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Abstract – For an odd prime p and a supersingular elliptic curve over a number field, this article
introduces a multi-signed residual Selmer group, under certain hypotheses on the base field.
This group depends purely on the residual representation at p, yet captures information about
the Iwasawa theoretic invariants of the signed p1-Selmer group that arise in supersingular
Iwasawa theory. Working in this residual setting provides a natural framework for studying
congruences modulo p in Iwasawa theory.
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1. Introduction

Iwasawa theory of Galois representations, especially those arising from elliptic
curves and modular forms, affords deep insights into the arithmetic of these objects over
number fields. The Iwasawa theoretic invariants, especially the� and� invariants, play a
central role in this study. Iwasawa theory for ordinary elliptic curves, and more generally
for ordinary Galois representations, was initiated by Mazur in [25] and Greenberg in [5].
The corresponding theory for supersingular elliptic curves is subtler and was already
begun by Perrin-Riou in [27]. In the last couple of decades, supersingular Iwasawa
theory has gained considerable momentum (see [11, 16–20, 30, 36] and references
therein).
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Greenberg and Vatsal [8] investigated the behaviour of Iwasawa invariants for
ordinary elliptic curves whose residual representations are congruent. The objects
of study are the dual p1-Selmer groups of the elliptic curves over the cyclotomic
Zp-extension of the base field, which is assumed to be a number field. Specifically, let
p be an odd prime and Ei , i D 1; 2 be two elliptic curves over Q with good ordinary
reduction at p. Greenberg and Vatsal prove that the vanishing of the �-invariant for the
dual p1-Selmer group of one of the curves implies the vanishing for the other. Their
study makes crucial use of a non-primitive dual Selmer group, which has the same
�-invariant as the dual p1-Selmer group. When the �-invariants vanish, they also
prove the equality of the �-invariants for the non-primitive dual p1-Selmer groups
for E1 and E2. However, they provide examples showing that the �-invariants for the
dual p1-Selmer groups do not coincide. These results have been extended to the
representations coming from higher weight modular forms by Emerton, Pollack and
Weston in [4], and to more general base fields and Zp-extensions by, among others,
Hachimori in [9] and by Kidwell in [14]. A crucial input in the study of p1-Selmer
groups in the ordinary case is a deep result of Kato (see [13]) which implies that the
dual p1-Selmer groups (and their non-primitive counterparts) are torsion modules
over the Iwasawa algebra.

When E=Q is an elliptic curve having good, supersingular reduction at p, the dual
p1-Selmer group is no longer torsion over the Iwasawa algebra. Kobayashi defined
the signed p1-Selmer group in [19], making use of special subgroups of the local
Mordell–Weil groups along the cyclotomic tower which were already considered by
Perrin-Riou. These signed p1-Selmer groups are torsion over the Iwasawa algebra
and display properties that are strikingly similar to those of the p1-Selmer group in
the ordinary case and come equipped with signed Iwasawa invariants �˙; �˙. Results
analogous to those of Greenberg–Vatsal for these signed invariants were proved by
Kim in [15], again making use of the non-primitive Selmer groups. The study of signed
Selmer groups for higher weight modular forms has been initiated by Lei, Loeffler and
Zerbes in [20] through the theory of Wach modules, and extensions of Greenberg–
Vatsal results in this setting can be found in [10] by Hatley and Lei. The definition
of the signed Selmer groups has been extended to a broader class of number fields
in [11, 16, 18]. In this article, we will mainly refer to Kitajima–Otsuki’s paper. Our
work sheds more light on the behaviour of the Iwasawa invariants for the dual signed
p1-Selmer groups of elliptic curves in the supersingular case. The results proved
here are more general than those in [15], largely because we set up a framework for
multi-signed Selmer groups.

The novelty in our approach is that we systematically work with the residual rep-
resentation of a supersingular elliptic curve defined over a number field L satisfying
certain conditions (see Section 2, in particular Hypothesis Hyp 1 therein), instead of
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working with Ep1 . In particular, we introduce a new Selmer group, attached to the
Galois representation Ep of p-torsion points of E, which we call multi-signed residual
Selmer group. It depends only on the isomorphism class of the residual Galois repres-
entation Ep , yet captures the full Iwasawa-theoretic information about the �˙- and the
�˙-invariants of the usual signed p1-Selmer group. The multisigned residual Selmer
group contains the residual analogue of the fine Selmer group as defined by Coates
and the second author in [2]. They postulate a conjecture, referred to as Conjecture A,
which asserts that the Iwasawa �-invariant of the dual fine p1-Selmer group over
Lcyc vanishes. It is pertinent to remark here that Conjecture A depends only on the
residual Galois representation (see [7, 37]) and its formulation is independent of the
reduction type at p of the elliptic curve. Working directly with the multi-signed residual
Selmer group provides a conceptual framework to explore the comparison of Iwasawa
invariants, when the residual representations are isomorphic. It also potentially provides
the right context for explaining a plethora of congruences in arithmetic, such as the
congruences between complex and p-adic L-values which occur when the residual
representations are isomorphic. We hope to return to this subject of framing a residual
Iwasawa theory in our future works.

The main results of this paper are Theorems 4.13 and 4.15. Under certain hypotheses
Hyp 1 and Hyp 2�, and assuming Conjecture A, Theorem 4.13 provides a criterion
for the �-invariant of the multi-signed p1-Selmer group to vanish, purely in terms
of the multi-signed residual Selmer group. We refer to the main body of the paper for
its statement, because it involves some morphism whose definition is too technical for
this introduction.

As an application of Theorem 4.13, our second theorem provides a criterion for
the �-invariant of the signed p1-Selmer group to vanish, purely in terms of the
multi-signed residual Selmer group. In the following, denote by d the number of
primes in L of supersingular reduction for an elliptic curve E and let � 2 ¹C;�ºd be
a vector of signs, in other words � is a d -tuple with entries eitherC or �. Denote by
X�..E/p1=Lcyc/ the dual multi-signed p1- Selmer groups, as defined in Definition 3.6
(see also [18, Definition 2.1]):

Theorem 4.15. Let E1;E2 be two elliptic curves defined over L, satisfying Hypo-
thesis Hyp 1 and such that the residual Galois representations .E1/p and .E2/p are
isomorphic. Then, the sets S ss

1 and S ss
2 of primes of supersingular reduction for E1 and

E2 coincide. Given a vector � 2 ¹C;�ºd , assume that both curves satisfy Hyp 2� and
let ��Ej be the Iwasawa �-invariants of X�..Ej /p1=Lcyc/, for j D 1; 2. Then

�
�
E1 D 0” �

�
E2 D 0:



F. A. E. Nuccio – R. Sujatha 86

In the ordinary case, using the non-primitive Selmer groups, Greenberg and Vatsal
(see [8, Theorem 1.5]) compare the �-invariants. When the �-invariants vanish, our
approach also enables such a comparison, without the use of the imprimitive Selmer
groups. These results should be compared with those by Kim (see [15, Corollary 2.13])
and Hatley–Lei (see [10, Theorem 4.6]). We need the additional assumption that the
Pontryagin dual of the usual Selmer group (and hence, also of the multi-signed one by
Corollary 4.18) contains no non-zero finite ƒ.�/-submodule, and this is known to be
true in many cases.

Theorem 4.20. Let E1; E2 be two elliptic curves defined over L, satisfying the
hypotheses of Theorem 4.15. Assume that their Iwasawa ��-invariants vanish and
suppose further that the Pontryagin duals X..Ej /p1=Lcyc/ of the usual Selmer groups
do not have any non-zero finite ƒ.�/-submodule. Then,

�
�
Ej D �

�
C ıEj ;

where ıEj is as in Definition 4.5 and �� WD ��E1 D �
�
E2 is as in (4.28).

The first term �� in the above statement depends only on the residual representation
and is independent of the curve. The second term ıEj depends on the structure of the
local p-torsion of the elliptic curve over the first layer of the cyclotomic tower at the set
of primes of bad reduction, together with the primes above p with ordinary reduction:
in particular, it is independent of the vector �. The reader is referred to the main body
of the paper for the precise definitions of these numerical invariants.

Our methods also show that the difference �� � ��� depends only on the residual
representation, a fact which was already observed by Kim in [15, Remark 3.3] for
L D Q. Propositions 3.8 and 3.9 are the key technical tools needed to show that the
definition of the multi-signed residual Selmer group depends only on the residual
representation. They compare the reduction type at places above p of two residually
isomorphic elliptic curves at primes above p, and are of independent interest. While
the first result relies on Honda–Tate theory and is a typical feature of supersingular
reduction, the second relies upon a result by Raynaud on finite flat group schemes killed
by p. We remark that some of the techniques used here were first developed in the
setting of purely ordinary reduction in [22]. The extension to the generality considered
in this paper was not obvious then.

In ongoing works, we extend these results in the following different directions. First,
to higher weight modular forms over the cyclotomic extension, second to multiple Zp-
extensions, and finally to the multi-signed Selmer groups as well as non-commutative
p-adic Lie extensions.
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The paper consists of five sections, including this introductory section. In Section 2,
we introduce notation and some preliminaries about the local structure of elliptic curves
with supersingular reduction. In Section 3, we recall the main properties of multi-signed
Kummer maps and Selmer groups, mainly building upon [18], and we introduce the
multi-signed residual Selmer group. In Section 4, we study the Iwasawa theory of this
group and state our main results. The final section presents some numerical examples
that illustrate our results.

2. Preliminaries

In this paper, L denotes a fixed number field of absolute degree ŒL W Q� D N , and
E=L is an elliptic curve defined over L. Throughout, p will denote an odd prime � 3,
Sp denotes the set of primes above p in L and Tp.E/ will denote the Tate module of E.
The following hypothesis, which will be referred to as Hyp 1, is assumed throughout
(cf. [18, Theorem 1.3 (i)–(v)]):

Hypothesis Hyp 1. Denote by S ss � Sp the set of primes above p where E has
supersingular reduction.

(i) The curve E=L has good reduction at all primes in Sp .

(ii) S ss is non-empty.

(iii) All primes p1; : : : ;pd in S ss split completely in L=Q, so Lpi ŠQp for all 1� i � d .

(iv) 1C p � jzE.Fpi /j D 0, where zE is the reduction of E modulo any of the prime ideals
p1; : : : ;pd and Fpi denotes the residue field of pi .

(v) The ramification index e.�/ in the extension L=Q of every prime � 2 Sp , where E
has good, ordinary reduction, is at most p � 1.

Remark 2.1. Kitajima and Otsuki work in a slightly greater generality, allowing
the supersingular primes to be simply unramified in L=Q, provided the curve is defined
over a subfield where they split completely. Points (i)–(iv) in Hyp 1 ensure that the
signed Selmer groups are defined (see Section 3). Point (v) in Hyp 1 ensures that the
multi-signed residual Selmer group depends only on the residual Galois representation
Ep (cf. Propositions 3.8 and 3.9).

Let us set the notation that will be used in the paper.
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Notation 2.2. The set Sp of primes above p is the disjoint union Sp D S ss tSord,
where Sord D ¹�1; : : : ; �sº is the (possibly empty) set of primes where E has good,
ordinary reduction. Consider the cyclotomic Zp-extension Lcyc=L of L, with interme-
diate layers Ln, for n � 0, so that Gal.Ln=L/ Š Z=pnZ and L0 D L. By Hyp 1, all
primes pi 2 S

ss split in L, so they are all totally ramified in Lcyc=L. Let pn;i denote the
prime ideal of Ln above pi , for 1 � i � d and let Ln;i be the localisation of Ln at pn;i .
For ease of notation, we often suppress the index i since these fields, for fixed n, are
all isomorphic to the n-th layer of the cyclotomic extension of L0 Š Qp . In particular,
Lcyc;i Š .Qcyc/pcyc;i . We also need to consider the fields obtained by adjoining p-power
order roots of unity to L0;i D L0. Set kn D L0.�pnC1/, for n � �1, where �pnC1 is
a primitive pnC1-th root of unity. For all n � �1, we let mn be the maximal ideal
of kn. In particular, k�1 Š Qp and m�1 Š pZp. The Galois group Gal.k0=L0/ is
denoted by �. It is isomorphic to Gal.kn=Ln/ for all n � 0, and we tacitly identify
these groups throughout.

Let S D Sp t S
bad where Sbad D ¹l1; : : : ; lrº is the finite set of primes of bad

reduction for E=L. The maximal extension of L unramified outside of S will be denoted
by LS . We usually write v or w to denote generic primes above S in an extension of
L. Given an extension L0=L, we sometimes abuse notation and again denote by S the
primes of L0 that lie above primes in S. When we need to specify the field, we write
S�L0 for � 2 ¹;; ord; ss; badº to denote the sets of primes of L0 above primes in S�.

