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On generalized IT-property of subgroups of finite groups

HaoraN YU ()

ABsTrRACT — In this note, we extend the concept of IT-property of subgroups of finite
groups and generalize some recent results. In particular, we generalize the main re-
sults of Li and Miao, p-Hypercyclically embedding and T1-property of subgroups of
finite groups, Comm. Algebra 45 (2017), no. 8, pp. 3468-3474. and Miao, Ballester-
Bolinches, Esteban-Romero, and Li, On the supersoluble hypercentre of a finite group,
Monatsh. Math. 184 (2017), no. 4, pp. 641-648.
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1. Introduction

Suppose that G is a finite group and p is a prime. Let 7 (G) be the set of all the
prime divisors of |G|. Let O?(G) = (\{N | N < G and G/N is a p-group}.
To state our results, we need to recall some notation. According to Kegel (see [7]),
let H be a subgroup of a finite group G; then H is called an S-permutable
subgroup of G if H permutes with every Sylow subgroup of G. According to
Chen (see [2]), let H be a subgroup of a finite group G; then H is said to be
S-semipermutable in G if HQ = QH for all Sylow g-subgroups Q of G for
all primes ¢ not dividing |H|. Recently, in [8], Li introduced the concept of
IT-property and IT-normality of subgroups of finite groups. Let H be a subgroup
of a finite group G. We say that H satisfies [1-property in G if, for any chief fac-
tor K/Lof G,[G/L : Ng/ . ((H N K)L/L)]lisan((HNK)L/L)-number; we say
that H is [1-normal in G if there exist a subnormal subgroup 7" of G and a sub-
group / of G satisfying I1-property in G suchthatG = HT and HNT <[ < H.
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It is not very difficult to prove that an S-semipermutable p-subgroup of a finite
group G satisfies [1-property in G (see Lemma 2.9).

Following Berkovich and Isaacs (see [1]), if G is a finite group and p is a prime
divisor of |G|, we write G to denote the unique smallest normal subgroup of G
for which the corresponding factor group is abelian of exponent dividing p — 1.
It is well known that G is p-supersolvable if and only if G, is p-nilpotent (see
Lemma 3.6 of [1]).

In 2014, Berkovich and Isaacs proved the following theorem.

TueoreM 1.1 (Berkovich and Isaacs). Let p be a prime dividing the order of
a finite group G and P € Syl (G).

(a) [1, Lemma 3.8] If P is cyclic and some nonidentity subgroup U < P is
S-semipermutable in G, then G is p-supersolvable.

(b) [1, Theorem D] Fix an integer e > 3. If P is a noncyclic p-group with
|P| > p¢*! and every noncyclic subgroup of P with order p€ is S-semiper-
mutable in G, then G is p-supersolvable.

(c) [1, Corollary E] If P is a noncyclic p-group with |P| > p3 and every sub-
group of P with order p? is S-semipermutable in G, then G is p-supersoly-
able.

In 2017, Li and Miao [9] proved the following theorem.

THeorREM 1.2. Let G be a finite group, M a normal subgroup of G, p a
prime divisor of M|, X a normal subgroup of G with Fy(M) < X < M and
P € Syl,,(X). Then every p-chief factor of G below M is cyclic if and only if P
has a subgroup D such that 1 < |D| < max{p,|P|/p} and for any subgroup H
of P with order |D| (if P is a non-abelian 2-group and |D| = 2, also for any
cyclic subgroup H of P with order 4), H N OP(G) satisfies I1-property in G.

Here, as usual, F,f (M) is the generalized p-Fitting subgroup of M, i.e., F,"(M)
is the normal subgroup of M suchthat O (M) < F (M) and F,;(M)/Op (M) =
F*(M/ Oy (M)) (see [12]).

In this note, we extend the concept of I1-property and IT-normality of sub-
groups of finite groups and generalize the above results. At first, we introduce the
following definition.

DEerintTION 1.3. Let p be a prime dividing the order of a finite group G and
M < G. Let M(*;p = (YN < M and N < G | every p-chief factor of G/N
below M/N is cyclic}. It is not very difficult to see that every p-chief factor of
G/M;” below M/MZ" is cyclic. And we have M,/ < Mi” <M N GZP.
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It is not very difficult to prove that M(*;p = 0P (IM*, 07(G,)]0?(Mp)).
In particular, if M is a p-subgroup, then Mép = [M, 07(G,)].

ExampLE 1.4. Let G = A4 and M be the Sylow 2-subgroup of G. It is not
very difficult to see that M;? = 1 and M* = M. Then M7 < M?.

ExampLE 1.5. Let G = Qg x Z3 and M be the unique subgroup of G with
order 2. It is not very difficult to see that M3?> = 1 and G}* = Qs. Then
MP2=1<M=MnGZ2.

Now we introduce the following definition.

DEerintTiON 1.6. Let G be a finite group, M < G and H < G. If for
any chief factor K/L of G below M, we have [G/L : Ng;r((H N K)L/L)] is
a 7((H N K)L/L)-number, then we say that H satisfies I1-property in G with
respect to M. Let

Iy (G) = {H < G | H satisfies [1-property in G with respect to M }.

It is not very difficult to prove that H satisfies I1-property in G with respect to
M if and only if H N M satisfies [1-property in G.

Remark 1.7. Let N < M be normal subgroups of a finite group G. It is not
very difficult to see that [Ty, (G) € Iy (G).

Remark 1.8. There exists a finite group G with p is a prime divisor of |G|
such that G has a p-subgroup P; with P; € HGZ” (G),but Py ¢ Tlor)(G). See
the following example.

ExampLE 1.9. Let p = 5and G = (a.b,d |a®> = b> =d> = 1,[a,b] = 1,
d'ad = b,d 'bd = a'b V) x{(c,f | > = f2=1,flef =c1) =
((Zis xZi5) xZ3) x D19. By Fitting’s Theorem (see Theorem 4.34 of [5]), it follows
that G5 = (a) x (b) and OP(G) = G. Let Py = (ac). Then PN G’ =1, and
thus P; € HGg" (G). Since (a) A G, it follows that Py ¢ I pr)(G).

RemaRrk 1.10. There exists a finite group G with M < G and p is a prime
divisor of |M| such that M has a p-subgroup P; with P; € HMgl’ (G), but
P, ¢ HGE” (G). See the following example.
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cla’ =b>=c =1,

ExampLE 1.11. Let p = 5. Consider P = (a, b,

[a,b] = [a,c] = 1, c"'bc = ab). Then |P| = p* and ®(P) = (a). There
exists d € Aut(P) such that ¢? = a,b% = ¢~ 'b~! and ¢¢ = ab. In Aut(P),
we have o(d) = 3. Consider the semidirect product G; = P x (d). Consider
Go=(fgh| fP=¢ =1 =1[fgl=1Lh""fh=gh gh=f"lg")
LetG = Gy xGa, M = {a) x (f) x{(g) and P; = {(af’). It is not very difficult to
see that M < G. Note that G; = G. By Fitting’s Theorem, it is not very difficult
to prove that O?(G) = G. Hence Gé” = P x(f)x{g). Itis not very difficult to
see that M;” = (f) x (g). Since P1 N M5” = 1, it follows that P; € M2 (G).
Since () 4 G, we see that P, ¢ HGg” (G).

