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Note on algebraic irregular Riemann—Hilbert correspondence

Youe1 Ito (*)

ABsTrRACT — The subject of this paper is an algebraic version of the irregular Riemann—Hilbert
correspondence which was mentioned in [Tsukuba J. Math. 44 (2020), 155-201]. In partic-
ular, we prove an equivalence of categories between the triangulated category Dﬁol(i)x)
of holonomic H-modules on a smooth algebraic variety X over C and the triangulated
category EE(’:_C (ICx,,) of algebraic C-constructible enhanced ind-sheaves on a bordered
space X3%. Moreover, we show that there exists a t-structure on the triangulated category
EE:’ (ICx,,) whose heart is equivalent to the abelian category of holonomic £-modules
on X . Furthermore, we shall consider simple objects of its heart and minimal extensions of
objects of its heart.
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1. Introduction

After the appearance of the regular Riemann—Hilbert correspondence of Kashiwara
[10], Beilinson and Bernstein developed systematically a theory of regular holonomic
D-modules on smooth algebraic varieties over the complex number field C and
obtained an algebraic version of the Riemann—Hilbert correspondence stated as fol-
lows: Let X be a smooth algebraic variety over C. We denote by X" the underling
complex analytic manifold of X, by th (Dyx) the triangulated category of regular
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holonomic Dy -modules on X and by DE(’} .(Cx) the triangulated category of algebraic
C-constructible sheaves on X®". Then there exists an equivalence of triangulated
categories

Soly: D} (Dx)® = D (Cx), M > Solya(M™),
see [2,4] and also [28] for the details. Here
Solyun () := RHomgpyu (-, Oxum): DP(Dxm) — D°(Cyan)

is the solution functor on the complex analytic manifold X" and M®" is the analytifi-
cation of M (see Section 2.5 for the definition). The triangulated category Dfé_c (Cx)
has a t-structure (? Dé?c (Cx),”? D(%?C (Cx)) which is called the perverse t-structure by
[1], see also [8, Thm. 8.1.27]. Let us denote by

Perv(Cx) := PDE.,(Cx) N "D’ (Cx)

C

its heart and call an object of Perv(Cy) an algebraic perverse sheaf on X*". The
above equivalence induces an equivalence of categories between the abelian category
Mod,,(Dy) of regular holonomic H-modules on X and the one Perv(Cy).

On the other hand, the problem of extending the analytic regular Riemann—Hilbert
correspondence of Kashiwara to cover the case of analytic holonomic $-modules with
irregular singularities had been open for 30 years. After a groundbreaking development
in the theory of irregular meromorphic connections by Kedlaya [16, 17] and Mochizuki
[23,24], D’Agnolo and Kashiwara established the Riemann—Hilbert correspondence
for analytic irregular holonomic £D-modules in [5]. For this purpose, they introduced
enhanced ind-sheaves extending the classical notion of ind-sheaves introduced by
Kashiwara and Schapira in [12]. Let X be a complex analytic manifold. (In this paper,
we use bold letters for complex manifolds to avoid confusion with algebraic varieties.)
We denote by D ,(Dx) the triangulated category of holonomic Dx-modules on
X and by E%_C(I(CX) the one of R-constructible enhanced ind-sheaves on X (see
[6, Def. 3.3.1]). We set Solyx (M) := RIhomgp, (M, OF). Here O% is the enhanced
ind-sheaf of tempered holomorphic functions, see [5, Def. 8.2.1]. Then D’Agnolo and
Kashiwara proved that the enhanced solution functor SolI;:( induces a fully faithful
embedding

Sol%: DY, (Dx)P — E& (ICx).

Moreover, in [6] they gave a generalized t-structure (%Ef@f’c (ICx), %E]?R_CC (ICx))cer
on E'ﬁ'{_ .(ICx) and proved that the enhanced solution functor induces a fully faithful
embedding of the abelian category Modyp, (Dx) of holonomic H-modules on X into
its heart 2 EZ° (ICx) N 2 EZ (ICx). On the other hand, Mochizuki proved in [25] that
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the image of Solg can be characterized by the curve test. In [9], the author defined
C-constructability for enhanced ind-sheaves on X and proved that they are nothing
but objects of the image of Solg. Namely, we obtain an equivalence of categories
between the triangulated category D} (Dx) of holonomic £D-modules on X and the
one E?CC (ICx) of C-constructible enhanced ind-sheaves on X:

Sol%: Dp,(Dx)P = EX_(ICx).

