
Rend. Sem. Mat. Univ. Padova (Online first)
DOI 10.4171/RSMUP/89

© 2023 Università degli Studi di Padova
Published by EMS Press

Analytic general solutions of nonlinear second-order
q-difference equations with a double characteristic value
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Abstract – As far as the author knows, it seems that an existence theorem of a solution of a
general nonlinear q-difference equation is not known. In this paper we will investigate a
nonlinear second order q-difference equation whose characteristic equation has only one
solution and will show analytic general solutions of such an equation. Further, we will show
an example.
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1. Introduction

In this paper we will study a nonlinear second-order q-difference equation for a
complex number q. There are many researches on linear q-difference equations ([1, 7,
10]). For example, growth properties of transcendental entire or meromorphic solutions
of linear homogeneous q-difference equations have been studied by means of analytic
methods ([5,6,12]). Also, nonlinear q-difference equations in which q is real have been
studied ([2,4,9,11,16]). But, for a complex number q, there are not so many researches
on nonlinear q-difference equations. In particular, a result concerning the existence
of analytic general solutions of nonlinear second-order q-difference equations is not
known. In this paper we will show analytic general solutions of the nonlinear second
order q-difference equation

(1) f .q2z/ D u.f .z/; f .qz//; z 2 C;
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where u.x;y/ is an entire function of x, y and q is a complex number satisfying jqj< 1
under an assumption that there is an equilibrium point f �, i.e., f � D u.f �; f �/. Note
that, without loss of generality, we may assume that f � D 0, that is u.0; 0/D 0. Further,
we assume that the characteristic equation of (1) has only one solution. The case that
the characteristic equation has two different solutions will be treated in another paper.

One of our aims is to obtain the existence of an analytic solution; another aim is to
obtain general solutions f .z/ of (1) such that f .qnz/! 0 as n!C1.

We define u.x; y/ in (1) such that

(2) u.x; y/ D �ˇx � ˛y C v.x; y/; ˇ ¤ 0;

where v consists of higher order terms for x, y such that

v.x; y/ D
X
i;j�0
iCj�2

bi;jx
iyj 6� 0;

and ˛, ˇ, bi;j are constants. We assume that the modulus of the characteristic value is
neither 0 nor 1.

We proceed as follows:

(1) determination of formal solutions;

(2) deriving a particular solution by Schauder’s Fixed Point Theorem in a locally convex
topological space;

(3) obtaining general solutions.

2. Analytic solutions

2.1 – A formal solution

The characteristic equation of (1) with (2) is

(3) D.�/ D �2 C ˛�C ˇ D 0:

Let �1, �2 be roots of the characteristic equation and suppose that �1 D �2. We
will study the case �1 ¤ �2 in another paper.

Let � D �1 D �2. We consider an integer p such that

(4) qp D �:

In the case of j�j > 1, p is a negative integer. From the definition of q, we have qp0 ¤ �
for all integers p0 > p. That is,

(5) D.qp/ D 0; D.qp
0

/ ¤ 0 for all integers p0 ¤ p:
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Here we consider solutions of (1) such that

f .qnz/! 0 as n!C1:

We observe that a formal solution of (1) is given by a power series at the origin

(6) f .z/ D

1X
kDp

akz
k with ap ¤ 0:

We substitute

f .qz/ D

1X
kDp

ak.qz/
k
D

1X
kDp

akq
kzk;

f .q2z/ D

1X
kDp

ak.q
2z/k D

1X
kDp

akq
2kzk

into (1):

f .q2z/ D � f̌ .z/ � f̨ .qz/C v.f .z/; f .qz//

D � f̌ .z/ � f̨ .qz/C
X
i;j�0

iCj�2

bi;jf .z/
if .qz/j ;

i.e.,
1X
kDp

akq
2kzkD � ˇ

1X
kDp

akz
k
� ˛

1X
kDp

akq
kzk

C

X
i;j�0

iCj�2

bi;j

� 1X
kDp

akz
k
�i� 1X

kDp

akq
kzk

�j
(7)

D � ˇ

1X
kDp

akz
k
� ˛

1X
kDp

akq
kzk

C

�
b2;0

� 1X
kDp

akz
k
�2� 1X

kDp

akq
kzk

�0
C b1;1

� 1X
kDp

akz
k
�1� 1X

kDp

akq
kzk

�1
C b0;2

� 1X
kDp

akz
k
�0� 1X

kDp

akq
kzk

�2�
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C

�
b3;0

� 1X
kDp

akz
k
�3� 1X

kDp

akq
kzk

�0
C b2;1

� 1X
kDp

akz
k
�2� 1X

kDp

akq
kzk

�1
C b1;2

� 1X
kDp

akz
k
�1� 1X

kDp

akq
kzk

�2
C b0;3

� 1X
kDp

akz
k
�0� 1X

kDp

akq
kzk

�3�
C

�
b4;0

� 1X
kDp

akz
k
�4� 1X

kDp

akq
kzk

�0
C b3;1

� 1X
kDp

akz
k
�3� 1X

kDp

akq
kzk

�1
C b2;2

� 1X
kDp

akz
k
�2� 1X

kDp

akq
kzk

�2
C b1;3

� 1X
kDp

akz
k
�1� 1X

kDp

akq
kzk

�3
C b0;4

� 1X
kDp

akz
k
�0� 1X

kDp

akq
kzk

�4�
C

X
i;j�0

iCj�5

bi;j

� 1X
kDp

akz
k
�i� 1X

kDp

akq
kzk

�j
:

Comparing the coefficients of zl , l � p � 1, we have

apq
2p
D �ˇap � ˛apq

p;

i.e.,

(8) ap.q
2p
C ˛qp C ˇ/ D apD.q

p/ D 0:

From the definition of p, we can take any value as ap . From the coefficients of zk for
k � p C 1, we have

akq
2k
C ˛akq

k
C ˇak D Ck.ap; apC1; : : : ; ak�1/;
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i.e.,

akD.q
k/ D Ck.ap; apC1; : : : ; ak�1/;(9)

whereCk.ap; apC1; : : : ; ak�1/ are polynomials of ap; apC1; : : : ; ak�1 with coefficients
q, bi;j , 0 � i � k, 0 � j � k, 2 � i C j � k. From (5), we have

(10)

´
ap D any value;
ak D

Ck.ap ;apC1;:::;ak�1/

D.qk/
; k � p C 1:

Thus, we have non trivial formal solutions of (1) such that

(11) f .z/ D

1X
kDp

akz
k :

On the other hand, if any integerp satisfies qp ¤ �1D �2, then we cannot determine
an integer p and we cannot have a non-trivial formal solution of (1). Therefore, in this
paper we assume that there exists an integer p such that qp D �1 D �2.

2.2 – Existence of an analytic solution

Here we put f .z/ D s, f .qz/ D t , f .q2z/ D w and H.s; t; w/ D �w C u.s; t/.
Then, equation (1) can be written as

(12) H.f .z/; f .qz/; f .q2z// D 0:

H.s; t;w/ is holomorphic in a neighborhood of .0;0; 0/ and we haveH.0;0;0/D 0 eas-
ily. Furthermore, we have @H

@s
.0; 0; 0/D @u

@s

ˇ̌
sDtD0

D�ˇ¤ 0; as remarked in (2). From
the implicit function theorem, for the equationH.s; t; w/ D 0, we have a holomorphic
function � such that

(13) s D �.t; w/; for jt j; jwj � �;

for some � > 0. Furthermore, we have a constant K such that

(14) jsj D j�.t; w/j � K; for jt j; jwj � �:

Let N be a positive integer. Put the partial sum of the formal solution as

RN .z/ D

NX
kDp

anz
k;

and put rN .z/ D f .z/ �RN .z/. Here we rewrite r.z/ D rN .z/.
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Moreover, we define the following sets:

S.�/ D ¹z 2 CW jzj � �º;

J.A; �/ D ¹r W r.z/ is holomorphic and jr.z/j � AjzjNC1; for z 2 S.�/º:

in which A > 0 and �, 0 < � < 1 are constants. The precise values of A and � will be
fixed afterwards.

Suppose there exists a solution f .z/ of (1) in S.�/. Then

rN .z/ D f .z/ �RN .z/

would belong to J.A; �/ for some suitably chosen constants A, �, and would satisfy
the equation

(15) r.q2z/ D u.r.z/CRN .z/; r.qz/CRN .qz// �RN .q
2z/;

with r.z/ D rN .z/.
Conversely, suppose there exists a solution r.z/ of (15), then

f .z/ D r.z/CRN .z/

would be a solution of (1). So, hereafter, we concentrate on proving the existence of
r.z/ 2 J.A; �/ such that f .z/ D r.z/CRN .z/ satisfies (15).

From the definition of �, the existence of a solution f .t/ of (15) is equivalent to
the existence of an r.z/ which satisfies

(16) r.z/ D �.r.qz/CRN .qz/; r.q
2z/CRN .q

2z// �RN .z/:

For r.z/ 2 J.A; �/, we put

(17) T Œr�.z/ D �.r.qz/CRN .qz/; r.q
2z/CRN .q

2z// �RN .z/:

Then we show the following theorem.

Theorem 2.1. Let �1; �2 be roots of D.�/ D 0 in (2), with jqj < 1. Assume that
�1 D �2 D � and that there exists an integer p such that qp D �.

Then, there is an�>0 such that we have a holomorphic solutionf .z/D
P1
kDp akz

k

of (1) in S.�/ D ¹zI jzj < �º.

