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On generalized …-property of subgroups of finite groups
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Abstract – In this note, we extend the concept of …-property of subgroups of finite

groups and generalize some recent results. In particular, we generalize the main re-

sults of Li and Miao, p-Hypercyclically embedding and …-property of subgroups of

finite groups, Comm. Algebra 45 (2017), no. 8, pp. 3468–3474. and Miao, Ballester-

Bolinches, Esteban-Romero, and Li, On the supersoluble hypercentre of a finite group,

Monatsh. Math. 184 (2017), no. 4, pp. 641–648.
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1. Introduction

Suppose that G is a finite group and p is a prime. Let �.G/ be the set of all the

prime divisors of jGj. Let Op.G/ D
T

¹N j N E G and G=N is a p-groupº.

To state our results, we need to recall some notation. According to Kegel (see [7]),

let H be a subgroup of a finite group G; then H is called an S -permutable

subgroup of G if H permutes with every Sylow subgroup of G. According to

Chen (see [2]), let H be a subgroup of a finite group G; then H is said to be

S -semipermutable in G if HQ D QH for all Sylow q-subgroups Q of G for

all primes q not dividing jH j. Recently, in [8], Li introduced the concept of

…-property and …-normality of subgroups of finite groups. Let H be a subgroup

of a finite group G. We say that H satisfies …-property in G if, for any chief fac-

tor K=L of G, ŒG=L W NG=L..H \ K/L=L/� is a �..H \K/L=L/-number; we say

that H is …-normal in G if there exist a subnormal subgroup T of G and a sub-

group I of G satisfying …-property in G such that G D HT and H \T � I � H .
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It is not very difficult to prove that an S -semipermutable p-subgroup of a finite

group G satisfies …-property in G (see Lemma 2.9).

Following Berkovich and Isaacs (see [1]), if G is a finite group and p is a prime

divisor of jGj, we write G�
p to denote the unique smallest normal subgroup of G

for which the corresponding factor group is abelian of exponent dividing p � 1.

It is well known that G is p-supersolvable if and only if G�
p is p-nilpotent (see

Lemma 3:6 of [1]).

In 2014, Berkovich and Isaacs proved the following theorem.

Theorem 1.1 (Berkovich and Isaacs). Let p be a prime dividing the order of

a finite group G and P 2 Sylp.G/.

(a) [1, Lemma 3.8] If P is cyclic and some nonidentity subgroup U � P is

S -semipermutable in G, then G is p-supersolvable.

(b) [1, Theorem D] Fix an integer e � 3. If P is a noncyclic p-group with

jP j � peC1 and every noncyclic subgroup of P with order pe is S -semiper-

mutable in G, then G is p-supersolvable.

(c) [1, Corollary E] If P is a noncyclic p-group with jP j � p3 and every sub-

group of P with order p2 is S -semipermutable in G, then G is p-supersolv-

able.

In 2017, Li and Miao [9] proved the following theorem.

Theorem 1.2. Let G be a finite group, M a normal subgroup of G, p a

prime divisor of jM j, X a normal subgroup of G with F �
p .M/ � X � M and

P 2 Sylp.X/. Then every p-chief factor of G below M is cyclic if and only if P

has a subgroup D such that 1 < jDj � max¹p; jP j=pº and for any subgroup H

of P with order jDj (if P is a non-abelian 2-group and jDj D 2, also for any

cyclic subgroup H of P with order 4), H \ Op.G/ satisfies …-property in G.

Here, as usual, F �
p .M/ is the generalized p-Fitting subgroup of M , i.e., F �

p .M/

is the normal subgroup of M such that Op0 .M/ � F �
p .M/ and F �

p .M/=Op0 .M/ D

F �.M=Op0.M// (see [12]).

In this note, we extend the concept of …-property and …-normality of sub-

groups of finite groups and generalize the above results. At first, we introduce the

following definition.

Definition 1.3. Let p be a prime dividing the order of a finite group G and

M E G. Let M
�p
G D

T
¹N � M and N E G j every p-chief factor of G=N

below M=N is cyclicº. It is not very difficult to see that every p-chief factor of

G=M
�p
G below M=M

�p
G is cyclic. And we have M

�p
M � M

�p
G � M \ G

�p
G .
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It is not very difficult to prove that M
�p
G D Op0

.ŒM �
p ; Op.G�

p /�Op.M �
p //.

In particular, if M is a p-subgroup, then M
�p
G D ŒM; Op.G�

p /�.

Example 1.4. Let G D A4 and M be the Sylow 2-subgroup of G. It is not

very difficult to see that M �2
M D 1 and M �2

G D M . Then M �2
M < M �2

G .

Example 1.5. Let G D Q8 Ì Z3 and M be the unique subgroup of G with

order 2. It is not very difficult to see that M �2
G D 1 and G�2

G D Q8. Then

M �2
G D 1 < M D M \ G�2

G .

Now we introduce the following definition.

Definition 1.6. Let G be a finite group, M E G and H � G. If for

any chief factor K=L of G below M , we have ŒG=L W NG=L..H \ K/L=L/� is

a �..H \ K/L=L/-number, then we say that H satisfies …-property in G with

respect to M . Let

…M .G/ D ¹H � G j H satisfies …-property in G with respect to M º:

It is not very difficult to prove that H satisfies …-property in G with respect to

M if and only if H \ M satisfies …-property in G.

Remark 1.7. Let N � M be normal subgroups of a finite group G. It is not

very difficult to see that …M .G/ � …N .G/.

Remark 1.8. There exists a finite group G with p is a prime divisor of jGj

such that G has a p-subgroup P1 with P1 2 …G
�p
G

.G/, but P1 … …Op.G/.G/. See

the following example.

Example 1.9. Let p D 5 and G D ha; b; d j a5 D b5 D d 3 D 1; Œa; b� D 1,

d �1ad D b; d �1bd D a�1b�1i � hc; f j c5 D f 2 D 1; f �1cf D c�1i Š

..Z5 �Z5/ÌZ3/�D10. By Fitting’s Theorem (see Theorem 4:34 of [5]), it follows

that G
�p
G D hai � hbi and Op.G/ D G. Let P1 D haci. Then P1 \ G

�p
G D 1, and

thus P1 2 …G
�p
G

.G/. Since hai µ G, it follows that P1 … …Op.G/.G/.

Remark 1.10. There exists a finite group G with M E G and p is a prime

divisor of jM j such that M has a p-subgroup P1 with P1 2 …M
�p
G

.G/, but

P1 … …G
�p
G

.G/. See the following example.
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Example 1.11. Let p D 5. Consider P D ha; b; c j a5 D b5 D c5 D 1,

Œa; b� D Œa; c� D 1, c�1bc D abi. Then jP j D p3 and ˆ.P / D hai. There

exists d 2 Aut.P / such that ad D a; bd D c�1b�1 and cd D ab. In Aut.P /,

we have ı.d/ D 3. Consider the semidirect product G1 D P Ì hd i. Consider

G2 D hf; g; h j f 5 D g5 D h3 D 1; Œf; g� D 1; h�1f h D g; h�1gh D f �1g�1i.

