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Complex manifolds as families of homotopy algebras
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ABsTRACT — We prove an equivalence of categories from formal complex structures with
formal holomorphic maps to homotopy algebras over a simple operad with its associ-
ated homotopy morphisms. We extend this equivalence to complex manifolds. A com-
plex structure on a smooth manifold corresponds in this way to a family of algebras
indexed by the points of the manifold.
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1. Introduction

A complex manifold is a manifold M endowed with an atlas of charts to C” for a
certain fixed n € IN, such that the transition maps are holomorphic. By a theorem
of A. Newlander and L. Nirenberg [21], such a structure is described equivalently
as an almost complex structure J: TM — TM satisfying an integrability condi-
tion. We use this equivalent formulation to propose a third description: a complex
structure is a family of algebras over a certain operad Cx .

We make use of the notion of operad to encode algebras: the latter are repre-
sentations of a given operad. Examples of operads are associative algebras and, in
this case, representations are modules over the given associative algebra. For in-
stance, representations of the algebra of complex numbers C are C-vector spaces.
Another example, which is not an associative algebra, is the operad Lie whose
representations are Lie algebras.

This new description of complex structures makes possible the study of prob-
lems in complex geometry with the tools of homological algebra. For example,
we get directly notions of cohomology theory and of deformation theory for for-
mal complex structures. In this direction, we plan to use this language to describe
the moduli space of complex structures on a smooth manifold in a future work.
Furthermore, algebras fit into the more general context of differential graded (dg)
objects and we therefore obtain a notion of dg formal complex manifold. In a work
in progress, we interpret this new description as an extension of the integrability
theorem of A. Newlander and L. Nirenberg [21] to the dg setting.

In [12], [13], and [14], S. Merkulov began the description of several geome-
tries in the context of homological algebra (Hertling—Manin, Nijenhuis and Pois-
son structures). Later, H. Strohmayer dealt with the case of bi-Hamiltonian struc-
tures [24]. These notions consist of an underlying smooth manifold endowed with
a particular structure. It is sometimes possible to study similarly objects with a
geometric flavor such as quantum BV structures (see [22] and [9], and [16]). For
the aforementioned geometries, the extra structures are described by local rules.
In all these cases, we can restrict the local rules defining the extra data to the
formal neighborhood of a point (see [4] and [10]). Since they are described by
smooth applications satisfying differential equations, it corresponds to replacing
the applications by their infinite Taylor series and the differential equations by the
associated algebraic equations between the Taylor coefficients.

A powerful tool of homological algebra is the Homotopy Transfer Theorem
(see [8] and [11]). Remarkably, when applied to the algebras corresponding to the
quantum BV structures, we obtain precisely the Feynman diagrams appearing in
the Batalin—Vilkovisky quantization (see [18], [17], and [16]). A second illustration
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of the fruitfulness of the algebraic approach is the reformulation in [15] of the
universal quantization of Poisson structures in terms of a morphism of props. This
approach shows the importance of traces in that context.

In [13], S. Merkulov studies Nijenhuis structures, that is endomorphisms J on
the tangent bundle of a smooth manifold which satisfy an integrability condition.
S. Merkulov provides in his article an operad N, whose algebras are formal Ni-
jenhuis structures. H. Strohmayer proves in [23] that the operad N, on which the
operad N is based, is a Koszul operad. This shows that N,-algebras are homo-
topy N-algebras and that the two notions of algebras encode the same homotopy
categories of algebras. The main example of a Nijenhuis structure is a complex
structure, which satisfies in addition the equality J2 = —Id (J is an almost com-
plex structure). It is natural to wonder if formal complex structures can also be
modeled similarly. The first goal of this paper is to answer this question.

We built a Koszul operad Cx based on the algebra of complex numbers C and
on the operad Lie. We denote by Cx., the operad encoding homotopy Cx-algebras.
The main result of this article is the following

THeoREM 1.1 (Theorem 4.1). There is an equivalence of categories

{ Cxo-algebras } = {complex structures on formal pointed manifolds}

with co-morphisms with holomorphic maps

This theorem provides the algebraic essence of the geometric notion of com-
plex manifolds, and it is given by a surprisingly simple operad. The notion of
oo-morphism for Cx..-algebras is analog to the notion of L.,-morphisms (resp.
Aso-morphisms) for Loo-algebras (resp. Aso-algebras).

We are finally interested in a global version of Theorem 4.1. Formal geom-
etry [3] gives a convenient language to provide a global description of objects
defined locally in terms of coordinates. Let M be a smooth manifold. The idea is
to work with the space of all local coordinates systems M “°°'. Let x be a point
in M and ¢ be a local coordinates system around x. Theorem 4.1 describes as a
Cxo-algebra the Taylor series of a complex structure J at the point x in the chart
given by ¢. Therefore, the description of the map J on M is given by a collec-
tion of Cxo-algebras indexed by the points in M°°°". However, a collection of
Cxoo-algebras indexed by M °°" does not necessarily correspond to a smooth en-
domorphism J. Based on the operad Cx,, we define two fiber bundles E., (M)
and F.(M, N) over M, both of them endowed with a connection, such that the
following theorem holds:
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THeoreEM 1.2 (Theorem 5.12). Let M and N be two smooth manifolds. There
is an equivalence of categories

flat sections of F.x (M, N)

flat sections of E (M) with = complex structures on M with
holomorphic maps from M to N |~

Layout

Since this article brings together differential geometry and operad theory, we
recall quickly definitions and results from the two domains in Sections 2 and 3.
More precisely, we recall definitions and notations related to complex geometry in
Section 2 and we fix notations for operads in Section 3. In this second section, we
also introduce the operad Cx and we prove that it is a Koszul operad. Moreover,
we describe the algebras over the operad Cx., and the associated co-morphisms.
In Section 4, we prove Theorem 4.1 relating Cx,-algebras and formal complex
structures. The smooth version of this theorem is Theorem 5.12 and it is detailed
and proved in Section 5. There are two appendices: the first one provides an explicit
decomposition map for the Koszul dual cooperad associated to Lie algebras in
degree 1, and the second one explains the theory of distributive laws for cooperads.
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(Cambridge) for excellent working conditions during the stays that he has spent
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Notations

In this paper, we work over the field of real numbers K = R, except in the
appendices where KK can be any field of characteristic 0. We use the symbol &®
for the tensor product (over K), the symbol © for the symmetric tensor product
and the symbol A for the anti-symmetric product. Let V := {V"},cz be a



Complex manifolds as families of homotopy algebras 133

cohomologically graded vector space. We denote by S(V) := €D,,.; V" the free
commutative algebra, or symmetric algebra, on V' and by S C(V)_:: P, Ve
the cofree conilpotent cocommutative coalgebra. -

We consider a one-dimensional vector space sIK spanned by an element “s”
of cohomological degree —1 (or equivalently, of homological degree 1 but we
will only speak about cohomological degrees in this article). By definition, the
cohomological suspension of V is s71V := s71K ® V. It corresponds also to the
shifted cochain complex V[—1], so that (s~! V)" = (V[~1])" = V"L, Similarly,
we get the cohomological desuspension sV = V[1]. The composition of elements
of a composable pair of morphisms ( f, g) is denoted by g- /. The maps appearing
in this article depend on several variables, say f depends on x and . We denote
by dx f, resp. d; f, the partial differential of f with respect to the variables x,
resp. 7.

Conventions

In all the paper, the manifolds and the formal manifolds are assumed to be finite
dimensional. Throughout the paper, we use the Einstein summation convention,
i.e. we always sum over repeated upper and lower indices. For instance, P%d,
means ), P?0,. In the paper, we consider differential graded (dg for short) vector
space that are cohomologically graded. Therefore, we assume that the differential
is of degree +1. Moreover, we use the Koszul sign convention saying that in a
commutative algebra aja, = (—1)"’1”"2|a2a1.

2. Complex structures

We remind notations and general facts concerning complex structures and formal
complex structures. We also describe the holomorphic maps associated to each
context.

2.1 — Complex structures

Let M be a paracompact smooth manifold. We denote by T*M its cotangent
bundle and by TM its tangent bundle. The Lie bracket on vector fields induces
a symmetric product of degree 1 on the shifted tangent bundle

[—.—]: TM[1] © TM[1] — TM[1].

DEerintTION 2.1. An almost complex structure on M is an endomorphism
J:TM[1] — TM|1] satisfying J? = —Id.
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To such an endomorphism, we associate its Nijenhuis torsion
Ny:TM[1]°? — TM|1]
given by
Ny(X.Y):=J3[X. Y|+ [JX.JY]|-J[X,JY] - J[JX.Y].

THeOREM 2.2 (Newlander and Nirenberg [21]). Let J be an almost complex
structure on M. The endomorphism J is a complexe structure if, and only if, its
Nijenhuis torsion vanishes.

We denote by Oy = Cfy the sheaf of smooth functions on M. The sheaf of
Oum-modules of differential 1-forms Q}, := T T*M[—1] is the sheaf of sections of
the shifted cotangent bundle and the graded symmetric algebra Q%, := S‘(Q}w)
(over the sheaf Cf§;) has its (graded-)symmetric product given by the wedge
product and is called the de Rham algebra. The de Rham algebra is usually seen
as an antisymmetric algebra since Q}, is in degree 1. The de Rham differential
dpr:C$; = Q?w — Qzlu defined by dpr f(X) = X(f) extends to the de Rham
algebra in order to get a differential graded algebra.