Proof. From the assumption, we can determine a formal solution as in (11). Thus
we will prove the existence of an analytic solution.
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At first, we prove that T maps J.A; �/ into itself. We put

T Œr�.z/ D �.r.qz/CRN .qz/; r.q
2z/CRN .q

2z// �RN .z/

D v1.z; r.qz/; r.q
2z//C v2.z/ D v3.z; r.qz/; r.q

2z//;

in which

v1.z; r.qz/; r.q
2z// D �.r.qz/CRN .qz/; r.q

2z/CRN .q
2z//(18a)

� �.RN .qz/; RN .q
2z//;

v2.z/ D �.RN .qz/; RN .q
2z// �RN .z/:(18b)

Since � is holomorphic on jt j � �, jwj � �, using Cauchy’s integral formula [3], we
have

@�

@t
.t; w/ D

1

2�i

Z
j�jD�

�.�; w/

.� � t /2
d�:

Therefore, when jt j � �
2
, we have j� � t j � j�j � jt j � � � �

2
D

�
2

andˇ̌̌@�
@t
.t; w/

ˇ̌̌
�
1

�

Z
j�jD�

j�.�; w/j

.�
2
/2
jd�j �

1

�

Z
j�jD�

K

.�
2
/2
jd�j D

8K

�
:

When jwj � �
2
, similarly for w we obtainˇ̌̌ @�

@w
.t; w/

ˇ̌̌
�
8K

�
:

Hence, we have

(19)
ˇ̌̌@�
@t

ˇ̌̌
;
ˇ̌̌ @�
@w

ˇ̌̌
�
8K

�
; for jt j; jwj �

�

2
:

Next, we take A, and take � sufficiently small such that A�NC1 < �
4
. Then, for

sufficiently small jzj, we have

jr.z/j � AjzjNC1 � A�NC1 <
�

4
:

Thus, we have

jr.qz/j � AjqzjNC1 D AjqjNC1jzjNC1 <
�

4
;

jr.q2z/j � Ajq2zjNC1 D Ajqj2.NC1/jzjNC1 <
�

4
:
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Furthermore, we can take z so small that jRN .qz/j; jRN .q2z/j <
�

4
. Then, we obtain

jt j D jr.qz/CRN .qz/j �
�

2
;

jwj D jr.q2z/CRN .q
2z/j �

�

2
:

By (18a), since

v1.z; r.qz/; r.q
2z// D

1Z
0

d

dx
�.xr.qz/CRN .qz/; xr.q

2z/CRN .q
2z//dx

D

1Z
0

�
r.qz/

@�

@t
.�/C r.q2z/

@�

@w
.�/
�
dx;

where
.�/ D .xr.qz/CRN .qz/; xr.q

2z/CRN .q
2z//;

from (19) we have

jv1.z; r.qz/; r.q
2z//j

�

1Z
0

�
jr.qz/j

ˇ̌̌@�
@t
.�/
ˇ̌̌
C jr.q2z/j

ˇ̌̌ @�
@w
.�/
ˇ̌̌�
dx

�

1Z
0

�
AjqjNC1jzjNC1 �

8K

�
C Ajqj2.NC1/jzjNC1 �

8K

�

�
dx

�
16K

�
AjqjNC1jzjNC1:

(20)

From definition of RN , �, and (18b), we have

(21) jv2.z/j � K1.N /jzj
NC1;

with a constant K1.N / which depends on N . From (20) and (21), we have

jT Œr�.z/j � jv1.z; r.qz/; r.q
2z//j C jv2.z/j

�

�16K
�
AjqjNC1 CK1.N /

�
jzjNC1:

Since jqj < 1, if we suppose N is so large that

16K

�
jqjNC1 <

1

4
;
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then we have
jT Œr�.z/j �

�1
4
ACK1.N /

�
jzjNC1:

Furthermore, we take A so large that

A >
4

3
K1.N /;

then
jT Œr�.z/j < AjzjNC1:

So we obtain that T in (17) maps J.A; �/ into itself.
The map T is obviously continuous if J.A; �/ is endowed with topology of uniform

convergence on compact sets in S.�/. Furthermore, J.A; �/ is clearly convex, and is
relatively compact by Montel’s theorem [3].

Therefore, by Schauder’s fixed point theorem ([8, p. 74] and [13, p. 32]), we obtain
the existence of a fixed point r.z/ D rN .z/ 2 J.A; �/ of T in S.�/.

Next, we prove uniqueness of the fixed point.
Suppose that there is another fixed point r�.z/ D r�N .z/ 2 J.A

�; ��/. Put

A0 D max.A;A�/;
�0 D min.�; ��/;

f .z/ D rN .z/CRN .z/ D fN .z/;

f �.z/ D r�N .z/CRN .z/ D fN .z/;

h.z/ D r�N .z/ � rN .z/ D hN .z/:

Then we have jh.z/j � 2A0jzjNC1. From (16), we have

h.z/ D
�
�.r�N .qz/CRN .qz/; r

�
N .q

2z/CRN .q
2z// �RN .z/

�
�
�
�.rN .qz/CRN .qz/; rN .q

2z/CRN .q
2z// �RN .z/

�
D �

�
r�N .qz/ � rN .qz/C rN .qz/CRN .qz/;

r�N .q
2z/ � rN .q

2z/C rN .q
2z/CRN .q

2z/
�

� �
�
rN .qz/CRN .qz/; rN .q

2z/CRN .q
2z/
�

D �
�
hN .qz/C fN .qz/; hN .q

2z/C fN .q
2z/
�

� �.fN .qz/; fN .q
2z//

D

1Z
0

�
hN .qz/

@�

@t
.��/C hN .q

2z/
@�

@w
.��/

�
dx;
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where
.��/ D .xhN .qz/C fN .qz/; xh.q

2z/C fN .q
2z//:

If �0 is sufficiently small, for a constant K1, from (19) we haveˇ̌̌@�
@t
.��/

ˇ̌̌
;