Remark that Kuwagaki introduced another approach to the irregular Riemann—Hilbert
correspondence via irregular constructible sheaves which are defined by C-con-
structible sheaves with coefficients in a finite version of the Novikov ring and special
gradings in [18].

Therefore, it seems to be important to establish an algebraic irregular Riemann—
Hilbert correspondence on a smooth algebraic variety. Although it may be known by
experts, it is not in the literature to our knowledge. Thus we want to prove the algebraic
irregular Riemann—Hilbert correspondence in this paper. Let X be a smooth algebraic
variety over C and denote by D} | (Dyx) the triangulated category of holonomic Dy -
modules. The following result is the main theorem of this paper:

THEOREM 3.11. There exists an equivalence of triangulated categories:
Soly__: Db (Dx)™® = Eg_(ICx,,).

See Section 3.2 for the definition of Sol}a(oO and Definition 3.10 for the definition of
E}(’:_C (ICx.)-

RemaRrk 1.1. In the case of quasi-projective variety, Kuwagaki [18] established an
algebraic version of the irregular Riemann—Hilbert correspondence.

2. Preliminary notions and results

In this section, we briefly recall some basic notions and results which will be used.

2.1 — Ind-sheaves on bordered spaces

Let us recall some basic notions of ind-sheaves on bordered spaces. For the details,
we refer to D’Agnolo—Kashiwara [5, §§2.3, 2.4, 2.5]. We also refer to Kashiwara—
Schapira [12, 13] for ind-sheaves on a topological space.

Let us denote by ICyy__ the abelian category of ind-sheaves on a bordered spaces
Moo = (M, M) and denote by D°(ICj,,. ) the triangulated category of them. Note that
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there exists the standard t-structure (D=°(ICy,__),D=°(ICy,.)) on D*(ICys,__) which
is induced by the standard t-structure on D*(IC 37)- For a morphism foo: Moo — Neo
of bordered spaces, we have the Grothendieck operations ®, RIhom, R foox, R fool,
fol, f.L. Note that there exists an embedding functor tp7.: D’(Cps) < DP(ICyy,,).
We sometimes write D®(Cpy__) for D°(Cps), when considered as a full subcategory
of D°(IC}y,,). Note also that the embedding functor ¢s_ has a left adjoint functor
OMoo- Db(I(CMOO) — Db((CM).

2.2 — Enhanced ind-sheaves on bordered spaces |

We shall recall some basic notions of enhanced ind-sheaves on bordered spaces
and results on it. Reference are made to [14] and [6]. Moreover, we also refer to
D’Agnolo—Kashiwara [5] and Kashiwara—Schapira [15] for the notions of enhanced
ind-sheaves on good topological spaces.

Let Moo = (M, 1\71) be a bordered space. We set Roo := (R,R) for R := R LI
{—00, +0o0}, and let ¢ € R be the affine coordinate. The triangulated category of
enhanced ind-sheaves on M, is defined by

E°(ICys..) := D°(ICp1 xr..) /7 'D°(ICy.),

where 7: My X Roo — M is the morphism of bordered spaces given by the first
projection M x R — M. Note that the quotient functor Qpy_: D°(ICps xR, ) —
E°(ICjy_,) has fully faithful left and right adjoints

L}, .Ri,_:E°(ICp.) = D°(ICh xR

Note also that E°(ICy,_) has the standard t-structure (ES0(IC ), EZ°(ICyy.))
which is induced by the standard t-structure on DP(ICp_ xr. ). We denote by
H":EP(ICpy,.) — E°(ICyy,) the n-th cohomology functor, where we set

E°(ICy,) := E=°(ICp ) N EZ(ICys,).