To any vector form F in Q}, ®o,, Tp[1], where Ty is the Op-module of
sections of the tangent bundle TM, we associate two derivations: the interior
productip:Q45, — Q37" defined by

iF(@)(Y1 A AYrgs-1)

1
= e D sgno X o(F(Yo) A A o)

ri(s —1)! g
T8 +5—1 ANYorry Acee A Ya(r-‘rs—l))a

forw € Q5 and Yy A+ A Yrysq € STHT1(Ty[1]) and S, 45—y is the group of
permutations on r + s — 1 elements, and the Nijenhuis—Lie derivative
dp: Q3 — Q37
defined by
drp =i -d — (—l)r_ld -iF.
The Frolicher—Nijenhuis bracket is a Lie bracket
[ —Jen: (R ®o,, Tu[1]) ® (R ®o,, Tu[1]) — Q7 ®o,, Tull]
given, for F = ¢ ® X € Q)), ®0o,, Tu[l]and G = ¥ ® Y € Q}, ®o,, Tm[1],
explicitly by
[F.GleN =AY @[X, Y] +ondx(¥)®Y —dy(p) ¥y ® X
+ (=)' (denix(¥) QY +iy(p) AdYy ®Y).
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An endomorphism J: Typs[1] — Tar[1] can be seen as an element J in the
tensor product Q}, ®o,, Tm[1]. Similarly, we get [/, J]r.N € 23, ®0,, Tm[1].

TueoreM 2.3 (Nijenhuis [20]). Under the identification between elements and
applications,
Ny =1[J,J]en.

For an element J € Q}, ®0,, Tu[l], we call it integrable if [J, J]p.n = O.
This means that a complex structure is an almost complex structure J satisfying
the integrability condition.

DeriNiTION 2.4, Let (M, J) and (N, J') be two complex manifolds. A smooth
map F: (M, J) — (N, J')is called J-J'-holomorphic, or holomorphic when there
is no ambiguity, if it satisfies

dF -J = J'(F)-dF.

2.2 — Complex formal manifolds

In order to work with formal power series instead of smooth functions, we will now
consider formal pointed manifolds, that is, a coalgebra C which is isomorphic to
S€(V) for some vector space V (as for manifold, the specific isomorphism is not
part of the data). It can equivalently be interpreted as a locally ringed spaces of the
form Vi, = ({point}, Ov,, ), where the sheaf of functions Oy, = C* = S°(V)*
is given by power series on V*. Its cotangent sheaf Q{%r is the Oy, -module
generated by (V[1])* and its tangent sheaf Ty, is the Oy, -module generated
by V.

Let {e,} be a basis of V, or {¢/} when there is an ambiguity, and {¢%} be its
associated dual basis, so that Oy, =~ R[¢%]. The shifted tangent sheaf Tv, [1]
is generated as an Oy, -module by a basis {d,}, where we write d, for Sg,—a
(we remind that “s” stands for the cohomological desuspension, that is to say,
d, is of degree —1). Finally, we denote by {y“} the dual basis of {d,}, that
is y¢ = s7'dt%, where dt® is dual to gt—a The element y¢ is therefore of
(cohomological) degree 1. We obtain that the Oy, -module of differential forms
is Q3 = R[re, y].

A vector valued differential form, or vector form for short, is an element
FeQy ®oy, Tvg,- It has the following form

F= Z Fabl ~dp (l‘)ya1 e yap 8[)7
p=0
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where F, fl ~.a, (1) is anelementin Oy, , that is a power series in the #*’s. For exam-
ple, an endomorphism J: Ty, — Ty, ., given by J(P%(t)d,) = Pe(t)JL(1)0p,
where P4(t), Jf(z) € Oy,,, is seen as a vector form J = Jf(t)y"&b €
QY. ®0y, Tvg,[1]. For two general vector forms F =), Ffl___ap 1)y -y,
and G = ), G4 .. (t)y°'---y%dy, a formula for the Frolicher—Nijenhuis

c1Cq

bracket is given by

_ b d
[F’ G]F'N - (Fal---ap (t)abGap+1---ap+q (Z)
~ G} (1)0p Fgh ., (0)

Ap+1ap+q
— P, 80,6 (D)
+ qu‘Jiap+2~~~ap+q (t)aap—l-l Ffl ~ap (t))yal tee yap+q ad'
For instance, for J = Jf (t)y?0p, we get the formula
(D) [T Jlen= (T2 0T — T2 0508 — T84, TE + T804, I )y v*2 04,

2 a1vay

where we have removed the variable ¢.

DEeriNtTION 2.5. A complex formal manifold is a formal pointed manifold
endowed with a vector form J = J2(¢)y?d), satisfying

T2 00T (0) — 2, ()0 L (1) — T (t)0a, 2, (1) + T ()00 JE (1) = 0
for all a1, a, and d.

A map of formal pointed manifolds
F:Vior = ({pt}, onor) —> Wror = ({pt}, OWfOr)

is of the form
F = Fb@)el,

where {e!'} is a basis of W. Therefore, its differential
dF: vaor - F*waor

is given by
dF = 3, Fb(t)y*d,,.

We obtain the following definition.



Complex manifolds as families of homotopy algebras 137

DEerINITION 2.6. A holomorphic map between two complex formal manifolds
isamap F: (Vor, J) = (Wror, J') satisfying

@ F4(0)yda) - (JL(0)y20p) = (J'E(F1)y°da) - B FE(1)y*dp),
that is to say,

) 0 F4(1)I2(1)y 4 = I3 (F(1))3aFb(1)y%da.

3. Operadic interpretation

In this section, we define the operad Cx and we show that it is a Koszul operad.
In order to prove this fact, we apply the distributive laws theory recalled in
Appendix B and we make the curved Koszul dual cooperad Cx! explicit. We
finally described the homotopy algebras associated to the operad Cx and the
corresponding homotopy morphisms.

3.1 — Definitions and notations

We refer to the book written by Loday and Vallette [11] for definitions about oper-
ads. However, we consider cohomological grading and therefore differentials have
degree +1 and the homological suspension will be the cohomological desuspen-
sion. Let P = T(E)/(R) be a quadratic operad, where T(E) is the free operad
generated by the S-module £ and (R) is the ideal generated by the S-module R.
Its Koszul dual cooperad P! is a subcooperad of the cofree cooperad T¢(sE) on
sE, and is defined by the universal property dual to the universal property defining
the quotient, for the cogenerators sE and the coideal cogenerated by s> R. We use
the notation P! = C(sE; s R). We denote by I the $-module (0, R, 0, ...) and by
M oy N the infinitesimal composite of two S-modules M and N. For a coaug-
mented cooperad (C, Ae), we denote by A(el) the infinitesimal decomposition map
C — Co(y) € (see Section 6.1 in [11] for precise definitions) and by Zg) the reduced
infinitesimal decomposition map

AY -
C— 80(1) C—> 80(1) C.

For instance, we denote by Lie; the operad encoding Lie algebras with a
bracket of cohomological degree 1, that is to say,

Lie; := T(s 'E)/(s 2RyL),
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1 2
where E} is the S-module generated in arity 2 by a symmetric element ' and
Ry is the $-module generated in arity 3 by the Jacobi relation:

1 2 3 2 3 1 31 2

T
In this case, we get Lie‘1 = C(EL; Ry) = Com™*. Here, we denote by Com the
operad encoding commutative algebra (with a product of degree 0) and therefore,
the cooperad obtained by dualizing arity-wise, Com®, is the cooperad encoding
cocommutative coalgebras. The Koszul dual cooperad Lie| is I-dimensional in
each arity, Liel (n) = R - I¢, where [€ is an element of degree 0 on which $,, acts
trivially, and the infinitesimal decomposition map on Lie} is given by

1) (7ey 7c 7e\O
ALiei1 (=2 1 Zl(lp °11g)"
Padi oSt

where Sh;’;_l is the set of (¢, p—1)-unshuffles, thatis, inverses of (¢, p — 1)-shuf-

fles. We refer to Appendix A for more details.

3.2 — Toward the operad profile of complex structures

In Section 2, we have seen that an element J € 9{7 ®o+ Tey[l] is a complex
structure on a formal pointed manifold V¢, = ({pt}, Ov,,) if and only if the
following two equations are satisfied:

JZ+1d =0,
3)

[/, J]rN = 0.
The element J has the form
J=J2(0)y . where J2(1) =) "Jb . pteean

The two previous equations give the relations that the coefficients Jcb1 _____ cn:q NAVE
to satisfied. Our aim is now to describe such a structure as an algebraic data.

We remark that every map f: V®*T1 — V is given by its values on a basis

flee, @+ ®ec, ®eq) = fcl;,...,cn,aeb

and we can therefore think about J as a sum of applications V&1 — V satis-
fying relations. In order to make the problem simpler, we begin with a complex
structure J equal to its constant part J?(0) = J?, that is to say, since a basis of V
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is fixed, J is an endomorphism V' — V. In that case, the Nijenhuis torsion is triv-
ially equal to O since J is constant. Therefore we can see such a simple complex
structure as a representation of the unital associative algebra of complex numbers
C in V, that is, an algebra morphism

C — End(V) := Hom(V, V).

In operadic terms, we say that the vector space V' is an algebra over the (nonsym-
metric) operad
C:=(0.C.0..0=T(H/(§+ )

To pass from algebra to geometry, we have to handle the question of a change of
the coordinates system. Such a data for a formal pointed manifold Vg, is given by a
Jormal diffeomorphism ¢ of Vg, that is, a power series with values in V' fixing the
base point and which linear part is invertible. In other words, it is an application
of vector spaces ¢: S¢(V) = Liei1 (V) — V, such that the linear part ¢1:V — V
is an isomorphism. It can be seen equivalently as an co-isomorphism of the trivial
Lie;-algebra V to itself. (Here V' is considered concentrated in (lzohoglological

degree 0.) We therefore add to our algebraic data C a generator ™\, and the

suspended Jacobi relation which encode Lie brackets in cohomological degree

1. In this way, formal diffeomorphisms will appear in the homotopy theory of

our algebraic data. The condition for a change of coordinates can be written

do-J = J'(¢)-d¢p. We focus here our attention on the generators of the algebraic
1 2

data ¢ and \K_l. We consider two representations J2y4d), and J'2y2d) of 4

1 2
and a representation of \K_. corresponding to the quadratic part g bt“tb ec of ¢.