Let G D G1 � G2, M D hai � hf i � hgi and P1 D haf i. It is not very difficult to

see that M E G. Note that G�
p D G. By Fitting’s Theorem, it is not very difficult

to prove that Op.G�
p / D G. Hence G

�p
G D P � hf i � hgi. It is not very difficult to

see that M
�p
G D hf i � hgi. Since P1 \ M

�p
G D 1, it follows that P1 2 …M

�p
G

.G/.

Since hf i µ G, we see that P1 … …G
�p
G

.G/.

Let p be a prime and P be a nonidentity p-group with jP j D pn. We define

the set L1.P /. If p D 2 and P is non-abelian, let L1.P / D ¹P1 j P1 � P and

jP1j D 2º [ ¹P2 j P2 � P and P2 is a cyclic subgroup of order 4º. Otherwise, let

L1.P / D ¹P1 j P1 � P and jP1j D pº.

In this note, we prove the following result.

Theorem 1.12. Let G be a finite group, M E G, p be a prime divisor of jM j,

e � 2 be an integer, and P 2 Sylp.M/ with jP j � peC1 and P is noncyclic.

Suppose that for any normal noncyclic subgroup P1 of P with order pe (if P has

such a subgroup), P1 2 …M
�p
G

.G/. If jP \M
�p
G j � pe or P \M

�p
G is cyclic, then

every p-chief factor of G below M is cyclic.

By Theorem 1.12, we obtain the following results.

Theorem 1.13. Let G be a finite group and X � M be normal subgroups of G

with F �
2 .M/ � X � M . Suppose that X�2

G has a cyclic Sylow 2-subgroup. Then

every chief factor of G=O20.M/ below M=O20.M/ is cyclic. In particular, every

2-chief factor of G below M is cyclic.

Theorem 1.14. Let G be a finite group, X � M be normal subgroups of G

with p > 2 is a prime divisor of jM j and F �
p .M/ � X � M , and P 2 Sylp.X/.

Suppose that P is cyclic and there exists 1 < P1 � P such that P1 2 …X
�p
G

.G/.

Then every chief factor of G=Op0 .M/ below M=Op0.M/ is cyclic. In particular,

every p-chief factor of G below M is cyclic.
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Theorem 1.15. Let G be a finite group, X � M be normal subgroups of G

with p is a prime divisor of jM j and F �
p .M/ � X � M , e � 3 be an integer,

and P 2 Sylp.X/ with jP j � peC1 and P is noncyclic. Suppose that for any

noncyclic subgroup P1 of P with order pe, P1 2 …X
�p
G

.G/. Then every chief

factor of G=Op0 .M/ below M=Op0.M/ is cyclic. In particular, every p-chief factor

of G below M is cyclic.

Theorem 1.16. Let G be a finite group, X � M be normal subgroups of G

with p is a prime divisor of jM j and F �
p .M/ � X � M , and P 2 Sylp.X/ with

jP j � p3 and P is noncyclic. Suppose that for any subgroup P1 of P with order

p2, P1 2 …X
�p
G

.G/. Then every chief factor of G=Op0 .M/ below M=Op0 .M/ is

cyclic. In particular, every p-chief factor of G below M is cyclic.

Theorem 1.17. Let G be a finite group, X � M be normal subgroups of G

with p is a prime divisor of jM j and F �
p .M/ � X � M , and P 2 Sylp.X/ with P

is noncyclic. Suppose that for any subgroup P1 2 L1.P /, P1 2 …X
�p
G

.G/. Then

every chief factor of G=Op0.M/ below M=Op0.M/ is cyclic. In particular, every

p-chief factor of G below M is cyclic.

We mention that Theorem 1.12–1.17 generalize the main results of [1], [3], [9],

[10], and [12].

2. Preliminaries

Lemma 2.1 ([1, Lemma 2.1.b/]). Let p be a prime and P be a nonidentity finite

p-group. Let A act on P via automorphisms. Assume that P has a cyclic maximal

subgroup, and P is neither elementary abelian of order p2 nor isomorphic to Q8.

Then Op.A�
p/ acts trivially on P .

Lemma 2.2 ([1, Lemma 2.2]). Let S be a p-group for some odd prime p, e � 2

be an integer and P E S with jP j � pe. Suppose that every normal subgroup of

S that has order pe and is contained in P is cyclic. Then P is cyclic.

Lemma 2.3 ([1, Lemma 2.3]). Fix an integer e � 3, and let S be a p-group

with jS j > pe. The following then hold.

(1) If every subgroup of order pe in S is cyclic, then S is cyclic.

(2) If S has exactly one noncyclic subgroup P with order pe, then P is abelian

and has a cyclic maximal subgroup.

By Problem 5C.12 of [5], we have the following lemma.
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Lemma 2.4. Let p be a prime dividing the order of a finite group G, P 2

Sylp.G/ and N E G. Assume that P is cyclic and P \ N < P . Then N is

p-nilpotent.

Lemma 2.5. Let p be a prime dividing the order of a finite group G and

P 2 Sylp.G/. Suppose that P is cyclic and there exists 1 < H � P such that

H G is p-solvable. Then G is p-supersolvable.

Proof. It is no loss to assume that Op0.G/ D 1 and P — H G . By Lemma 2.4,

it follows that H G is p-nilpotent, and thus H > 1 is a normal p-subgroup of G.

Hence CP .G�
p / > 1. Note that P is a cyclic p-subgroup, by Fitting’s Theorem, it

is not very difficult to see that G�
p is p-nilpotent, i.e., G is p-supersolvable. �

Lemma 2.6. Let p be a prime dividing the order of a finite group G, e be an

integer, N < M be normal subgroups of G, S 2 Sylp.G/, P D S \ M , and

N D V Ì K with V > 1 is the normal Sylow p-subgroup of N and K > 1 is

a Hall p0-subgroup of N . Assume that jP j � peC1 and jV j � pe. Let V1 < V

such that V1 E G and V=V1 is a chief factor of G. Suppose that for any normal

noncyclic subgroup P1 of S that has order pe and is contained in P (if S has

such a subgroup), ŒG=V1 W NG=V1
..P1 \ V /V1=V1/� is a p-number. If N=V1 is not

p-nilpotent, then jV=V1j D p.

Proof. Consider xG D G=V1. By Frattini’s argument, It follows that xG D

N xG. xK/ xV . Hence xSDN xS. xK/ xV . Since xN is not p-nilpotent, we see that N xS . xK/< xS .