Given any fieldK 2 ¹Ln;Ln;v;knº (for some 0 � n <1 and possibly some prime
v 2 S of Ln), its ring of integers will be denoted by OK ; when K is a local field,
we further denote its residue field by Fv. For K as above, write zK D LS if K D Ln,
zK D kn D Qp if K D kn and zK D .LS /w D Ln;v, for some extension w j v, when
K D Ln;v . The corresponding Galois groups Gal. zK=K/ are denoted, respectively, by
GSn ,Gkn andGLn;v ; in case v D pi , this will be denoted byGLi . WhenK 2 ¹Ln;v;knº,
and M is any Galois module, we usually write Hi .K;M/ to denote the cohomology
group Hi .Gal. zK=K/;M/.

The Galois module of pt -torsion points of E is denoted by Ept , and more generally
Mpt will denote the submodule of a Galois module M consisting of the pt -torsion
elements in M . By a slight abuse of notation, zE=Fp is the reduction of E modulo any
of the prime ideals pi , all the reductions being isomorphic. Similarly, E is the formal
group of E over Zp D OL0 . As discussed in [19, Corollary 8.5] and [18, §3.1], there is
a Zp-isomorphism E Š Fss between the formal group of E=Zp and the supersingular
formal group Fss whose logarithm is of Honda type t2 C p (the group Fss is denoted
by G in [18, §3.1]: observe that in our setting the automorphism ' in [18, §3.1] is
trivial).
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3. Plus and minus decomposition

3.1 – The signed Kummer maps

The aim of this section is to gather some results about the plus/minus decomposition
of local Mordell–Weil and formal groups, mainly taken from [18], which in turn relies
on [19]. Most of the results mentioned below are either well known or easy adaptations
to the finite Galois module of p-torsion points, of arguments which are normally stated
for the divisible module of p1-torsion points.

We start with a general remark about vanishing of global torsion points for E along
the cyclotomic extension.

Proposition 3.1. For every n � 0, the torsion subgroup E.mn/p is trivial. In
particular,

E.kn/p D E.Ln/p D E.Ln/p D ¹0º for all n � 0:

Proof. See [18, Proposition 3.1].

Following the pivotal works by Perrin-Riou [27] and Kobayashi [19], we now define
plus/minus subgroups of the local points, as follows.

Definition 3.2 ([18, Definitions 2.1 and 3.13]). With notations as above we denote,
for every n � 1,

EC.mn/ D
®
P 2 E.mn/ j TrnmC1.P / 2 E.mm/ for all � 1 � m � n � 1;m even

¯
;

E�.mn/ D
®
P 2 E.mn/ j TrnmC1.P / 2 E.mm/ for all � 1 � m � n � 1;m odd

¯
:

Similarly, we set

EC.kn/ D
®
P 2 E.kn/ j TrnmC1.P / 2 E.km/ for all � 1 � m � n � 1;m even

¯
;

E�.kn/ D
®
P 2 E.kn/ j TrnmC1.P / 2 E.km/ for all � 1 � m � n � 1;m odd

¯
;

and we let E˙.Ln/ D E˙.kn/� D H0.�;E˙.kn//.

The next lemma compares the formal signed subgroups of local points with the
whole signed subgroups:

Lemma 3.3 ([18, Lemma 3.14]). Let p D pi 2 S
ss and let L DL0;i . For all n � 1

there are exact sequences

(3.1) 0! E˙.mn/! E˙.kn/! D˙n ! 0;

where D˙n � zE.Fp/ is a finite group, of prime-to-p order bounded independently of n.
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More generally, ifK=L is any algebraic extension and mK is the maximal ideal of
its valuation ring, there is an exact sequence

(3.2) 0! E.mK/! E.K/! D ! 0;

where D is a finite group of prime-to-p order, inducing an isomorphism

E.mQp
/p1 Š E.Qp/p1 :

Proof. Fix m � �1 and consider the commutative diagram

0 // E.mm/ //
� _

��

E.km/ //
� _

��

zE.Fp/ // 0

0 // E.mmC1/ // E.kmC1/ // zE.Fp/ // 0

which induces, by the snake lemma, an isomorphism

E.mmC1/=E.mm/
Š
�! E.kmC1/=E.km/:

Now fix n � mC 1: the above sequence fits into the commutative diagram of exact
sequences

0 // ker 1TrnmC1 //
� _

��

ker TrnmC1 //
� _

��

zE.Fp/

0 // E.mn/ //

1Trn
mC1

��

E.kn/ //

Trn
mC1

��

zE.Fp/ //

��

0

0 // E.mmC1/=E.mm/
Š // E.kmC1/=E.km/ // 0 // 0;

where 1TrnmC1 (resp. TrnmC1) denotes the trace map followed by reduction modulo
E.mmC1/ (resp. modulo E.kmC1/). In particular, we deduce that ker 1TrnmC1 is a sub-
group of ker TrnmC1 with quotient contained inside zE.Fp/, for everym � n� 1. Taking
intersections, we find

E˙.mn/ D
\

.�1/mD˙1
�1�m�n�1

ker 1TrnmC1 and E˙.kn/ D
\

.�1/mD˙1
�1�m�n�1

ker TrnmC1

and therefore an exact sequence

0! E˙.mn/! E˙.kn/! D˙n ! 0
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for some D˙n � zE.Fp/. Since E has supersingular reduction at p, the order of zE.Fp/ is
prime-to-p.

The final isomorphism is simply a translation of the fact that zE.Fp/ has no p-torsion.
Using the exact sequence

0! E.mK/! E.K/! zE.OK=mK/! 0;

we obtain
E.mK/p1 Š E.K/p1 ;

and taking the direct limit over all L � K � Qp , we deduce the isomorphism in the
statement.

Let K 2 ¹Ln; kn; Ln;vº and G 2 ¹GSn ; Gkn ; GLn;vº. Recall that for each integer
t � 0, there exists the following functorial exact sequence for Ept =K:

0! E.K/=ptE.K/
�
pt

K
��! H1.G;Ept /! H1.G;E/pt ! 0;

where �p
t

K is the Kummer map.

Lemma 3.4 ([19, Lemma 8.17]). For every n � 1 and every t � 1, there is an
injection

E˙.Ln/=p
tE˙.Ln/ ,! E.Ln/=p

tE.Ln/

which induces injections

�
˙;pt

Ln
WE˙.Ln/=p

tE˙.Ln/ ,! H1.Ln;Ept /:

Similarly, there are injections

�
˙;pt

Ln
WE˙.m�

n /=p
tE˙.m�

n / ,! H1.Ln;Ept /:

Proof. Let us first show that

(3.3) E˙.kn/=ptE˙.kn/ ,! E.kn/=ptE.kn/

is injective. An element in

ker
�
E˙.kn/=ptE˙.kn/! E.kn/=ptE.kn/

�
is represented by a pointP 2 E˙.kn/ such thatP D ptQ for someQ 2 E.kn/. Choose
now m � n � 1 such that .�1/m D ˙1. Taking the trace of P down to kmC1, we
obtain that TrnmC1.P / 2 E.km/, by definition of E˙. On the other hand, TrnmC1.P / D
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pt TrnmC1.Q/, hence for all � 2 Gal.kmC1=km/ we have

pt .�TrnmC1.Q/ � TrnmC1.Q// D 0:

Thus TrnmC1.Q/ 2 E.km/ thanks to Proposition 3.1, which implies Q 2 E˙.kn/ and
the arrow in (3.3) is injective. For each � 2 ¹;;C;�º, taking �-cohomology of the
tautological exact sequence defining E�.kn/=ptE�.kn/ gives

0! E�.Ln/
�pt

��! E�.Ln/! H0
�
�;E�.kn/=ptE�.kn/

�
! H1.�;E�.Ln//pt ! 0:

The last module is trivial, because � has order prime-to-p, so

H0
�
�;E�.kn/=ptE�.kn/

�
D E�.Ln/=p

tE�.Ln/:

Taking �-invariants of the injections in (3.3) establishes the first part of the lemma.
The second part is analogous, upon replacing E˙ with E˙.

In light of the above lemma, we can define, for all n � 0 (and all pi if we need
to keep track of the local Galois groups), the signed Kummer sequence as the exact
sequence

0! E˙.Ln/=p
tE˙.Ln/

�
˙;pt

Ln
����! H1.GLn ;Ept /(3.4)

! H1.GLn ;Ept /= Im �˙;p
t

Ln
! 0

and refer to �˙;p
t

K as the signed Kummer map. Analogous signed Kummer exact
sequences can be defined for the formal group E , as follows:

0! E˙.Ln/=p
tE˙.m�

n /
�
˙;pt

Ln
����! H1.GLn ;Ept /(3.5)

! H1.GLn ;Ept /=�
˙;pt

Ln
.E˙.m�

n //! 0:

Remark 3.5. It is perhaps interesting to stress that the signed Kummer map defined
in (3.4) does not arise as a connecting homomorphism in Galois cohomology. Indeed,
E˙ is only defined at the level of points for extensions in the cyclotomic tower and
it is not a sub-representation of E, since in the supersingular case the local Galois
representation Ep1 is irreducible.

3.2 – The multi-signed Selmer groups

We use the notation introduced in Notation 2.2. For generalities regarding the
classical Selmer group for Ept =Ln (for 1 � t < 1) and for Ep1=Ln we refer
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to [3, Chapters 1 and 2]. They are defined as

Sel.Ept =Ln/ D ker
�
H1.GSn ;Ept /!

M
v2SLn

H1.Ln;v;E/pt
�

D ker
�
H1.GSn ;Ept /!

M
v2SLnnS

ss
Ln

H1.Ln;v;E/pt ˚
dM
iD1

H1.Ln;i ;E/pt
�

D ker
�
H1.GSn ;Ept /

!

M
v2SLnnS

ss
Ln

H1.Ln;v;Ept /= Im �p
t

Ln;i
˚

dM
iD1

H1.Ln;i ;Ept /= Im �p
t

Ln;i

�
;

where we split the sum into two parts, one over primes in S ss and the other over primes
which are not supersingular. This is done mainly for future comparison with signed
Selmer groups. Passing to the limit over t , one defines

Sel.Ep1=Ln/ D lim
�!
t

Sel.Ept =Ln/:

In the supersingular reduction case, the Iwasawa theory of the signed Selmer groups
as initially defined by Perrin-Riou [27] and Kobayashi [19] is of particular interest.
The multi-signed residual Selmer groups are defined below and we postpone a larger
discussion, from the Iwasawa-theoretic point of view, to Section 4. Our main reference
is the work [18] by Kitajima–Otsuki. Fix a vector of signs � 2 ¹C;�ºd throughout.
For every local place pi with 1 � i � d , to ease notation write �˙;p

t

Ln;i
to denote either

�
C;pt

Ln;i
or ��;p

t

Ln;i
, according to the i -th component �i of the vector of signs.

Definition 3.6. For every intermediate number field L � Ln ¨ Lcyc define the
fine multi-signed residual Selmer group as

R�.Ep=Ln/ D ker
�
H1.GSn ;Ep/

!

M
l2Sbad

Ln

H1.Ln;l ;Ep/˚
M
�2Sord

Ln

H1.Ln;� ; zEp/˚
dM
iD1

H1.Ln;i ;Ep/= Im �˙;p
Ln;i

�
;

where, at an ordinary prime �, zEp is seen as a GLn;� -module through the surjection
GLn;� � Gur

Ln;� D GF� . Similarly, the usual multi-signed Selmer group is defined as

Sel�.Ep1=Ln/ D ker
�
H1.GSn ;Ep1/

!

M
v2SLnnS

ss
Ln

H1.Ln;v;E/p1 ˚
dM
iD1

H1.Ln;i ;Ep1/= Im �˙;p
1

Ln;i

�
:
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As the notation suggests, these multi-signed residual Selmer groups only depend
upon the isomorphism class of Ep rather than on the curve E itself, at least when
assuming Hyp 1. This is the content of Corollary 4.4, which relies on Propositions 3.8
and 3.9 below.

We start with the following technical lemma:

Lemma 3.7. Fix n � 0 and let G 2 ¹GSn ; GLn ; GLn;l º for some l 2 Sbad. Denote
by  G;n D  n the natural surjective arrow

 nWH1.G;Ep/! H1.G;Ep1/p:

For � 2 Sord and G D GLn;� let

e G;n D f nWH1.G; zEp/! H1.G; zEp1/p

be the analogous surjection for the Galois representation zEp1 . Then the following
assertions hold.

(i) If G 2 ¹GSn ; GLnº, then  n is an isomorphism.

(ii) If G D GLn;l for some l 2 Sbad, then ker n is an Fp-vector space of dimension
dimFp .ker n/ D dimFp E.Ln;l/p � 2.

(iii) If G D GLn;� for some � 2 Sord, then kerf n is an Fp-vector space of dimension
dimFp .kerf n/ D dimFp

zE.Ln;�/p � 1.

Proof. Taking G-cohomology of the exact sequence

(3.6) 0! Ep ! Ep1 ! Ep1 ! 0

gives an exact sequence

0! ker n D H0.G;Ep1/=pH0.G;Ep1/(3.7)

! H1.G;Ep/
 n
��! H1.G;Ep1/p ! 0:

When G 2 ¹GSn ;GLnº, the first term in (3.7) is trivial thanks to Proposition 3.1 and
assertion (ii) follows.