The condition d¢ - J = J'(¢) - d¢ implies the algebraic equations
qu Jc:i = J/fiqga‘

As we will see in Proposition 3.15 and Corollary 3.16, these relations correspond
to the representation for morphisms of the operadic relation

1 2 1 2
‘\/ =
S_]
and it will therefore appear in the algebraic data.

Remark 3.1. This reasoning is based on the fact that the category of formal
pointed manifolds with formal smooth maps is equivalent to the category of
(Lieq)oo-algebras with co-morphisms.
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DEerintTION 3.2. We define the operad

1 1 2 12323

cr=3(4 )/ E/ﬁ/ ()

RemaRrk 3.3. (1) In this notation, we assume that the element
2 1 2 1
e
S71

(2) In the description of C and in the sequel, since there is no ambiguity, we
1

is a relation in Cx.

sometimes omit the 1 on elements in arity 1 as * and write for instance 4.

We prove that Cx is the operad profile of complex structures in the rest of
Section 3 and in Section 4.

3.3 — Distributive laws and the Koszul dual cooperad

The operad Cx is not a homogeneous quadratic operad because of the fact that the
relation ; + ‘ involves quadratic and constant terms. We use the theory developed
by Hirsh and the author in [7] to find an explicit cofibrant replacement of Cx. The
quadratic operad qCx associated to Cx has the following presentation

123231312

it A NP (A

By means of distributive laws, we make the Koszul dual cooperad qCx! explicit
and we prove that the operad qCx is Koszul. We obtain finally that Cx is Koszul.
We refer to Loday-Vallette [11], Section 8.6 for definitions and notations on dis-
tributive laws.

The quadratic operad (algebra) associated to C is

qC:=T(4)/(}) =R[+]

The Koszul dual cooperad is given by

qC' = R[{] = DR

n>0
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where we denote s ¢ by ¢ and where 7§ is an element of degree —n and has the

following (infinitesimal) decomposition map

n
Agei(Ty) = Y (i5375_4) € qC1 0 qC1 = qC ® qC.
k=0
Between the operads Lie; and qC, we define the rewriting rule
A:(sT'EL) oy (R$) — (R$) o) (s~'EL)

1 2 1 2

by the $,-equivariant map sending 4\/ to “ys-t. We refer to Appendix B for

S

general facts on distributive laws on cooperads. We use the notations
qC v, Lie; = qCx
and

qC' v* Lie} = qCxi

—

2

(< Y)
kg_ (AN

2

—_

—e() A +Y21%2/3 NN

—0—0— =

There is the change of sign

2 1 2

(‘YY) Y

because of the Koszul sign rule.

o— =

LemMa 3.4. The injection iy:qCi v* Lie} = qCxl — Lie‘1 o qCi (defined
in Appendix B.2) is an isomorphism. Therefore, the morphism of S-modules A
induces a distributive law of operads A:Lie; o qC — qC o Lie; and a distributive
law of cooperads A€: Lie‘1 oqCl - qCi o Lieil. The distributive law of cooperads
A€ is given explicitly by

AC(([;;Z,‘C’l,...,Z,in)) = ( ngncr)(i,§1+,,,+kn;l_,f),

where Shy, is the set of (k1, ..., kn)-shuffles.

..... kn
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RemARk 3.5. Pictorially, we get the following formula:

kzl k”_ll lkn \l/
A° W = Oky . ky | :
| Tk1+"'+kn

where ay, ., is a coefficient in Z and where k¢ stands for 77

.....

Proor. Theorem B.5 says that it is enough to prove that p is injective in weight
—3, where the weight is given by the opposite of the number of generators. The
last remark of Section B.3 ensures that we can equivalently prove the surjectivity
of i1 in weight —3. In order to make the reader more familiar with qCx!, we will
make the elements of weight —3 in qCx! explicit. The map i; is trivially surjective
onto Lie} oI and onto ToqCi. The other terms of weight —3 in qCx! = qCi v*Lie}
are

1 2
| |
t + ]+ Y + \( +
AT LYY Y
and the $3-module generated by it,

2 1 2

+\(+Y

1
s
s

and the $,-module generated by it, and finally the element

1 1 2 1 2

on which 3, acts by signature. This proves that i; is surjective in weight —3.

To describe A€, we first remark that the formula is true for n = 1, for
ki+--+%k, = 0and, forn = 2 and k; + k, = 1. Then, we make use of
diagrams (I) and (II) in Appendix B.1 to prove the general formula. Let k € IN*.
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We assume that the formula is true forany m <nandk; +---+ k,, <k —1and
we use diagram (II) to prove it for n and k1 + --- + k, = k. We have

(IdoA€) - (A€ o 1d) - (Id 0 Age) (15, . ... TE )

:(IdoAC).(ACOId)( Zsk},k;/(l,f;z‘za,...,Z,izgz‘,i/l,,...,z‘,i;;))
/ ”_q, .
K ki
kj,kao

= (IdoAC)((T;Id, Id) + (Ad: 157 LT
+ ng}’k}/( ngno—/)(ili/l+"_+k;l; ;,Z]Cc./l/, e ’ilii[))

k} +k}/=kj OJEShk/l.---.kil
1<k} +-+k;<n—1

=(T;1d,... 1d;T") + Ad; T"; T")
P e Ysmnesene GG

k} +k}/=kj ()'/Eshkll!m!k’/7

lﬁk/l +tky <n—1 UHEShk/l/.w &

n—1 s .
where gy v = (—1) =1 K Frpit+) gng
7T

T =(T;T") = A°(I5; Tkyo oo liy) =00k g U gk 119).
On the other side
(Agei o 1d) - ACUE: 75 .. TE ) = (Aqei o IAN(T) = @y Y (50 Tni 15).
K +k" =k

To prove that ok, .k, = D_sesh,
1 <k <n-1, we have

Zsk/ k”( ngncﬂ)( ngno”) = ngno.

k” =k, UlGShk&.w,kQ UHEShk/l/.w.k% O‘EShkl ..... kn
k’ —+- +k =k

Lk SEDO, it is then enough to check that for
..... n

This follows from the fact that, when k is fixed, there is a unique decomposition
of a (ki, ..., kn)-shuffle o in the following manner: some positive k; < k; such
that Ky +---+ k&, = k,a (ky,...,k,)-shufle o/, a (k{,... k})-shuffle ¢” and a
permutation t € Sg, 1.4k, that sends

a,..., /1’~-~’k1’---’k1+"'+kn—1’--~a
kit kny + koo ki 4+ k)
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to

(17"'7 llvkl+17""k1+k/2""7k1+"'+kn—l+k;/1’
Ki+ 1, ki, ki 4o+ k).

The signature of 7 is precisely €K/ K-

Similarly, diagram (I) proves that the formula is true forn and k1 +-- - +k, = k
whenever it is true form < n —1and k; + --- + k,, < k. This concludes the
proof. O

3.4 — Koszulity

In this section, following the theory developed in [7] ,we compute the Koszul dual
curved cooperad associated to the operad Cx and we prove that Cx is Koszul.

ProposrTion 3.6. The operad qCx is Koszul and its Koszul dual cooperad qCx!
is given by

qCx! = Lie} oqC! = Liei o R[ ¢ ].

We denote the generators by j,gl ok = (l_,f; Zlil e z_lin). The infinitesimal de-
composition map given by

1), -
AS\Z (]/?1 k,,)

.....

—1
o -C -C o
= X [0}
Z Z Zak} ,k}/ (Jk/7k0(11+1) ----- ko(n) 1 Jkg(l) ,,,,, kg(q)) ’

pta=n+1 o&Shy p—1 ki ;\+k] -\ =ko(j)

,4>1 .
P4 kg =ko() for j>aq
! —k’ /
K=k, )kl )
where
Y, Ln 1= sgn O XEY, n Xy /
k; ,k;-/ : kls---akn k;,k;/ k(r(l)""’k(r(q)’
with

n 7 ’ ’
%, = (=) Zi=1kom Kot T +ko o)
K, K, ’

ULk = E sgno’, with conventionay,._o := 1,

.....

’
o’eSh,, /
k1~'“~kq
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and sgny, o is the signature of the restriction of o to the indices j such that
kj is odd (after relabeling the remaining o (j) in a way that the order of the o(j)
does not change). Moreover, the full decomposition map is given by

” 5

o(qy)
{q1,--ap} 0€Shq .. .qp k} +k}/=kj J_C o1
+”'+ =n 7

q1 dp k(r(q1+1)""’k

” PRSP

o(q1+42)
AR . /

where li T kG(Q1+"'+Qi—1+1) + + kU(Ql+"'+Qi) and

p

1=

Remark 3.7. The second sum really runs on shuffles and not on unshuffles

since the unshuffle permutation o acts as a left-action given by
o- (z',‘;1 .. .,Z,‘c’n) = (l_’io—m)’ e l‘,io_l(n))g.

Proor. We have seen in the proof of Lemma 3.4 that we can apply Theo-
rem B.5, this gives that the operad qCx' is Koszul. It is then enough to prove the
formula for the infinitesimal decomposition map by means of Proposition B.3. The
decomposition map on qCx/ = Lie‘1 oqCliis givenby Ape = (IdLie;1 oA oldyci)-
(A o © Aqgci). In order to get the infinitesimal decomposition map, we have to
project the result onto qCx! o(;y qCx'. In the sequel, for three $-modules M, N;
and N,, we use the notation M o (Ny; N,) for the sub-S-module of M o (N1 & N»)
linear in N,. The infinitesimal decomposition map is given by the composite

Liei1 oqCi
A(Lliii old
——— (Lie} oqy Liel) 0 qC' = Lie} o (qC'; Lie} 0 qC)
Ido(Id;ldoA i) ) . ) . .