For a morphism foo: Moo — Noo of bordered spaces, we have the six operations
®T, RIhom™, EfZY, E foox, EfL, E foon for enhanced ind-sheaves on bordered
spaces. Note that there exists a morphism E faon — E fiox of functors E*(IC Ms) —
E*(ICy_,) and it is an isomorphism if f, is proper. Moreover, we have outer-hom
functors

RIhom® (K1, K>),
RHom" (K, K3) = ap. RIhom" (K1, K>),
RHom® (K, K,) := RI[(M; R¥om® (K1, K3))
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with values in DP(ICyy_,), DP(Cyps) and D®(C), respectively. Here, D°(C) is the
derived category of C-vector spaces.
For F € D°(ICy.) and K € E°(ICy,,_), the objects

7' F® K == Qu (n"'F ® LK),
RIhom(n 'F,K) := Qum., (RIhom(n~'F, Rjriloo K))

in E°(IC ) are well defined. We set

CE,[OO = Qum (“]_ir_)n” (C{tza}) € Eb(I(CMOO).

a—>+o0

Note that there exists an isomorphism Cy; ~ Ej _l(Cﬁ2 in E°(ICps_.). Then we
have a natural embedding

em.,:D°(ICy, ) — E°(ICy), F v+ ey (F):= Cl}‘lloo Qn LF.

By using [14, Prop. 2.18], for a morphism foo: M, — Noo of bordered spaces and
objects F € D°(ICy__), G € D°(ICy__) we obtain

E foor(emoo F) =~ eng (R foont F),
Ef5' (eNeG) = eno. (fo5' G),
Ef)(ensG) = ero (fo,G).
Let us define
Wy = Mo (wp) € E°(ICy,)

where wps € D°(Cpy.) (= DP(Cypy)) is the dualizing complex, see [ 11, Def. 3.1.16] for
the details. Then we have the Verdier duality functor D%loo :EP(ICpy,, )P — EP(IC)y.)
for enhanced ind-sheaves on bordered spaces which is defined by Dﬁloo (K) :=
RIhom™ (K, wps.)- Note that for any K € E°(IC ;) we have an isomorphism

Djy (Ej 7 K) ~ Ej~ (D (K))
in E°(ICys_,). Note also that for any & € D°(Cjy) there exists an isomorphism
DEIOO (eMoo f') ~ Mo (DM ?)

in E>(IC ).

Let ip: Moy — My X Ry be the inclusion map of bordered spaces induced by
X = (x,0). We set shy := apr, © i(!) ) RE,IOO: E°(ICys.) — DP(Cypy) and call it
the sheafification functor for enhanced ind-sheaves on bordered spaces. Note that for
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K € EP(IC 47) We have an isomorphism
shazo, (Bj 71 K) 2 j 7" (shyz (K)

in D°(Cyy). Note also that there exists an isomorphism F —> shps__(epr., (¥)) for
F € D*(Cy).

For a continuous function ¢: U — R defined on an open subset U C M, we set
the exponential enhanced ind-sheaf by

E({}WOO = Chr. ®1 Quto (Cirrp0}),

where{t—l—(p20}standsf0r{(x,t)GMXEHe]R,er,t—i—(p(x)ZO}.

2.3 — Enhanced ind-sheaves on bordered spaces 11

The aim of this subsection is to prepare some auxiliary results on enhanced ind-
sheaves on bordered spaces which will be used in Section 3. In particular, we will
prove — although this is known by experts — that for any smooth algebraic variety X
the triangulated category E® (IC xan_gany) does not depend on the choice of X.

Let Moo = (M, 1\71) and Noo = (N, ]V) be two bordered spaces.

SuBLEMMA 2.1. Let f: M — N be a continuous map and assume that M and N
are compact. Then the map f induces a semi-proper morphism from Moo t0 Noo.

This sublemma is clear. Moreover, Lemma 2.2 below follows from this sublemma
and [5, Lem. 3.2.3].

LemMma 2.2. In the situation of Sublemma 2.1, we assume that the continuous
map f is an isomorphism. Then the morphism induced by the map f is also an
isomorphism between Moo and Neo.

By using [6, Lem. 2.7.6], for any K € E°(ICy,,_) we have
7 'Cy ® K ~EjyE;j K,

where j: My — M is the morphism of bordered spaces given by the embedding
M — M . Hence we have an equivalence of triangulated categories

Ejn
E°(ICp. ) —~ : {K e E’(IC;) | n7'Cy ® K = K}.
Ej™

Sublemma 2.3 below follows from [5, Lem. 3.3.12].
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SUBLEMMA 2.3. Let foo: Moo —> Noo be the morphzsm of bordered spaces associ-
ated with a continuous map f M — N such that f(M) C N.