When G D GLn;l for some l 2 Sbad, the first term in (3.7) has Fp-dimension equal
to dimFp E.Ln;l/p, since E.Ln;l/p1 is finite. Moreover, the group H0.G; Ep/ is a
subgroup of E.Ll/p Š .Fp/2. This shows that this dimension is bounded by 2, whence
assertion (ii).

Finally, when G D GLn;� for some � 2 Sord, replace (3.6) by

0! zEp ! zEp1 ! zEp1 ! 0
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to obtain an exact sequence

0! kerf n D H0.G; zEp1/=pH0.G; zEp1/(3.8)

! H1.G; zEp/
e n
��! H1.G; zEp1/p ! 0:

The first term in (3.8) is an Fp-vector space of dimension bounded by

dimFp
zE.F�/p1=pzE.F�/p1 Š Fp:

This finishes the proof.

Let us now prove that the local conditions in the definition of the multi-signed
residual Selmer group depend only on the residual representation also for primes
above p, beginning with supersingular primes. Under our standing assumption Hyp 1,
E is supersingular at all primes p1; : : : ;pd and the exact sequence (3.2) induces an iso-
morphism H1.Ln;i ;Ep1/ŠH1.Ln;i ;Ep1/, for all n� 0. On the other hand, the exact
sequence (3.1) shows that the images of the signed Kummer maps �˙;p

1

Ln;i
.E˙.Li;n//

and �˙;p
1

Ln;i
.E˙.m�

n // are isomorphic. It is straightforward to check that these iso-
morphisms are compatible, and in turn induce isomorphisms

(3.9) H1.Ln;i ;Ep1/= Im.�˙;p
1

Ln;i
/ Š H1.Ln;i ;Ep1/=�

˙;p1

Ln;i
.E˙.m�

n //:

As discussed in [19, Corollary 8.5] and [18, §3.1], there is a OL0 D Zp-isomorphism

(3.10) logFss ı expE WE
Š
�! Fss;

where Fss is the supersingular formal group whose logarithm logFss is of Honda type
t2 C p. In particular, the isomorphism class of the formal group E is independent of
the curve E, whenever the curve satisfies Hyp 1. Moreover, for every n there are two
subgroups F ˙ss .mn/ � Fss.mn/ defined by the same norm relations defining E˙ (see
Definition 3.2), but for points on the formal group Fss rather than E . Equivalently, they
are defined as

F ˙ss .mn/ D .logFss ı expE/.E
˙.mn//:

Therefore, as subgroups of Fss.mn/, they are independent of E for all n � 0. Moreover,
there is an evident definition of the analogues of the signed Kummer sequence (3.5)
for Fss and F ˙ss instead of E . Combining (3.9) with (3.10) gives

H1.Ln;i ;Ep1/= Im.�˙;p
1

Ln;i
/ Š H1.Ln;i ; .Fss/p1/=�

˙;p1

Ln;i
.F ˙ss .m

�
n //;

where the right-hand side does not depend on E. We summarise the above discussion
in the following proposition.
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Proposition 3.8. Let E=L be an elliptic curve satisfying Hypothesis Hyp 1. For
all 1 � i � d and all n � 0, there are functorial isomorphisms

H1.Ln;i ;Ep1/= Im.�˙;p
1

Ln;i
/ Š H1.Ln;i ; .Fss/p1/=�

˙;p1

Ln;i
.F ˙ss .m

�
n //:

In particular, the modules H1.Ln;i ;Ep1/= Im.�˙;p
1

Ln;i
/ are independent of E, since the

right-hand sides are.

Proof. The fact that the first isomorphism is functorial follows from Honda theory,
which shows that the isomorphism between Fss and E is given by logE ı expFss (see
[19, Theorem 8.3 (ii)]).

What remains to be proven is the analogue of the above result when replacing
Ep1 by Ep, which is the module we are ultimately interested in. This is done in
Proposition 4.1 (d), as we move up the cyclotomic tower. Concerning ordinary primes,
we have the following result.

Proposition 3.9. Let E1;E2 be two elliptic curves defined over L satisfying Hypo-
thesis Hyp 1. Let S ss

j (resp. Sord
j ) denote the set of primes where Ej has supersingular

(resp. ordinary) reduction, for j D 1; 2. Then:

(i) S ss
1 D S

ss
2 and Sord

1 D S
ord
2 . Denote these sets simply by S ss and Sord, respectively.

(ii) Every isomorphism .E1/p Š .E2/p induces an isomorphism .zE1/p Š .zE2/p and,
in particular, an isomorphism

H1.Ln;� ; .zE1/p/ Š H1.Ln;� ; .zE2/p/ for all n � 0:

Proof. Starting with (i), observe that an equality S ss
1 D S

ss
2 will imply Sord

1 D S
ord
2

because Sord
j D Sp n S

ss
j (by Hyp 1, both curves have good reduction at all primes

in Sp). To show the claimed equality, pick a prime p 2 S ss
1 . By Hyp 1, Lp Š Qp is

absolutely unramified. Denote by Ej the Néron model of Ej (see [35, IV, Corollary 6.3]
for the existence of this model). Note that the operations of passing to the generic (resp.
special) fibre and of computing the kernel of multiplication by p are fibre products.
Thus these two operations commute and, in particular, the generic (resp. special) fibre
of the finite, flat OLp -group scheme .Ej /p is isomorphic to .Ej /p (resp. to .zEj /p), for
j D 1; 2. Applying [31, Corollaire 3.3.6], we see that the hypothesis .E1/p Š .E2/p
(as Galois modules or, what amounts to the same, as finite, flat Lp-group schemes)
grants the existence of an isomorphism

(3.11) .E1/p Š .E2/p
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of finite, flat OLp -group schemes. By taking closed fibres, this yields an isomorphism

.zE1/p Š .E1/p=Fp
Š .E2/p=Fp

Š .zE2/p

as finite flat Fp-group schemes. This shows that the elliptic curve zE2 has supersingular
reduction at p and S ss

1 � S
ss
2 . By reversing the role of E1 and E2, this yields S ss

1 D S
ss
2 ,

as claimed.
Passing to (ii), let � be a prime where one, and hence both curves, have ordinary

reduction. The assumption e.�/ < p � 1 allows us to again apply [31, Corollaire 3.3.6]
and the isomorphism (3.11) holds again, where now Ej denotes the Néron model of
Ej =L� . Taking closed fibres, we obtain

.zE1/p Š .E1/p=F� Š .E2/p=F� Š .zE2/p

finishing the proof of the proposition.

4. Iwasawa theory for the signed Selmer groups

4.1 – Cyclotomic multi-signed residual Selmer groups

In this section, we focus on the Iwasawa theory for the multi-signed residual Selmer
group introduced in Definition 3.6. Retaining the notation introduced in Notation 2.2,
setGScycDGal.LS=Lcyc/. Denote by� the Galois group Gal.Lcyc=L/ŠGal.Lcyc=Qp/,
let ƒ.�/ D ZpJ�K be its Iwasawa algebra, and set �.�/ D FpJ�K. For any module
M over an Iwasawa algebra, its Pontryagin dual HomZp .M;Qp=Zp/ is denoted by
M^. WhenM is discrete, we say that it is cofinitely generated (resp. cofree, cotorsion,
of corank equal tom 2 N) to mean thatM^ is finitely generated (resp. free, torsion, of
rank equal tom) over the Iwasawa algebra. Observe that, given any co-finitely generated
ƒ.�/-module M , there is an equality M^=pM^ D .Mp/^, inducing the inequality

corankƒ.�/M � corank�.�/Mp

which is an equality if and only if the � invariant of M^ vanishes.
Thanks to Lemma 3.4, there is an inclusion of subgroups in H1.Ln;Ep/

Im.�˙;p
Ln

/ ,! Im.�p
Ln
/;

which will play a role in defining the Selmer groups. We display the subscript 1� i � d
to keep track of the local Galois cohomology groups, writing

Im.�˙;p
Ln;i

/ ,! Im.�p
Ln;i

/ � H1.Ln;i ;Ep/:



F. A. E. Nuccio – R. Sujatha 98

By taking the direct limit of the exact sequence (3.4) over the subextensions inside
Lcyc=L gives the exact sequences, for all 1 � t � 1,

0! E˙.Lcyc/=p
tE˙.Lcyc/

�
˙;pt

Lcyc
����! H1.Lcyc;Ept /

! H1.Lcyc;E/= Im.�˙;p
t

Lcyc;i
/! 0:

The following proposition is the main technical tool needed to compare local and global
cohomology groups of the residual representation Ep along the cyclotomic tower, with
those of the representation Ep1 . We refer to Lemma 3.7 for the definition of the arrows
 in the statement below.

Proposition 4.1. Let G 2 ¹GScyc; GLcyc ; GLcyc;wº where w j v 2 Sbad [ Sord. Write
�
˙;p1

Lcyc;w
to denote �p

1

Lcyc;w
when w j v 2 Sbad [ Sord (in particular, these maps are

independent of the sign˙).

(a) If G 2 ¹GScyc; GLcycº, then the map  G;cyc is an isomorphism

H1.G;Ep/
Š
�! H1.G;Ep1/p:

(b) If G D GLcyc;w for some w j l 2 Sbad, then the kernel of  w;cycWH1.G; Ep/�
H1.G;Ep1/p is finite, of dimension

dimFp .ker w;cyc/ D dimFp E.Lcyc;w/p � 2;

and
corank�.�/ H1.G;Ep/ D corank�.�/ H1.G;Ep1/p:

(c) If G D GLcyc;w for some w j � 2 Sord, then A w;cyc extends to a surjective map

A w;cycWH1.G; zEp/� H1.G;E/p D
�
H1.G;Ep1/= Im.�˙;p

1

Lw;cyc
/
�
p

whose kernel is finite, of dimension

dimFp .ker A w;cyc/ D dimFp
zE.Fw/p � 1;

and

corank�.�/ H1.G; zEp/ D corank�.�/
�
H1.G;Ep1/= Im.�˙;p

1

Lw;cyc
/
�
p
:

(d) If G D GLcyc , then the morphism  p;cyc induces an isomorphism

 ˙p;cycWH
1.G;Ep/= Im.�˙;p

Lcyc
/
Š
�!

�
H1.G;Ep1/= Im.�˙;p

1

Lcyc
/
�
p

giving

corank�.�/
�
H1.G;Ep/= Im.�˙;p

Lcyc
/
�
D corank�.�/

�
H1.G;Ep1/= Im.�˙;p

1

Lcyc
/
�
p
:
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Proof. The isomorphism in (a) follows immediately from passing to the direct limit
of the isomorphisms at finite levels, proven in Lemma 3.7 (i). Similarly, the description
of the kernels in (b) follows from passing to the direct limit in Lemma 3.7 (ii).

The proof of (c) relies on the theory of deeply ramified extensions as defined by
Coates and Greenberg (see [1], in particular Theorem 2.13, noting that the cyclotomic
Zp-extension is deeply ramified). Consider the exact sequence

0! Ap1 ! Ep1 ! zEp1 ! 0;

where A is the formal group of E=OLcyc;� . Then the long exactG-cohomology sequence
gives

(4.1) 0! H1.G;Ep1/= Im.H1.G;Ap1//! H1.G; zEp1/! H2.G;Ap1/:

We claim that H2.G;Ap1/ D 0. Indeed,

H2.G;Ap1/ D lim
�!

H2.G;Apt /

and it will be enough to show that H2.G;Apt / D 0 for all t � 0. This follows from
the fact that G has p-cohomological dimension 1 (see the proof of [34, Chapitre II,
§3.3, Proposition 9]).

Thus we obtain from (4.1) an isomorphism

H1.G;Ep1/= Im.H1.G;Ap1// Š H1.G; zEp1/:

By [1, Proposition 4.3 and diagram (4.8)], we further have

H1.G;E/p1 D H1.G;Ep1/= Im.�˙;p
1

Lcyc;w
/(4.2)

D H1.G;Ep1/= Im.H1.G;Ap1// Š H1.G; zEp1/:

Hence H1.G;E/p1 Š H1.G; zEp1/ and, in particular,

H1.G;E/p Š H1.G; zEp1/p:

It follows that the surjective arrow A w;cycWH1.G; zEp/� H1.G; zEp1/p takes values
in H1.G; E/p and its kernel is finite, of Fp-dimension less than or equal to 1, by
Lemma 3.7 (iii).

The equality of�.�/-coranks in (b) and (c) follows from the fact that a finite module
has trivial �.�/-rank.