—— > Liej o (qC': Liej 0qC' 0 qC)

Ido(Id;ACold) _ | L . o . L .

—— > Liej 0 (qC"; qC" o Lie; 0 qCY) == (Liey o qC') oy (Liey o qCY).
A careful computation of this composite gives the infinitesimal decomposition
map. Similarly, a careful computation of the composite

, A *Aaet ~ , . IdoA‘old — —
Lie; oqC' ——— (Lie) oLie;)o(qCioqC') ——— (Lie} oqC’)o(Lie} oqC’)

give the full decomposition map. |
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Finally, we obtain an explicit description of the Kosul dual curved coop-
erad Cxl.

Tueorem 3.8. The operad Cx is Koszul and its Koszul dual cooperad Cx
is isomorphic to the curved cooperad with zero differential (Liex1 0 qCi, Apc, 6),
where the curvature 0: Lie‘1 o qC' — 1 is defined by

| s, ) =

0 otherwise.

’

—0—0—

OS:T5 ... i) =

We get a cofibrant resolution of Cx
Cxeo 1= QCxl — Cx,

where QCX! is the cobar construction on the curved cooperad CXi, as defined
in [7].

ReEMARK 3.9. The cobar construction QCx! is a semi-augmented operad which
underlying S-module is T(s~!Cx!) and which differential is the sum of a term
built using the infinitesimal decomposition map of Cx! and a term built using the
curvature on Cx'.

Proor. The word “cofibrant” refers to the model category structure defined
by Hinich in [5] and [6]. A second reference is the Appendix A of [19]. We
refer to Section 4, and more specifically 4.2, of [7] for the general theory on
curved Koszul duality and for the definition of the Koszul dual curved cooperad.
An explicit formula for the decomposition map can be obtained by successive
composition of the infinitesimal decomposition map. In Section 4.3 of [7], an
operad is said to be Koszul when it has an inhomogeneous presentation satisfying
two conditions, called (I) and (II), and when the associated quadratic operad is
Koszul. The presentation of Cx that we give trivially satisfies the two conditions
(D) and (IT) and the associated quadratic operad qCx is Koszul by Proposition 3.6.
It follows that Cx is Koszul and, from Theorem 4.3.11in [7], that Cx, is a cofibrant
resolution of Cx. U

3.5 — Description of the homotopy algebras

For each application f:(A,d4) — (B, dp), we define the differential d( f) :=
dg - f — (=) £ . d4. We obtain the following explicit description of homotopy
Cx-algebra structure.
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ProposiTion 3.10. A Cxo-algebra structure on a dg module (A, dy) is given
by a collection of maps, { jk,,...k,} forn > 1 and ky,--- ,k, > 0, with jo = dy
and where each ji, ..k, is a map A®" — A of degree 1 — (k1 + -+ + ky) such
that

.....

(1) Jktsken (@122 An) = € X Jroy.kgon (@a(1) *** Aom))

where ¢ is given by the Koszul sign rule. (The maps j,,. k, come from the
elements (ln,lk ""’Zlin) where the Zlii is of degree k; ; therefore the sign e
depends on the k 's and on the |a;|’s.) The family of maps { ji, ...k, } satisfies the

Jollowing identities:

n

(if) 3(j2)@) = o+ jo — j2 - jo)(a) = ji(a) +a,
and, when (n, kq, ..., kn) # (1,2),

i) Y, D DAY XK UK (o) Ao@)dotg ) o) =0,

p+q=n+1 oce€Shy -1 K

p.q=>1
where
= ko) + ka(/) = kot ko) = Kai) for J > g:
K =koay + -+ ko)
K, = {k/, ka(q+1), ey ko‘(n)}a
KZ - {ka(l)’ ey k//(q)}
and

ﬁ;:/' k// = (XZ/ 2% X 8/,
’ / ‘7 j

is defined in Proposition 3.6
Lkl ) fi P

and &' is given by the Koszul rule signay ---an = €agq) - do(n)-

.....

k. crxgk, k,,xozk

Proor. Since Cxoo = QCx is a quasi-free operad, we have that a map
Jj:Cxoo(A) — A of degree 0 is determined by an application Cxi(4) — A of
degree 1. This is equlvalent to a collection of applications ji,
degree 1 — (k; + -+ + ky), defined by

.....

Jktokp(@r---ay) = J((ln,lk1 o0, ) ®@ar s -an),

and therefore satisfying equations (i). Moreover, the operad Cx, has a differential
d := do + d», where dy depends on the curvature 6 and d, depends on the
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infinitesimal decomposition map Agzi. We refer to Section 3.3.5 in [7] for more
details. Therefore, the fact that g is a dg map gives the additional relations (ii)
and (iii) among the applications j,, - O

RemaARrk 3.11. The maps ji, ...k, can equivalently be seen as maps
Alk1] © --- © Alk,] — A[l].

CoroLLARY 3.12. Let V be a vector space (concentrated in degree 0).
A Cxoo-algebra structure on 'V is given by a collection of degree 0 maps
{1 = Jjo..01: V" @V — Vipso,
together satisfying the following identities:
4) F2=—1Id,

and forn > 1,

&) > > Jracq) aop-1)Ja(ao(p) o)) = O,
p+q=n+1 o€Sh,_1 4
P,q=1 o(n)=n
(6)
> Y 52(01(p—1,11) X p(do(1) -+ Ao (p-2) T4 (Ao (p) -~ Ao ) do(p—1))

p+q=n+1 o€Shy, 1.4
p22.921 ¢({p—1,n})={n—1n}

+y > sgn(0(n-1.m) Jp(ot) ***Ao(p-1)Jg(@o(p) -+ do(m))) =O0.
p+g=n+1 oeSh,_1 4
21,922 g({n—1,n})={n—1,n}
Proor. Be aware of the fact that V' is concentrated in degree 0 and that, for
instance, j((I5:75.75.15) ® arazasz) = j((I5:15.15.15) ® azazay). Then, the result

is a particular case of Proposition 3.10. |
ReEmMaRrk 3.13.
1.+ n—1n
e Pictorially, the map J, corresponds to the n-ary tree: 4

e The maps J,+; can equivalently be seen as degree 0 maps
Vor @ Vil — V[1].

The shift of degree on the source space comes from the ¢ in the tree

presentation of j, and the one on the target space comes from the suspension
of the generators Cx! in the cobar construction QCx!.
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3.6 — Infinity-morphism of CXeo-algebras

We follow the general theory and we use some notations of Section 6.2 in [7].
Let A and B be two Cx.-algebras, with structure maps j4 and j 2. For C = 4
and B, we denote by D;c is the curved codifferential on Cxi(C) induced by the
differential d¢ and by the Cxqo-algebra structure j€. We remind that a curved
codifferential D;c on Cx'(C) does not necessarily square to 0 and satisfies

l)]2 = (9 8] idCxi(C)) . ACxi(C)’

where 6 is the curvature of Cx'.

DEFINITION 3.14. An oo-morphism A » B of Cxxo-algebras is a Cxi-coalge-
bra map
f:(CxI(A), D;a) — (CxI(B). D;5),

commuting with the curved codifferentials.

ProposITION 3.15. Let (A, j4), (B, jB) be two Cxeo-algebras. An oo-mor-
phism between A and B is a collection of maps,

{Srevodn: A% —> By dnz0n>1

of degree —(k1 + - -+ + ky), satisfying

0(Sier o) = Z Z Zak’ Ky T kot 1)k iy

p+q=n+1 o€Shy ,—1 k

o by HRa )y =ka

- A o1
k iyv=ko() for j>q '(jkg k) dg, ..

7
k'=k ot +ko(q)

1
_Z Z N_q Z'Bk’k”le’ ..... 1,

q1+-+4qp=n -
(fko’(l) ..... kgml),fkg(qIH) ..... D L
where
" /
= (=1 Tko@+ntFhkom) w0 , — (=T ZEDECE)  go
k/ k// ( ) k},k}/ ’Bk/ k” ( ) ,3
and
m
Ny = Hmax(ni, 1)
i=1
for

qg=14q1,....qny={1,...,1,2,...,m,...,m}.
= —— ———

ny times nm times
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Proor. A Cxi-coalgebra map f:Cxi(A) — Cxi(B) (of degree 0) is charac-
terized by its corestriction to B, that is f is determined by a collection of maps
kv, k,: A®" — B of degree —(k1 + -+ + ky).The fact that f commutes with
the curved codifferentials is equivalent to the following commutative diagram

. o . . ld i o .
Cxi(A) — 21 oxi o Oxigay 2 oxi(B)
d1+d2l/ ldB +L§2

Cxi(A) B,

S

where d;, induced by the differential d4 or dp, and d,, induced by the algebra
structure j4 or j B, are defined in Section 5.2.3 of [7] for example, and dy is the
projection of d, on B. Making this diagram explicit gives exactly the conditions
concerning the maps fi, . k,- O

CoroLLARY 3.16. Let V and W be two vector spaces (concentrated in de-
gree 0) endowed with Cxoo-algebra structures j¥ and jV . An co-morphism be-
tween V and W is given by a collection of degree 0 maps

satisfying, on elements vy, ..., vy in'V,

> Y Fo - U Woty++*Vo@))Vo(g+1) Vo)

p+q=n+1 o€Shy 1
p,g=1 o(q)=n

(7) qu o o
= — >3V (S oy Vo) far Waigrany ) -,

where N;,, = Card{q € g = {q1,...,9p} s-1. ¢ = qp} and where Ny is defined
in Proposition 3.15.