(1) Forany K € E’(ICp_), there exist isomorphisms in E°(IC y_):

E foon K >~ Ejﬁ;EfoonEjMoo!!K,
E foor K ~ EjyLE foouEjpro i K.

(2) Forany L € E°(ICy_,), there exist isomorphisms in E°(ICps_):

Ef5'L ~Ejy EfS'Ejnonl ~Ejy! Efc'EjniL,
EfLL ~Ejy' EfLEjnonl ~Ejy' EfLEjy L.

Remark that M and N are not necessary compact. Hence we obtain:

LEMMA 2.4. In the situation of Sublemma 2.3 (M and N are not necessarily
compact), we assume that the restriction f|y of f to M induces an isomorphism
M = N. Then there exists an equivalence of triangulated categories:

E foont
E°(ICp ) ——= " E°(ICy_).
Efg!

Proor. This follows from Sublemma 2.3 and the fact that the functor E f' 1 (resp.
E /1) is an isomorphism over M (resp. N) by the assumption M => N. |

At the end of this subsection, we shall apply the above results to our situation. Let
X be a smooth algebraic variety over C and denote by X" the underlying complex
manifold of X. Then we can obtain a smooth complete algebraic variety X such that
X C X and D := X \ X is a normal crossing divisor of X by Hironaka’s desingu-
larization theorem [7] (see also [26, Thm. 4.3]). Hence we obtain a bordered space
(X™, X*) and an equivalence of triangulated categories:

Ejn ~
E(IC (yun gun)) —><—Et1 {K € E°(IC4.,) | n71Cxa ® K = K}.
J

Let X; (i = 1,2) be smooth complete algebraic varieties over C such that X C X;
(i = 1, 2), then the identity map idya of X" induces an isomorphism of bordered
spaces (X", X any ~ (X, )?;“) by Lemma 2.2. Hence we have an equivalence of
triangulated categories

b ~ Eb ~
E (I(C(X‘m’)?i\n)) = E (IC(Xa",Xin))'
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Remark that this equivalence can be proved by Lemma 2.4. Therefore the bordered
space (X, X®) and the triangulated category E° (I(C( K }?an)) is independent of the
choice of a smooth complete variety X. Hence we can write

X® = (X" X™)

and
E’(ICxa) := E°(IC (yu gun))

for a smooth algebraic variety X.

For a morphism f: X — Y of smooth algebraic varieties, we obtain a semi-
proper morphism of bordered spaces from X3 to Y3 by Sublemma 2.1. We denote
itby f&: X5 — YZ. On the other hand, since there exists a morphism of complete
algebraic varieties f X — Y such that f |x = f, we obtain a morphism of bordered
spaces from X7 to Y20, see Section 2.1 or [5, §3.2] for the details. It is clear that this
morphism is equal to /2" and hence we can apply Sublemma 2.3 to f2'. This fact will
be used in the proof of Proposition 3.12.

2.4 — Analytic C-constructible enhanced ind-sheaves

In this subsection, we shall recall some notions in [9].

Let X be a complex manifold and D C X a normal crossing divisor in it. Let us take
local coordinates (u1,...,u;,v1,...,V4y—7) of X such that D = {ujus---u; = 0}
andset Y = {u; =u, =---=u; = 0}. Then for a meromorphic function ¢ € Ox(*x D)
on X along D which has the Laurent expansion ¢ = ),z ca(¢)(v) - u® € Ox(*D)
with respect to u, ..., u;, where c,(¢) are holomorphic functions on Y, we define
its order ord(¢p) € Z! by min({a € Z" | ca(p) # 0} U {0}) with respect to the partial
order on Z! if it exists. For any f € Ox(*D)/0Ox, we take any lift f to Ox (D), and
we set ord(f) := ord( f ), if the right-hand side exists. Note that it is independent of
the choice of a lift f If ord(f) # 0, then cora( £)( £) is independent of the choice of a
lift #, which is denoted by Cord(f)(f)-

DeriniTION 2.5 ([24, Def. 2.1.2]). In the situation as above, a finite subset I C
Ox(xD)/0Ox is called a good set of irregular values on (X, D), if the following
conditions are satisfied:

* Foreachelement / € I, ord(f) exists. If f # 0in Ox(xD)/Ox, then cora( 1) (f)

is invertible on Y.