To prove assertion (d), note that E˙.Lcyc/ is p-torsion-free. Indeed, E˙.Lcyc/p D

E˙.m�
1/p by Lemma 3.3. But E˙.mcyc/p � E.mcyc/p D 0, by Proposition 3.1, hence
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E˙.Lcyc/p D 0. In particular, E˙.Lcyc/ is a direct limit of free Zp-modules of finite
rank, hence Tor1Zp .E

˙.Lcyc/;Qp=Zp/ D 0. Consider the exact sequence

0! Z=p ! Qp=Zp ! Qp=Zp ! 0:

Tensoring it with E˙.Lcyc/ over Zp yields

(4.3) E˙.Lcyc/˝ Z=p Š .E˙.Lcyc/˝Qp=Zp/p:

Now, the map  ˙p;cyc, defined as the composition of  p;cyc with reduction modulo
Im �˙;p

1

Lcyc
, appears in the following diagram of exact sequences:

(4.4) 0

��

0

��

E˙.Lcyc/˝ Z=p

�
˙;p

Lcyc
��

Š // .E˙.Lcyc/˝Qp=Zp/p

�
˙;p1

Lcyc
��

H1.Lcyc;Ep/

��

Š

 
GScyc

// H1.Lcyc;Ep1/p

˛

��

H1.Lcyc;Ep/= Im �˙;p
Lcyc

��

 ˙p;cyc
// .H1.Lcyc;Ep1/= Im �˙;p

1

Lcyc
/p

0

The first horizontal arrow is an isomorphism in light of (4.3), and the second horizontal
arrow is an isomorphism thanks to (a). The snake lemma implies that  ˙p;cyc is injective
and coker. ˙p;cyc/ D coker.˛/. To show that ˛ is surjective observe that the second
column in (4.4) is the beginning of the ToriZp .�;Z=p/-sequence of the tautological
exact sequence

0! E˙.Lcyc/˝Qp=Zp
�
˙;p1

Lcyc
�����! H1.Lcyc;Ep1/

! H1.Lcyc;Ep1/= Im �˙;p
1

Lcyc
! 0

and therefore coker.˛/ is contained in

.E˙.Lcyc/˝Qp=Zp/˝ Z=p D .E˙.Lcyc/˝Qp=Zp/=p.E˙.Lcyc/˝Qp=Zp/:

Since E˙.Lcyc/˝Qp=Zp is divisible, the above module is trivial, establishing the
surjectivity of ˛ and thus of  ˙p;cyc. This finishes the proof of the proposition.
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Let us now pass to Selmer groups. We refer to [3, Chapter 2] for generalities on
Iwasawa theory for elliptic curves over cyclotomic extensions and, in particular, for the
definitions of the groups Sel.Lcyc=Ep1/ in the ordinary case.

Definition 4.2. The multi-signed residual Selmer group R�.Ep=Lcyc/ is defined
as

R�.Ep=Lcyc/ D lim
�!
res

R�.Ep=Ln/

and the usual multi-signed Selmer group is defined as

Sel�.Ep1=Lcyc/ D lim
�!
res

Sel�.Ep1=Ln/:

The groups R�.Ep=Lcyc/ are discrete �.�/-modules, whose Pontryagin duals
are compact, finitely generated over �.�/. Similarly, the groups Sel�.Ep1=Lcyc/ are
discrete, cofinitely generated ƒ.�/-modules. For v 2 S, denote by ˙ zKv.Ep=Lcyc/ the
�.�/-module

˙ zKv.Ep=Lcyc/ D

8̂̂̂<̂
ˆ̂:
L
wjl H1.Lw;cyc;Ep/ if v D l 2 Sbad;L
wj� H1.Lw;cyc; zEp/ if v D � 2 Sord;

H1.Lcyc;i ;Ep/= Im.�˙;p
Lcyc;i

/ if v D pi 2 S
ss:

Remark 4.3. It is not a priori obvious that the groups ˙ zKv.Ep=Lcyc/ depend
only upon the isomorphism class of Ep, as the notation would suggest. Indeed, for a
supersingular prime p 2 S ss, the definition of the map �˙;p

Lcyc;i
is given in terms of the

full torsion module Ep1 . Below, we will see that in fact the groups ˙ zKv.Ep=Lcyc/

only depend upon Ep .

Similarly, define J˙v .Ep1=Lcyc/ as the ƒ.�/-module

J˙v .Ep1=Lcyc/ D
M
wjv

H1.Lw;cyc;Ep1/= Im.�˙;p
1

Lw;cyc
/;

where, as in Proposition 4.1, we set

�
˙;p1

Lw;cyc
D �

p1

Lw;cyc
for all w j v 2 S n S ss:

As in Definition 3.6, when a vector � 2 ¹C;�ºd is fixed, we simply use ˙ zKv.Ep=Lcyc/

(resp. J˙v .Ep1=Lcyc/) to denote the module C zKv.Ep=Lcyc/ or � zKv.Ep=Lcyc/ (resp.
the module JCv .Ep1=Lcyc/ or J�v .Ep1=Lcyc/) according to the i-th component
�i 2 ¹C;�º. Then the multi-signed residual Selmer group and the usual multi-signed
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Selmer group sit in the following exact sequences:

(4.5) 0! R�.Ep=Lcyc/! H1.GScyc;Ep/
�
�
p

�!

M
v2S

˙ zKv.Ep=Lcyc/

resp.

(4.6) 0! Sel�.Ep1=Lcyc/! H1.GScyc;Ep1/
�
�

p1

���!

M
v2S

J˙v .Ep1=Lcyc/:

As a consequence of the results in Section 3, we can now check that the local conditions
˙ zKv.Ep=Lcyc/ depend only on the residual representation Ep . This is immediate at all
l 2 Sbad, and follows from Proposition 3.9 (ii) at all primes� 2 Sord by taking the induct-
ive limit along the cyclotomic tower. Concerning primes p 2 S ss, this independence
follows from combining Proposition 3.8 with the isomorphism in Proposition 4.1 (d).
The fact that the local conditions depend only on the residual representation implies that
the same holds for the multi-signed residual Selmer group. We record this as follows.

Corollary 4.4. Let E1;E2 be two elliptic curves over L satisfying Hyp 1 such
that .E1/p Š .E2/p. Then, the sets S ss

1 and S ss
2 of primes of supersingular reduction

for E1 and E2 coincide and for every vector of signs � 2 ¹C;�ºd ,

R�..E1/p=Lcyc/ Š R�..E2/p=Lcyc/:

Proof. The equality S ss
1 D S

ss
2 is a consequence of Proposition 3.9 (i), and the

isomorphism of the corresponding multi-signed residual Selmer groups follows from
the above discussion.

Kim considers in [15] the primitive and non-primitive Selmer groups along the
lines of [8]. Corollary 4.6 below is the analogue of [15, Proposition 2.10] for the
multi-signed residual Selmer groups. In order to state it, let us introduce a final notation.
For all w j v 2 Sbad [ Sord, let gv be the number of primes w lying above v in Lcyc.
Further, for v D l 2 Sbad and q j l in Lcyc, denote by L1q the first layer of the cyclotomic
Zp-extension Lcyc;q=Ll . Note that L1q is also the unique unramified extension of degree
p of Ll .

Recall that, for any place v, the residue field at that place is denoted by Fv .

Definition 4.5. For all l 2 Sbad, choose a place q of Lcyc above l. We define the
defect of E as

ıE WD
X

l2Sbad

gl � dimFp E.L1q/p C
X
�2Sord

g� dimFp
zE.F�/p � 2

X
l2Sbad

gl C

X
�2Sord

g� :



Residual supersingular Iwasawa theory 103

The fact that dimFp E.L1q/p is independent of q j l follows from Lcyc=L being Galois,
since E is defined over L.

Corollary 4.6. There are injections

'�WR�.Ep=Lcyc/ ,! Sel�.Ep1=Lcyc/p

whose cokernel is finite, of dimension dimFp coker.'�/ � ıE. In particular,

corank�.�/ R�.Ep=Lcyc/ D corank�.�/ Sel�.Ep1=Lcyc/p:

Moreover, when ��p is surjective, dimFp coker.'�/ D ıE, independently of the vector �.

Proof. Consider the commutative diagram
(4.7)

0 // R�.Ep=Lcyc/ //

'�

��

H1.GScyc;Ep/
�
�
p

//

Š

��

M
v2S

˙ zKv.Ep=Lcyc/

L
'˙v

��

0 // Sel�.Ep1=Lcyc/p // H1.GScyc;Ep1/p
�
�

p1
//
M
v2S

.J˙v .Ep1=Lcyc//p:

The central vertical arrow is an isomorphism thanks to Proposition 4.1 (a). The local
arrows '˙v can be decomposed as

'˙v D
M
wjv

'˙w

and each '˙w is induced by the corresponding arrow  w;cyc of Proposition 4.1. More
precisely,

'˙w D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

 w;cycWH1.Lw;cyc;Ep/! H1.Lw;cyc;Ep1/p
D .H1.Lw;cyc;Ep1/= Im.�˙;p

1

Lw;cyc
//p if v D l 2 Sbad;

A w;cycWH1.Lw;cyc; zEp/! H1.Lw;cyc; zEp1/p
D .H1.Lw;cyc;Ep1/= Im.�˙;p

1

Lw;cyc
//p if v D � 2 Sord;

 ˙p;cycWH
1.Lcyc;Ep/= Im.�˙;p

Lcyc
/

Š
�! .H1.Lcyc;Ep1/= Im.�˙;p

1

Lcyc
//p if v D p 2 S ss:

Indeed, the first equality

H1.Lw;cyc;Ep1/p D .H1.Lw;cyc;Ep1/= Im.�˙;p
1

Lw;cyc
//p
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follows from the fact that Im.�˙;p
1

Lw;cyc
/D 0, since E.Lw;cyc/˝Qp=Zp D 0when v … Sp .

The second equality

H1.Lw;cyc; zEp1/p D .H1.Lw;cyc;Ep1/= Im.�˙;p
1

Lw;cyc
//p

follows from (4.2). Similarly, the fact that  ˙p;cyc takes values in

.H1.Lcyc;Ep1/= Im.�˙;p
1

Lcyc
//p

and is an isomorphism follows from Proposition 4.1 (d).
By applying the snake lemma to (4.7), we see that

(4.8) coker.'�/ �
M

qjl2Sbad

ker. q;cyc/˚
M

wj�2Sord

ker.A w;cyc/

and the inclusion in (4.8) is an equality when ��p is surjective.
It follows from (4.8) and Proposition 4.1 (b), (c) that

dimFp coker.'�/ � dimFp

M
qjl2Sbad

dimFp E.Lcyc;w/p C dimFp

M
wj�2Sord

dimFp
zE.Fw/p

which is an equality if ��p is surjective. To prove the statement of the corollary, we need
to show that

dimFp E.Lcyc;q/p D E.L1q/p if q j l 2 Sbad;(4.9)

dimFp
zE.Fw/p D dimFp

zE.F�/p for all w j � 2 Sord:(4.10)

The equality in (4.10) simply follows from the fact that the inertia degree of every
p-adic prime is 1 along the Zp-cyclotomic Lcyc=L, whence Fw D F� .

Concerning (4.9), we argue as follows. If dimFp E.Ll/p D 2, then the full tor-
sion of E.Ll/ is already defined over Ll , hence E.Ll/p D E.L1q/p D E.Lcyc;q/p. If
dimFp E.Ll/p D 0, then the p-group E.Lcyc;q/p has no non-zero fixed point under the
action of the pro-p-group� DGal.Lcyc;q=Ll/, and must be trivial. Hence E.Lcyc;q/p D

0 D E.L1q/p . Finally, if dimFp E.Ll/p D 1 but dimFp E.Lcyc;q/p D 2, we need to show
that dimFp E.L1q/p D 2. The assumption that dimFp E.Lcyc;q/p D 2 implies that the
action of � in Aut.E.Lcyc;w/p/ induces, upon fixing a basis, a 2-dimensional linear
representation

%W� ! GL2.Fp/:

As GL2.Fp/ contains no element of order p2, % factors through �=�p D Gal.L1q=Ll/,
so �p acts trivially on E.Lcyc;q/p . This implies that E.Lcyc;q/p D E.L1q/p also in this
case, and concludes the proof of the corollary.
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4.2 – Cassels–Poitou–Tate exact sequence and Iwasawa cohomology

For n 2 N [ ¹cycº, let X.Ep1=Ln/ denote the Pontryagin duals

X.Ep1=Ln/ D HomZp .Sel.Ep1=Ln/;Qp=Zp/:

These modules clearly admit multi-signed versions, defined as

X�.Ep1=Ln/ D HomZp .Sel�.Ep1=Ln/;Qp=Zp/:

Similarly, the duals of the multi-signed residual Selmer groups are defined as

Y�.Ep=Ln/ D HomZp .R
�.Ep=Ln/;Qp=Zp/:

Both X.Ep1=Lcyc/ and X�.Ep1=Lcyc/ are finitely generated compact ƒ.�/-modules
and it follows from Corollary 4.6 that the�.�/-modules Y�.Ep=Ln/ are finitely gener-
ated. Further, Corollary 4.4 implies that they only depend upon the isomorphism class
of Ep . As a last piece of notation, suppose thatK 2 ¹Ln;Lv;Lnº for some 0 � n <1,
and retain notation from Notation 2.2: in particular,

zK D

8̂̂<̂
:̂

Qp if K D Ln;

Lv if K D Lv;
LS if K D L:

Let M be a compact Zp-module with a continuous Gal. zK=K/-action. The Iwasawa
cohomology modules HiIw.K;M/ (for all i � 1) are defined as the inverse limit, with
respect to corestriction maps

HiIw.K;M/ D lim
 �

K�K0�Kcyc

Hi . zK=K 0;M/:

The reader is referred to [28, §3.1] for generalities about Iwasawa cohomology. In
particular, the above ƒ.�/-modules are known to be trivial for i ¤ 1; 2.