Proor. The result is a particular case of Proposition 3.15. The factors N”
comes from the fact that we fix o(n) = n. O
RemAaRrk 3.17. Pictorially, we get

¢ Ny /s .7
AN

ov/ S3 le
J> —
LT L)
5 J3
|
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4. Formal complex structures are homotopy algebras

In this section, we give a geometric interpretation of the Cx,-algebras. We prove
that a Cx-algebra structure on a vector space V' = R™ is precisely a complex
structure on the formal pointed manifold V¢, = ({0}, S¢(R™)*). We also show
that co-morphisms of Cxs,-algebras correspond to holomorphic maps of formal
complex structures.

In order to prove this result, we fix the following notations. Let {e}f }a, resp.
{e'} . be a basis of V, resp. W. We denote by j& the coefficients of
Jni1:VO" ® V — V on the basis

o 14 V. VN _ :b 14
Jn+1(eoz1 s ean’ ea) - J(xl,...,an,aeb ’

o
a, the coefficients of f,: V" — W on the bases

and by £y, .

F oV v b w
fn(e(xl’ . "e(xn) = f(xl,...,aneb .

Then, to any family of maps {Foi VO @V — V}ns0, we associate the endo-
morphism J of the tangent sheaf Ty [1] defined by

. 1
J = Zj(fl,-..,dn,aatal ...ttxnyaab — Jf(l‘))’aab,

n>0 =
where
P
a={ay,....,an}={1,...,1,2,...,p,...,p} and a!:= Hni!.
— — | —
n times np times =1
We denote moreover Ny := [[7_, n;. Let fix a subscript ¢ in ¢. Since J? is

symmetric in the 1% ’s, we can assume that the product t*! ... %" satisfies «; = c.
We have the following computation:

} 1
03O =D Jlanmama !

“ !
a st cex {og, ..., o )!

Similarly, to any family of maps { ﬁ,: VO — W},>o, we associate the map of
formal manifolds F: Vi, = ({point}, Ov,,) = Wi = ({point}, Ovy,,,) defined
by
1
Fi= faranggt™ o1y = Fg0)ey
We denote by Vect the category of finite-dimensional vector spaces (concen-
trated in degree 0).
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THEOREM 4.1. There is an equivalence of categories

Cxo-algebra structures on Vect
with co-morphisms

Complex structures on formal pointed manifolds
Vior 2 ({point}, S¢(V)*) with V € Vect ,

with holomorphic maps

s

.....

n>0
o 1
{fn: e W}nZO > F = Z ozbl,...,(xn atm "'t(xneZV'
n>1 =

Proor. The composition of J with itself gives the following computation

J2 =2y ap) - (JE (1) y? dp)
= JE W) IS0y B

= ( ZJI?,a/EJL,aL—!faI "'f“”))/“ dp
KuL={ay,..., an}

KUL! 1 ,
_ .a .b . o o .,a
_Z(JK’“’JL’“ K!'L!)'Kl_lL!t AR

The coefficient in the parentheses is the coefficient of e, in the left-hand side of
equations (4) and (5) in Corollary 3.12, with n + 1 instead of n, a,+1 = ex
and a; := ey, for i < n, since the number of shuffles is given by the binomial
coefficient. The equation J2 = —1d is therefore equivalent to equations (4)
and (5).

Similarly, we have

(Jo)0p I L) = TL 00 TE )y y* 34

1 1
.d .b
= ( Z (Jb,K,a/?!JL,aL_!
KuL={ay,....,an} | |
.d .b n 4
— Jb,K,aEJL,a’E)tO“ .. '[(x )Vaya ad
KuL !) 1

_ -d Y b )
- Z ((]b,K,a’ -]L,a ]b,K,a ]L,a’) K' . L' K |_| L '
KuL={ay,...,an}

ar .,

pon y“y“/ad.
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The coeflicient in the parentheses is the opposite of the coefficient of e in the first
term of the left-hand side of equation (6) in Corollary 3.12, with n + 2 instead of
n,,0p4+1 = €q/, An42 ‘= €q and a; := ey, for i < n. Moreover, we have

(JE0)daIb(t) — T )30 JE @)y y™ 34

) : : ) 11 ,
- ( Y Ul kaifs— Jf/,K,aJZi,b)Eﬁfal "'l“"))/“)/“ da
KuL={ay,...,an} C

2 B

KulL! 1
—Z((/aKa’]Lb Ja’Ka/Lb) L!)'KI_IL!
KuL={ay,...,an}

yay®ag.

The coefficient in the parentheses is the opposite of the coefficient of ej in the
second term of the left-hand side of equation (6) in Corollary 3.12, with n + 2
instead of n, ay41 = e4, any2 = ey and a; = ey, for i < n. By means of
equality (1), we obtain that equation (6) is equivalent to the integrability condition
and therefore, equations (3) are equivalent to equations (4), (5), and (6).

It remains to check the equivalence on morphisms. We have

1
d b d i n
0L Or = (X fepiagy 1)
KuL={ay,..., an}t

KUL! 1
— ib . @1, 44
_Z(fbK JLa 7Ry L'> xop! e
KUL=A@y 1ot}

The coefficient in the parentheses is equal to the coefficient of eZ,V in the left-hand
side of equation (7) in Corollary 3.16 with n + 1 instead of , v; := ea‘fi fori <gq,
vg := e, andv; := ey _ fori > ¢. And finally, we compute

T (F())8a F2 (1) 7?04

.,d .
- ( Zj/bl ----- beBlle K, 1 prK ,fa L_[w1 1” )Vaad
KuL={oy,....an}

K=K U-LUK,
B={b1,..bp}
|
sty K KPB' “LK Kyl LY
KuL={ay,....,an} p |
K=K u-uUK
B={b1,...,bpf X —K T '[“1 ... %09

The coefficient in the parentheses is equal to the coefficient of eZ,V in the right-

hand side of equation (7) in Corollary 3.16 with n + 1 instead of n, v; := ea‘fi for
‘117
does not appear here since each term

i <nand vy = e} . The coefficient
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appears already only once, in comparison to the formula for the full decomposition
map of Lie} for instance. Therefore, equation (2) is equivalent to equation (7) in
Corollary 3.16 and this concludes the proof. |

5. Globalisation

We devote this last section to the globalisation of the results of the previous
section. A complex manifold can be described locally in terms of coordinates
and this is the reason why we introduce the space of all coordinates systems
on a manifold. We build a fiber bundle endowed with a connection in order to
characterize the smooth complex structures on a manifold as certain families of
Cxoo-algebras. We propose a similar result for morphisms.

5.1 — Coordinate space and connexion

We use here the work of [1] and follow the ideas of [2]. Let M be a paracompact
smooth m-manifold. We denote by M the locally ringed space (M, C3y), for exam-
ple R" = (R™, €y ), and by Rf?, the formal pointed manifold associated to the
vector space R™. We consider the infinite-dimensional manifold M “°°" considered

in [3] (section 3) and given by

for

M coor (x,¢) suchthat x € M and ¢: R — (M, x)
"] is a pointed immersion of locally ringed spaces [

It is the projective limit of finite-dimensional manifolds (spaces of finite jets of
coordinate systems). It can be thought as the space of all formal coordinate system
on M . In this section, we construct a connexion on the trivial vector bundle E over
MCOOI‘,

E = M x M, (Rt ....t"]) 25 meoor,

whose fibers over each point are m x m-matrices with coefficients in the formal
power series ring R[¢!, ..., ™.

Let G, := Aut(R}) be the (pro-Lie) group of pointed formal diffeomorphism
of R™. The fiber bundle M°°" over M is a principal G2 -bundle, whose left-action

is given by
0: G2 X M — M (g, (x,9)) — (x,@-g ).
The derivative of p(x »): G — M provides a Lie algebra morphism

TGy, — x (M),



Complex manifolds as families of homotopy algebras 155

where y (M ©°°") is the space of vector fields on M °°". We denote by J*°(M, x)
the space of infinite jet of vector fields on M at x. For example, we have

Wy = J®(R™,0) = {v°(1)dp | v2(t) e Rt ... "]}

It is the space of vector fields y(Rf) on RE' . We call them formal vector fields
(on R™ at 0). We denote by W0 the subspace of formal vector fields vanishing
at the point 0. It corresponds via the following isomorphism s 1y to the tangent

space of GY at Id.
THeEOREM 5.1 (Theorem 4.1 of [1]). We have the sequence of linear isomor-
phisms

5(0,1d) %(x,p) S(x,0)

T(O,Id) (Rm)coor Wi J‘X’(M’ x) RS T(x’(p)Mcoor’

where the maps s(x o) (denoted o in [1]) can be seen as lifting homomorphisms
and the map a(x y) is characterized by the map ¢. (It sends the infinite jet of a
vector field to its pushforward by ¢~1.)

The composition B(x,p) ‘= —S(x,p) * oz(_x{ ) defines a morphism of Lie algebras
Wi — (M) which extends the previous morphism W,0 — y(M<°™). Taking
its inverse at each point, we get a Wy,-valued differential form w € Q' (M, W)
which is invariant under the action of diffeomorphisms of M °°" induced by
diffeomorphisms of M.