Hence S has a maximal subgroup T such that V1 � T and N xS . xK/ � xT .

Hence xS D xT xV and xT D N xS . xK/V \ T . It is not very difficult to see that

Œ xV W V \ T � D Œ xS W xT � D p. Let jV1j D pf . Then f < e. Note that jV \ T j <

j xV j � pe�f � j xP j=p � jP \ T j and V , P \ T are normal subgroups of

S . Hence there exists V1 < P1 < S such that P1 E S , jP1j D pe�f and

V \ T < P1 � P \ T . Then V \ T D V \ P1 and jP1j D pe.

If P1 is noncyclic, then P1 is noncyclic, and thus P1 is a normal noncyclic

subgroup of S that has order pe and is contained in P . Hence Œ xG W N xG.V \ P1/�

is a p-number. Hence xG D N xG.V \ P1/ xS . Note that V \ T D V \ P1 E xS .

Then V \ T D V \ P1 E xG.

Assume that P1 is cyclic. Since xT D N xS . xK/V \ T and V \ T < P1, it follows

that P1 D NP1
. xK/V \ T . Hence P1 D NP1

. xK/. Hence V \ T D V \ P1 �

N xV . xK/ < xV . Since Œ xV W V \ T � D p, it follows that V \ T D N xV . xK/. Hence

V \ T E N xG. xK/. Note that V \ T E xV . Hence V \ T E N xG. xK/ xV D xG.

Since Œ xV W V \ T � D p and xV is a minimal normal subgroup of xG, it follows

that V \ T D 1. Hence j xV j D p. �
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Lemma 2.7. Let p be a prime and P be a nonidentity finite p-group. Let

1 < N � P be such that N \ ˆ.P / D 1. Then for any maximal subgroup N1 of

N , there exists a maximal subgroup T of P such that N1 D T \ N .

Proof. Consider xP D P=ˆ.P /. Since xP is an elementary abelian p-group,

there exists ˆ.P / � M � P such that xP D xN � xM . Hence M E P ,

P D .Nˆ.P //M D NM and .Nˆ.P // \ M D ˆ.P /. Hence N \ M �

.Nˆ.P // \ M D ˆ.P /, and thus N \ M D N \ ˆ.P / D 1. Since N > 1

and N \ M D 1, it follows that P=M D NM=M Š N > 1. Recall that N1 is

a maximal subgroup of N , it is not very difficult to see that N1M is a maximal

subgroup of P . Let T D N1M . Then N \ T D N1.N \ M/ D N1. �

Lemma 2.8 ([1, Lemma 3.6]). Suppose that a finite group G acts irreducibly

on an elementary abelian p-group V , and assume that Op.G�
p / acts trivially on

V . Then jV j D p.

Lemma 2.9. Let p be a prime dividing the order of a finite group G and H be

an S -semipermutable p-subgroup of G. Then H satisfies …-property in G.

Proof. Let K=L be a chief factor of G. Consider xG D G=L. We work to prove

that Op. xG/ normalizes H \ K. It is no loss to assume that H \ K > 1. Since

H is an S -semipermutable p-subgroup of G, it is not very difficult to see that

H \ K D xH \ xK is S -semipermutable in xG. By Theorem A of [6], it follows that

.H \ K/
xG is solvable. Recall that 1 < H \ K � xK and xK is a minimal normal

subgroup of xG. Hence xK D .H \ K/
xG is solvable. Then xK is a p-subgroup.

By Lemma 3.2 of [1], it follows that Op. xG/ normalizes H \ K. In particular,

Œ xG W N xG.H \ K/� is a p-number. By the definition of …-property of subgroups

of finite groups, we see that H satisfies …-property in G. �

Lemma 2.10 ([8, Theorem C]). Let G be a finite group and 1 < M E G.

Suppose that every chief factor of G below F �.M/ is cyclic. Then every chief

factor of G below M is cyclic.

Lemma 2.11. Let p be a prime dividing the order of a finite group G and

1 < M E G. Suppose that F �.M/ is p-solvable and Op0.M/ D 1. If every

p-chief factor of G below F �.M/ is cyclic, then every chief factor of G below M

is cyclic.
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Proof. Assume that there exists H EE M such that H=Z.H/ is a nonabelian

simple group and H 0 D H . Since H � F �.M/ and F �.M/ is p-solvable, it

follows that H=Z.H/ is p-solvable. Recall that H=Z.H/ is a nonabelian simple

group. Hence H=Z.H/ is a p0-group. Let P1 2 Sylp.H/. Since H=Z.H/ is a

p0-group, it follows that P1 � Z.H/. By Burnside’s Theorem (see Theorem 5.13

of [5]), it follows that H is p-nilpotent. Since H EE M and Op0.M/ D 1, we have

Op0 .H/ D 1. Hence H D P1 is a p-group. This is a contradiction since H=Z.H/

is a nonabelian simple group. Hence F �.M/ D F.M/. Recall that Op0.M/ D 1.

Then F �.M/ D Op.M/.

Since every p-chief factor of G below F �.M/ D Op.M/ is cyclic, it follows

that every chief factor of G below F �.M/ is cyclic. By Lemma 2.10, every chief

factor of G below M is cyclic. �

3. Main Results

Theorem 3.1. Let G be a finite group and M E G. Suppose that M �2
G has a

cyclic Sylow 2-subgroup. Then every 2-chief factor of G below M is cyclic.

Proof. Since M �2
G has a cyclic Sylow 2-subgroup, by Corollary 5.14 of [5],

it follows that M �2
G is 2-nilpotent. Hence every 2-chief factor of G below M �2

G is

cyclic, and thus every 2-chief factor of G below M is cyclic. �

Theorem 3.2. Let G be a finite group, M E G with p > 2 is a prime divisor of

jM j, S 2 Sylp.G/ and e � 2 be an integer. Let P D S \M . Assume that jP j � pe,

P is noncyclic and P \ M
�p
G is cyclic. Suppose that for any normal noncyclic

subgroup P1 of S that has order pe and is contained in P (by Lemma 2.2, we

see that S has such a subgroup), P1 2 …M
�p
G

.G/. Then every p-chief factor of G

below M is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work

to obtain a contradiction. Then M
�p
G > 1.

It is no loss to assume that Op0.M/ D 1. To see this, assume that Op0.M/ > 1

and we work to obtain a contradiction. Consider G=Op0.M/. It is not very difficult

to see that the hypotheses are inherited by M=Op0.M/. By induction, we see that

every p-chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic, and thus every

p-chief factor of G below M is cyclic. This is a contradiction.