A fundamental tool for the study of the Iwasawa theory of Selmer groups is the
Cassels–Poitou–Tate exact sequence, for which we refer to [3, Theorem 1.5] and which
we now briefly recall. Fix n 2 N and consider the self-dual module M D Ep . Put

Wv D

8̂̂<̂
:̂
0 if v D l 2 Sbad;

Im.�˙;p
Ln;i

/ if v D pi 2 S
ss .1 � i � d/;

H1.Ln;�i ; .A�i /p/ if v D �i 2 Sord .1 � i � s/;

where A� denotes the formal group of E=OL� , and the sign ˙ depends on the i-th
component of �. These coincide with the local conditions in Definition 3.6, so that the
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group R�.Ep=Ln/ sits in the exact sequence

0! R�.Ep=Ln/! H1.GSn ;Ep/!
M
v2S

H1.Lv;n;Ep/=Wv:

For all v 2 S, let W ?v denote the orthogonal complement of Wv in the Tate pairing

H1.Lv;n;Ep/ � H1.Lv;n;Ep/! Q=Z

and define R�.Ep=L/ as the kernel

0! R�.Ep=Ln/! H1.GSn ;Ep/!
M
v2S

H1.Lv;n;Ep/=W ?v :

This gives the Cassels–Poitou–Tate exact sequence

0! R�.Ep=Ln/! H1.GSn ;Ep/!
M
v2S

H1.Lv;n;Ep/=Wv(4.11)

! .R�.Ep=Ln//
^
! H2.GSn ;Ep/!

M
wjv2S

H2.Ln;v;Ep/! 0;

where the final 0 comes from Proposition 3.1. Similarly, put

Uv D

8̂̂<̂
:̂
0 if v D l 2 Sbad;

Im.�˙;p
1

Ln;i
/ if v D pi 2 S

ss .1 � i � d/;

H1.Ln;�i ; .A�i /p1/ if v D �i 2 Sord .1 � i � s/;

and define U?v � H1.Ln;v; Tp.E// to be the orthogonal complement of Uv . Defining
S�.Tp.E/=L/ as the kernel

0! S�.Tp.E/=Ln/! H1.GSn ; Tp.E//!
M
v2S

H1.Lv;n; Tp.E//=U?v ;

we obtain the Cassels–Poitou–Tate exact sequence

0! Sel�.Ep1=Ln/! H1.GSn ;Ep1/!
M
v2S

H1.Lv;n;Ep1/=Uv(4.12)

! .S�.Tp.E/=Ln//
^
! H2.GSn ;Ep1/!

M
wjv2S

H2.Ln;v;Ep1/! 0:

In order to study the limit, as n!1 along the cyclotomic tower, of the Cassels–
Poitou–Tate sequences, consider the groups

R�.Ep=Lcyc/ D lim
 �

R�.Ep=Ln/ � H1Iw.L;Ep/;

S�.Tp.E/=Lcyc/ D lim
 �

S�.Tp.E/=Ln/ � H1Iw.L; Tp.E//;
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where inverse limits are taken with respect to corestriction maps. These are, respectively,
an �.�/-module and a ƒ.�/-module and their relevance for our study comes from
the following observation (cf. [23, Lemma 2.6 and Remark 2.7], where the case of an
elliptic curve with ordinary reduction at p is considered):

Lemma 4.7. There are isomorphisms

R�.Ep=Lcyc/
^
Š lim
�!

.R�.Ep=Ln//
^
;

S�.Tp.E/=Lcyc/
^
Š lim
�!

.S�.�=Tp.E//Ln/
^
;

where the direct limits are taken with respect to the dual of corestriction maps. Moreover,
the group R�.Ep=Lcyc/ is free as �.�/-module and S�.Tp.E/=Lcyc/ has no non-zero
torsion ƒ.�/-submodules.

Proof. The first isomorphism simply follows from the definition, since

R�.Ep=Lcyc/
^
D Hom

�
lim
 �

R�.�=Ep/Ln;Qp=Zp
�

D lim
�!

Hom.R�.�=Ep/Ln;Qp=Zp/

D lim
�!

.R�.Ep=Ln//
^
:

The second isomorphism is analogous.
To show that R�.Ep=Lcyc/ is a free �.�/-module, note that Jannsen’s spectral

sequence [12, Corollary 13] takes the form

E
p;q
2 D Extp

�.�/

�
Hom.Hq.GScyc;Ep/;Fp/;�.�/

�
H) HpCqIw .L;Ep/:

By Proposition 3.1, Ep;02 D 0 for all p � 0. Therefore we have E1;01 D E
1;0
2 D 0 and

E
0;1
2 D E

0;1
1 ; and it follows that

E
0;1
2 D Hom�.�/

�
HomFp .H

1.GScyc;Ep/;Fp/;�.�/
�
Š H1Iw.L;Ep/:

In particular, the first Iwasawa cohomology group of Ep is torsion-free over�.�/, and
hence free since�.�/ is a PID. By taking the inverse limit, with respect to corestriction,
of the inclusions R�.Ep=Ln/ ,! H1.GSn ;Ep/, we obtain an injection

R�.Ep=Lcyc/ ,�! H1Iw.L;Ep/:

Since �.�/ is a principal ideal domain, a submodule of a free module is itself free,
thereby proving the claim concerningR�.Ep=Lcyc/. Passing to the Galois representation
Ep1 , Jannsen’s spectral sequence [12, Theorem 1] gives

E
p;q
2 D Extp

ƒ.�/

�
Hom.Hq.GScyc;Ep1/;Qp=Zp/;ƒ.�/

�
H) HpCqIw .L; Tp.E//:
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Again, Proposition 3.1 yields Ep;02 D 0 for all p � 1 and the same argument as above
shows that the first Iwasawa cohomology group of Tp.E/ is torsion-free over ƒ.�/. In
particular, the same holds for its submodule S�.Tp.E/=Lcyc/.

In Section 4.2.1, there is a summary of the notation for the various Selmer groups,
and their signed versions, for both Ep and for Ep1 .

Given two subextensions L � Ln � Lm � Lcyc, consider the corresponding exact
sequences (4.11). The restriction map on cohomology induces morphisms between the
first three (resp. the last two) terms. A standard argument in local Tate duality shows
that connecting the fourth terms via the Pontryagin dual of corestriction

.cores/^W .R�.Ep=Ln//
^
! .R�.Ep=Lm//

^
.m � n � 0/

of (4.11) gives commutative diagrams of exact sequences. By taking the direct limit
over n, Lemma 4.7 gives exact sequences

0! R�.Ep=Lcyc/! H1.GScyc;Ep/
�
�
p

�!

M
v2S

˙ zKv.Ep=Lcyc/(4.13)

! R�.Ep=Lcyc/
^
! H2.GScyc;Ep/!

M
wjv2S

H2.Lcyc;w ;Ep/! 0;

where the morphism �
�
p and the �.�/-modules ˙ zKv.Ep=Lcyc/ were introduced in

(4.5). Replacing the Galois representation Ep by Ep1 , we obtain the analogous exact
sequence

0! Sel�.Ep1=Lcyc/! H1.GScyc;Ep1/
�
�

p1

���!

M
v2S

J˙v .Ep1=Lcyc/(4.14)

! S�.Tp.E/=Lcyc/
^
! H2.GScyc;Ep1/!

M
wjv2S

H2.Lcyc;w ;Ep1/! 0:

We go back to the study of R�.Ep=Lcyc/. Unlike the ordinary case, the full Selmer
group

Sel.Ep1=Lcyc/ D ker
�
H1.GS1;Ep1/!

M
wjv2S

H1.Lcyc;w ;E/p1
�

(4.15)

D ker
�
H1.GS1;Ep1/!

M
wjv2SnS ss

H1.Lcyc;w ;E/p1

˚

dM
iD1

H1.Lcyc;i ;Ep1/= Im.�p
1

Lcyc;i
/
�
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is notƒ.�/-cotorsion, in general. Indeed, as is discussed in the proof of [3, Theorem 2.6],
each local term H1.Lcyc;i ;E/p1 has ƒ.�/-corank equal to 0 or 1 depending on the
reduction type of zE=Fp and this implies that Sel.Ep1=Lcyc/ is not ƒ.�/-cotorsion in
the supersingular case. In the ordinary reduction case, Mazur asked in [25, §6] whether
Sel.Ep1=Lcyc/ is co-torsion. This is known to be true if Sel.Ep1=L/ is finite or if
L D Q (see [3, Theorems 2.8 and 2.18]).

In the supersingular setting, both Perrin-Riou and Kobayashi reduce the size of
the kernels in (4.15) by replacing Im.�p

1

Lcyc
/ with the smaller subgroup Im.�˙;p

1

Lcyc
/, at

supersingular primes. This has the effect that the corresponding signed Selmer group is
potentially a cotorsion module over the Iwasawa algebra. We follow the same strategy,
replacing Ep1 by Ep, and replacing signed Selmer groups by their fine multi-signed
residual versions.

4.2.1. Notation.

• The local conditions J˙v .Ep1=Lcyc/ and ˙ zKv.Ep=Lcyc/ are defined right after
Definition 4.2 and are subgroups of global cohomology groups of Ep1 and of Ep ,
respectively.

• These local conditions yield the definition of the (signed) Selmer groups
Sel�.Ep1=Lcyc/ and R�.Ep=Lcyc/. The rationale beneath the choice of the letter
R for the Selmer group of the representation Ep is to hint at a residual Selmer group.

• Taking Pontryagin duals of the above groups, one obtains the groups

X�.Ep1=Ln/ D HomZp .Sel�.Ep1=Ln/;Qp=Zp/;

Y�.Ep=Ln/ D HomZp .R
�.Ep=Ln/;Qp=Zp/;

defined at the beginning of Section 4.2.

• By local Tate duality, the local conditions J˙v .Ep1=Lcyc/ and ˙ zKv.Ep=Lcyc/ give
rise to dual local conditions. These, in turn, define dual compact Selmer groups
S�.Tp.E/=Ln/ and R�.Ep=Ln/, appearing in equations (4.12) and (4.11), respect-
ively. Again, the choice of letters S and R reflects the fact that these are the compact
versions of the “full” Selmer group and of the residual Selmer group, respectively.

• Taking inverse limits, with respect to corestriction maps, over the cyclotomic tower
of the compact groups S�.Tp.E/=Ln/ and R�.Ep=Ln/ defines the ƒ.�/-modules
S�.Tp.E/=Lcyc/ and R�.Ep=Lcyc/ (the latter is in fact a�.�/-module). Once more,
the choice of letters is coherent with the previous rationale. The relation between
Pontryagin and Tate duality is summarised in Lemma 4.7
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4.3 – Rank computation

To approach R�.Ep=Lcyc/, the main objects of study will be the maps ��p and ��p1
appearing in the exact sequences (4.13) and (4.14). We will ultimately relate the sur-
jectivity of ��p to the structure of X�.Ep1=Lcyc/ as aƒ.�/-module (see Theorem 4.13).
In this direction, the following hypothesis (which is the multi-sign analogue of condition
(vi) in [18, Theorem 1.3]) is crucial:

Hypothesis Hyp 2�. Theƒ.�/-module X�.Ep1=Lcyc/ is torsion and hence admits
two structural Iwasawa invariants, which we denote by �� and ��.

The exact sequence which is crucial in our approach is (4.13). Concerning the term
H2.GScyc;Ep/ in it, Coates and the second author have proposed in [2] the following
conjecture:

Conjecture A. H2.GScyc;Ep/ D 0.

The original formulation of Conjecture A in [2] is that the dual fine Selmer group
Y.E=Lcyc/ over Lcyc (see [2, §3] for its definition) is a finitely generated Zp-module.
Note that this is equivalent to Y.E=Lcyc/ being ƒ.�/-torsion, and having �-invariant
equal to 0. The next proposition relates the two formulations, and shows that Conjec-
ture A implies the weak Leopoldt conjecture (see Remark 4.9 below).

Proposition 4.8. Conjecture A implies that H2.GScyc;Ep1/ D 0. Moreover, if E
satisfies Hyp 2�, and if �� D 0, then Conjecture A holds.