Let p be a prime and P be a nonidentity p-group with |P| = p". We define
the set IL; (P). If p = 2 and P is non-abelian, let L;(P) = {P; | P < P and
|P1| =2} U{P, | P, < P and P; is a cyclic subgroup of order 4}. Otherwise, let
]Ll(P) = {P1 | Py < P and |P1| = p}

In this note, we prove the following result.

THeOREM 1.12. Let G be a finite group, M < G, p be a prime divisor of |M |,
e > 2 be an integer, and P € Syl,(M) with |P| > p¢Tl and P is noncyclic.
Suppose that for any normal noncyclic subgroup Py of P with order p¢ (if P has
such a subgroup), Py € HMép (G). If|1PN Mép| <pforPn Mép is cyclic, then
every p-chief factor of G below M is cyclic.

By Theorem 1.12, we obtain the following results.

TueoreM 1.13. Let G be a finite group and X < M be normal subgroups of G
with F))(M) < X < M. Suppose that X 52 has a cyclic Sylow 2-subgroup. Then
every chief factor of G/ O (M) below M /Oy (M) is cyclic. In particular, every
2-chief factor of G below M is cyclic.

THEOREM 1.14. Let G be a finite group, X < M be normal subgroups of G
with p > 2 is a prime divisor of [M| and Fy(M) < X < M, and P € Syl,(X).
Suppose that P is cyclic and there exists 1 < Py < P such that P, € ngp (G).
Then every chief factor of G/ Oy (M) below M/O, (M) is cyclic. In particular,
every p-chief factor of G below M is cyclic.
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THeOREM 1.15. Let G be a finite group, X < M be normal subgroups of G
with p is a prime divisor of [M| and Fy(M) < X < M, e > 3 be an integer,
and P € Syl,(X) with |P| > p®*! and P is noncyclic. Suppose that for any
noncyclic subgroup Py of P with order p¢, Py € ngp (G). Then every chief
factor of G/ Oy (M) below M/ O,/ (M) is cyclic. In particular, every p-chief factor
of G below M is cyclic.

THEOREM 1.16. Let G be a finite group, X < M be normal subgroups of G
with p is a prime divisor of |M| and F;(M) < X < M, and P € Syl,(X) with
|P| > p3 and P is noncyclic. Suppose that for any subgroup Py of P with order
p% P € ngp (G). Then every chief factor of G/ O, (M) below MOy (M) is
cyclic. In particular, every p-chief factor of G below M is cyclic.

THeoreM 1.17. Let G be a finite group, X < M be normal subgroups of G
with p is a prime divisor of M| and F; (M) < X < M, and P € Syl ,(X) with P
is noncyclic. Suppose that for any subgroup Py € L1(P), P € ngp (G). Then
every chief factor of G/ Oy (M) below M/O, (M) is cyclic. In particular, every
p-chief factor of G below M is cyclic.

We mention that Theorem 1.12-1.17 generalize the main results of [1], [3], [9],
[10], and [12].

2. Preliminaries

LemMma 2.1 ([1, Lemma 2.1(b)]). Let p be a prime and P be a nonidentity finite
p-group. Let A act on P via automorphisms. Assume that P has a cyclic maximal
subgroup, and P is neither elementary abelian of order p? nor isomorphic to Qs.
Then OP(Ay) acts trivially on P.

LemMma 2.2 ([1, Lemma 2.2]). Let S be a p-group for some odd prime p, e > 2
be an integer and P < S with |P| > p®. Suppose that every normal subgroup of
S that has order p€ and is contained in P is cyclic. Then P is cyclic.

LemMma 2.3 ([1, Lemma 2.3]). Fix an integer e > 3, and let S be a p-group
with | S| > p€. The following then hold.
(1) If every subgroup of order p€ in S is cyclic, then S is cyclic.
(2) If S has exactly one noncyclic subgroup P with order p¢, then P is abelian

and has a cyclic maximal subgroup.

By Problem 5C.12 of [5], we have the following lemma.
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LemMma 2.4. Let p be a prime dividing the order of a finite group G, P €
Syl,(G) and N < G. Assume that P is cyclicand P N N < P. Then N is
p-nilpotent.

LemMma 2.5. Let p be a prime dividing the order of a finite group G and
P € Syl,(G). Suppose that P is cyclic and there exists 1 < H < P such that
HE is p-solvable. Then G is p-supersolvable.

ProoF. Itisno loss to assume that O,/ (G) = 1 and P £ H®. By Lemma 2.4,
it follows that H¢ is p-nilpotent, and thus H > 1 is a normal p-subgroup of G.
Hence Cp(G,) > 1. Note that P is a cyclic p-subgroup, by Fitting’s Theorem, it
is not very difficult to see that G is p-nilpotent, i.e., G is p-supersolvable. [

LemMa 2.6. Let p be a prime dividing the order of a finite group G, e be an
integer, N . < M be normal subgroups of G, S € Syl,(G), P = S N M, and
N =V x K with V > 1 is the normal Sylow p-subgroup of N and K > 1 is
a Hall p’-subgroup of N. Assume that |P| > p**t! and |V| < p®. LetV; < V
such that Vi < G and V/ V1 is a chief factor of G. Suppose that for any normal
noncyclic subgroup Py of S that has order p® and is contained in P (if S has
such a subgroup), [G/ V1 : Ngyv, ((P1NV)Vi/V1)]is a p-number. If N/ V1 is not
p-nilpotent, then |V/ V1| = p.

Proor. Consider G = G/V;. By Frattini’s argument, It follows that G =
Ng(K)V.Hence S=Ng(K)V.Since N isnot p-nilpotent, we see that Ng(l?) < S
Hence § has a maximal subgroup T such that V; < T and Ng(K) < T
Hence S = TV and T = Ng(K)V NT. It is not very difficult to see that
[V:VNAT]=[S:T]=p.Let|Vi| = p/. Then f < e. Note that [V N T| <
V| < p*/ < |P|/p < |[PNT|and V, P N T are normal subgroups of
S. Hence there exists V; < P; < S such that P; < S, [Py| = p¢~/ and
VAT <P, <PNT.ThenVNT =VNP;and|P| = p°.

