))

for all ¢, as required.
Now consider k1, k> to be odd, and first assume n = ]_[;=1 pf i also to

be odd. Since vy, (indegiil (1) = vy, (indeg,f;l (1)) for all i, and the fact that
gcd(pi — 1,kq) = 1if and only if ged(p; — 1,k2) = 1, we have T(pfi,kl, 1) =
T(p;’ k1,0) if and only if T'(p{", k2, 1) = T(p;’, k»,0) for all i. Let us take n =
ning, where pfi || ny if and only if p{i~" | k; for I = 1,2. Then for all primes p;
such that p;j | n2, T(p;j ,k1,0) and T(pfj,kz, 0) are semiregular and f;—fl] =1,
[Z—ﬂ = 1. This is because if [Z—ﬂ = 2 we obtained k; < e; < k; + vp, (k;)+1 for

(k
[ = 1,2, which follows that pl.]p’ * < k1 — k2 < vp, (k;) + 1, a contradiction.

Since G(n1, k;) x T (n2, k;, 0) is the union of all those components in G (n, k;) for
| =1, 2 such that p;j ~! divides every cycle vertex for all p; | n,, then

G(ny, k1) xT(na, k1,0) = G(ny, k) x T(na, ka,0),
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which after using Lemma 2.21 it becomes G (n1, k1) = G(n1, k»). Similarly, since
G(ny,k;) x Gq(na, k;) is the union of all those components in G(n, k;) for/ = 1,2

(k
such that p;-}p’ «n divides every cycle vertex for all p; | n,, we obtained
G(ny1, k1) x Gi(nz, k1) = G(ny, k2) x Gi(nz, ka).

Since all the trees in G(ny,k;) x Gi(na, k), for I = 1,2, are isomorphic, then
from Proposition 5.7 we get A1(G1(n2,k])) = A1(G1(n2,k})) for all r > 2.
Hence, Gi(ny,k1) = Gi(na, k), as it can be proved inductively on ¢ that
A (G1(na, k1)) = A¢(G1(n2, ky)) for all ¢, by observing that

4Gz k) = 7 [ 41(G1 02K = Y dAa(Gatmz. )] forl = 1.2,
d|t,d#t

Finally, for an even integer n = 2°J]/_, pf 7, the trees T(2%,k;,1) for | =
1,2 are trivial, and as seen in the corresponding part of Claim 1, G(2¢,k;) =
G(2°, k»). The rest then follows exactly as in the preceding case. This completes

the proof. |
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