* For two distinct f, g € I, ord(f — g) exists and coq(f—g)(f — &) is invertible
onY.
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e Theset{ord(f — g) | f. g € I} is totally ordered with respect to the above partial
order < on Z!.

DEerINITION 2.6 ([9, Def. 3.6]). We say that an enhanced ind-sheaf ! K € E°(ICx)
has a normal form along D if

(i) 7 'Cx\p ® K = K,

(ii) for any x € X \ D there exist an open neighborhood U, C X\ D of x and a
non-negative integer k such that K|y, ~ ((ng)@k,

(iii) for any x € D there exist an open neighborhood U, C X of x, a good set of
irregular values {¢; }; on (Uy, D N Uy) and a finite sectorial open covering {Uy ;};
of Uy \ D such that

7 'Cy, ; ® K|y, =~ @]E];fj’:wx for any J,
i

see the end of Section 2.2 for the definition of Elgﬁ Uy

Note that any enhanced ind-sheaf which has a normal form along D is an R-
constructible enhanced ind-sheaf on X.

A ramification of X along D on a neighborhood U of x € D is a finite map
r: U™ — U of complex manifolds of the form

> z=(21.22,....20) =1 (Z)) = (Z;ml,...,Z;mr,Z;_H,...,Z;l)

for some (my,...,m;) € (Z>o)", where (z], ..., z,) is a local coordinate system of
U™ and (zy,...,2,) isthe one of U suchthat D N U = {z;---z, = O}.

DEeriNiTION 2.7 ([9, Def. 3.11]). We say that an enhanced ind-sheaf K € E°(ICx)
has a quasi-normal form along D if it satisfies (i) and (ii) in Definition 2.6 and,
moreover, if for any x € D there exist an open neighborhood U, C X of x and a
ramification ry: U™ — Uy of Uy along D, := Uy N D such that Erx_l(K|Ux) has a
normal form along D™ := r;1(Dy).

A modification of X with respect to an analytic hypersurface H is a projective
map m: X™ — X from a complex manifold X™ to X such that D™ := m~!(H)isa
normal crossing divisor of X™ and m induces an isomorphism X™ \ D™ = X\ H.

(M) In [9], the author defined enhanced ind-sheaves that have a normal form along D under
the assumption that they are R-constructible. However, this assumption is not needed.
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DEeriNITION 2.8 ([9, Def. 3.14]). We say that an enhanced ind-sheaf K € E°(ICx)
has a modified quasi-normal form along H if it satisfies (i) and (ii) in Definition 2.6
and, moreover, if for any x € H there exist an open neighborhood U, C X of x and
a modification m: U)‘Cnd — Uy of Uy along Hy := U, N H such that Em;l(K|Ux)
has a quasi-normal form along D™ := m 1 (H,).

Let us denote by ES . (ICx(x)) the abelian category of enhanced ind-sheaves

mero
which have a modified quasi-normal forms along H and set

E! ... (ICx(m)) :={K € E} .(ICx) | #'(K) € E2_ (ICxs)) forany i € Z}.

mero

A complex analytic stratification of X is a locally finite partition {Xy }4e4 of X
by locally closed analytic subsets X, such that for any o € A4, X, is smooth, X,
and 0X, = X, \ X, are complex analytic subsets and X, = L BeB X for a subset
B C A.

DEerINITION 2.9 ([9, Def. 3.19]). We say that an enhanced ind-sheaf K € E°(ICx)
is C-constructible if there exists a complex analytic stratification {Xy }, of X such that
-1 -1
T (CXI;I\DO, ®Eb, K

has a modified quasi-normal form along D, for any o, where b, : izl — X is a sequence
of complex blow-ups of X, along Xy = Xg \ X and Dy := b, 1 (0X).

We denote by E%_ (ICx) the full subcategory of E°(ICx) whose objects are C-
constructible and set

EY (ICx) := {K € E°(ICx) | #'(K) € EZ .(ICx) forany i € Z} C E°(ICx).

2.5 — Algebraic D-modules

In this subsection, we recall some basic notions and results on £D-modules. Refer-
ences are made to [2,4, 8]. We also refer to [3], [5, §88, 9], [12, §7], [15, §83, 4, 7] for
analytic D-modules.