If Py is noncyclic, then P; is noncyclic, and thus P; is a normal noncyclic
subgroup of S that has order p¢ and is contained in P. Hence [G : Ng(V N VNP
is a p-number. Hence G = NG(V NP)S. Notethat VNT =V NP <8S.
ThenV NT =V NP <G.

Assume that Py is cyclic. Since T = Ng(K)V N T andV N T < Py, it follows
that P, = Np; (K)VNT. Hence P; = N5 (K) Hence VNT =V NP <

V(K) < V.Since [V : VNT] = p,it follows that VN T = Ny (K) Hence
VNT < NG(K) Notethat VN T < V.Hence VNT < NG(K)V G.

Since [V : VN T| = p and V is a minimal normal subgroup of G, it follows

that V. N T = 1. Hence |[V| = p. O
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LemMma 2.7. Let p be a prime and P be a nonidentity finite p-group. Let
1 < N < P be suchthat N N ®(P) = 1. Then for any maximal subgroup N, of
N, there exists a maximal subgroup T of P such that Ny =T N N.

Proor. Consider P = P/®(P). Since P is an elementary abelian p-group,
there exists ®(P) < M < P suchthat P = N x M. Hence M < P,
P = (NO(P)M = NM and (N®(P)) "N M = P(P). Hence N N M <
(NO(P))NM = &(P),andthus NN M = NNPP) = 1. Since N > 1
and N N M = 1, it follows that P/M = NM/M =~ N > 1. Recall that N; is
a maximal subgroup of N, it is not very difficult to see that Ny M is a maximal
subgroupof P.Let T = NyM.Then NNT = Ny(N N M) = Nj. O

Lemma 2.8 ([1, Lemma 3.6]). Suppose that a finite group G acts irreducibly
on an elementary abelian p-group V, and assume that OP(G) acts trivially on
V.Then |V| = p.

LemMma 2.9. Let p be a prime dividing the order of a finite group G and H be
an S-semipermutable p-subgroup of G. Then H satisfies I1-property in G.

ProoF. Let K/L be a chief factor of G. Consider G = G/L. We work to prove
that O?(G) normalizes H N K. It is no loss to assume that # N K > 1. Since
H is an S-semipermutable p-subgroup of G, it is not very difficult to see that
HN K = HNK is S-semipermutable in G. By Theorem A of [6], it follows that
(W)G‘ is solvable. Recall that 1 < W < K and K is a minimal normal
subgroup of G. Hence K = (H N K)? is solvable. Then K is a p-subgroup.
By Lemma 3.2 of [1], it follows that O?(G) normalizes H N K. In particular,
[G : Ng(H NK)] is a p-number. By the definition of IT-property of subgroups
of finite groups, we see that H satisfies [1-property in G. |

LemMma 2.10 ([8, Theorem C]). Let G be a finite group and 1 < M < G.
Suppose that every chief factor of G below F*(M) is cyclic. Then every chief
factor of G below M is cyclic.

LemMma 2.11. Let p be a prime dividing the order of a finite group G and
1 < M < G. Suppose that F*(M) is p-solvable and Oy (M) = 1. If every
p-chief factor of G below F*(M) is cyclic, then every chief factor of G below M
is cyclic.
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Proor. Assume that there exists H <{<d M suchthat H/Z(H) is a nonabelian
simple group and H' = H. Since H < F*(M) and F*(M) is p-solvable, it
follows that H/Z(H) is p-solvable. Recall that H/Z(H) is a nonabelian simple
group. Hence H/Z(H) is a p’-group. Let Py € Syl,(H). Since H/Z(H) is a
p’-group, it follows that P; < Z(H). By Burnside’s Theorem (see Theorem 5.13
of [5]), it follows that H is p-nilpotent. Since H <1 M and O,/ (M) = 1, we have
O, (H) = 1. Hence H = P, is a p-group. This is a contradiction since H/Z(H)
is a nonabelian simple group. Hence F*(M) = F(M). Recall that O, (M) = 1.
Then F*(M) = O,(M).

Since every p-chief factor of G below F*(M) = O,(M) is cyclic, it follows
that every chief factor of G below F*(M) is cyclic. By Lemma 2.10, every chief
factor of G below M is cyclic. O

3. Main Results

THeoREM 3.1. Let G be a finite group and M < G. Suppose that MC*;2 has a
cyclic Sylow 2-subgroup. Then every 2-chief factor of G below M is cyclic.

Proor. Since Mg? has a cyclic Sylow 2-subgroup, by Corollary 5.14 of [5],
it follows that M? is 2-nilpotent. Hence every 2-chief factor of G below M2 is
cyclic, and thus every 2-chief factor of G below M is cyclic. |

THeEOREM 3.2. Let G be a finite group, M < G with p > 2 is a prime divisor of
|M|, S € Syl,(G) and e > 2 be aninteger. Let P = SNM. Assume that |P| > p*,
P is noncyclic and P N Mép is cyclic. Suppose that for any normal noncyclic
subgroup Py of S that has order p¢ and is contained in P (by Lemma 2.2, we
see that S has such a subgroup), P1 € I1 MzP (G). Then every p-chief factor of G
below M is cyclic.

Proor. Suppose that M is a counterexample with minimal order and we work
to obtain a contradiction. Then M, é” > 1.

It is no loss to assume that O,/ (M) = 1. To see this, assume that O,/ (M) > 1
and we work to obtain a contradiction. Consider G/ O, (M). It is not very difficult
to see that the hypotheses are inherited by M /O, (M). By induction, we see that
every p-chief factor of G/O, (M) below M/O, (M) is cyclic, and thus every
p-chief factor of G below M is cyclic. This is a contradiction.

Let N > 1 be a minimal normal subgroup of G that is contained in M(*;p . Since
Op (M) = 1, it follows that P N N > 1. We claim that S has a normal noncyclic
subgroup P; that has order p¢ and is contained in P such that (P N N) N P; > 1.
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By Lemma 2.2, we see that S has a normal noncyclic subgroup N; that has order
p¢ and is contained in P. Assume that (P N N) N Ny > 1. Let P; = N;. Then
Py is a normal noncyclic subgroup of S that has order p¢ and is contained in P
such that (P N N) N P; > 1. Assume that (P N N) N Ny = 1. Let Z; be the
subgroup of P N N with order p. Since P N N is cyclic, we see that Z; < S.
Since N; < S and N; > 1, N; has a maximal subgroup Z, such that Z, < S.
Then | Z3| = p¢~! > p.From (P " N) N Ny = 1, we see that Z; N Z, = 1. Let
Py = Z1 x Z,. Then P; is a normal noncyclic subgroup of S that has order p®
and is contained in P suchthat (P N N)N Py = Z; > 1.