Let (x,9) € M°°°" and ¢: R™ — M be a local diffeomorphism which gives ¢
when restricted to Rf? . We define the map

¢C00r: (Rm)coor N MCOOI" (Z, ‘Et) — ((ﬁ(t), ¢ . ‘[t),

The derivative of this map at the point (0,1d) does not depend on the cho-
sen ¢. We therefore denote it by de®°(0,1d): T(g 1q)(R™)°°" — T(x,) M.
By construction, we have the commutative diagram

A(x,0)

Wi J*®(M, x)

(8) 5(0.1d) l is(x,cp)
mycoor S coor
T(O,Id) (R ) d g0 (0,1d) T(xa(/’) M '

The differential d;g of a diffeomorphism g in GY is an (D:Rgr—linear map
Tym — Tgp. A matrix A(1) € M, (R[¢Y,...,1™]) can also be seen as an
nggr—linear map TRgr — T:Rg;



156 J. Bellier-Milles

DerINITION 5.2. For g € G2 and A(1) € My, (R[t!,...,1™]), we define the
left-action of G2 on M,,(R[¢!,...,™]) by

gxA(t) :==dig(t-g ") - At-g ") - (digt-g~" )"

where - g7l = (t',...,t™) - g7 :=(¢t1- g7, ...,t"™ - g7 ) is the composite of
the t*’s seen as an application R, = Reor and g le Aut(Rg ). The derivative

of the Lie action provides a linear map *’ and therefore, we get a linear map ¥’

$(0.1d)

WO 2% TGO = y MR ... 2™])).

m

RemMARK 5.3. Explicitly, for any element A(7) in M,,, (R[], ..., ™]), the de-
rivative of the map g +— A(r - g~1) associates to any § € W2 the matrix
(diA)(t - g7 1) - dg(g71)(§) and the derivative of the map g +> d;g- A - (d;g)™!
associates the matrix dg(d,;g)(§) - A-(d;g)™ ' +d,g- A-dg((dig)~1)(E).

A matrix in M,,(R[¢!,...,#™]) is an endomorphism R — (M, x).

A constant formal vector field v?(0)d; acts naturally on M, (R[¢!,...,t™]) by
differentiation of all the coefficients by v?(0)d,. We can therefore extend the map
¥ to }

Win —> xMu(R[L ..., t™])).

Let U be a contractible open subset of M. There exist sections U — U°°°" and
we fix ¥ such a section. To a tangent vector &, € T,,U, we associate the vector
field &, (V) := (Y*w)(&y) € Wy, where y*w: TU — W, is the pullback of the
form w by .

ProrosiTioN 5.4. We define a connection on the trivial bundle
Ey = U xMu®[t%,....0"]) 25 U
as follows:
Vu():T(Ey) — Qp Qe~w) I'(Ev),
0 +—dgro + oy (0),
where dig is the de Rham differential and where the application wy is defined,

for any vector field § € yu, by oy (0)(§) () := ¥ E(¥)) (0 (w)).

Proor. The map wy(0)(—): yy — T'(Ey) is defined point-wise by linear
maps, hence it is C>° (U °°°")-linear and Vy (¥) is well defined. The map wy (—)(§)
is C®(U*°°")-linear since the left-action * is linear in the second variable. It
follows that Vi () is a connection. |
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LEMMA 5.5. Let y, y': U — U be two sections of U°°" such that

V') () =y ) -gw™)

for some smooth map g:U — G2, and let Vy = Vy(¥) and Vi, = Vy(y')
the corresponding connections. Then, for any section o € I'(Ey), we have

Vy(g x0) = g x Vyo,
where GY, acts on Q}] ®coo) I'(Ev) by means of its action on the second factor.

Proor. Let £ € yy be a vector field. First, we have

dar(g * 0)(§)
=dgr (dig(t-g7 ") -0(t-g7") - (digt-g7")N7") (§)
= ((dxdig)(t- g7 )E) + (didi )t - g7") - du(g7)(§) -0 (- g7 1)
(deg(t-g~)™!
+dig(t-g7") - (deo(t-g7)(E) +dio(t-g7")
~dx(g7)(E) - (dig(t-g7)7!
+digt-g7)-o(t-g7")
((dxdig) (1 - g7NE) + (didi )t - g71) - dx(g71)(8)).
The term d; g(t - g7 ') -dyo(t - g7 1) - (d,g(t - g7')) "L is equal to g * (dgg0).
Secondly, we compute
oy (D) E W) =¥ EW) = ¥ (W o))
= ¥ (@dW (- gw)™))(E)))
= H(@(d Y- g)™) +di (W (- gw)™))(E)))
= ¥ ()« (Y 0E))) + ¥ (0 d: (Y (1 - g) ™)) (E))).
(@) ®)

where the term (a) is obtained by means of the definition of w since
o(dx Y (1 - g() ™)) ()
= Oy g1 Sy gty GV (€8T (E)
= (g6 Sy " eV (O Ew)
= g+ (—Quy ) Sy - ¥ (O (E))
= g« (¥ 0 (E)).
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We compute this term (a) and the second term (b) separately. The map g.«—
acts nontrivially only on the W, part of W,,. Therefore, we have the following
computation: let ¥, be a path in (R”)®°°" with tangent vector s 1q) - ¥ *@(&y) at
s = 0, we get that g(u)- Vs - g(u) ™! has s(0 1q) - § ()« (¥ *@(&,)) as a tangent vector

ats = 0. The factthat (g-Vs-g" ) *x(g*x0) = (g-Vs-g ' -g) %0 = (g- V) %0 =
g * (Y5 * o) shows that

¥(g«(Y 0 (§))(g * 0) = g (¥ (Y w(©))(0)).
On the other hand, to calculate the term (b), we remark that
w(d (Y (1 -g~")(E)

= —s@,1d) - de Y (- g )0, 1) - dyy (- g7 - de(g)(E)
= —s0,1d) - dg (g7 7" - dx(g71)(E).

Therefore

H(d (Y- g7 NEN(E*0(1) = =+ (deg(g7) 7" - du(g™)E))(g * 0 (1))

Moreover, the vector field dg(g71)™! - dy(g7!)(€) has no constant constant part
with respect to the variable ¢ so we can compute

(diA)(t-g7") - dg(g7)(dg (7)™ - du(g™)(®) = (di At - g7") - dx (g7 1) (),

and
dg(dig)(dg(g™") ™" - dx(g7")(§)) = di(dxg(§)) = dxd; g ().

It follows from the remark coming after Definition 5.2 that

(o d (Y- g ))E))(g *0a(1))
= —((ddig)(t - g )(E) + (dedsg)(t - g7 ") - dx (g7 ) (§))
co(t-g ) (digt-g=" )"
—dig(t-g7") dio(t-g7") - de(g™")(E) - (dig(t- g~ ")
—digt-g7 ") -o(t-g7")
((dxdeg)(t - g 1)(E) + (didig)(t - g7 ") - di(g71)(E)),

and the Lemma is proved. O
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DEFINITION 5.6. We consider now on E the left-action of GL,, (R) C G? given
by

(g. (x, 0. A1) —> (p(g. (x.9)). g * A(1)) = (x,0 - g~ ", g x A(1)),

where g is seen as a linear automorphism of Rf’ . We define by E the quotient
space
E 1= Mc°" XGLyn (R) Mm([[ll, cee lm]]).

It is a fiber bundle over M2 := A" /GL,,(R).

The fibers of the fiber bundle M2 over M are contractible. Indeed, a fiber
of M€ over M is homoeomorphic to G2 =~ GL,,(R[¢!,...,™]) so a fiber of
M3 over M is homeomorphic to I, 4+ (¢1,....t™)M,([t".....#™]) which is
contractible onto I,,. Because of this, there exists at least one section M — M2,
We fix such a section ¥*T and we denote the pullback bundle on M by

E = (v**E — M.

The restriction of ¥ on a contractible open set U of M is an equivalence class
of sections ¥: U — U and two sections ¢ and v’ are equivalent if there
exists a smooth map g: U — GL,,(R) such that ¥'(u)(t) = ¥ (u)(t - gu)™?).
Restricted to U, a section o of E is an equivalence class of sections oy: U —
Ey = U x My, (R[t',...,t™]), each being associated to a section U — U,
Two such sections oy and oy, associated to ¥ and ' respectively, are equivalent if
there exists a smooth map g: U — GL,,(R) such that ¥/ (u)(t) = ¥ (u)(¢-g(u)™")
and o, = g * oy. Let o associated to y. We define (Vo )y := Vy (¥)(ov).

TueoreM 5.7. The map V:T(E) — Qj, ®coom) T'(E) is a well-defined
connection on E.

Proor. Lemma 5.5 shows that the connection V is well defined on equivalence
classes of sections of Ey for any contractible open set U. It therefore induces a
globally defined connection on E. |

5.2 — Complex manifold and flat section

We assume in this section that a section *T: M — M2 is fixed and we denote by
V the associated connection on E = (y*T)*E. A complex structure on a formal
manifold of dimension m is given by an element in M, (R[¢!, ..., t™]) and we can
therefore see the set of Cxoo-algebras on R™ as a subset of M, (R[[¢1, ..., t™]).
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Let J be a smooth complex structure on the manifold M. Associated to any local
coordinates system ¢ around a point x = @(0), the Taylor series of @«(J) =
(d@)~'-J(@)-d @ at 0 provides a matrix A(J, ) € {Cxo-algebras}, which depends
only on the restriction ¢ of ¢ to R{7 . We therefore denote it by A(J, ¢). We have
the relation A(J,¢ - g7') = g % A(J, ) for any automorphism g of R}, so it
follows that a complex structure on M provides a section of the fiber bundle E.,
over M

Ecx = (yT)* (Moo XGLy (R) {CXoo-algebras}) C E.

In the sequel, we characterize sections of E., which come from smooth complex
structures on M.

Let6: TM — TM be a smooth function. As just seen, we can associate to any
such 6 a smooth section 60: M — E of E. We call geometric smooth functions
the sections of E defined in this manner. We are interested in the connection V
because of the following result.

ProvrosiTioN 5.8. Flat sections for the connection V, that is, sections o such
that Vo = 0, are geometric smooth functions M — E.