Proof. Taking GScyc-cohomology of the exact sequence (3.6) yields

H2.GScyc;Ep/! H2.GScyc;Ep1/
�p
�! H2.GScyc;Ep1/! 0;

where the surjection comes from the fact that Gal.L=Lcyc/ has cohomological dimension
2 (see [26, Theorem 10.11.3 and Proposition 3.3.5]). Therefore, if H2.GScyc;Ep/ D 0
then multiplication by p is injective on H2.GScyc;Ep1/. On the other hand, every class
in H2.GScyc;Ep1/ has finite p-power order, hence multiplication by p is injective if and
only if H2.GScyc;Ep1/ D 0.

Suppose now that X�.Ep1=Lcyc/ isƒ.�/-torsion and�� D 0. The dual fine Selmer
group Y.E=Lcyc/ is defined in [2, (42)] as the Pontryagin dual of

ker
�
H1.GScyc;Ep1/!

M
wjv2S

H1.Lcyc;w ;Ep1/
�
:

Since this kernel injects into Sel�.Ep1=Lcyc/ by (4.6), we obtain a surjection

X�.Ep1=Lcyc/� Y.E=Lcyc/:
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Our assumptions imply then that Y.E=Lcyc/ is a torsion ƒ.�/-module with trivial
�-invariant, which is the formulation of [2, Conjecture A]. We are thus left to show
that if Y.E=Lcyc/ is ƒ.�/-torsion and has trivial �-invariant, then H2.GScyc;Ep/ D 0.
But Greenberg shows in [7, Proposition 4.1.6] that the vanishing of H2.GScyc;Ep/ is
equivalent to the p-torsion subgroup Y.E=Lcyc/p being finite, and this is certainly the
case when Y.E=Lcyc/ is ƒ.�/-torsion and has trivial �-invariant.

Remark 4.9. (1) The vanishing of H2.GScyc;Ep1/ is known as the weak Leopoldt
conjecture (see [33, p. 348] and [5, Conjecture 3]). If L D Q, it holds by [13, The-
orem 12.4], at least for S D ¹pº; the case for general S D Sbad [ ¹pº can be deduced
from Kato’s result by combining the exact sequence of [29, p. 33, (1.4.3)] with Jannsen’s
spectral sequence from [12, Theorem 1]. Over an arbitrary base L, if Sel.E=L/ is finite,
the vanishing can be proven by combining [3, Proposition 1.9] with the Hochschild–
Serre spectral sequence.

(2) It is clear that the validity of Conjecture A depends only upon the isomorphism
class of the Galois representation Ep .

Let us now pass to the study of �.�/-coranks of some cohomology groups, which
will turn out to be a key step in the proof of our main result. In Lemma 4.10, global
cohomology and local cohomology at primes where E does not have supersingular
reduction are considered. Then, in Lemma 4.11, supersingular primes are treated.

Lemma 4.10. Let v 2 S n S ss and let w j v be a place in Lcyc that lies above v.
Then:

(i) If v D l 2 Sbad, the Pontryagin duals H1.Lcyc;w ;Ep1/ have � invariant equal to 0.

(ii) If v D � 2 Sord, the Pontryagin duals of H1.Lcyc;w ; Ep1/= Im.�p
1

Lcyc;w
/ have �

invariant equal to 0.

(iii) Assuming Conjecture A, the Pontryagin dual of H1.GScyc;Ep1/ has trivial � invari-
ant as well.

As a consequence,

corank�.�/ H1.Lcyc;w ;Ep/(4.16)
D corankƒ.�/ H1.Lcyc;w ;Ep1/; w j l 2 Sbad;

corank�.�/ H1.Lcyc;w ; zEp/(4.17)

D corankƒ.�/.H1.Lcyc;w ;Ep1/= Im.�p
1

Lcyc;w
//; w j � 2 Sord;

and, assuming Conjecture A,

(4.18) corank�.�/ H1.GScyc;Ep/ D corankƒ.�/ H1.GScyc;Ep1/:
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Proof. We start with local cohomology, and let v 2S nS ss be any prime. Greenberg
proves in [5, Propositions 1 and 2] that the groups H1.Lcyc;w ; Ep1/ are cofinitely
generated: this implies, in particular, that their quotients H1.Lcyc;w ;Ep1/= Im.�p

1

Lcyc;w
/

are cofinitely generated as well. Moreover, we claim that the exact sequence (3.6)
induces

H1.Lcyc;w ;Ep1/
�p
�! H1.Lcyc;w ;Ep1/! H2.Lcyc;w ;Ep/ D 0:

The H2-term in the above sequence vanishes because GLcyc;w has p-cohomological
dimension 1, as observed in the proof of Proposition 4.1.

The fact that multiplication by p is surjective on H1.Lcyc;w ;Ep1/ shows that this
module is p-divisible, and thus the same property holds for the quotient module
H1.Lcyc;w ;Ep1/= Im.�p

1

Lcyc;w
/. Observe now that this divisibility is equivalent to their

Pontryagin duals having no p-torsion and, in particular, to having trivial � invariant.
This establishes points (i) and (ii).

When Conjecture A holds, the same argument as above shows that multiplication
by p is surjective on H1.GScyc;Ep1/, whence (iii).

By Proposition 4.1 (a) (resp. Proposition 4.1 (b)), the Pontryagin duals of the�.�/-
modules H1.GScyc;Ep/ and H1.GScyc;Ep1/p (resp. H1.Lcyc;w ;Ep/ and H1.Lcyc;w ;Ep1/p
for somew j l 2 Sbad) have the same rank. Now equations (4.16) and (4.18) follow from
assertions (i) and (iii), respectively, along with the structure theorem for finitely gener-
atedƒ.�/-modules. Similarly, combining Proposition 4.1 (c) with (ii) yields (4.17).

We finish the study of �.�/-coranks of cohomology groups by analysing what
happens at supersingular primes. Our argument is the analogue, modulo p, of [18,
Proposition 3.32].

Lemma 4.11. For each choice of sign˙, the �.�/-module

.H1.Lcyc;Ep/= Im.�˙;p
Lcyc

//
^

is finitely generated and free of rank 1.

Proof. The statement will follow once we prove that

(4.19) .H1.Lcyc;Ep1/= Im.�˙;p
1

Lcyc
//
^

Š ƒ.�/;

thanks to Proposition 4.1 (d).
The freeness claimed in (4.19) follows from [18, Lemma 3.31]. Indeed,

.H1.Lcyc;Ep1/= Im.�˙;p
1

Lcyc
//
^

D ker
�
H1.Lcyc;Ep1/

^� Im.�˙;p
1

Lcyc
/
^�
;
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where H1.Lcyc;Ep1/
^ is ƒ.�/-free of rank 2, as proven in [5, Corollary 1], and

Im.�˙;p
1

Lcyc
/
^

is ofƒ.�/-rank equal to 1 and has no non-trivial finiteƒ.�/-submodules,
as follows from [18, Proposition 3.28 (for � D 1)].

The following proposition is essentially well known in the ordinary case, and it has
already been proven by Iovita–Pollack in the supersingular case under the assumption
that E is defined over Q, and p splits completely in L=Q (see [11, Proposition 6.1]).

Proposition 4.12. Suppose that Conjecture A holds for E=L. Then we have

corankƒ.�/ H1.GScyc;Ep1/(4.20)

D

X
�2Sord

corankƒ.�/ J˙� .Ep1=Lcyc/C

dX
iD1

corankƒ.�/ J˙pi .Ep1=Lcyc/;

corank�.�/ H1.GScyc;Ep/(4.21)

D

X
�2Sord

corank�.�/ ˙ zK�.Ep=Lcyc/C

dX
iD1

corank�.�/ ˙ zKpi .Ep=Lcyc/:

Moreover,X
l2Sbad

corankƒ.�/ J˙l .Ep1=Lcyc/ D
X

l2Sbad

corank�.�/ ˙ zKl.Ep=Lcyc/ D 0:

Proof. The proof is an adaptation of [3, proof of Theorem 2.6]. We first compute
the left-hand sides of both (4.20) and (4.21). In [5, Proposition 3] Greenberg proves
that both H1.GScyc;Ep1/ and H2.GScyc;Ep1/ are co-finitely generated over ƒ.�/ and
further

corankƒ.�/ H1.GScyc;Ep1/ � corankƒ.�/ H2.GScyc;Ep1/ D 2r2 C
X

v real place

d�v :

Here r2 is the number of complex places of L and, for each real place v of L, we
denote by d�v the dimension of the .�1/-eigenspace for a complex conjugation above
v acting on Tp.E/˝Qp . By Proposition 4.8, the H2-term vanishes and, by the Galois
invariance of the Weil pairing, we know that d�v D 1 for all real v. Hence,

corankƒ.�/ H1.GScyc;Ep1/ D ŒL W Q� D N:

Now (4.18) of Lemma 4.10 implies

corank�.�/ H1.GScyc;Ep/ D corankƒ.�/ H1.GScyc;Ep1/ D N:
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Passing to the computation of the local coranks, let first � 2 Sord. By [3, §2.13]
(which applies here, thanks to our convention that �˙;p

1

Lcyc;w
D �

p1

Lcyc;w
when � 2 Sord,

together with (4.2)) we know

(4.22) corankƒ.�/
M
wj�

.H1.Lcyc;w ;Ep1/= Im.�˙;p
1

Lcyc;w
// D ŒL� W Qp�:

Hence equation (4.17) of Lemma 4.10 yields

(4.23) corank�.�/
M
wj�

H1.Lcyc;w ; zEp/ D corank�.�/ ˙ zK�.Ep=Lcyc/ D ŒL� W Qp�:

Consider now a prime pi 2 S
ss. Lemma 4.11 implies that

(4.24) corank�.�/.H1.Lcyc;i ;Ep/= Im.�˙;p
Lcyc

// D corank�.�/ ˙ zKpi .Ep=Lcyc/ D 1:

Combining (4.22) and (4.19), we find

X
�2Sord

corankƒ.�/ J˙� .Ep1=Lcyc/C

dX
iD1

corankƒ.�/ J˙pi .Ep1=Lcyc/ D N:

Similarly, (4.23) and (4.24) together imply

X
�2Sord

corank�.�/ ˙ zK�.Ep=Lcyc/C

dX
iD1

corank�.�/ ˙ zKpi .Ep=Lcyc/ D N

and this establishes equations (4.20) and (4.21).
Finally, suppose that l is a prime in Sbad and let q be an extension of l to Lcyc.

Greenberg proves in [5, Proposition 2] that the ƒ.�/-module H1.Lcyc;q ; Ep1/ is
cotorsion. Hence

corankƒ.�/ J˙l .Ep1=Lcyc/ D
X
qjl

corankƒ.�/ H1.Lcyc;q ;Ep1/ D 0

and (4.16) of Lemma 4.10 impliesX
qjl

corank�.�/ H1.Lcyc;q ;Ep/ D
X
qjl

corankƒ.�/ H1.Lcyc;q ;Ep1/ D 0

as well. This completes the proof of the proposition.
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4.4 – Main results

We are now in a position to state and prove our main result. Recall the exact sequence
(4.13):

0! R�.Ep=Lcyc/! H1.GScyc;Ep/
�
�
p

�!

M
v2S

˙ zKv.Ep=Lcyc/

! R�.Ep=Lcyc/
^
! H2.GScyc;Ep/!

M
wjv2S

H2.Lcyc;w ;Ep/! 0:

Consider the projection

prSp W
M
v2S

˙ zKv.Ep=Lcyc/!
M
v2Sp

˙ zKv.Ep=Lcyc/:

Define #�Ep ;Sp , or simply #�p;Sp , as the composition prSp ı �
�
p :

Theorem 4.13. Under our standing assumption Hyp 1, suppose that Hyp 2� holds
as well. Then the following assertions are equivalent:

(a) ��p is surjective and Conjecture A holds.

(b) #�p;Sp is surjective and Conjecture A holds.

(c) R�.Ep=Lcyc/ is �.�/-cotorsion.

(d) X�.Ep1=Lcyc/ has trivial �-invariant.

Proof. To show that (a)) (c), take Pontryagin duals of the short exact sequence

0! R�.Ep=Lcyc/! H1.GScyc;Ep/
�
�
p

�!

M
v2S

˙ zKv.Ep=Lcyc/! 0

to obtain

0!
M
v2S

˙ zKv.Ep=Lcyc/
^ �

�
p

^

��! H1.GScyc;Ep/
^
! Y�.Ep=Lcyc/! 0:

By Proposition 4.12, the first two terms have the same �.�/-rank, so the third is
�.�/-torsion and (c) follows. Also, when (a) holds, the composition #�p;Sp D prSp ı �

�
p

is surjective, yielding (a)) (b).
To show that (c) and (d) are equivalent, we first observe that a finitely generated

torsionƒ.�/-moduleM has trivial�-invariant if and only ifM=pM is a torsion�.�/-
module. On the other hand, taking Pontryagin duals of the injection of Corollary 4.6
shows that the kernel of

.Sel�.Ep1=Lcyc//p
^
D X�.Ep1=Lcyc/=pX�.Ep1=Lcyc/� Y�.Ep=Lcyc/

is finite, showing the equivalence between (c) and (d).
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So far, we have shown that (b)( (a)) (c), (d). We are left with the implica-
tions (c)) (a) and (b)) (a). Since (c)) (d)) Conjecture A by Proposition 4.8,
and (b) contains Conjecture A, we can assume from now on that H2.GScyc;Ep/ D 0. In
particular, the sequence (4.13) becomes

0! R�.Ep=Lcyc/! H1.GScyc;Ep/
�
�
p

�!