Let P; be a normal noncyclic subgroup of S that has order p¢ and is contained
in P such that (P N N) N P; > 1. Note that N is a minimal normal subgroup
of G. Since Py € HMg” (G), we see that [G : Ng(P1 N N)]is a p-number. Hence
G = Ng(Pi1 N N)S. Note that P, NN < S.Hencel < PN N < G. By
Lemma 2.5, it follows that M(*;p is p-supersolvable. Hence every p-chief factor
of G below Mé” is cyclic, and thus every p-chief factor of G below M is cyclic.
This is a contradiction. O

THeOREM 3.3. Let G be a finite group, M < G with p > 2 is a prime divisor
of IM| and P € Syl,(M). Assume that P is cyclic and there exists 1 < Py < P
such that P, € 11 MEP (G). Then every p-chief factor of G below M is cyclic.

Proor. Suppose that M is a counterexample with minimal order and we work
to obtain a contradiction. Then Mép > 1.Let S € Syl,(G) such that P < S.

It is no loss to assume that O,/ (M) = 1. To see this, assume that O,/ (M) > 1
and we work to obtain a contradiction. Consider G/ O, (M). It is not very difficult
to see that the hypotheses are inherited by M /O, (M). By induction, we see that
every p-chief factor of G/O, (M) below M/O, (M) is cyclic, and thus every
p-chief factor of G below M is cyclic. This is a contradiction.

Let N > 1 be aminimal normal subgroup of G that is contained in M, é” . Since
O, (M) = 1, it follows that P N N > 1. Note that P is a cyclic p-subgroup and
PN N, P; are nontrivial subgroups of P.Hence 1NN = P1N(PNN) > 1. Since
1< N< Mép and N is a minimal normal subgroup of G, by P; € I1 MEP (G), it
follows that [G : Ng(P; N N)]is a p-number. Hence G = Ng(P; N N)S. Note
that P N N < S.Hence P; N N < G. By Lemma 2.5, it follows that M;p is
p-supersolvable. Hence every p-chief factor of G below M ép is cyclic, and thus
every p-chief factor of G below M is cyclic. This is a contradiction. O

THEOREM 3.4. Let p be a prime dividing the order of a finite group G and
1 < P < G be a p-subgroup. Suppose that for any maximal subgroup Py of P,
Py e HPC*;” (G). Then every chief factor of G below P is cyclic.
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Proor. Suppose that P is a counterexample with minimal order and we work
to obtain a contradiction. Then Pé” > 1. Let N > 1 be a minimal normal
subgroup of G that is contained in Pé” . We claim that N = Pé” . Assume that
N < Pép and we work to obtain a contradiction. Consider G/N. It is not very
difficult to see that the hypotheses are inherited by P/N. By induction, it follows
that every chief factor of G/N below P /N is cyclic, and thus Pép < N. This is
a contradiction. Hence Pé” = N is a minimal normal subgroup of G.

We claim that P;” N ®(P) = 1. Assume that Pz’ N ®(P) > 1 and we
work to obtain a contradiction. Since ng is a minimal normal subgroup of G,
we see that Pg” < ®(P). Note that every chief factor of G/P;” below P/P;”
is cyclic, by Corollary 3.28 of [5], we see that P/ Pé” is centralized by O7(Gy).
By Corollary 3.29 of [S], we see that P is centralized by O?(G ). By Lemma 2.8,
it follows that every chief factor of G below P is cyclic. This is a contradiction.
Hence P;” N ®(P) = 1. Let S € Syl,(G). Then P < . Since | < P;” 4 °S,
Pé” has a maximal subgroup N; such that Ny < §. By Lemma 2.7, it fol-
lows that P has a maximal subgroup P; such that Ny = P; N Pé” . Since
Pé” is a minimal normal subgroup of G and P; € II PLP (G), it follows that
[G : Ng(N1)] =[G : Ng(Py N P;P)]is a p-number. Hence G = Ng(N;)S. Re-
call that N; < S. Hence N; < G. Since Pép is a minimal normal subgroup of G
and [P;” : Ni] = p, we see that Ny = 1 and |P;”| = p. Since every chief factor
of G/ Pg” below P/PS” is cyclic, it follows that every chief factor of G below P
is cyclic. This is a contradiction. O

THEOREM 3.5. Let p be a prime dividing the order of a finite group G, e > 3 be

¢*1 and P is noncyclic.

aninteger, and 1 < P < G be a p-subgroup with |P| > p
Suppose that for any noncyclic subgroup Py of P with order p¢ (by Lemma 2.3(1),
P has such a subgroup), Py € I1p(G). Then every chief factor of G below P is

cyclic.

Proor. Suppose that P is a counterexample with minimal order and we work
in the following steps to obtain a contradiction. Let B = 0?(G,) and C = Cp(B).
By Lemma 2.3, it follows that C < P. Let S € Syl,(G). Then P < S. Let
Q={H < P,H <G | P/H is achief factor of G}. Since 1 < P < G, it is not
very difficult to see that 2 is not empty.

Step 1. |P| > p®*!. Assume that |[P| < p°*! and we work to obtain a
contradiction. Recall that |P| > p®*!. Hence |P| = p°®*!, and thus for any
maximal subgroup P; of P, |P;| = p¢. If every maximal subgroup of P is
noncyclic, by Theorem 3.4, it follows that every chief factor of G below P is



On generalized TT-property of subgroups of finite groups 247

cyclic. This is a contradiction. Hence P has a cyclic maximal subgroup. Note that
|P| = p¢t! > p* by Lemma 2.1, it follows that P is centralized by B, i.e.,
P < C. This is a contradiction.

Step 2. For any H € Q, we HAVE H < C. If H is cyclic, it is not very
difficult to see that H < C.

Assume that H is noncyclic and |H| > p¢T!, itis not very difficult to see that
the hypotheses are inherited by H. By induction, it follows that H < C.

Assume that H is noncyclic and |H| < p¢. Since H, P are normal subgroups
of Sand [H| < p¢ < p®T! < |P|, we see that S has a normal subgroup P; with
order p¢ and a normal subgroup P, with order p¢*! suchthat H < Py < P, < P.
Since H is noncyclic, we see that P; is noncyclic. Since Py € [1p(G) and P/H
is a chief factor of G, it follows that [G/H : Ng,/u (P1/H)] is a p-number. Hence
G/H = Ng/g(P1/H)S/H. Recall that Py < S. Hence Pi/H < G/H, and
thus P; < G. Note that H < P; < P and P/H is a chief factor of G. Hence
H = Py,and thus |H| = p¢. Hence H = P; is a noncyclic maximal subgroup of
P,. We claim that H is the unique noncyclic maximal subgroup of P,. Assume
that P, has another noncyclic maximal subgroup P3 and we work to obtain a
contradiction. Then P, = P3H. Since Pz € I1p(G) and P/H is a chief factor
of G, it follows that [G/H : Ng/g(P2/H)| = [G/H : Ng/u(P3H/H)] is a p-
number. Hence G/H = Ng/u(P»/H)S/H.Recall that P, < S. Hence P,/H <
G/H,and thus P, < G.By Step 1, we see that H < P, < P.Recallthat P/H isa
chief factor G. Hence we obtain a contradiction. Hence H is the unique noncyclic
maximal subgroup of P,. Note that e > 3 and |H| = p® < p¢T! = |P,|, by
Lemma 2.3(2), it follows that H is abelian and H has a cyclic maximal subgroup.
Note that |H| = p® > p3. By Lemma 2.1, we see that H < C.