ˇ̌̌ @�
@w
.��/

ˇ̌̌
<
8K1

�
;

and we suppose that N is sufficiently large such that jqjNC1 < �
64K1

: Thus we have

jh.z/j �

1Z
0

8K1

�
.jhN .qz/j C jhN .q

2z/j/dx

�

1Z
0

8K1

�
.2A0jqzj

NC1
C 2A0jq

2zjNC1/ dx

<

1Z
0

8K1

�
jqjNC1.2A0jzj

NC1
C 2A0jzj

NC1/dx

<
1

2
A0jzj

NC1:

Then,

jhN .z/j D jr
�
N .z/ � rN .z/j �

1

2
A0jzj

NC1
D

�1
4

�
� 2A0jzj

NC1; for z 2 S.�0/:

Next, we consider hN .z/ is which

jhN .z/j �
1

4
� 2A0jzj

NC1

and repeat this procedure. Then we have

jhN .z/j �
�1
4

�2
� 2A0jzj

NC1:

Repeating the procedure i times we obtain

jr�N .z/ � rN .z/j <
�1
4

�i
.2A0/jzj

NC1; i D 1; 2; : : :

Letting i !1, we have

r�N .z/ D rN .z/; z 2 S.�0/:

Thus, r�N .z/ D r
�.z/ and rN .z/ D r.z/ are holomorphic in jzj � min.�; ��/ and

r�.z/ � r.z/ in z 2 S.�0/. Hence r�N .z/ D rN .z/ can be continued analytically to
S.�1/, �1 D max.�; ��/.
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Finally, we show the independence from N . Here we will show that the solu-
tion fN .z/ given by fN .z/ D rN .z/C RN .z/ does not depend on N . Let rN .z/ 2
J.AN ; �N / and rNC1.z/ 2 J.ANC1; �NC1/ be fixed points of T , and

fNC1.z/ D rNC1.z/CRNC1.z/

D rNC1.z/C aNC1z
NC1
CRN .z/

D QrN .z/CRN .z/:

Then,

j QrN .z/j D jrNC1.z/C aNC1z
NC1
j

� ANC1jzj
NC2
C jaNC1j � jzj

NC1

D .ANC1jzj C jaNC1j/jzj
NC1

D A�N jzj
NC1;

where
A�N D ANC1jzj C jaNC1j:

We putADmax.AN ;A�N /. By the uniqueness of the fixed point, we have QrN .z/DrN .z/
for z 2 S.�N / \ S.�NC1/. Thus,

fNC1.z/ D fN .z/ in S.�N / \ S.�NC1/:

By analytic prolongation [3], both of fN .z/ and fNC1.z/ are holomorphic in
S.�N / \ S.�NC1/ and coincide there. Hence, both of them are continued analytically
to S.�N / [ S.�NC1/ and

fNC1.z/ D fN .z/ in S.�N / [ S.�NC1/:

Hence we have an analytic solution f .z/ in S.�/.

The function �.t; w/ in (13), s D �.t; w/ for jt j; jwj � �, is defined only locally,
though we can also analytically continue f .z/, keeping out of branch points. The
solution obtained is multi-valued.

3. Analytic general solutions

3.1 – A relation with a some functional equation

Let f .z/ be a solution of (1), and g.z/ D f .qz/: Then (1) can be written as a
system of simultaneous equations

(22)
�
f .qz/

g.qz/

�
D

�
0 1

�ˇ �˛

��
f .z/

g.z/

�
C

�
0

v.f .z/; g.z//

�



M. Suzuki 12

Let �1; �2 be roots of equation (3) in which �1 D �2. Hence, we have ˛2 � 4ˇ D 0.
That is,

(23) ˇ D
1

4
˛2:

Further, from

D.�/ D �2 C ˛�C ˇ D �2 C ˛�C
1

4
˛2 D

�
�C

1

2
˛
�2
D 0;

we have
� D �

1

2
˛:

Put

A D

�
0 1

�ˇ �˛

�
D

�
0 1

�
1
4
˛2 �˛

�
:

Since rank.A � �E/ D 1, set

(24) P D

�
1 1

� �C 1

�
;

and we have

(25) P�1 D

�
�C 1 �1

�� 1

�
:

Put

(26)
�
f

g

�
D P

�
x

y

�
:

Then, (22) is transformed to the following system with respect to x; y:

(27)

8̂̂<̂
:̂
x.qz/ D �x.z/C y.z/C

X
iCj�2

cijx.z/
iy.z/j D X.x.z/; y.z//;

y.qz/ D �y.z/C
X
iCj�2

dijx.z/
iy.z/j D Y.x.z/; y.z//:

Suppose that (27) admits a solution .x.z/; y.z//: If dx
dz
.z0/ ¤ 0 for some z0; then

we can write z D  .x/ in a neighborhood V0 of x0 D x.z0/: Then

(28) y D y.z/ D y. .x// D ‰.x/

is defined in V0: The function ‰.x/ can be continued analytically avoiding critical
values of x D x.z/:
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Suppose x.qnz/; y.qnz/ ! 0 as n ! C1; uniformly on any compact set on
the z-plane. If for any compact set L on the z-plane, there is n0 D n0.L/ 2 N such
that dx

dz
.qnz/ ¤ 0 (z 2 L, n � n0), then y D ‰.x/ is defined in a punctured disc

D0D ¹xI0 < jxj< ıº;which may be multi-valued. If‰.x/ is single-valued in D0; then,
since y.qnz/! 0 as n!1, the function ‰.x/ is bounded, and hence holomorphic
also at x D 0. By (28), x.z/ satisfies x.qz/ D X.x.z/; y.z// D X.x.z/; ‰.x.z///,
that is,

(29) x.qz/ D X.x.z/;‰.x.z///;

where ‰.x/ is holomorphic in a neighborhood D D ¹xW jxj < ıº of x D 0. Since
y.qz/D Y.x.z/; y.z// and y.qz/D ‰.x.qz//D ‰.X.x.z/;‰.x.z///; the function
‰.x/ satisfies the following functional equation:

(30) ‰.X.x;‰.x/// D Y.x;‰.x//:

In [14, Theorems 1 and 2], we proved that equation (30) admits a holomorphic solu-
tion ‰.x/ D

P1
nD2 nx

n, in a neighborhood of x D 0; which is uniquely determined
supposed 2 is prescribed. Therefore, the function y D ‰.x/; obtained by analytic con-
tinuation from .x.t/; y.t//; coincides with the holomorphic solution of equation (30).

Conversely, suppose ‰.x/ be a solution of (30) in D: Let x.z/ be a solution of the
first order equation (29), such that x.qnz/;‰.x.qnz// 2 D for n � n0, for sufficiently
large n0 2 N: Here we rewrite qnz as in z and put y.z/ D ‰.x.z//: Then y.qz/ D
‰.x.qz//, and

(31) y.qz/ D ‰.X.x.z/; y.z// D Y.x.z/; y.z//; x.qz/ D X.x.z/; y.z//:

Thus .x.z/; y.z// is a solution of (27). Therefore, the system of equations (27) is
reduced to the single first-order difference equation (29).

Therefore, we have following result.

Proposition 3.1. Suppose that (27) admits a solution .x.z/; y.z// such that
x.qnz/! 0, y.qnz/! 0 as n!C1; uniformly on any compact set on the z-plane.
Further, suppose that for any compact setL on the z-plane, there exists n0D n0.L/ 2N

such that dx
dz
.qnz/¤ 0 (z 2L,n� n0). Then a function‰ is defined such thatyD‰.x/

in a punctured disc D0 D ¹xI0 < jxj< ıº: If‰.x/ is single-valued in D0; then‰.x/ is
holomorphic also at x D 0 and satisfies the functional equation (30) in a neighborhood
of x D 0, D D ¹xW jxj < ıº.

Conversely, suppose ‰.x/ be a solution of (30) in D: Let x.z/ be a solution of the
first-order equation (29), such that x.qnz/;‰.x.qnz// 2 D for n � n0, for sufficiently
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large n0 2 N: Rewrite qnz as in z, and put y.z/ D ‰.x.z//. Then .x.z/; y.z// is a
solution of (27).

For the problems of nonlinear second order difference equations (see, e.g., [14,15]),
we considered this relationship of (30) and an equation x.t C 1/ D X.x.z/;‰.x.z///.
For the nonlinear second order q-difference equations, Proposition 3.1 is a point of our
method.

3.2 – General solutions

Hereafter, we consider solutions f .z/ of (1), which satisfy the following condi-
tions (a), (aD), as well as the condition (ab). Further, we will make use of notations
introduced in the last Section 3.1, i.e., the matrix P; the solutions x.z/; y.z/ of the
system of equations (27), and the function y D ‰.x/ defined there.

Let f .z/ be a solution of (1). Suppose that

(a) f .qnz/! 0

as n!C1 uniformly on any compact set L on the z-plane. Further, we suppose that,
for any compact set L on the z-plane, there is an n0 D n0.L/ 2 N such that

(aD)
df

dz
.qnz/ ¤ 0; for n � n0;

When f satisfies (a) and (aD), since�
x

y

�
D P�1

�
f

g

�
;

we have
x.qnz/! 0 as n! 0;

and
dx

dz
.qnz/ ¤ 0; for n � n0;

for any z 2 L; where L is any compact subset on the z-plane. Then the function ‰.x/
is defined as in (28) in a punctured neighborhood D0 D ¹x j 0 < jxj < ıº: We further
suppose that

(ab) ‰.x/ is single-valued in D0:

As seen in the last Section 3.1, y D ‰.x/ is holomorphic in D D ¹x j jxj < ıº.
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Then we will show the following Theorem 3.2.

Theorem 3.2. Let �1; �2 be roots of the characteristic equation of (1) such that
�1 D �2. We assume that q D � D �1 D �2, and suppose jqj < 1.