ProoF. Restricted to some contractible open subset U of M, the section 2
is an equivalence class of section U — U°°°". We fix a section y in this class.
A section o of E is a class of sections of Ey. We denote by oy: U — Ey =
U xM,,(R[¢, ..., 1™]) the representative section associated to ¥. Because of the
definition of V, the section o is flat for the connection V if and only if the section
oy is flat for the connection Vy .

Let ug be a point in U and 1/71402 R™ — U a diffeomorphism whose restriction
to R _is v, (the target space might be smaller than U and we replace U by this

for
smaller contractible open set in this case). We have a sequence of maps

Rm

7—1 Az_1
Yu Vuo Yug (1)
;’gr — (U, GOUO) for’
where the last map, which sends 0 to 1}; 01 (u) and a function on R™ to its Tay-
lor series at the point Wu_ol (u), is an immersion of locally ringed spaces. It is
therefore invertible on its image and we obtain for all ¥ € U an automorphism

g(u): R — R™ . The map g: U — GY is smooth and by Lemma 5.5, we have

for for*

that Vy () (oy) = 0 if and only if Vi (¥')(g * o) = 0 for ¥/ (u) = 1/~qu -)Ll/;u_ol w)*
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We now compute Vy (¥)(g * 0)(€) using the chart given by &uo. We get

dar(g * 0)(§) = dar((g * ) - Vup) (A Yug) " (€)
and
w0y () = FEW)
= ¥ (@(dr Vg - du 1 6 )
= ¥ (=50 - & Dup g ™" - [@eug - dud g 1y €))
= ¥ (s0u0) iz 6 ©)

= % (di Yy (§))-

for>
by differentiation on g * 0. When £ varies, the vectors d; v, 01 (&4,) cover R™ and

we obtain that the equality Vi (y')(g * o) = 0 is equivalent to

The vector d; 1},,_01 (64,) is a constant vector field on R , hence it acts through %’

190, 1

_ b
) aw(%l ..... Otn’a(u))—@aﬂl1 ..... apaaW), foralla,ai,... ,an,a,D,
where (g*a)(u):anoa‘f1 _____ an’a(u)%t"”---t"‘”yaab ando’:={oy, ..., 0, a}.

This is equivalent to the fact that the matrix (g * o) (u)(t) € My, (R[¢!, ..., t™]) is
the infinite jet of the smooth function (g * 0)(—)(0) = (cré’ ())ap:U = M, (R).
We finally obtain that the section o is a geometric smooth function if and only if
it is a flat section for the connection V. |

As a corollary, we get the following theorem

THEOREM 5.9. Complex structures on a smooth manifold M correspond to flat
sections of the fiber bundle E., = (yT)* (M co°r XGLy (R) 1CXoo-algebrasy).

Proor. We have already seen at the beginning of this section that a complex
structure on M provides a section of E . By Proposition 5.8, the associated
section is flat. Conversely, by Proposition 5.8, a flat section of E., is a geometric
smooth function hence corresponds to a smooth endomorphism J of TM. The
property to be a complex structure (almost complex structure and integrability
condition) can be read pointwise by means of the Taylor coefficient of J of order
0 and 1. Because of the fact that we have considered a section of E., and by
Theorem 4.1, we get that J is a smooth complex structure. |
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5.3 — Holomorphic map and flat section

Sections 5.1 and 5.2 extend to the case of holomorphic maps between complex
manifolds in the following manner. Let (M, Jjs) and (N, Jn) be two complex
manifolds of dimension m and n respectively. We denote by (M x N)°°°" the

manifold
(x,y,¢,¥)suchthat x € M,y € N and
(M x N)®°T .= e:RE — (M, x)and y: RE - — (N, y) ,
are pointed immersions of loc. ringed spaces

where M = (M, C3;) and N = (N, C%7). It is a fiber bundle over M x N.

DEeriniTION 5.10. We define the trivial vector bundle (over (M x N )<°°)

F := (M x N)* x Map(RZ , R ),

for> “*or
where Map(R?, R% ) = (R[¢!,...,t"]=!)". The group G x G acts on F on
the left by

((g. 1), (x, y. 0,9, v(1))) & (6((g. 1), (x,y,0.¥)), (g h) o v(1))
= (X, Y, ¢ g_lv W 'h_17h : 'U(t . g_l))'

We can derive the action ¢ and extend it to get a map
3 Wy x Wy — x(N x R[tL, ..., t™]=H™),

The differentiation of the action ¢ gives amap Wox W20 to y(R[¢!, ..., ™]=hH)"),
the constant vector fields ¢, in W,, act by differentiation of the vector in the space
(R[¢',....t™]=")" with respect to the variables ¥, that is, (y,v(¢)) is sent to
(0,d;v(¢m)), and the constant vector fields &, in W, send (y, v(¢)) to (v(0)(&,), 0).

Let U be an open subset of M and V' be an open subset of N. Associated
to a section WV: U — (U x V)°°' we define a connection on the fiber bundle
Fy :=UxV x(R[t!,...,t™]=H)" over U in the same way as in Proposition 5.4.
Lemma 5.5 extends to this setting. The subgroup GL,, (R) x GL,(R) of G% x G?
acts on F and we define the quotient space

F = (M X ]\/)COOr XGLyn (R)XGLj, (R) (R[[Zl, Cey tm]]zl)n_

It is a fiber bundle over (M x N)* := (M x N)©°/(GL,,(R) x GL,(R)).
Moreover, (M x N) is a fiber bundle over M x N whose fibers are contractible.
We fix a section W2 M x N — (M x N)*T and we denote by F := (¥21)* F the
pullback bundle on M x N, that we see as a fiber bundle on M. Theorem 5.7 and
Proposition 5.8 extend to this setting.
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DEerinITION 5.11. An co-morphism between Cxo-algebras R and R” is an
element in
R A S K

thus we can define the fiber bundle
Fex i= (W) * (M x N)®° XG1,, (R)xGL, (R) {00-morphisms})

over M.

The analog of Theorem 5.9 holds and we obtain eventually the following
theorem.

THEOREM 5.12. Let M and N be two smooth manifolds. We write E.x(M)
and F.x (M, N) to emphasize the fact that these fiber bundles, previously defined,
depend on M and N. There is an equivalence of categories

{F lat sections of Eqx (M) with} =~ { Complex structures on M with }
— .

flat sections of F.x (M, N) holomorphic maps from M to N

Appendices

A. Operadic decomposition maps

The decomposition maps for the operads Asi and Lie' are described in Sec-
tions 9.1.5 and 10.1.6 in [11]. The formulas for As| and Lie} are similar, the only
differences are degrees and signs.

A.1 — Associative case

The operad encoding associative algebras endowed with a product of cohomolog-
ical degree 1 is given by

Asy :=T(s " E4)/(s > Ra).

where E4 is the free S-module generated in arity 2 by an element ji, or \ﬂ/ ,

and Ry is the free $-module generated in arity 3 by the associativity relation

N N _/
(fi: 1. 1d) + (@ ; Id, z) or “\ﬂ/ + \,—/M -
| |
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Remark A.1. The “+” sign in the associativity relation gives that A is a
Asj-algebra if, and only if, sA4 is an associative algebra (in the classical sense).

Similarly to the case of the operad As encoding associative algebras, we can
compute the Koszul dual cooperad to the operad As;.

Prorosition A.2. The Koszul dual cooperad Asi1 is generated (as an S-
module) in arity n by the element
iy, = Z t,

tePBT,

where PBT,, is the set of planar binary trees on i with n leaves. It follows that the
infinitesimal decomposition map on As| is given by

M) (=cy _ —c. =
AA‘(;L;)_Z(,u;,ld,...,Id,u;,ld,...,ld),

SI
Y ltgtr=nt1 ) ,
p=l+r+1>1,4>1

and that the full decomposition map is given by

Ay () = D (R gy g, ).
qit+-+qp=n

A.2 — Lie case

The operad encoding Lie algebras endowed with a bracket of cohomological
degree 1 is given by
Lie; := T(s7'EL)/(s > Ry).

1 2
where E} is the S-module generated in arity 2 by a symmetric element ' and

1 2 3 2 3 1 31 2
Ry is the S-module generated by the Jacobi relation: \</ + \</ + \§/

There is a morphism of operads Lie; — As; defined by

1 2
o> sT i+ s_l/l(lz).

It is well defined since it sends the Jacobi relation to a linear combination of
associativity relations. For the same reason, there is a morphism of cooperads
Lie} — As| defined by

1 2

N i+ 2.

We make use of the associative case to compute the Koszul dual cooperad
associated to Lie;.
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ProrosiTioNn A.3. The Koszul dual cooperad Lie‘1 is 1-dimensional in each
arity, Lie‘1 (n) = K-, where I} is an element of degree 0 such that

Iy =Y ()"

o€,

(It follows that S,, acts trivially on l_,f .) The infinitesimal decomposition map on

Lie! is given by
A =37 Yok,

ptq=n+1 —1
pag=1 M

where Sh;’i,_l is the set of (q, p — 1)-unshuffles, that is, inverses of (¢, p — 1)-

shuffles. The formula for the full decomposition map is given by

_ 1 - - _
gﬁ“¢)=§: E:NAgJ;“”J;f,
{q1,--.4p} oeSh 4

—1
g1+ tqp=n q1....dp

where Ny := []/L, max(n;, 1) with

qg=1491,..-..qny =4{1,...,1,2,....m,...,m}.
= N—— ——
n1 times ny, times

B. Distributive laws and decomposition map

In this appendix, we define distributive laws for cooperads in order to compute
the decomposition map of the Koszul dual cooperad of an operad endowed with
a distributive law. We dualize the presentation given by Loday and Vallette [11],
Section 8.6. We emphasize however that we work here with cohomological degree
and not with homological degree. We will always consider the opposite of the
signs appearing in [11] and the chain complexes will be bounded above.