SteEP 3. 2 = {C}, ANDIF N < P sucH THAT N < G, THEN N < C. For any
H € Q, by Step 2, it follows that H < C.Since H < C < P,C < G and P/H
is a chief factor of G, we see that C = H. Hence Q2 = {C}.

If N < P suchthat N < G, then there exists 7 € Q such that N < T'. Since
Q={C},weseethat N < C.

SteEP4. P ={x € P | xP’ = 1}. HENCE EVERY SUBGROUP OF P WITH ORDER
p° 1s NoncycLic. Note that ®(P) < P and ®(P) < G, by Step 3, we see that
®(P) < C.Notethat [P, B] < Pand [P, B] < G.If[P, B] < P,by Step 3, we see
that [P, B] < C,i.e., [P, B, B] = 1. By Lemma 4.29 of [5], we see that [P, B] = 1,
i.e., P < C. This is a contradiction. Hence [P, B] = P. Since [®(P), B, P] =1
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and [P, ®(P), B] = 1, by Hall’s three-subgroups Lemma (see Lemma 4.9 of [5]),
we see that [P, ®(P)] = [B, P, ®(P)] = 1,ie.,,®(P) < Z(P).LetU ={x € P |
¥’ = 1}. Since ®(P) < Z(P), itis not very difficult to prove that U is a subgroup
of P. To see this, forany x,y € U, by P’ < &(P) < Z(P), we see that (xy)‘”2 =
xP?yP? [y, x]P?(P*=D/2 = [yP*(P*=1/2 ], Since p divides p2(p? — 1)/2, we see
that y?>(*=D/2 ¢ &(P) < Z(P). Hence (xy)?* = [yP’®»*~D/2 x] = 1, and
thus xy € U. Hence U < P. Furthermore, we have U < G.If U < P, by Step 3,
we see that U < C. By Satz IV.5.12 of [4], it follows that P is centralized by B,
i.e., P < C. This is a contradiction. Hence P = U. Note that e > 3. Hence every
subgroup of P with order p° is noncyclic.

Step 5. |C| > p¢. Assume that |C| < p¢ and we work to obtain a contradic-
tion. Since C, P < S and |C| < p¢ < |P]|, S has a normal subgroup P4 with
order p¢ such that C < P4 < P. By Step 4, it follows that P4 is noncyclic, and
thus P4 € I1p(G). By Step 3, we see that [G/C : Ng;c(P4/C)] is a p-number.
Hence G/C = Ng/c(P4/C)S/C. Recall that P, < S. Hence P4/C < G/C,
and thus P4 < G. Note that C < P4 < P and P/C is a chief factor of G. This is
a contradiction. Hence |C| > p°.

SteEP 6. THE FINAL CONTRADICTION. Since C, P < S and C < P, S has
a normal subgroup C; such that C < C; < P and |C;/C| = p. For any
x € C1\C, by |C;/C| = p, it follows that C; = (x)C. By Step 4, we see that
|(x)| < p2. By Step 5, it follows that |(x)| < p? < p® < |C| < |(x)C| = |C}].
Hence P has a subgroup Ps with order p¢ such that (x) < Ps < Cj. Hence
C1 = PsC. By Step 4, we see that P5 is noncyclic, and thus Ps € I1p(G).
Hence [G/C : Ng/c(C1/C)] = [G/C : Ng/c(PsC/C)]is a p-number. Hence
G/C = Ng/c(C1/C)S/C.Recall that C; < §. Hence C;/C < G/C, and thus
C1 < G. Note that C < C; < P and P/C is a chief factor of G. Then P = (1,
and thus |P/C| = p.Hence P/C is centralized by B. By Corollary 3.28 of [5], it
follows that P is centralized by B, i.e., P < C. This is the final contradiction. [

Mimic the proof of Theorem 3.5, we can prove the following two results.

THEOREM 3.6. Let p be a prime dividing the order of a finite group G and
1 < P < G be a p-subgroup with |P| > p3 and P is noncyclic. Suppose that for
any subgroup Py of P with order p?, Py € T1p(G). Then every chief factor of G
below P is cyclic.

THEOREM 3.7. Let p be a prime dividing the order of a finite group G and 1 <
P < G be a p-subgroup with P is noncyclic. Suppose that for any P; € 1L1(P),
Py € 1 p(G). Then every chief factor of G below P is cyclic.
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THeoOREM 3.8. Let G be a finite group, M < G with p is a prime divisor of
|M|, e > 3 be an integer, and P € Syl,(M) with |P| > p**! and P is noncyclic.
Suppose that for any noncyclic subgroup Py of P with order p¢ (by Lemma 2.3(1),
P has such a subgroup), Py € Iy (G). Then every p-chief factor of G below M
is cyclic.

Proor. Suppose that M is a counterexample with minimal order and we work
in the following steps to obtain a contradiction. Then M, é” > 1. Let S € Syl (G)
suchthat P < S.LetQ ={H < M, H < G | M/H is a chief factor of G}. Since
1 < M <G, we see that 2 is not empty.

SteP 1. Oy (M) = 1 AND OP (M) = M. Assume that O, (M) > 1 and we
work to obtain a contradiction. Consider G/ O,/ (M). It is not very difficult to see
that the hypotheses are inherited by M/O, (M ). By induction, we see that every
p-chief factor of G/ O, (M) below M/O, (M) is cyclic, and thus every p-chief
factor of G below M is cyclic. This is a contradiction.

Assume that O (M) < M and we work to obtain a contradiction. It is not
very difficult to see that the hypotheses are inherited by O?'(M). By induction,
we see that every p-chief factor of G below O (M) is cyclic, and thus every
p-chief factor of G below M is cyclic. This is a contradiction.

Step 2. For aNY H € Q, H 1s p-sorvaBLE. If P N H is noncyclic and
|P N H| > p¢Tl, itis not very difficult to see that the hypotheses are inherited
by H. By induction, we see that every p-chief factor of G below H is cyclic. In
particular, H is p-solvable.