Let N > 1 be a minimal normal subgroup of G that is contained in M
�p
G . Since

Op0 .M/ D 1, it follows that P \ N > 1. We claim that S has a normal noncyclic

subgroup P1 that has order pe and is contained in P such that .P \ N / \ P1 > 1.
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By Lemma 2.2, we see that S has a normal noncyclic subgroup N1 that has order

pe and is contained in P . Assume that .P \ N / \ N1 > 1. Let P1 D N1. Then

P1 is a normal noncyclic subgroup of S that has order pe and is contained in P

such that .P \ N / \ P1 > 1. Assume that .P \ N / \ N1 D 1. Let Z1 be the

subgroup of P \ N with order p. Since P \ N is cyclic, we see that Z1 E S .

Since N1 E S and N1 > 1, N1 has a maximal subgroup Z2 such that Z2 E S .

Then jZ2j D pe�1 � p. From .P \ N / \ N1 D 1, we see that Z1 \ Z2 D 1. Let

P1 D Z1 � Z2. Then P1 is a normal noncyclic subgroup of S that has order pe

and is contained in P such that .P \ N / \ P1 D Z1 > 1.

Let P1 be a normal noncyclic subgroup of S that has order pe and is contained

in P such that .P \ N / \ P1 > 1. Note that N is a minimal normal subgroup

of G. Since P1 2 …M
�p
G

.G/, we see that ŒG W NG.P1 \ N /� is a p-number. Hence

G D NG.P1 \ N /S . Note that P1 \ N E S . Hence 1 < P1 \ N E G. By

Lemma 2.5, it follows that M
�p
G is p-supersolvable. Hence every p-chief factor

of G below M
�p
G is cyclic, and thus every p-chief factor of G below M is cyclic.

This is a contradiction. �

Theorem 3.3. Let G be a finite group, M E G with p > 2 is a prime divisor

of jM j and P 2 Sylp.M/. Assume that P is cyclic and there exists 1 < P1 � P

such that P1 2 …M
�p
G

.G/. Then every p-chief factor of G below M is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work

to obtain a contradiction. Then M
�p
G > 1. Let S 2 Sylp.G/ such that P � S .

It is no loss to assume that Op0.M/ D 1. To see this, assume that Op0.M/ > 1

and we work to obtain a contradiction. Consider G=Op0.M/. It is not very difficult

to see that the hypotheses are inherited by M=Op0.M/. By induction, we see that

every p-chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic, and thus every

p-chief factor of G below M is cyclic. This is a contradiction.

Let N > 1 be a minimal normal subgroup of G that is contained in M
�p
G . Since

Op0 .M/ D 1, it follows that P \ N > 1. Note that P is a cyclic p-subgroup and

P \N , P1 are nontrivial subgroups of P . Hence P1\N D P1\.P \N / > 1. Since

1 < N � M
�p
G and N is a minimal normal subgroup of G, by P1 2 …M

�p
G

.G/, it

follows that ŒG W NG.P1 \ N /� is a p-number. Hence G D NG.P1 \ N /S . Note

that P1 \ N E S . Hence P1 \ N E G. By Lemma 2.5, it follows that M
�p
G is

p-supersolvable. Hence every p-chief factor of G below M
�p
G is cyclic, and thus

every p-chief factor of G below M is cyclic. This is a contradiction. �

Theorem 3.4. Let p be a prime dividing the order of a finite group G and

1 < P E G be a p-subgroup. Suppose that for any maximal subgroup P1 of P ,

P1 2 …P
�p
G

.G/. Then every chief factor of G below P is cyclic.
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Proof. Suppose that P is a counterexample with minimal order and we work

to obtain a contradiction. Then P
�p
G > 1. Let N > 1 be a minimal normal

subgroup of G that is contained in P
�p
G . We claim that N D P

�p
G . Assume that

N < P
�p
G and we work to obtain a contradiction. Consider G=N . It is not very

difficult to see that the hypotheses are inherited by P=N . By induction, it follows

that every chief factor of G=N below P=N is cyclic, and thus P
�p
G � N . This is

a contradiction. Hence P
�p
G D N is a minimal normal subgroup of G.

We claim that P
�p
G \ ˆ.P / D 1. Assume that P

�p
G \ ˆ.P / > 1 and we

work to obtain a contradiction. Since P
�p
G is a minimal normal subgroup of G,

we see that P
�p
G � ˆ.P /. Note that every chief factor of G=P

�p
G below P=P

�p
G

is cyclic, by Corollary 3.28 of [5], we see that P=P
�p
G is centralized by Op.G�

p /.

By Corollary 3.29 of [5], we see that P is centralized by Op.G�
p /. By Lemma 2.8,

it follows that every chief factor of G below P is cyclic. This is a contradiction.

Hence P
�p
G \ ˆ.P / D 1. Let S 2 Sylp.G/. Then P � S . Since 1 < P

�p
G E S ,

P
�p
G has a maximal subgroup N1 such that N1 E S . By Lemma 2.7, it fol-

lows that P has a maximal subgroup P1 such that N1 D P1 \ P
�p
G . Since

P
�p
G is a minimal normal subgroup of G and P1 2 …P

�p
G

.G/, it follows that

ŒG W NG.N1/� D ŒG W NG.P1 \ P
�p
G /� is a p-number. Hence G D NG.N1/S . Re-

call that N1 E S . Hence N1 E G. Since P
�p
G is a minimal normal subgroup of G

and ŒP
�p
G W N1� D p, we see that N1 D 1 and jP

�p
G j D p. Since every chief factor

of G=P
�p
G below P=P

�p
G is cyclic, it follows that every chief factor of G below P

is cyclic. This is a contradiction. �

Theorem 3.5. Let p be a prime dividing the order of a finite group G, e � 3 be

an integer, and 1 < P E G be a p-subgroup with jP j � peC1 and P is noncyclic.

Suppose that for any noncyclic subgroup P1 of P with order pe (by Lemma 2.3.1/,

P has such a subgroup), P1 2 …P .G/. Then every chief factor of G below P is

cyclic.

Proof. Suppose that P is a counterexample with minimal order and we work

in the following steps to obtain a contradiction. Let B D Op.G�
p / and C D CP .B/.

By Lemma 2.8, it follows that C < P . Let S 2 Sylp.G/. Then P � S . Let

� D ¹H < P , H E G j P=H is a chief factor of Gº. Since 1 < P E G, it is not

very difficult to see that � is not empty.

Step 1. jP j > peC1. Assume that jP j � peC1 and we work to obtain a

contradiction. Recall that jP j � peC1. Hence jP j D peC1, and thus for any

maximal subgroup P1 of P , jP1j D pe. If every maximal subgroup of P is

noncyclic, by Theorem 3.4, it follows that every chief factor of G below P is



On generalized …-property of subgroups of finite groups 247

cyclic. This is a contradiction. Hence P has a cyclic maximal subgroup. Note that

jP j D peC1 � p4, by Lemma 2.1, it follows that P is centralized by B , i.e.,

P � C . This is a contradiction.