B.1 — Distributive law for cooperads

Let (C, Ae, €e) and (D, Ap, €p) be two cooperads. A morphism of S-modules
A¢:D o€ — Co D is called a distributive law for cooperads if the following
diagrams are commutative:

(D) Do € A CoD
AfDoId@l lld@ oAp

Do@o@lﬂcﬂoeoﬂweoﬂoﬂ,
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(I1) Do @ A CoD
Idp oA@l lACOId‘D
DoColtMeonoe Y eseon,
(i) e (i) D
eDoV WOGD IdDV Xoldlp
Do @ A CoD, Do @ A CoD.

ProrosiTioN B.1. If A°: Do C — CoD is a distributive law for the cooperads
C and D, then D o C is a cooperad for the decomposition map

Apc := (Idp oA€olde)(ApoAp): Dol —> (Do) o (Do),

and for the counit
epc ;= epoe€e:DolC — 1.

Proor. It is enough to dualize the proof of Proposition 8.6.2 in [11]. To sim-
plify the notations, we write CD instead of CoD. The following diagram commutes

De DDee DEDE
coassoc. of Ap, Ae DDiDGG DD%DCZ
DDee DDeee D@i@@@ (In)
@ DDEDEe DDEEDE
DeDe DeDee DGDLDGG DGDGLDGDG.

The arrows in this diagram are composite product of identities, A€, Ap and Aeg,
for example, ApoAe: DC — DDECE, and are uniquely determined by their source
and their target. (Remember that Ae and Ap are coassociative.) The two empty
squares commute because the composite product o is a bifunctor. The counit
property is proved in a similar way by means of (i) and (ii). O

B.2 — Decomposition map by means of distributive law

Let (A, ya,ta) and (B, yp,tp) be two operads. We assume that A and B are
quadratic with quadratic presentations A = P(V,R) := T(V)/(R) and B =
P(W,S) :=T(W)/(S) and that we have a rewriting rule A: Woy V — Vo) W.
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We denote the graph of A by
D :=(T —=MT), T e Wouy V) CT(VeaWw)®,

Let Al = C(sV,s2R), resp. Bi = C(sW, s2S), be the Koszul dual cooperad of A,
resp. B. The categorical coproduct of the two operads, denoted A Vv B, is equal
to T(V & W)/(R & S). On the other side, the categorical coproduct of the two
Koszul dual cooperads, denoted Ai v Bi, is equal to C(sV @ sW, s>R & 5>S). We
remark therefore that (A v B)i = Ai v Bi.

We now consider the cooperad Ai v Bi given by the following presentation

Al vABi = C(sV @ sW, R @ 52D, & s25).

The categorical coproduct of Ai and B' injects itself in this cooperad. Moreover,
we can build the following map

CsV @ sW,s>R @ s>°D; & s28) —> T(sV @ sW) —» T (sW) o T¢(sV),

where the second arrow is the projection p; which sends any tree in sV and
sW containing a subtree in sV o(;) sW to 0 and is identity on other trees. This
composition factors through the inclusion C(sV, s2R) o C(sW, s2S) < T¢(sV) o
T¢(sW) to give a morphism of S-modules

ir Al VA Bl 5 Bio Al

The map i, is an inclusion since the composition Dy < (Woq) V)@ (Vo )W) —
W oy V is an inclusion. Indeed, given an element in Bi o A, there is at most
one possibility to build an element in Ai v* Bi from it. (The composition is also a
surjection however i; is not necessarily a surjection.) Similarly, we get a morphism
of $-modules i5: Al v* Bi — Ai o Bi, which is neither necessarily an inclusion,
nor necessarily a surjection.

To make this morphism i; easier to understand, we describe it partially. We
recall that

AVA Bl = C(sV @ sW,s>R & s°D;, @ s%S)
=1DsV DsWB’RDs’D) Ds>S®---.

Applying iy, I is sent on I by the identity map and sV, resp. sW, is sentto Lo sV,
resp. sW oI, and s? R, resp. 525, is sent to [os? R, resp. s2S o I, and s2 D is sent
to i1(s2D,) C sW oy sV C Bio Al. The application i, is defined similarly.

Remark B.2. The map p: Ao B — A v, B given in [11], Section 8.6.2, is
defined dually.
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Prorosition B.3. Let A = P(V,R) and B = P(W,S) be two quadratic
operads and Al = C(sV,s?R) and B = C(sW,s2S) be their Koszul dual
cooperads. For any morphism of S-modules A: W oy V. — V oy W such that
i1: Al v* Bi < Bi o Al is an isomorphism, the composite

o o R e S .
A:Blio Al — Al v Bl — Al o Bi
induces a distributive law for cooperads and a decomposition map
Apc := (Idgi oA€ o Id i) - (Agpi 0 Agi): Bio Al —> (Bl o Al) o (Bi o A),

and a counit
€pc ;= €pio€qi:Bio Al — 1,

such that the map i;: Al v* Bi — (Bi o Ai, Apc,enc) is an isomorphism of
cooperads.

Proor. The proof is dual to the proof of Proposition 8.6.4 in [11]. The previous
descriptions of the application i; and i, provide the commutative diagrams

Bio Al <1 AivABI 2 fi o B

em Aﬁi
Ai

A103i<i_2ﬁivkgii_‘>3ioﬂi_

efm Aﬂi
Bi

We therefore obtain the commutativity of diagrams (i) and (ii) and two surjections

and

pai AIVA Bl — A and  peit Al VBl > B.

Remembering the fact that the decomposition maps A 4i, Agi and A 4;14; are
all the cofree decomposition map, we get the commutativity of the following
diagrams:

(a) Ai v Bi
lAﬂiv)‘Bi
(Al VA Bi) o (Al v* BI)

Al o Bi Bio Al

Ppi°Ppi DPpi°oD i
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and
(b) AV B £ AioBi 0L 4o pio
AA””‘il Tpoldy,
Al VA Bi) o (Al VA BI) — > (AI VA By o BI
( )o( ) ( )
and
(c) Al VA Bi d Bi o A1 S22 Bi 6 Bi o A

A . )“.\L /
AlvA BI Tdy; oy

(Al VA Bi) o (Al vA Bi) —— Bi o (Al VA BI)

Finally, the commutativity of the diagram (I) is a consequence of (a), (b)
and (c), and of the coassociativity of A ;;,15;:

—1
i

Al VA B 2 AlBi
/ \

(Al vA By (AT VA Bi) (Al vA Bi) (Al v* Bi)

! !

BiBIAl — Bi(Al v* Bi) T B AIBI —— (Ai v B)Bi —>A~13~13~

Idy; iy i d g

BiAi

The case of the diagram (I) is similar. O

Remark B.4. (1) We denote by A Vv, B the operad P(V & W, R D), & S) so
that the previous proposition provides a way to compute the decomposition map
on (A v, B)i = Al v* Biin terms of A¢ and the decomposition maps on A and
on Bi since

Agivrgi = (71 0if ) - (dpi oA o Tdai) - (Ami o Aui) oy

(2) The diagrams (I) and (II) give a way to compute the map A€ knowing the
map A.

B.3 — The Diamond Lemma for distributive laws

The Diamond Lemma, Theorem 8.6.5 of [11], provides an effective way of proving
that i, is an isomorphism. Similarly as in the book [11], the operads A and B and the
cooperads Ai and Bi are weight graded by the opposite of the number of generators
in V and in W. Therefore, the S-modules A o B, A v, B, Bi o Al and Ai v* Bi
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are also weight graded by the opposite of the number of generators in V' minus
the number of generators in W . The injective map i;: Al v} Bi — Bi o Al, resp.
the surjective map p: Ao B — A v, B given in [11], preserves the weight grading
and is always surjective, resp. injective, in weight 0, —1 and —2. The following
theorem is a slightly different version of Theorem 8.6.5 of [11] and says that if p
is an isomorphism in weight —3, the map i; is an isomorphism in any weight.

THeorREM B.5. Let A = P(V,R) and B = P(W, S) be two Koszul operads
endowed with a rewriting rule A: W oy V. — V oy W such that the restriction
of prAoB — AV, Bon (Ao B3 is injective. In this case, the morphisms p
and iy: Ai v} Bi < Bi o Al are isomorphisms, the map A induces a distributive
law and the induced operad (A o B, yp) is Koszul, with Koszul dual cooperad
(Bi o Al, Ape).

Proor. The only point to prove which is not in Theorem 8.6.5 of [11] is that
i1 is an isomorphism. In this case, we can conclude by Proposition B.3. By
Theorem 8.6.5 of [11], we know that p: Ao B =~ AvygB — A v, Bisan
isomorphism. It follows that the extension to the bar constructions B p: B(A Vv,
B) — B(A v, B) is also an isomorphism. On the bar construction, we consider a
homological degree, called syzygy degree, given by the weight degree minus the
cohomological degree. The map B p is not dg but it commutes with the differential
in syzygy degree 0 up to a boundary given by dp,(A(w ® v)) forw ®v € Wo) V
and zero otherwise. By means of the fact that the bar constructions are zero in
syzygy degree 1, we get that B p descend to the syzygy degree 0 homology group
to give an isomorphism

HoBp: HoB(A Vo B) = (A vy B)l = Ai VO Bi >~ Bio Al
—> HoB(A v, B) =~ Ai V! Bi
inverse to ij. O

RemaRrk B.6. Itis also enough to prove that i is surjective in weight —3 to get
the theorem. The proof is the same as the one in [11], where we replace operads
by cooperads, A o B by Bi o Al, p by i;, B by Q, the syzygy degree in Step 1 by
the number of inversions and vice versa in Step 2.
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