If PN H isnoncyclicand |P N H| < p¢. Notethat |P N H| < p¢ < |P|. Then
P has a subgroup P; with order p¢ suchthat P N H < P; < P.Since P N H
is noncyclic, it follows that P; is noncyclic, and thus P; € I1ps(G). For any chief
factor K/L of G below H, (P1 N K)L/L = (P N K)L/L € Syl,(K/L). Hence
[G/L : Ng/.((P N K)L/L)]is a p-number. Hence [K/L : Nx,.((P N K)L/L)]
is a p-number, and thus (P N K)L/L < K/L. Hence K/L is p-solvable. Then
H is p-solvable.

Assume that P N H is cyclic. It is no loss to assume that H > 1. Let N > 1
be a minimal normal subgroup of G that is contained in H. By Step 1, we have
P NN > 1. We claim that P has a noncyclic subgroup P; with order p® such that
(PN N)N P; > 1. Note thate > 3 and |P| > p**t! > p¢. By Lemma 2.3(1),
P has a noncyclic subgroup N; with order p¢. Assume that (P N N) N Ny > 1.
Let Py = Nj. Then P; is a noncyclic subgroup of P with order p¢ such that
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(PN N)N P; > 1. Assume that (P N N) N N; = 1. Let Z; be the subgroup
of P N N > 1 with order p. Since P N N is cyclic, we see that Z; < P, and
thus Z; < Z(P). Note that N; > 1. Let Z, be a maximal subgroup of N;. Then
|Z5| = p¢~! > p2. Note that [Z;, Z,] = 1. From (P N N) N N; = 1, we see that
Z1NZ, =1.Let Py = Z; x Z,. Then P; is anoncyclic subgroup of P with order
p¢and (PNN)N Py = Z; > 1. Let P; be anoncyclic subgroup of P with order
p¢ such that (P N N) N P; > 1. Note that N < M and N is a minimal normal
subgroup of G. Then [G : Ng(P1NN)]isa p-number. Hence G = Ng(P1NN)S,
and thus 1 < (P; N N)¢ < S is a p-subgroup. By Lemma 2.5, we see that H is
p-supersolvable.

Step 3. FOR ANY NONCYCLIC SUBGROUP P; OF P WITH ORDER p¢, PC 1s
p-SOLVABLE. Let H € Q. We consider G = G/H. Since P; € I (G) and
M/H is a chief factor of G, we have that [G : Ng (Py)] is a p-number. Then
G = Ng(P1)S. Hence PG = (P1)C < § is a p-subgroup. By Step 2, it follows
that P is p-solvable.

Step 4. Let A = {P; < P | P; is a noncyclic subgroup with order p¢} (by
Lemma 2.3(1), A is not empty). Let

w=[]r°.

PieA

Then W is nota p-subgroup and |O,(W)| < p®.

By Step 3, we see that W is p-solvable and |W| > p¢. Note that W < M and
W < G. By Step 1, it follows that O,/ (W) = 1. Recall that W > 1 and W is
p-solvable. Hence O, (W) > 1.

Assume that W is a p-subgroup and we work to obtain a contradiction. We
claim that W is centralized by O?(M). If W is a cyclic p-subgroup, it is not very
difficult to see that W is centralized by O?(G). By Step 1, we have M; = M, and
thus W is centralized by O?(M). If W is a noncyclic p-subgoup and |W| > p¢*!,
by Theorem 3.5, W is centralized by O”(G), and thus W is centralized by
OP(M).If W is anoncyclic p-subgroup and |W| < p¢, since |W| > p¢, it follows
that |W| = p®. Hence W is the unique noncyclic subgroup of P with order p¢.
Recall that e > 3 and |P| > p®*!, by Lemma 2.3(2), we see that W is abelian
and W has a cyclic maximal subgroup. Recall that |W| = p¢ > p2. We see that
W is neither elementary abelian of order p? nor isomorphic to Qg, and thus W is
centralized by O?(G). Then W is centralized by O? (M ). Now we claim that for
any subgroup X of P with | X| < p¢,wehave X < W.Let X < P with |X| < p°.
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Then | X| < p¢ < |W]| < |[WX]|. Hence there exists Y < P suchthat |Y| = p€ and
X <Y <WX.ThenY = (Y N W)X.If Y is cyclic, since X < Y, we see that
Y=YNW<W,andthus X <Y < W.IfY isnoncyclic,then X <Y < W.
Recall that e > 3. Then for any x € P such that the order of x divides p?, we
have (x) < W. Hence (x) is centralized by O? (M ). By Frobenius’ Theorem (see
Theorem 5.26 of [5]) and Satz IV.5.12 of [4], it follows that M is p-nilpotent. By
Step 1, we have M = P. By Theorem 3.5, it follows that every p-chief factor of
G below M = P is cyclic. This is a contradiction.

Assume that |0, (W)| > p**! and we work to obtain a contradiction. If O, (W)
is cyclic, we see that O, (W) is centralized by O?(G,). If Op(W) is noncyclic,
by Theorem 3.5, we see that Op(W) is centralized by O?(G,). Hence O, (W)
is centralized by O? (M), and thus O, (W) is centralized by O”(W). Since W is
p-solvable and O,/ (W) = 1, by Hall-Higman’s Lemma (see Theorem 3.21 of [5]),
we see that O (W) < Cw(0,(W)) < Op(W). Hence OP(W) = 1,ie., Wisa
p-subgroup. This is a contradiction.

Step 5. Let Op, (W) be the subgroup such that O,(W) < O, /(W) and
Op,py(W)/Op,(W) = Op(W/Op(W)).Let R = OP(Op,,y(W)). Then R = VxK
with V' > 1 is the normal Sylow p-subgroup of R, |V| < p®and K > lisa
Hall p’-subgroup of R.

By Step 4, we see that O, (W) < W.Recall that W is p-solvable and O, (W) <
W, we see that O,(W) < Op ,(W). Let K > 1 be a Hall p’-subgroup of
Op,py(W). Then Op (W) = Op,(W) x K. Let V. = Op(W) N R. Then V is
the normal Sylow p-subgroup of R and R = V x K. By Step 4, we see that
V| < |0,(W)| < p®. Since Op(M) = 1 (Step 1) and O, /(W) is not a p-
subgroup, it follows that O, /(W) is not p-nilpotent, i.e., R is not a p’-subgroup.
Hence V > 1.