Step 2. For any H 2 �, we have H � C . If H is cyclic, it is not very

difficult to see that H � C .

Assume that H is noncyclic and jH j � peC1, it is not very difficult to see that

the hypotheses are inherited by H . By induction, it follows that H � C .

Assume that H is noncyclic and jH j � pe. Since H , P are normal subgroups

of S and jH j � pe < peC1 � jP j, we see that S has a normal subgroup P1 with

order pe and a normal subgroup P2 with order peC1 such that H � P1 < P2 � P .

Since H is noncyclic, we see that P1 is noncyclic. Since P1 2 …P .G/ and P=H

is a chief factor of G, it follows that ŒG=H W NG=H .P1=H/� is a p-number. Hence

G=H D NG=H .P1=H/S=H . Recall that P1 E S . Hence P1=H E G=H , and

thus P1 E G. Note that H � P1 < P and P=H is a chief factor of G. Hence

H D P1, and thus jH j D pe. Hence H D P1 is a noncyclic maximal subgroup of

P2. We claim that H is the unique noncyclic maximal subgroup of P2. Assume

that P2 has another noncyclic maximal subgroup P3 and we work to obtain a

contradiction. Then P2 D P3H . Since P3 2 …P .G/ and P=H is a chief factor

of G, it follows that ŒG=H W NG=H .P2=H/� D ŒG=H W NG=H .P3H=H/� is a p-

number. Hence G=H D NG=H .P2=H/S=H . Recall that P2 E S . Hence P2=H E

G=H , and thus P2 E G. By Step 1, we see that H < P2 < P . Recall that P=H is a

chief factor G. Hence we obtain a contradiction. Hence H is the unique noncyclic

maximal subgroup of P2. Note that e � 3 and jH j D pe < peC1 D jP2j, by

Lemma 2.3.2/, it follows that H is abelian and H has a cyclic maximal subgroup.

Note that jH j D pe � p3. By Lemma 2.1, we see that H � C .

Step 3. � D ¹C º, and if N < P such that N E G, then N � C . For any

H 2 �, by Step 2, it follows that H � C . Since H � C < P , C E G and P=H

is a chief factor of G, we see that C D H . Hence � D ¹C º.

If N < P such that N E G, then there exists T 2 � such that N � T . Since

� D ¹C º, we see that N � C .

Step 4. P D ¹x 2 P j xp2
D 1º. Hence every subgroup of P with order

pe is noncyclic. Note that ˆ.P / < P and ˆ.P / E G, by Step 3, we see that

ˆ.P / � C . Note that ŒP; B� � P and ŒP; B� E G. If ŒP; B� < P , by Step 3, we see

that ŒP; B� � C , i.e., ŒP; B; B� D 1. By Lemma 4:29 of [5], we see that ŒP; B� D 1,

i.e., P � C . This is a contradiction. Hence ŒP; B� D P . Since Œˆ.P /; B; P � D 1
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and ŒP; ˆ.P /; B� D 1, by Hall’s three-subgroups Lemma (see Lemma 4.9 of [5]),

we see that ŒP; ˆ.P /� D ŒB; P; ˆ.P /� D 1, i.e., ˆ.P / � Z.P /. Let U D ¹x 2 P j

xp2
D 1º. Since ˆ.P / � Z.P /, it is not very difficult to prove that U is a subgroup

of P . To see this, for any x; y 2 U , by P 0 � ˆ.P / � Z.P /, we see that .xy/p2

D

xp2

yp2

Œy; x�p
2.p2�1/=2 D Œyp2.p2�1/=2; x�. Since p divides p2.p2 � 1/=2, we see

that yp2.p2�1/=2 2 ˆ.P / � Z.P /. Hence .xy/p2

D Œyp2.p2�1/=2; x� D 1, and

thus xy 2 U . Hence U � P . Furthermore, we have U E G. If U < P , by Step 3,

we see that U � C . By Satz IV.5.12 of [4], it follows that P is centralized by B ,

i.e., P � C . This is a contradiction. Hence P D U . Note that e � 3. Hence every

subgroup of P with order pe is noncyclic.

Step 5. jC j � pe. Assume that jC j < pe and we work to obtain a contradic-

tion. Since C , P E S and jC j < pe < jP j, S has a normal subgroup P4 with

order pe such that C < P4 < P . By Step 4, it follows that P4 is noncyclic, and

thus P4 2 …P .G/. By Step 3, we see that ŒG=C W NG=C .P4=C /� is a p-number.

Hence G=C D NG=C .P4=C /S=C . Recall that P4 E S . Hence P4=C E G=C ,

and thus P4 E G. Note that C < P4 < P and P=C is a chief factor of G. This is

a contradiction. Hence jC j � pe.

Step 6. The final contradiction. Since C , P E S and C < P , S has

a normal subgroup C1 such that C < C1 � P and jC1=C j D p. For any

x 2 C1nC , by jC1=C j D p, it follows that C1 D hxiC . By Step 4, we see that

jhxij � p2. By Step 5, it follows that jhxij � p2 < pe � jC j < jhxiC j D jC1j.

Hence P has a subgroup P5 with order pe such that hxi < P5 < C1. Hence

C1 D P5C . By Step 4, we see that P5 is noncyclic, and thus P5 2 …P .G/.

Hence ŒG=C W NG=C .C1=C /� D ŒG=C W NG=C .P5C=C /� is a p-number. Hence

G=C D NG=C .C1=C /S=C . Recall that C1 E S . Hence C1=C E G=C , and thus

C1 E G. Note that C < C1 � P and P=C is a chief factor of G. Then P D C1,

and thus jP=C j D p. Hence P=C is centralized by B . By Corollary 3.28 of [5], it

follows that P is centralized by B , i.e., P � C . This is the final contradiction. �

Mimic the proof of Theorem 3.5, we can prove the following two results.

Theorem 3.6. Let p be a prime dividing the order of a finite group G and

1 < P E G be a p-subgroup with jP j � p3 and P is noncyclic. Suppose that for

any subgroup P1 of P with order p2, P1 2 …P .G/. Then every chief factor of G

below P is cyclic.

Theorem 3.7. Let p be a prime dividing the order of a finite group G and 1 <

P E G be a p-subgroup with P is noncyclic. Suppose that for any P1 2 L1.P /,

P1 2 …P .G/. Then every chief factor of G below P is cyclic.



On generalized …-property of subgroups of finite groups 249

Theorem 3.8. Let G be a finite group, M E G with p is a prime divisor of

jM j, e � 3 be an integer, and P 2 Sylp.M/ with jP j � peC1 and P is noncyclic.