M
v2S

˙ zKv.Ep=Lcyc/(4.25)

! R�.Ep=Lcyc/
^
D coker.��p/! 0;

and Proposition 4.12 yields

corank�.�/.R�.Ep=Lcyc// D corank�.�/.R�.Ep=Lcyc//:

Assuming (c), it follows thatR�.Ep=Lcyc/ is�.�/-torsion. On the otherR�.Ep=Lcyc/ is
�.�/-free, in light of Lemma 4.7, and to be�.�/-torsion it must be trivial, establishing
(c)) (a).

Finally, assume that #�p;Sp is surjective and consider the commutative triangle

H1.GScyc;Ep/
�
�
p

//

#
�
p;Sp **

M
l2Sbad

˙ zKl.Ep=Lcyc/˚
M
v2Sp

˙ zKv.Ep=Lcyc/

prSp

��M
v2Sp

˙ zKv.Ep=Lcyc/:

It induces an exact sequence

ker.prSp / D
M

l2Sbad

˙ zKl.Ep=Lcyc/! coker.��p/! coker.#�p;Sp / D 0

which implies that coker.��p/ is cotorsion, thanks to Proposition 4.12. Since coker.��p/
is isomorphic to R�.Ep=Lcyc/

^ by (4.25), and R�.Ep=Lcyc/ is free by Lemma 4.7, this
forces coker.��p/ D 0, establishing the final implication (b)) (a).

Remark 4.14. Note that Conjecture A is pivotal to the proof and plays the role of
the weak Leopoldt conjecture for the residual representation Ep .

As an application of Theorem 4.13, we obtain a result along the lines of Greenberg–
Vatsal’s work [8, Theorem 1.4] in the supersingular setting. Results somewhat similar
to Theorem 4.15 below, again in the supersingular setting, have been obtained by Kim
in [15, Corollary 2.13] and by Hatley–Lei in [10, Theorem 4.6], by different methods.
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Theorem 4.15. Let E1;E2 be two elliptic curves defined over L, satisfying Hypo-
thesis Hyp 1 and such that the residual Galois representations .E1/p and .E2/p are
isomorphic. Then, the sets S ss

1 and S ss
2 of primes of supersingular reduction for E1 and

E2 coincide. Given a vector � 2 ¹C;�ºd , assume that both curves satisfy Hyp 2� and
let ��Ej be the Iwasawa �-invariants of X�..Ej /p1=Lcyc/, for j D 1; 2. Then

(4.26) �
�
E1 D 0” �

�
E2 D 0:

Proof. Observe first that if ��Ej D 0 for one curve Ej , then Conjecture A holds
for both curves, thanks to Proposition 4.8. Moreover, Proposition 3.9 (i) shows that the
sets S ss and Sord consisting of primes of supersingular (resp. ordinary) reduction for
E1 and E2 coincide.

Fix an isomorphism .E1/p Š .E2/p and consider the maps

#
�

.Ej /p ;Sp
WH1.GScyc; .Ej /p/!

M
v2Sp

˙ zKv.Ej =Lcyc/

D

M
�2Sord

M
wj�

H1.Lcyc;w ; .zEj /p/˚
dM
iD1

H1.Ln;i ; .Ej /p/= Im �˙;p
Ln;i

defined before Theorem 4.13. For all w j � 2 Sord, the chosen isomorphism induces
an isomorphism between the H1.Lcyc;w ; .zEj /p/ (for j D 1; 2) by Proposition 3.9 (ii).
Similarly, at every prime in S ss, Proposition 3.8 gives an isomorphism between the
groups

H1.Ln;i ; .Ej /p/= Im �˙;p
Ln;i

;

for j D 1; 2. It follows that #�
.E1/p ;Sp

is surjective if and only if #�
.E2/p ;Sp

is surjective.
Theorem 4.13 now yields (4.26).

In order to prove the next theorem, we need the following proposition, which is the
analogue for the Galois representation Ep1 of the equivalence between (a) and (c) of
Theorem 4.13, as well as its Corollary 4.18. To state them, recall the exact sequence
(4.14):

0! Sel�.Ep1=Lcyc/! H1.GScyc;Ep1/
�
�

p1

���!

M
v2S

J˙v .Ep1=Lcyc/

! S�.Tp.E/=Lcyc/
^
! H2.GScyc;Ep1/!

M
wjv2S

H2.Lcyc;w ;Ep1/! 0:

Proposition 4.16. Under the standing assumption Hyp 1, assume further that
Conjecture A holds. Then Hyp 2� holds if and only if ��p1 is surjective.
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Proof. By Proposition 4.8, Conjecture A yields that H2.GScyc;Ep1/ D 0, thus

coker.��p1/ D S�.Tp.E/=Lcyc/
^
:

Thanks to (4.14), we need to show that S�.Tp.E/=Lcyc/
^
D 0 if and only if

X�.Ep1=Lcyc/ is ƒ.�/-torsion. The rank computations performed in Proposition 4.12
yield that

corankƒ.�/ coker.��p1/ D corankƒ.�/ ker.��p1/ D corankƒ.�/ Sel�.Ep1=Lcyc/:

Therefore, Hyp 2� is equivalent to the statement that coker.��p1/
^

D S�.Tp.E/=Lcyc/

is ƒ.�/-torsion. By Lemma 4.7 this can happen if and only if it is trivial, finishing the
proof.

Before deriving Corollary 4.18, recall the following result due to Greenberg (see
[6, pp. 104–105]). We give a different, homological proof that works in a broader
context. The second author is grateful to Akhil Matthew for helpful discussions in this
regard.

Proposition 4.17. Let 0!M !N !M=N ! 0 be an exact sequence ofƒ.�/-
modules. Suppose that M is free and that N has no non-zero finite ƒ.�/-submodules.
Then M=N has no non-zero finite ƒ.�/-submodules.

Proof. Let us prove that the maximal finite ƒ.�/-submodule W �M=N is zero.
Being pseudo-null, it satisfies Extiƒ.�/.W;ƒ.�// D 0, for i D 0; 1, as shown in [26,
Proposition 5.5.3 (ii)]. Since M is free, this implies Ext1ƒ.�/.W;M/ D 0. Applying
the functor Homƒ.�/.W;�/ to the exact sequence in the statement therefore gives an
exact sequence

0! Homƒ.�/.W;M/! Homƒ.�/.W;N /! Homƒ.�/.W;M=N/! 0:

As N contains no non-zero finite ƒ.�/-submodules, the term Homƒ.�/.W;N / van-
ishes, and therefore Homƒ.�/.W; M=N/ D 0. This implies the proposition, since
W �M=N .

Corollary 4.18. Assume Hyp 1 and Hyp 2� as well as Conjecture A. If the
Pontryagin dual X.Ep1=Lcyc/ of the usual Selmer group does not have any non-zero
finite ƒ.�/-submodule, then the same holds for the Pontryagin dual X�.Ep1=Lcyc/ of
the multi-signed Selmer group.
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Proof. For every v 2 S, define the usual local conditions as

Jv.Ep1=Lcyc/ D
M
wjv

H1.Lw;cyc;Ep1/= Im.�p
1

Lw;cyc
/I

the group Jv.Ep1=Lcyc/ is a quotient of J˙v .Ep1=Lcyc/, and it actually coincides with
it for all v 2 S n S ss. Consider the commutative triangle

H1.GScyc;Ep1/
�
�

p1
//

�p1 ))

M
v2S

J˙v .Ep1=Lcyc/

�

����M
v2S

Jv.Ep1=Lcyc/;

where � is the canonical surjection. By Proposition 4.16, the morphism ��p1 is surjective,
and therefore there is a short exact sequence

(4.27) 0! ker ��p1 ! ker �p1 ! ker �! 0:

By definition, ker ��p1 D Sel�.Ep1=Lcyc/ and ker �p1 D Sel.Ep1=Lcyc/, while

ker � D
dM
iD1

Im.�p
1

Lcyc;i
/= Im.�˙;p

1

Lcyc;i
/:

Observe now that
Im.�p

1

Lcyc;i
/ D H1.Lw;cyc;Ep1/

by [1, Proposition 4.8], so that .ker �/^ is ƒ.�/-free by [18, Proposition 3.32]. The
corollary follows from Proposition 4.17 applied to the Pontryagin dual of (4.27).

Remark 4.19. The above result has been obtained by Kitajima–Otsuki in [18,
Theorem 4.8] in the special case when � D ¹C;C; : : : ;Cº or � D ¹�;�; : : : ;�º and
under the more restrictive hypothesis that both XC.Ep1=Lcyc/ and X�.Ep1=Lcyc/

are torsion ƒ.�/-modules. Our approach through the exact sequence (4.14) allows
us to make the weaker assumption that just one of these modules be torsion. On the
other hand, assuming that both XC.Ep1=Lcyc/ and X�.Ep1=Lcyc/ are torsion ƒ.�/-
modules, they prove in [18, Theorem 4.5] that the Pontryagin dual X.Ep1=Lcyc/ of
the usual Selmer group does not contain any non-zero, finite ƒ.�/-submodule.

In [21, Theorems 2.14 and 4.8] Lei and the second author give other criteria for the
vanishing of the maximal finite ƒ.�/-submodule of X.Ep1=Lcyc/.
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Along the lines of Kim’s and Hatley–Lei’s results quoted above, when the ��-
invariants of two residually isomorphic elliptic curves vanish, we can relate their
��-invariants: this is the main content of Theorem 4.20 below. We denote by

(4.28) �
�
E D dimFp Y�.Ep=Lcyc/

the Fp-dimension of Y�.Ep=Lcyc/. It clearly depends only upon the isomorphism class
of Ep and not on E itself.

Theorem 4.20. Let E1; E2 be two elliptic curves defined over L, satisfying the
hypotheses of Theorem 4.15. Assume that their Iwasawa ��-invariants vanish and
suppose further that the Pontryagin duals X..Ej /p1=Lcyc/ of the usual Selmer groups
do not have any non-zero finite ƒ.�/-submodule. Then,

(4.29) �
�
Ej D �

�
C ıEj ;

where ıEj is as in Definition 4.5 and �� WD ��E1 D �
�
E2 is as in (4.28).

Remark 4.21. The hypothesis that the Pontryagin duals of the signed Selmer
groups have no non-zero finiteƒ.�/-submodule, which we deduce from the analogous
result for the usual Selmer group, is known to hold in many cases: see, for instance,
[18, Theorem 4.5] and [10, Theorem 3.1].

Remark 4.22. As already observed in Corollary 4.6, the quantity ıE is independent
of the vector �. In particular, for elliptic curves satisfying Hyp 1 and Hyp 2� for two
vectors �1 and �2, and such that their multi-signed invariants��1 and��2 are both 0, the
difference ��1 � ��2 of the multi-signed �-invariants depends only on the isomorphism
class of the residual representation.

The concrete manner in which this result will be applied later is the following.
Suppose we are given a family of elliptic curves (satisfying Hyp 1) with the property
that their residual representations are isomorphic. Given a vector �, suppose that all
members in the family satisfy Hyp 2�. A consequence of Theorem 4.15 is that if one
member A in the family satisfies ��A D 0, then for all other members E in the family,
we obtain ��E D 0. Moreover, Theorem 4.20 shows that if A satisfies ��1A D �

�2
A D 0

for two vectors �1; �2, the difference of multi-signed Iwasawa invariants

�
�1
E � �

�2
E D �

�1
A � �

�2
A

is constant. In particular, if ��1A D �
�2
A , then ��1E D �

�2
E for all curves E in the family.

This hints at an appropriate generalisation of our results for Coleman families and we
hope to investigate it in the future.
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Proof of Theorem 4.20. Corollary 4.18 implies that the Pontryagin duals
X�..Ej /p1=Lcyc/ of the multi-signed Selmer groups do not have any non-zero finite
ƒ.�/-submodule, for j D 1; 2. Further, they are ƒ.�/-torsion thanks to Hypothesis
Hyp 2�. Since ��E1 D �

�
E2 D 0, we have

�
�
Ej D length

�
X�..Ej /p1=Lcyc/=pX�..Ej /p1=Lcyc/

�
:

On the other hand, taking Pontryagin duals in Corollary 4.6 gives an exact sequence

Vj ,! .Sel�..Ej /p1=Lcyc/p/
^

(4.30)
D X�..Ej /p1=Lcyc/=pX�..Ej /p1=Lcyc/

� Y�..Ej /p=Lcyc/;

where Vj is an Fp-vector space of finite dimension. Since we are assuming ��Ej D 0,
Theorem 4.13 implies that ��

.Ej /p
is surjective and therefore, again by Corollary 4.6,

we have dimFp Vj D ıEj . Taking lengths in (4.30) gives

�
�
Ej D �

�
C ıEj

and this finishes the proof of Theorem 4.20.