STEP 6. THE FINAL CONTRADICTION. Let V3 < V be a normal subgroup of
G such that V/V; is a chief factor of G. Since R = O?(0,,,,(W)), we have
OP(R) = R, and thus R/V; is not p-nilpotent. For any noncyclic subgroup P;
of P with order p¢, we have P; € I13/(G). Note that VV/V; is a chief factor of G
below M. Then [G/V; : Ng;v,((P1 N V)Vi/V1)]is a p-number. By Lemma 2.6,
we see that [V/ V1| = p. Hence V/ V1 is centralized by G ;. By Step 1, we see that
M, = M. Hence V/V; is centralized by M, and thus V/V; is centralized by R.
Hence V/ Vi < Z(R/V1). By Burnside’s Theorem (see Theorem 5.13 of [5]), it
follows that R/ V7 is p-nilpotent. Recall that R/ V; is not p-nilpotent. This is the
final contradiction. O
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Mimic the proof of Theorem 3.8, we can prove the following two results.

THEOREM 3.9. Let G be a finite group, M <\ G with p is a prime divisor of
|M|, and P € Syl,(M) with |P| > p3 and P is noncyclic. Suppose that for any
subgroup Py of P with order p?, Py € Tl (G). Then every p-chief factor of G
below M is cyclic.

TueoreM 3.10. Let G be a finite group, M < G with p is a prime divisor of
|M|, and P € Syl,(M) with P is noncyclic. Suppose that for any Py € L(P),
Py € Ty (G). Then every p-chief factor of G below M is cyclic.

Proor or THEOREM 1.12. Suppose that M is a counterexample with minimal
order and we work in the following steps to obtain a contradiction. Then M, ép > 1.

StEP 1. Op (M) = 1. Assume that O, (M) > 1 and we work to obtain a con-
tradiction. Consider G/ O,/ (M). It is not very difficult to see that the hypotheses
are inherited by M/O, (M). By induction, we see that every p-chief factor of
G/Oy (M) below M/O, (M) is cyclic, and thus every p-chief factor of G below
M is cyclic. This is a contradiction.

Step 2. P N M;” 1s NoncycLic. Assume that P N M7 is cyclic, by Theo-
rem 3.1 and Theorem 3.2, we see that every p-chief factor of G below M is cyclic.
This is a contradiction.

STEP 3. M” 1S A MINIMAL NORMAL SUBGROUP OF G AND M’ IS AN ELE-
MENTARY ABELIAN p-GROUP. At first, we work to prove that Mc*;p is p-solvable.
Since [P N M2p| < p¢ < |P|, P has a normal subgroup P; with order p®
such that P N MZ” < Py < P.Then Py N MZ” = P N M". By Step 2,
we see that P; is noncyclic. Then P; € I1 MEP (G). For any chief factor K/L of
G below Mép, we have (P1 N K)L/L = (P N K)L/L € Syl,(K/L). Hence
[G/L : Ng/.((P N K)L/L)]is a p-number. Then [K/L : Nk, ((P N K)L/L)]
is a p-number, and thus (P N K)L/L < K/L. Hence K/L is p-solvable. Then
MG? is p-solvable.

Let N > 1 be a minimal normal subgroup of G that is contained in M ép .
Since Mép > 11is p-solvable and O,/ (M) = 1, we see that N is an elementary
abelian p-subgroup. Let |[N| = p/. Then 1 < f < e. Consider G = G/N.
Then [P| > p*~/*land [P N M| = [P M| < p*/ If PN MG is
cyclic, since Mép is p-solvable, it follows that M ép is p-supersolvable. Then
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every p-chief factor of G below M gp is cyclic. Hence every p-chief factor of

G below M is cyclic, and thus M;” < N.If PN MZ” is noncyclic, then
e— f > 2. For any normal noncyclic subgroup P, (N < P) of P with order p°~/
(P has such a subgroup), we have | P,| = p¢, P, < P and P, is noncyclic. Then
P, eIl ML (G). It is not very difficult to see that P, € II Mz (G). Hence the

hypotheses are inherited by M. By induction, we see that every p-chief factor of
G below M is cyclic, and thus M” < N.Recall that N < M;”. Then MiP = N
is a minimal normal subgroup of G.

Step 4. [M;”| > p?. Assume that [M;”| < p%. By Step 3, it follows that
|Mé” | = p. Hence every p-chief factor of G below M is cyclic. This is a
contradiction.

Step5. P 4 G. Let T/MGP = Op(M/MG"), where Mi? <T < M.Let K
be a Hall p’-subgroup of 7. We claim that K = 1,i.e., Op (M/MC*;”) = 1. Assume
that K > 1 and we work to obtain a contradiction. By Step 1 and K > 1, we see
that 7 is not p-nilpotent. Recall that M;p is a minimal normal subgroup of G
and M, C*;p is an elementary abelian p-subgroup (Step 3). By Lemma 2.6, it follows
that [M;”| = p. This contradicts to Step 4. Hence O, (M/Mg”) = 1. Note that
M/MZ" is p-supersolvable. Hence M/ M is p-solvable with p-length 1. Since
Oy (M/MZ") =1, we see that P/M;” < G/M;”, and thus P < G.

STEP 6. THE FINAL CONTRADICTION. Since Mép , P < G(Step 5), |M(*;p | <
p¢ < p®t! < |P| and every chief factor of G/Mg" below P/M;” is cyclic,
we see that P has a subgroup U with order p®*! such that M < U < P and
U < G.1tis not very difficult to see that Us” = Pg? = MgP.

We claim that M5 N ®(P) = 1. Assume that M ;" N ®(P) > 1 and we work
to obtain a contradiction. Since M, é” is a minimal normal subgroup of G, we see
that M;” < ®(P). Since every chief factor of G/ Mz below P/M.” is cyclic, by
Corollary 3.28 of [5], P/ M(*;p is centralized by O (G ). By Corollary 3.29 of [5],
we see that P is centralized by O?(G,). By Lemma 2.8, we see that every chief
factor of G below P is cyclic, and thus M, ép = Pé” = 1. This is a contradiction.

Let S € Syl,(G). Then P < S. Note that 1 < M;” < S. Then M” has
a maximal subgroup N; such that N; < S. By Lemma 2.7, P has a maximal
subgroup P; such that Ny = P1 N Mép . Note that [U : U N Pq] divides p. It is
not very difficult to see that U N Py is a maximal subgroup of U (otherwise, we
have U N Py = U, and thus Py N MG = (PyNU) N Mg = Mg” > Ny. This
is a contradiction). Hence U N P; is a normal subgroup of P with order p¢ and
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(UNP)NMG? = Ni. If UN Py is noncyclic, then U N Py € 17 (G). Hence
[G : Ng(N1)] is a p-number, and thus G = Ng(N1)S. Recall that N; < §. Then
N; < G.Recall that M (*;p is aminimal normal subgroup of G and N; is a maximal
subgroup of M;”. Then Ny = 1 and |[M;”| = p. This contradicts to Step 4. If
U N Py is cyclic, then U has a cyclic maximal subgroup. Since e > 2, we see that
|U| = p¢*1 > p3.By Step 4, it follows that U5” = M” is an elementary abelian
p-subgroup with order exceeding p. Note that Qg has exactly one subgroup with
order 2. Hence U is neither elementary abelian of order p? nor isomorphic to Qs.
By Lemma 2.1, we see that U is centralized by O?(G,). By Lemma 2.8, we see
that every chief factor of G below U is cyclic, and thus M;” = U;” = 1. This is
the final contradiction. O

Theorem 1.12 has the following three corollaries.