Suppose that for any noncyclic subgroup P1 of P with order pe (by Lemma 2.3.1/,

P has such a subgroup), P1 2 …M .G/. Then every p-chief factor of G below M

is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work

in the following steps to obtain a contradiction. Then M
�p
G > 1. Let S 2 Sylp.G/

such that P � S . Let � D ¹H < M , H E G j M=H is a chief factor of Gº. Since

1 < M E G, we see that � is not empty.

Step 1. Op0.M/ D 1 and Op0

.M/ D M . Assume that Op0 .M/ > 1 and we

work to obtain a contradiction. Consider G=Op0 .M/. It is not very difficult to see

that the hypotheses are inherited by M=Op0.M/. By induction, we see that every

p-chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic, and thus every p-chief

factor of G below M is cyclic. This is a contradiction.

Assume that Op0

.M/ < M and we work to obtain a contradiction. It is not

very difficult to see that the hypotheses are inherited by Op0

.M/. By induction,

we see that every p-chief factor of G below Op0

.M/ is cyclic, and thus every

p-chief factor of G below M is cyclic. This is a contradiction.

Step 2. For any H 2 �, H is p-solvable. If P \ H is noncyclic and

jP \ H j � peC1, it is not very difficult to see that the hypotheses are inherited

by H . By induction, we see that every p-chief factor of G below H is cyclic. In

particular, H is p-solvable.

If P \H is noncyclic and jP \H j � pe. Note that jP \H j � pe < jP j. Then

P has a subgroup P1 with order pe such that P \ H � P1 < P . Since P \ H

is noncyclic, it follows that P1 is noncyclic, and thus P1 2 …M .G/. For any chief

factor K=L of G below H , .P1 \ K/L=L D .P \ K/L=L 2 Sylp.K=L/. Hence

ŒG=L W NG=L..P \ K/L=L/� is a p-number. Hence ŒK=L W NK=L..P \ K/L=L/�

is a p-number, and thus .P \ K/L=L E K=L. Hence K=L is p-solvable. Then

H is p-solvable.

Assume that P \ H is cyclic. It is no loss to assume that H > 1. Let N > 1

be a minimal normal subgroup of G that is contained in H . By Step 1, we have

P \N > 1. We claim that P has a noncyclic subgroup P1 with order pe such that

.P \ N / \ P1 > 1. Note that e � 3 and jP j � peC1 > pe. By Lemma 2.3.1/,

P has a noncyclic subgroup N1 with order pe. Assume that .P \ N / \ N1 > 1.

Let P1 D N1. Then P1 is a noncyclic subgroup of P with order pe such that
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.P \ N / \ P1 > 1. Assume that .P \ N / \ N1 D 1. Let Z1 be the subgroup

of P \ N > 1 with order p. Since P \ N is cyclic, we see that Z1 E P , and

thus Z1 � Z.P /. Note that N1 > 1. Let Z2 be a maximal subgroup of N1. Then

jZ2j D pe�1 � p2. Note that ŒZ1; Z2� D 1. From .P \ N / \ N1 D 1, we see that

Z1 \Z2 D 1. Let P1 D Z1 �Z2. Then P1 is a noncyclic subgroup of P with order

pe and .P \ N / \ P1 D Z1 > 1. Let P1 be a noncyclic subgroup of P with order

pe such that .P \ N / \ P1 > 1. Note that N < M and N is a minimal normal

subgroup of G. Then ŒG W NG.P1\N /� is a p-number. Hence G D NG.P1\N /S ,

and thus 1 < .P1 \ N /G � S is a p-subgroup. By Lemma 2.5, we see that H is

p-supersolvable.

Step 3. For any noncyclic subgroup P1 of P with order pe, P G
1 is

p-solvable. Let H 2 �. We consider xG D G=H . Since P1 2 …M .G/ and

M=H is a chief factor of G, we have that Œ xG W N xG.P1/� is a p-number. Then

xG D N xG.P1/ xS . Hence P G
1 D .P1/

xG � xS is a p-subgroup. By Step 2, it follows

that P G
1 is p-solvable.

Step 4. Let � D ¹P1 � P j P1 is a noncyclic subgroup with order peº (by

Lemma 2.3.1/, � is not empty). Let

W D
Y

P12�

P G
1 :

Then W is not a p-subgroup and jOp.W /j � pe.

By Step 3, we see that W is p-solvable and jW j � pe. Note that W � M and

W E G. By Step 1, it follows that Op0 .W / D 1. Recall that W > 1 and W is

p-solvable. Hence Op.W / > 1.

Assume that W is a p-subgroup and we work to obtain a contradiction. We

claim that W is centralized by Op.M/. If W is a cyclic p-subgroup, it is not very

difficult to see that W is centralized by Op.G�
p /. By Step 1, we have M �

p D M , and

thus W is centralized by Op.M/. If W is a noncyclic p-subgoup and jW j � peC1,

by Theorem 3.5, W is centralized by Op.G�
p /, and thus W is centralized by

Op.M/. If W is a noncyclic p-subgroup and jW j � pe, since jW j � pe, it follows

that jW j D pe. Hence W is the unique noncyclic subgroup of P with order pe.

Recall that e � 3 and jP j � peC1, by Lemma 2.3.2/, we see that W is abelian

and W has a cyclic maximal subgroup. Recall that jW j D pe > p2. We see that

W is neither elementary abelian of order p2 nor isomorphic to Q8, and thus W is

centralized by Op.G�
p /. Then W is centralized by Op.M/. Now we claim that for

any subgroup X of P with jX j < pe, we have X � W . Let X � P with jX j < pe.
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Then jX j < pe � jW j � jW X j. Hence there exists Y � P such that jY j D pe and

X < Y � W X . Then Y D .Y \ W /X . If Y is cyclic, since X < Y , we see that

Y D Y \ W � W , and thus X < Y � W . If Y is noncyclic, then X < Y � W .

Recall that e � 3. Then for any x 2 P such that the order of x divides p2, we

have hxi � W . Hence hxi is centralized by Op.M/. By Frobenius’ Theorem (see

Theorem 5.26 of [5]) and Satz IV.5.12 of [4], it follows that M is p-nilpotent. By

Step 1, we have M D P . By Theorem 3.5, it follows that every p-chief factor of

G below M D P is cyclic. This is a contradiction.

Assume that jOp.W /j � peC1 and we work to obtain a contradiction. If Op.W /

is cyclic, we see that Op.W / is centralized by Op.G�
p /. If Op.W / is noncyclic,

by Theorem 3.5, we see that Op.W / is centralized by Op.G�
p /. Hence Op.W /

is centralized by Op.M/, and thus Op.W / is centralized by Op.W /. Since W is

p-solvable and Op0.W / D 1, by Hall-Higman’s Lemma (see Theorem 3.21 of [5]),

we see that Op.W / � CW .Op.W // � Op.W /. Hence Op.W / D 1, i.e., W is a

p-subgroup. This is a contradiction.