Suppose that f1.z/ is the solution of (1) constructed in Section 2 which have the
expansions f1.z/ D

P1
kD1 akz

k in S.�/ D ¹zI jzj < �º, with some constants a1 ¤ 0
and � > 0. Further, suppose that F .z/ is an analytic solution of (1) which satisfies (a),
(aD), and (ab), uniformly on any compact subset on the z-plane. Then, there is a
constant �0 such that

F .z/ D .q C 1/

1X
kD1

ak.�0z/
k
�

1X
kD1

ak.q�0z/
k

C‰
�
.q C 1/

1X
kD1

ak.�0z/
k
�

1X
kD1

ak.q�0z/
k
�
;

(32)

in S.�/. Further, F .qnC1z/
F .qnz/

! q as n!C1. Where ‰ is a solution of (30).
Conversely, a function F .z/ which is represented as in (32) in S.�/, for some � > 0

and a constant �0, is a solution of (1) such that F .qnz/! 0 and F .qnC1z/
F .qnz/

! q as
n!C1.

Proof. Suppose F .z/ be a solution of (1) that satisfies (a), (aD), and (ab), uni-
formly on any compact subsets on the z-plane.

Put
G .z/ D F .qz/

and

(33)
�

X

Y

�
D P�1

�
F

G

�
;

with P in (24). Then
X.z/ D .�C 1/F .z/ � G .z/:

Since F .qnz/! 0 and G .qnz/! 0 as n!1, we have

(34) X.qnz/! 0 as n!1:

Let f1.z/ be a solution given in Section 2. By the assumptions, since q D � D
�1 D �2, we have p D 1 and

(35) f1.z/ D

1X
kD1

akz
k; a1 ¤ 0;
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in S.�/D ¹zI jzj < �º, such that f1.qnz/! 0 as n!1. Then since G .z/D F .qz/,
we can write by (33) as

(36)

8̂̂̂̂
<̂
ˆ̂̂:
x1.z/ D .�C 1/f1.z/ � f1.qz/ D

1X
kD1

ak.�C 1 � q
k/zk;

y1.z/ D ��f1.z/C f1.qz/ D

1X
kD1

ak.��C q
k/zk;

where x1 is a function of z and x1.0/D 0, x01.0/D a1.�C 1� q/D a1 ¤ 0, hence x1
is, by the supposition, a holomorphic function of z in jzj < �: Thus, z is holomorphic
with respect to x1 in jx1j < Qı with some Qı > 0: Therefore, y1.z/ is holomorphic with
respect to x1; and can be written as y1 D ‰.x1/; which is holomorphic at x1 D 0.
From Proposition 3.1, we see that ‰.x1/ satisfies the equation (30). Therefore, x1.z/
is the solution of

(37) x1.qz/ D X.x1.z/; ‰.x1.z///:

From assumption on F .z/, similarly we have X.z/, Y.z/ such that Y.z/ D ‰.X.z//;

and

(38) X.qz/ D X.X.z/; ‰.X.z///:

Here we set a map U W z ! � D x1.z/ such that

(39) U.z/ D x1.z/ D

1X
kD1

ak.�C 1 � q
k/zk :

Then, since the map U.z/ is an open map for any ı1 > 0, there is a ı2 > 0 such that

(40) U.¹jzj < ı1º/ � ¹j�j < ı2º:

Since X.qnz/! 0 as n!1; if z belongs to a compact set L on the z-plane, then
there is an n0 2 N such that, for z0 2 L,

(41) jX.qnz0/j < ı2 < ı; for n � n0:

Thus, from (40), there is a z� such that

(42) X.qnz0/ D U.z�/:

From �1 D q, since U 0.0/ D a1 ¤ 0, by making use of the implict function theorem,
we have a U�1 such that

(43) z� D U�1.X.qnz0//:
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Put z D qnz0, then z� D U�1.X.z//, and we write

(44) z� D U�1.X.z// D `.z/:

From (40), since X.z/ 2 D D ¹z j jzj < ıº, there is a holomorphic solution ‰.X/
of (30) in this case (a), (aD), and (ab). Since X.z/ is a solution of (27), X.z/ is a
solution of the first-order difference equation (38), further, from (39) and (42), we have

X.qz/ D X.X.z/; ‰.X.z///

D X.U.z�/; ‰.U.z�///

D X.x1.z
�/; ‰.x1.z

�///

D x1.qz
�/ D U.qz�/:

Hence, qz� D U�1.X.qz//, and we have

(45) qz� D `.qz/; q`.z/ D qz� D `.qz/:

If we put �.z/ D `.z/=z; then we obtain

�.qz/ D `.qz/=qz D .q`.z//=qz D `.z/=z D �.z/;

and we can write

(46) `.z/ D z�.z/;

where �.z/ is defined for a compact set L with jzj sufficiently large. Furthermore, we
can continue the �.z/ analytically as a periodic function with period q: Hence, we
have �.qnz/ D �.z/ for all n 2 N, for any z in L. Since jqj < 1,

�.z/ D �.qnz/! �.0/ as n!1,

for any z 2 L. Thus, the periodic function �.z/ is a constant function, i.e., we have a
constant �0 defended by

(47)
U�1.X.z//

z
! �0 as z ! 0;

and from (46) we can write l.z/ D �0z. Thus, from (44) we have

(48) z� D �0z;

From (42) and (39), X.z/ can be written as

X.z/ D U.z�/ D U.�0z/ D x1.�0z/ D .�C 1/f1.�0z/ � f1.q�0z/:(49)