Let X be a smooth algebraic variety over C and denote by dx its complex dimen-
sion. We shall denote by Ox and Dy the sheaves of regular functions and algebraic
differential operators on X, respectively. Let DP(Dy) be the bounded derived category
of left Dy -modules. Moreover, we denote by Df | (Dx) and DY, (D) the full triangu-
lated subcategories of DP(Dy) consisting of objects with algebraic holonomic and
algebraic regular holonomic cohomologies, respectively. For a morphism f: X — Y
of smooth algebraic varieties, we denote by ®? the tensor product functor, by X? the
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external tensor product functor, by D f the direct image functor, by D f* the inverse
image functor, and by Dy the duality functor for D-modules. See, e.g., [8, §3] for the
details. In this paper, for convenience, we set

Dfi:=DyoDf,oDy, Df*:=DyoDf*oDy.

Remark that in [8, Def. 3.2.13] the functor Dy o D f*(-)[dx — dy] o Dy is denoted by
D f *. Note that these functors preserve the holonomicity. See [8, Props. 3.2.1, 3.2.2,
Thm. 3.2.3 and Cor. 3.2.4] for the details.

We denote by X" the underlying complex manifold of X and by 7: (X*", Oxa) —
(X, Ox) the morphism of ringed spaces. Since there exists a morphism i "1 Ox — Oxm
of sheaves on X", we have a canonical morphism 71Dy — Dya. Then we obtain a
functor

()*:Mod(Dx) — Mod(Dym), M > M™ := Dy ®;—19, 1 M.

It is called the analytification functor on X. Since the sheaf Dy is faithfully flat
over i ~! Dy, the analytification functor is faithful and exact, and hence we obtain
()™: D°(Dx) — DP(Dx). Note that the analytification functor preserves the holo-
nomicity. Moreover, we have some functorial properties of the analytification functor.
See [8, Props.4.7.1, 4.7.2] for the details.

The classical solution functor on X is defined by

Soly: DD, (Dx)® — D°(Cxm), M > Soly (M): = Solym(M™).

Tueorem 2.10 ([2,4], see also [8, Thms. 4.7.7,7.2.2]). There exists an equivalence
of triangulated categories:

Soly: D}, (Dx)® = D (Cx).

This is an algebraic version of the regular Riemann—Hilbert correspondence. The
following result means that the classical solution functor is t-exact with respect to the
standard t-structure on D} (Dyx) and the perverse t-structure on D%_c (Cx). See, e.g.,
the proof of [8, Thm. 7.2.5] for the details.

Tueorewm 2.11. For any M € DP_(Dx), we have
(1) M € DE)(Dx) <= Solx (M)[dx] € PDZ° (Cx),
(2) M € DZ)(Dx) <= Solx(M)[dx] € PDZ° (Cx).

Moreover, the above equivalence induces an equivalence of abelian categories:

Soly (-)[dx]: Mod, (Dx ) => Perv(Cyx).
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By Theorems 2.10 and 2.11, we have a functor (-)reg: D2, (Dx) — DY (Dx) which
is defined by M, := RHyx (Soly (M)). Here RHy: D%_C((CX)"P = Db (Dy) is the
inverse functor of Soly : D, (Dx )P = D%_C (Cx). We call it the regularization functor
for algebraic holonomic $-modules. By Theorem 2.11, we also have the functor
(Dreg: Modhol (Dx ) — Mod (Dyx ) between abelian categories.

At the end of this subsection, we shall recall algebraic meromorphic connections.
Let D be a divisor of X, and j: X \ D — X the natural embedding. Then we set
Ox(*D) := j.+Ox and also set M(xD) := M @ Ox(xD) for M € Mod(Dyx).
Note that we have M(xD) >~ D j,.Dj*M. We say that a Dy -module is an algebraic
meromorphic connection along D if it is isomorphic as an Qx-module to a coherent
Ox (x D)-module. We denote by Conn(X; D) the category of algebraic meromorphic
connections along D. Note that it is full abelian subcategory of Mody, (Dy ). Moreover,
we set

D!..o(Dx(p)) := {M € D} (Dx) | #' (M) € Conn(X; D) foranyi € Z}.