Step 5. Let Op;p0.W / be the subgroup such that Op.W / � Op;p0 .W / and

Op;p0 .W /=Op.W / D Op0.W=Op.W //. Let R D Op.Op;p0 .W //. Then R D V ÌK

with V > 1 is the normal Sylow p-subgroup of R, jV j � pe and K > 1 is a

Hall p0-subgroup of R.

By Step 4, we see that Op.W / < W . Recall that W is p-solvable and Op.W / <

W , we see that Op.W / < Op;p0 .W /. Let K > 1 be a Hall p0-subgroup of

Op;p0 .W /. Then Op;p0 .W / D Op.W / Ì K. Let V D Op.W / \ R. Then V is

the normal Sylow p-subgroup of R and R D V Ì K. By Step 4, we see that

jV j � jOp.W /j � pe. Since Op0.M/ D 1 (Step 1) and Op;p0.W / is not a p-

subgroup, it follows that Op;p0.W / is not p-nilpotent, i.e., R is not a p0-subgroup.

Hence V > 1.

Step 6. The final contradiction. Let V1 < V be a normal subgroup of

G such that V=V1 is a chief factor of G. Since R D Op.Op;p0 .W //, we have

Op.R/ D R, and thus R=V1 is not p-nilpotent. For any noncyclic subgroup P1

of P with order pe, we have P1 2 …M .G/. Note that V=V1 is a chief factor of G

below M . Then ŒG=V1 W NG=V1
..P1 \ V /V1=V1/� is a p-number. By Lemma 2.6,

we see that jV=V1j D p. Hence V=V1 is centralized by G�
p . By Step 1, we see that

M �
p D M . Hence V=V1 is centralized by M , and thus V=V1 is centralized by R.

Hence V=V1 � Z.R=V1/. By Burnside’s Theorem (see Theorem 5.13 of [5]), it

follows that R=V1 is p-nilpotent. Recall that R=V1 is not p-nilpotent. This is the

final contradiction. �
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Mimic the proof of Theorem 3.8, we can prove the following two results.

Theorem 3.9. Let G be a finite group, M E G with p is a prime divisor of

jM j, and P 2 Sylp.M/ with jP j � p3 and P is noncyclic. Suppose that for any

subgroup P1 of P with order p2, P1 2 …M .G/. Then every p-chief factor of G

below M is cyclic.

Theorem 3.10. Let G be a finite group, M E G with p is a prime divisor of

jM j, and P 2 Sylp.M/ with P is noncyclic. Suppose that for any P1 2 L1.P /,

P1 2 …M .G/. Then every p-chief factor of G below M is cyclic.

Proof of Theorem 1.12. Suppose that M is a counterexample with minimal

order and we work in the following steps to obtain a contradiction. Then M
�p
G > 1.

Step 1. Op0.M/ D 1. Assume that Op0 .M/ > 1 and we work to obtain a con-

tradiction. Consider G=Op0 .M/. It is not very difficult to see that the hypotheses

are inherited by M=Op0 .M/. By induction, we see that every p-chief factor of

G=Op0 .M/ below M=Op0 .M/ is cyclic, and thus every p-chief factor of G below

M is cyclic. This is a contradiction.

Step 2. P \ M
�p
G is noncyclic. Assume that P \ M

�p
G is cyclic, by Theo-

rem 3.1 and Theorem 3.2, we see that every p-chief factor of G below M is cyclic.

This is a contradiction.

Step 3. M
�p
G is a minimal normal subgroup of G and M

�p
G is an ele-

mentary abelian p-group. At first, we work to prove that M
�p
G is p-solvable.

Since jP \ M
�p
G j � pe < jP j, P has a normal subgroup P1 with order pe

such that P \ M
�p
G � P1 < P . Then P1 \ M

�p
G D P \ M

�p
G . By Step 2,

we see that P1 is noncyclic. Then P1 2 …M
�p
G

.G/. For any chief factor K=L of

G below M
�p
G , we have .P1 \ K/L=L D .P \ K/L=L 2 Sylp.K=L/. Hence

ŒG=L W NG=L..P \ K/L=L/� is a p-number. Then ŒK=L W NK=L..P \ K/L=L/�

is a p-number, and thus .P \ K/L=L E K=L. Hence K=L is p-solvable. Then

M
�p
G is p-solvable.

Let N > 1 be a minimal normal subgroup of G that is contained in M
�p
G .

Since M
�p
G > 1 is p-solvable and Op0.M/ D 1, we see that N is an elementary

abelian p-subgroup. Let jN j D pf . Then 1 � f � e. Consider xG D G=N .

Then j xP j � pe�f C1 and j xP \ xM
�p
xG

j D jP \ M
�p
G j � pe�f . If P \ M

�p
G is

cyclic, since M
�p
G is p-solvable, it follows that xM

�p
xG

is p-supersolvable. Then
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every p-chief factor of xG below xM
�p
xG

is cyclic. Hence every p-chief factor of

xG below xM is cyclic, and thus M
�p
G � N . If P \ M

�p
G is noncyclic, then

e�f � 2. For any normal noncyclic subgroup P2 (N < P2) of xP with order pe�f

( xP has such a subgroup), we have jP2j D pe, P2 E P and P2 is noncyclic. Then

P2 2 …M
�p
G

.G/. It is not very difficult to see that P2 2 … xM
�p
xG

. xG/. Hence the

hypotheses are inherited by xM . By induction, we see that every p-chief factor of
xG below xM is cyclic, and thus M

�p
G � N . Recall that N � M

�p
G . Then M

�p
G D N

is a minimal normal subgroup of G.

Step 4. jM
�p
G j � p2. Assume that jM

�p
G j < p2. By Step 3, it follows that

jM
�p
G j D p. Hence every p-chief factor of G below M is cyclic. This is a

contradiction.

Step 5. P E G. Let T=M
�p
G D Op0.M=M

�p
G /, where M

�p
G � T � M . Let K

be a Hall p0-subgroup of T . We claim that K D 1, i.e., Op0.M=M
�p
G / D 1. Assume

that K > 1 and we work to obtain a contradiction. By Step 1 and K > 1, we see

that T is not p-nilpotent. Recall that M
�p
G is a minimal normal subgroup of G

and M
�p
G is an elementary abelian p-subgroup (Step 3). By Lemma 2.6, it follows

that jM
�p
G j D p. This contradicts to Step 4. Hence Op0.M=M

�p
G / D 1. Note that

M=M
�p
G is p-supersolvable. Hence M=M

�p
G is p-solvable with p-length 1. Since

Op0 .M=M
�p
G / D 1, we see that P=M

�p
G E G=M

�p
G , and thus P E G.