M. Suzuki 18

Since Y D ‰.X/, by making use of the equation (33), we have

F .z/ D X.z/C Y.z/

D X.z/C‰.X.z//

D x1.�0z/C‰.x1.�0z//

D .�C 1/f1.�0z/ � f1.q�0z/

C‰
�
.�C 1/f1.�0z/ � f1.q�0z/

�
D .q C 1/

1X
kD1

ak.�0z/
k
�

1X
kD1

ak.q�0z/
k

C‰
�
.q C 1/

1X
kD1

ak.�0z/
k
�

1X
kD1

ak.q�0z/
k
�
;

where �0 is a constant defined by (47) for z 2 L. Since L is arbitrary and jqj < 1, we
can have the constant �0 for any z 2 C, and ‰ is a solution of (30). By making use
of [14, Theorem 2], in a neighborhood of x D 0, a non trivial solution ‰ is obtained in
the form

(50) ‰.x/ D

1X
kD2

kx
k :

In fact,

‰.X.x;‰.x///

D 2.X.x;‰.x///
2
C 3.X.x;‰.x///

3
C 4.X.x;‰.x///

4
C � � �

D 2

�
�x C‰.x/C

X
iCj�2

cijx
i‰.x/j

�2
C 3

�
�x C‰.x/C

X
iCj�2

cijx
i‰.x/j

�3
C 4

�
�x C‰.x/C

X
iCj�2

cijx
i‰.x/j

�4
C � � �

D 2

�
�x C 2x

2
C 3x

3
C 4x

4
C � � �

C

X
iCj�2

cijx
i .2x

2
C 3x

3
C 4x

4
C � � � /j

�2
C 3

�
�x C 2x

2
C 3x

3
C 4x

4
C � � �

C

X
iCj�2

cijx
i .2x

2
C 3x

3
C 4x

4
C � � � /j

�3
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C 4

�
�x C 2x

2
C 3x

3
C 4x

4
C � � �

C

X
iCj�2

cijx
i .2x

2
C 3x

3
C 4x

4
C � � � /j

�4
C � � �

D 2
�
�x C 2x

2
C 3x

3
C 4x

4
C � � �

C c20x
2
C c11x.2x

2
C 3x

3
C 4x

4
C � � � /

C c02.2x
2
C 3x

3
C 4x

4
C � � � /2 C � � �

�2
C 3

�
�x C 2x

2
C 3x

3
C 4x

4
C � � �

C c20x
2
C c11x.2x

2
C 3x

3
C 4x

4
C � � � /

C c02.2x
2
C 3x

3
C 4x

4
C � � � /2 C � � �

�3
C 4

�
�1x C 2x

2
C 3x

3
C 4x

4
C � � �

C c20x
2
C c11x.2x

2
C 3x

3
C 4x

4
C � � � /

C c02.2x
2
C 3x

3
C 4x

4
C � � � /2 C � � �

�4
C � � �

and

Y.x;‰.x.z///

D �‰.x/C
X
iCj�2

dijx
i‰.x/j

D �.2x
2
C 3x

3
C 4x

4
C � � � /C

X
iCj�2

dijx
i .2x

2
C 3x

3
C 4x

4
C � � � /j

D �.2x
2
C 3x

3
C 4x

4
C � � � /C d20x

2

C d11x.2x
2
C 3x

3
C 4x

4
C � � � /C d02.2x

2
C 3x

3
C 4x

4
C � � � /2

C d30x
3
C d21x

2.2x
2
C 3x

3
C 4x

4
C � � � /

C d12x.2x
2
C 3x

3
C 4x

4
� � � /2 C d03.2x

2
C 3x

3
C 4x

4
C � � � /3 C � � � :

Hence,
2.�

2
� �/ D d20:

From the assumptions q D � and jqj < 1, we have �2 � �¤ 0 and 2 D d20=.�2 � �/,
that is, the expansion of ‰.x/ begins with x2. From X.qz/ D X.X.z/; ‰.X.z///,
we have

X.qz/ D �X.z/C‰.X.z//C
X
iCj�2

cijX.z/i‰.X.z//j ;
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and
X.qz/

X.z/
D �C

‰.X.z//

X.z/
C

X
iCj�2

cijX.z/i�1‰.X.z//j :

From (34), since X.qnz/! 0 as n!C1, and by (50),

‰.X.qnz//! 0;
‰.X.qnz//

X.qnz/
! 0;

and

X.qnC1z/

X.qnz/
D �C

‰.X.qnz//

X.qnz/
C

X
iCj�2

cijX.qnz/i�1‰.X.qnz//j ! �

as n!C1. From F .z/ D X.z/C‰.X.z//, we have

F .qnC1z/

F .qnz/
D

X.qnC1z/C‰.X.qnC1z//

X.qnz/C‰.X.qnz//

D

X.qnC1z/
X.qnz/

C
‰.X.qnC1z//

X.qnC1z/
�

X.qnC1z/
X.qnz/

1C ‰.X.qnz//
X.qnz/

! � D q as n! C1:

Conversely, if we put F .z/ as (32), where �0 is a constant and ‰ is a solution
of (30), then F .z/ is a solution of (1) such that F .qnz/! 0 as n! C1. Then we
have a solution X of (27) such that

F .z/ D X.z/C‰.X.z//;

where X.qnz/! 0 as n!C1. Hence, F .qnC1z/
F .qnz/

! � D q as n!C1.