CoroLLARY 3.11. Let G be a finite group, M < G, p be a prime divisor
of IM| and P € Syl,(M). Suppose that for any maximal subgroup Py of P,
P, € HMg” (G). If PN Mép < P, then every p-chief factor of G below M
is cyclic.

CoroLLARY 3.12. Let G be a finite group, M < G, p be a prime divisor of
|M|, e be an integer, and P € Syl,(M) with |P| > p¢TL. Suppose that for any
normal subgroup Py of P with order p¢, P, € HMgl’ (G). If [P N Mép| < p¢,
then every p-chief factor of G below M is cyclic.

CoroLLARY 3.13. Let G be a finite group, M < G, p be a prime divisor of
|M|, e > 2 be an integer, and P € Syl,(M) with |P| > p¢TL. Suppose that for
any normal noncyclic subgroup Py of P with order p¢ (if P has such a subgroup),
P, e HMg" (G). If|P N M§p| < p¢, then every p-chief factor of G below M is
cyclic.

Proor oF THEOREM 1.13. By Theorem 3.1, it follows that every 2-chief fac-
tor of G below X is cyclic. Hence every 2-chief factor of G below F)'(M)
is cyclic. In particular, F;'(M) is 2-nilpotent. Recall that O (M) < F;(M)
and F(M)/0x(M) = F*(M/Ox(M)). It is not very difficult to see that
F*(M/Oy(M)) is a 2-subgroup. Then every chief factor of G/ O, (M) below
F*(M/Oy(M)) is cyclic. By Lemma 2.10, it follows that every chief factor of
G/ Oy (M) below M/Oy (M) is cyclic. This completes the proof. O



On generalized TT-property of subgroups of finite groups 255

Proor oF THEOREM 1.14. By Theorem 3.3, it follows that every p-chief fac-
tor of G below X is cyclic. Hence every p-chief factor of G below F; (M) is
cyclic. In particular, 7 (M) is p-supersovable. Recall that Op (M) < F,; (M) and
Fy(M)/Op(M) = F*(M/Op(M)). Hence every p-chief factor of G/Op (M)
below F*(M/O,(M)) is cyclic. Since M/O, (M) is a normal subgroup of
G/Oy (M), F*(M/O,(M)) is p-solvable, O, (M/O,(M)) = 1 and every p-
chief factor of G/O, (M) below F*(M/O,(M)) is cyclic, by Lemma 2.11, it
follows that every chief factor of G/O, (M) below M/O, (M) is cyclic. This
completes the proof. |

Proor oF THEOREM 1.15. At first, we work to prove that every p-chief factor
of G below X is cyclic. If [P N X5”| < p® or P N X5 is cyclic, by Theorem 1.12,
it follows that every p-chief factor of G below X is cyclic. If [P N X 57| > p !
and P N X, é” is noncyclic, by Theorem 3.8, we see that every p-chief factor of G
below X, 2” is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every
chief factor of G/ O, (M) below M/O, (M) is cyclic. O

Proor oF THEOREM 1.16. At first, we work to prove that every p-chief factor
of G below X is cyclic. If [P N X5”| < p? or P N X" is cyclic, by Theorem 1.12,
it follows that every p-chief factor of G below X is cyclic. If [P N X;”| > p3
and PN X 2” is noncyclic, by Theorem 3.9, we see that every p-chief factor of G
below X, 2” is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every
chief factor of G/ O, (M) below M/O, (M) is cyclic. O

Proor oF THEOREM 1.17. At first, we work to prove that every p-chief factor
of G below X is cyclic. If P N X 2‘;” = 1, it is not very difficult to see that every
p-chief factor of G below X is cyclic. If P N X é" > 1 is cyclic, by Theorem 3.1
and Theorem 3.3, we see that every p-chief factor of G below X E‘;p is cyclic, and
thus every p-chief factor of G below X is cyclic. If P N X é” > 1 is noncyclic,
by Theorem 3.10, we see that every p-chief factor of G below X, 2‘;” is cyclic, and
thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every
chief factor of G/ O, (M) below M/O, (M) is cyclic. O

Acknowledgment. The author thanks the referee who provided his/her valuable
suggestions.



256 H. Yu
REFERENCES

[1] Y. BErkovicH — I. M. IsaAcs, p-supersolvability and actions on p-groups stabilizing
certain subgroups, J. Algebra 414 (2014), pp. 82-94.

[2] Z. M. CHEN, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. 12(1)
(1987), pp. 1-4.

[3] X. Guo - B. ZHANG, Conditions on p-subgroups implying p-supersolvability, J.
Algebra Appl. 16 (2017), no. 10, 1750196, 9 pp.

[4] B. Huppert, Endliche Gruppen 1., Grundlehren der Mathematischen Wis-
senschaften 134, Springer-Verlag, Berlin etc., 1967.

[5] 1. M. Isaacs, Finite group theory, Graduate Studies in Mathematics 92. American
Mathematical Society, Providence, R.I., 2008.

[6] 1. M. Isaacs, Semipermutable w-subgroups, Arch. Math. (Basel) 102 (2014), no. 1,
pp. 1-6.

[7]1 O. H. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78
(1962), pp. 205-221.

[8] B.Li, On I-property and I1-normality of subgroups of finite groups, J. Algebra 334
(2011), pp. 321-337.

[9] Y. L1 - L. Miao, p-Hypercyclically embedding and T1-property of subgroups of finite
groups, Comm. Algebra 45 (2017), no. 8, pp. 3468-3474.

[10] L.Mr1ao — A. BALLESTER-BoLINCHES — R. EsTEBAN-ROMERO — Y. L1, On the super-
soluble hypercentre of a finite group, Monatsh. Math. 184 (2017), no. 4, pp. 641-648.

[11] A. N. SkiBa, A characterization of the hypercyclically embedded subgroups of finite
groups, J. Pure Appl. Algebra 215 (2011), no. 3, pp. 257-261.

[12] N.Su - Y. L1 — Y. WaNGg, A criterion of p-hypercyclically embedded subgroups of
finite groups, J. Algebra 400 (2014), pp. 82-93.

Manoscritto pervenuto in redazione il 20 agosto 2017.



	Introduction
	Preliminaries
	Main Results
	Acknowledgment
	References