Step 6. The final contradiction. Since M
�p
G ; P E G(Step 5), jM

�p
G j �

pe < peC1 � jP j and every chief factor of G=M
�p
G below P=M

�p
G is cyclic,

we see that P has a subgroup U with order peC1 such that M
�p
G < U � P and

U E G. It is not very difficult to see that U
�p
G D P

�p
G D M

�p
G .

We claim that M
�p
G \ ˆ.P / D 1. Assume that M

�p
G \ ˆ.P / > 1 and we work

to obtain a contradiction. Since M
�p
G is a minimal normal subgroup of G, we see

that M
�p
G � ˆ.P /. Since every chief factor of G=M

�p
G below P=M

�p
G is cyclic, by

Corollary 3.28 of [5], P=M
�p
G is centralized by Op.G�

p /. By Corollary 3.29 of [5],

we see that P is centralized by Op.G�
p /. By Lemma 2.8, we see that every chief

factor of G below P is cyclic, and thus M
�p
G D P

�p
G D 1. This is a contradiction.

Let S 2 Sylp.G/. Then P � S . Note that 1 < M
�p
G E S . Then M

�p
G has

a maximal subgroup N1 such that N1 E S . By Lemma 2.7, P has a maximal

subgroup P1 such that N1 D P1 \ M
�p
G . Note that ŒU W U \ P1� divides p. It is

not very difficult to see that U \ P1 is a maximal subgroup of U (otherwise, we

have U \ P1 D U , and thus P1 \ M
�p
G D .P1 \ U / \ M

�p
G D M

�p
G > N1. This

is a contradiction). Hence U \ P1 is a normal subgroup of P with order pe and
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.U \ P1/ \ M
�p
G D N1. If U \ P1 is noncyclic, then U \ P1 2 …M

�p
G

.G/. Hence

ŒG W NG.N1/� is a p-number, and thus G D NG.N1/S . Recall that N1 E S . Then

N1 E G. Recall that M
�p
G is a minimal normal subgroup of G and N1 is a maximal

subgroup of M
�p
G . Then N1 D 1 and jM

�p
G j D p. This contradicts to Step 4. If

U \ P1 is cyclic, then U has a cyclic maximal subgroup. Since e � 2, we see that

jU j D peC1 � p3. By Step 4, it follows that U
�p
G D M

�p
G is an elementary abelian

p-subgroup with order exceeding p. Note that Q8 has exactly one subgroup with

order 2. Hence U is neither elementary abelian of order p2 nor isomorphic to Q8.

By Lemma 2.1, we see that U is centralized by Op.G�
p /. By Lemma 2.8, we see

that every chief factor of G below U is cyclic, and thus M
�p
G D U

�p
G D 1. This is

the final contradiction. �

Theorem 1.12 has the following three corollaries.

Corollary 3.11. Let G be a finite group, M E G, p be a prime divisor

of jM j and P 2 Sylp.M/. Suppose that for any maximal subgroup P1 of P ,

P1 2 …M
�p
G

.G/. If P \ M
�p
G < P , then every p-chief factor of G below M

is cyclic.

Corollary 3.12. Let G be a finite group, M E G, p be a prime divisor of

jM j, e be an integer, and P 2 Sylp.M/ with jP j � peC1. Suppose that for any

normal subgroup P1 of P with order pe, P1 2 …M
�p
G

.G/. If jP \ M
�p
G j � pe,

then every p-chief factor of G below M is cyclic.

Corollary 3.13. Let G be a finite group, M E G, p be a prime divisor of

jM j, e � 2 be an integer, and P 2 Sylp.M/ with jP j � peC1. Suppose that for

any normal noncyclic subgroup P1 of P with order pe (if P has such a subgroup),

P1 2 …M
�p
G

.G/. If jP \ M
�p
G j � pe, then every p-chief factor of G below M is

cyclic.

Proof of Theorem 1.13. By Theorem 3.1, it follows that every 2-chief fac-

tor of G below X is cyclic. Hence every 2-chief factor of G below F �
2 .M/

is cyclic. In particular, F �
2 .M/ is 2-nilpotent. Recall that O20.M/ � F �

2 .M/

and F �
2 .M/=O20.M/ D F �.M=O20.M//. It is not very difficult to see that

F �.M=O20.M// is a 2-subgroup. Then every chief factor of G=O20.M/ below

F �.M=O20.M// is cyclic. By Lemma 2.10, it follows that every chief factor of

G=O20.M/ below M=O20.M/ is cyclic. This completes the proof. �
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Proof of Theorem 1.14. By Theorem 3.3, it follows that every p-chief fac-

tor of G below X is cyclic. Hence every p-chief factor of G below F �
p .M/ is

cyclic. In particular, F �
p .M/ is p-supersovable. Recall that Op0.M/ � F �

p .M/ and

F �
p .M/=Op0 .M/ D F �.M=Op0.M//. Hence every p-chief factor of G=Op0 .M/

below F �.M=Op0.M// is cyclic. Since M=Op0.M/ is a normal subgroup of

G=Op0 .M/, F �.M=Op0.M// is p-solvable, Op0.M=Op0.M// D 1 and every p-

chief factor of G=Op0.M/ below F �.M=Op0.M// is cyclic, by Lemma 2.11, it

follows that every chief factor of G=Op0 .M/ below M=Op0.M/ is cyclic. This

completes the proof. �

Proof of Theorem 1.15. At first, we work to prove that every p-chief factor

of G below X is cyclic. If jP \ X
�p
G j � pe or P \ X

�p
G is cyclic, by Theorem 1.12,

it follows that every p-chief factor of G below X is cyclic. If jP \ X
�p
G j � peC1

and P \ X
�p
G is noncyclic, by Theorem 3.8, we see that every p-chief factor of G

below X
�p
G is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every

chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic. �

Proof of Theorem 1.16. At first, we work to prove that every p-chief factor

of G below X is cyclic. If jP \ X
�p
G j � p2 or P \ X

�p
G is cyclic, by Theorem 1.12,

it follows that every p-chief factor of G below X is cyclic. If jP \ X
�p
G j � p3

and P \ X
�p
G is noncyclic, by Theorem 3.9, we see that every p-chief factor of G

below X
�p
G is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every

chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic. �

Proof of Theorem 1.17. At first, we work to prove that every p-chief factor

of G below X is cyclic. If P \ X
�p
G D 1, it is not very difficult to see that every

p-chief factor of G below X is cyclic. If P \ X
�p
G > 1 is cyclic, by Theorem 3.1

and Theorem 3.3, we see that every p-chief factor of G below X
�p
G is cyclic, and

thus every p-chief factor of G below X is cyclic. If P \ X
�p
G > 1 is noncyclic,

by Theorem 3.10, we see that every p-chief factor of G below X
�p
G is cyclic, and

thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every

chief factor of G=Op0 .M/ below M=Op0 .M/ is cyclic. �
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