4. An example for Theorem 3.2

In this section we derive analytic general solutions of equation (1) in an example.

Example 4.1. We consider the following q-difference equation with q D 1=2:

(51) f .q2z/ D �
1

4
f .z/C f .qz/C f .z/2f .qz/;

and an analytic solution such that f .z/ D
P1
kD1 akz

k , f .qnz/! 0 as n!1.

From the characteristic equation D.�/ D �2 � �C 1
4
D .� � 1

2
/2 D 0; we have

� D �1 D �2 D 1=2 D q. Set p D 1; we have qk ¤ � for any k > p D 1. From the
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function v.x; y/ D x2y, we have bi;j D 0 (i ¤ 2 or j ¤ 1), b2;1 D 1. From (10), we
can take any value as a1, and, from (7),

a2q
4
D �

1

4
a2 C a2q

2;

i.e., a2..q2/2 � a2q2C 1
4
/D 0. FromD.q2/DD.1=4/¤ 0, we have a2 D 0. Further

we have a3q6 D�14a3C a3q
3C a21a1q, i.e., a3..q3/2 � q3C 1

4
/D a3D.q

3/D qa31.
D.q3/ D D.1=8/ ¤ 0, we can have a3 D qa31=D.q

3/ ¤ 0. We can determine ak for
k � 4, and have a non trivial formal solution.

Making use of Theorem 2.1, we have the existence of an analytic solution f1 such
that

(52) f1.z/ D

1X
kD1

akz
k;

in a S.�/. Set �
f1

g1

�
D P

�
x1

y1

�
I

since from (25)

P�1 D

�
3=2 �1

�1=2 1

�
;

then we have

(53)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

x1.qz/D
1

2
x1.z/C y1.z/ � v.f1.z/; g1.z//

D
1

2
x1.z/C y1.z/ � v.x1.z/C y1.z/;

1

2
x1.z/C

3

2
y1.z//

D
1

2
x1.z/C y1.z/ � .x1.z/C y1.z//

2
�1
2
x1.z/C

3

2
y1.z/

�
D X.x1.z/; y1.z//;

y1.qz/D
1

2
y1.z/C v.f1.z/; g1.z//

D
1

2
y1.z/C v.x1.z/C y1.z/;

1

2
x1.z/C

3

2
y1.z//

D
1

2
y1.z/C .x1.z/C y1.z//

2
�1
2
x1.z/C

3

2
y1.z/

�
D Y.x1.z/; y1.z//;

and

x1.z/ D
3

2
f1.z/ � g1.z/ D

3

2
f1.z/ � f1.qz/:(54)
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Since y1.z/ D ‰.x1.z//, equation (30) is written as

‰
�1
2
x1.z/C‰.x1.z// � .x1.z/C‰.x1.z///

2
�1
2
x1.z/C

3

2
‰.x1.z//

��
D
1

2
‰.x1.z//C

�
x1.z/C‰.x1.z//

�2�1
2
x1.z/C

3

2
‰.x1.z//

�
:

(55)

Making use of [14, Theorem 2], we have a holomorphic solution‰1 of (55) in a domain
D D ¹z j jzj < ıº,

Next, suppose F .z/ is an analytic solution of (51) which satisfies (a), (aD), and (ab).
From Theorem 3.2, we can write F .z/ as

F .z/ D
3

2

1X
kD1

ak.�0z/
k
�

1X
kD1

ak

�1
2
�0z

�k
C‰1

�3
2

1X
kD1

ak.�0z/
k
�

1X
kD1

ak

�1
2
�0

�k�
;

(56)

in S.�/ for a some � > 0, and we have

F .qnC1z/

F .qz/
!

1

2
:

Conversely, write a function F .z/ as in (56) and let ‰1.z/ be a solution of (55) in
a D D ¹z j jzj < ıº. Set F .qz/ D G .z/, ‰1.X.z// D Y.z/, and�

F .z/

G .z/

�
D P

�
X.z/

Y.z/

�
:

From (54),

F .z/ D
3

2
f1.�0z/ � f1.q�0z/C‰1

�3
2
f1.�0z/ � f1.q�0z/

�
D x1.�0z/C‰1.x1.�0z//:

Further, we can write x1.�0z/ D X.z/ and

F .z/ D X.z/C Y.z/ D X.z/C‰1.X.z//:

From the assumptions on‰1, X.z/, and Y.z/, the function X, Y satisfies equation (53).
That is, F .z/ D X.z/C Y.z/ is a solution of equation (51).
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5. Conclusion

We summarise the contents of this paper as follows.

(1) In Theorem 2.1, we have shown the existence of an analytic solution of equation (1)
when the characteristic values �1, �2 are equal, �1 D �2 ¤ 0, and j�1j D j�2j ¤ 1.

(2) We have general solutions of equation (1) when q D �1 D �2 in Theorem 3.2.

In the near future, we will study the nonlinear q-difference equation

f .q2z/ D u.z; f .z/; f .qz//:
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