In the next two corollaries, we consider the main setting of Theorem 4.15. Thus, let
E1;E2 be two elliptic curves defined over L satisfying hypotheses Hyp 1 and Hyp 2�,
and such that the residual Galois representations .E1/p and .E2/p are isomorphic,
so ��E1 D �

�
E2 WD �

�. By Proposition 3.9 (i), the set Sord of p-adic primes where the
curves have good, ordinary reduction, coincide. Further, we assume that ��E1 D 0,
which is equivalent to assuming ��E2 D 0 by Theorem 4.15. Moreover, this implies
that Conjecture A holds for both curves, again by Theorem 4.15. Finally, suppose that
the Pontryagin duals of the usual Selmer groups do not contain any non-trivial, finite
ƒ.�/-submodule, so that Theorem 4.20 applies.

Corollary 4.23. Let Sbad
1 and Sbad

2 be the sets of primes of bad reduction for
E1 and E2, respectively. If, for both indices j 2 ¹1; 2º, we have Ej .Lv/p D 0 for all
v 2 Sord [ Sbad

j , then
�
�
E1 D �

�
E2 D �

�:

Proof. Recall from Definition 4.5 that

(4.31) ıEj D
X

l2Sbad
j

gl � dimFp Ej .L1q/p C
X
�2Sord

g� dimFp
zEj .F�/p;

where q is a prime in Lcyc above l.
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The same argument as in the proof of Corollary 4.6 shows that the condition
Ej .Ll/p D 0 is equivalent to Ej .Lcyc;q/p D 0 for all q j l. In particular, the hypotheses
of the corollary imply Ej .L1q/p for all q j l. Similarly, there are surjections

Ej .L�/p� zEj .F�/p;

so Ej .L�/p D 0 implies zEj .F�/p D 0.
Hence all terms in (4.31) vanish and ıE1 D ıE2 D 0. The corollary follows from

(4.29) in Theorem 4.20.

Recall that, given a prime v 2 S, we denote by gv the number of primes w j v in
Lcyc.

Corollary 4.24. Suppose that E1 is a CM curve. Then

�
�
E2 D

�
�� C

X
�2Sord

g� dimFp
zE1.F�/p

�
C

X
l2Sbad

2

gl � dimFp E2.Ll/p:

Remark 4.25. The interest of Corollary 4.24 lies in the fact that the quantity in
parenthesis is constant along families with isomorphic residual representation at p.
Moreover, the final sum in the right-hand side only depends on the groups E2.Ll/p (for
l 2 Sbad

2 ) and not on the behaviour of p-torsion along the local cyclotomic Zp-towers.
As we shall see in the proof, the corollary still holds only assuming that the image of
Gal.L=L/ inside Aut..E1/p/ � GL2.Fp/ is contained in the normalizer of a Cartan
subgroup, which is certainly the case when E1 is CM.

Proof of Corollary 4.24. Since E1 is CM and p � 3, the image of Gal.L=L/
inside Aut..E1/p/ � GL2.Fp/ is contained in the normalizer of a Cartan subgroup.
In particular, it contains no element of order p, and the same holds for the image of
Gal.L=L/ inside Aut..E2/p/ because the representations are isomorphic. It follows
that, for all q j l, the pro-p-group � D Gal.Lcyc;q=Ll/ acts trivially on E2.Lcyc;q/p,
and dimFp E2.Ll/p D dimFp E2.L1q/p. The corollary follows from (4.29), combined
with Definition 4.5.

5. Numerical examples

Our class of examples comes from the work [32]. Both for p D 3 and p D 5, Rubin
and Silverberg define, for eachD 6� 0 .mod p/, a family parameterised by1 t 2 Z. All

(1) Actually, the parameters in the families can vary in Q, but are required to be p-integral
to define curves with good reduction at p. In our examples, we will restrict to t 2 Z
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curves in the families have good, supersingular reduction at p and isomorphic residual
Galois representations. In particular, the reduction type is constant along families
and, since all curves are defined over Q, in all cases Sord D ;. Finally, observe that
Rubin–Silverberg’s construction shows that all families contain a CM member, and so
Corollary 4.24 applies. Since the field of definition of all curves is Q, we have d D 1,
allowing for simplified notation; hence, write˙ for the generic vector � 2 ¹C;�º. For
all choices of .p;D/, the strategy will be as follows:

(1) Find one curve A in the family for which the Iwasawa invariants �˙A and �˙A have
been computed in [24] and such that �CA D ��A D 0. In practice, we take for A the
CM curve corresponding to the parameter t D 0.

(2) Apply Theorem 4.15 (see in particular Remark 4.21) to deduce that �˙ D 0 for all
other members in the family. In particular, Conjecture A holds for the whole family,
by Proposition 4.8.

(3) Deduce from Theorem 4.20 (which can be applied thanks to [18, Theorem 4.5])
that �˙A D �˙A � ıA for A, and set �˙ WD �˙A .

(4) By Corollary 4.24, we obtain

�˙E D �
˙
C ıE D �

˙
C

X
`2Sbad

g` dimFp E.Q`/p

for all E in the family.

(5) The key step is to find elliptic curves E in the family satisfying ap.E/D 0, to ensure
that Hyp 1 holds. Note that this is only needed when p D 3, because when p D 5,
the condition a5.E/ D 0 is automatically satisfied by the Hasse bound. Since all
our examples are defined over Q, Hyp 2� is always satisfied by [19, Theorem 1.2]
and the usual Selmer group never contains non-trivial, finite ƒ.�/-submodules by
[18, Theorem 4.5] combined with Corollary 4.18.

(6) Choosing any curve as in (5), we compute the Fp-dimension of E.Q`/p at all primes
` 2 Sbad, together with the number of primes in Qcyc above `, to find the numerical
value of ıE and hence of �˙E .

We will consider the families attached to D D 1 and D D �1 for p D 3, and the
families attached to D D 3 and D D 14 for p D 5. Our source of numerical data
is [24]. Labels of elliptic curves follow Cremona’s tables as in [24], when available
(i.e. for discriminant less than 500:000 as per October 2019). The computations have
been made in SAGE. (We used commands E.q_expansion(4) to compute a3 and
E(0).division_points(p) to compute torsion points.)
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5.1 – The case p D 3

5.1.1. D D 1. Setting t D 0, we obtain the CM curve AD 32a2 given by y2 D x3 � x.
It satisfies �˙A D �˙A D 0 and this is in accordance with the fact that we found ıA D 0:
indeed, Sbad

A D ¹2º and A.Q2/3 D 0. Moreover, a3.A/ D 0, and we obtain �˙ D 0.
The curves corresponding to t D 1 and t D 2 are, respectively, E1 D 352f 1 and
E2 D 16096h1: since a3.E1/ D �3 and a3.E2/ D 3, we discard them.

The curve corresponding to t D 3 is E3 D 18784b1, and a3.E3/ D 0. Its Iwasawa
invariants are available on [24], and indeed �˙E3 D 0. The primes of bad reduction
are Sbad D ¹2; 587º. We found E3.Q2/3 D 0 and E3.Q587/3 D Z=3Z; since 587 is a
generator of Z=9Z, it is totally inert in Qcyc=Q, so g357 D 1. Formula (4.29) gives
�˙E3 D 1, in accordance with the numerical value found in [24].

To show a somehow extreme example, consider t D 18. It satisfies a3.E18/D 0 and
its conductor is 90;885;856D 25 � 2;840;183. The dimensions of its local 3-torsion are

dimF3.E18.Q`/3/ D

´
0 for ` D 2;
1 for ` D 2840183:

The multiplicative order of 2840183 modulo 37 being 6, we deduce g2840183 D 36,
whence �˙E18 D 729, and �˙E18 D 0 by Theorem 4.15. It is relevant here to note Kim’s
observation that under these assumptions the Iwasawa �˙-invariants can be arbitrarily
large in the family (see [15, p. 190]), although he does not produce explicit examples.
Note also that these Iwasawa invariants are not available on [24].

5.1.2. D D �1. In this case, the CM curve for t D 0 is A D 64a4 given by y2 D
x3 C x. Again, �˙A D �˙A D 0 D a3.A/. We computed the defect and found ıA D 0,
since Sbad

A D ¹2º and A.Q2/3 D 0. We obtain �˙ D 0. The curves corresponding
to the parameters t D 2; 4; 5 are, respectively, E2 D 22976p1; E4 D 423872t1 and
E5 D 131392f 1. They all exist in [24], and have a3.Ei /D 0, but the Iwasawa invariants
are available only for E2 and E5: they read �˙E2 D 3 and �˙E5 D 0. This is in accordance
with formula (4.29): indeed, Sbad

E2 D ¹2; 359º; S
bad
E5 D ¹2; 2053º and

dimF3.E2.Q`/3/ D

´
0 for ` D 2;
1 for ` D 359;

dimF3.E5.Q`/3/ D

´
0 for ` D 2;
0 for ` D 2053:

This immediately implies ıE5 D 0, so �˙E5 D 0. As 359 has order 6 modulo 27, we
obtain g359 D 3, whence ıE2 D �

˙
E5 D 3. The curve E4 can be treated analogously,
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since Sbad
E4 D ¹2; 37; 179º and

dimF3.E4.Q`/3/ D

8̂̂<̂
:̂
0 for ` D 2;
2 for ` D 37;
1 for ` D 179:

Further, g37 D g179 D 3, whence �˙E4 D 9, a value which is not available on [24]. Also,
all curves satisfy �˙ D 0 by Theorem 4.15.

We finish this series of examples with the curve E149 for t D 149. Its conductor is
106;459;833;664 D 26 � 1;663;434;901, so it has no label in Cremona’s tables, but we
can compute a3.E149/D 0. We found E149.Q2/3 D E149.Q1663434901/3 D 0, whence
�˙E149 D �

˙
E149 D 0.

5.2 – The case p D 5

5.2.1. D D 3. The CM curve corresponding to t D 0 is A D 3888s1, given by y2 D
x3 C 48. Its Iwasawa invariants are computed in [24] and �˙A D 0; �˙A D 1. To find
�˙ D �˙A , we need to compute ıA. The primes of bad reduction are Sbad

A D ¹2; 3º

and A.Q`/3 D 0 for both ` 2 Sbad
A , so ıA D 0 and �˙ D 1. The conductors of Et for

t 2 Œ�5; 15� have orders of magnitude between 107 and 1020 (except for E0 D A),
so these curves are not implemented in [24]. Computing Iwasawa invariants through
formula (4.29) is almost immediate. As an example, we compute them for the curves
E6 and E14 corresponding to t D 6 and t D 14, respectively. First, we immediately
obtain from Theorem 4.15 that �˙E6 D �

˙
E14 D 0.

The conductor of E6 is

16;847;046;490;346;928 D 24 � 35 � 4;333;088;089;081:

The curve has no Q`-rational 5-torsion points for any of the primes ` 2 ¹2; 3;
4333088089081º, so ıE6 D 0. It follows that �˙E6 D �

˙ D 1. The conductor of E14 is

445;766;016;078;830;163;888 D 24 � 35 � 29 � 602;279 � 6;564;248;011

and E14 neither has Q2-rational nor Q3-rational 5-torsion points. On the other hand,

dimF5.E14.Q`/5/ D

8̂̂<̂
:̂
1 for ` D 29;
1 for ` D 602279;
2 for ` D 6564248011:

Further, computing multiplicative orders modulo 25, we find g` D 1 for all ` 2
¹29; 602279; 6564248011º. It follows that ıE14 D 4 and �˙E14 D ıE14 C �

˙ D 5.
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5.2.2. D D 14. We finish with an example where �C ¤ ��. Take D D 14, so that
the CM member for t D 0 is A D 28224dj1, given by y2 D x2 C 224. Its Iwasawa
invariants are�˙A D 0, and �CA D 3;��A D 1. The conductor of A is 28224D 26 � 32 � 72

and we compute as above that ıA D 0, so �CA D �C D 3; ��A D �� D 1. As observed
in Remark 4.21, all members Et in this family satisfy �CE � ��E D 2, together with
�˙ D 0. Again, the conductors grow very fast with t and we could not find any curve
in the family for which data are available on [24]. As examples, we consider the curves
for t D 6 and t D 8. The first has Sbad

E6 D ¹2; 3; 7; 22621; 92081500261º and there
are no Q`-rational 5-torsion points at ` 2 Sbad

E6 except for ` D 92081500261, where
dimF5.E6.Q`/5/ D 2. Since g92081500261 D 1, we find ıE6 D 2 and

�CE6 D 5 and ��E6 D 3:

Finally, we consider the curve for t D 8, which has no Q`-rational 5-torsion point at
any of the primes ` 2 Sbad

E8 D ¹2; 3; 7; 10861; 642211; 9447511º. It follows that ıE8 D 0

and
�CE6 D 3 and ��E6 D 1:
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