We say that a Zariski locally finite partition {X4}qea of X by locally closed
subvarieties X, is an algebraic stratification of X if for any o € A4, X,, is smooth and
there exists a subset B C A such that X o = Llgen X5-

LemMMA 2.12. For any M € Modyo(Dyx), there exists an algebraic stratification
{Xq}aeca such that any cohomology ofDi;a (M) is an integrable connection on X,
for each a € A.

This result is known. See, e.g., [8, Thm. 3.3.1] for the details.

LemMaA 2.13. Let M be a holonomic Dy -module. Then there exists an algebraic
stratification { Xy }aca of X such that for any a € A and any sequence of complex blow-
ups ba:Yzl — X of X4 along Xy \ Xo we have (Db} M)(xDgy) € Dglem(c(DYbl(D )),
where Dy = b;l(X_a\ Xa). o

This lemma follows from Lemma 2.12 and will be used in the proof of Proposi-
tion 3.4.
The analytification functor (-)*" : Mod(Dy) — Mod(Dx=) induces

()*™: Conn(X; D) — Conn(X*"; D*"),
(_)an: D}rjnero(@X(D)) - D}r)nero(:oXa"(D““))

where we set D" := X\ (X \ D)* and Conn(X®"; D) is an abelian category

b

of meromorphic connections on X" along D*"', D ..

(Dxan(pany) is a full triangu-
lated subcategory of DEOI(J)X'dn) consisting of objects whose cohomologies are in

Conn(X*; D).
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We note that if X is complete, there exists an equivalence of categories between the
abelian category Conn(X; D) and the one of effective meromorphic connections on
X along D by [8, §5.3]. However as a consequence of [22, Thm. 4.2] any analytic
meromorphic connection is effective. Hence we have:

Lemma 2.14 ([8, (5.3.2)], [22]). If X is complete, there exists an equivalence of
abelian categories: (-)*: Conn(X; D) = Conn(X®; D*). Moreover, this induces an
equivalence of triangulated categories: (-)™: DP (Dx(p)) = DPnero({DXan( Dpany).

mero

3. Main results

In this section, we define algebraic C-constructible enhanced ind-sheaves and prove
that the triangulated category of them is equivalent to the one of algebraic holonomic
D-modules (Theorem 3.7).

3.1 — The condition (AC)

A result for the analytic case similar to the result in this section is proved in [9, §3.5].
Let X be a smooth algebraic variety over C and denote by X" the underlying
complex analytic manifold of X.

DEerINITION 3.1. We say that an enhanced ind-sheaf K € E0(ICya) satisfies the
condition (AC) if there exists an algebraic stratification { X}, of X such that

ric &ym oz ® Eb3) 'K

has a modified quasi-normal form along Dj" for any o, where bg: 721 — X isa
sequence of blow-ups of X, along

Y - an ~ Pl an ~ bl an
0Xy := Xg \ Xo» Do :=b,"(0Xy) and DX := (X,)*" \ (X, \ Da)™.
We call such a family { X, }4ec4 an algebraic stratification adapted to K.

We denote by E%»C (ICx) the full subcategory of E®(ICya) whose objects satisty
the condition (AC). Note that E?C_ (ICx) is the full subcategory of the abelian category
E?C_ (ICxa) of C-constructible enhanced ind-sheaves on X *". Moreover, we set

EY% (ICx) := {K € E°’(ICxu) | #'(K) € E% ,(ICx) forany i € Z}
C Ef_ (ICxu).
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ReEmMaRk 3.2. Definition 3.1 does not depend on a choice of a sequence of blow-ups
bg by [9, Sublem. 3.22]. Hence we obtain the following properties:

(1) By Hironaka’s desingularization theorelgll [7] (see also [26, Thm. 4.3]), there exists
a smooth complete algebraic variety Ya in Definition 3.1.

(2) Let {X4}aeca be an algebraic stratification of X adapted to K € E(%_C (ICx). Then
any algebraic stratification of X which is finer than { X, }qe 4 is also adapted to K,
see [9, Sublem. 3.22] for the analytic case.

ProrositioN 3.3. The category E?C_C(I(CX) is a full abelian subcategory of
E?C_C(I(Cxan).
Hence the category E%_C (ICx) is a full triangulated subcategory of EE(’:_C (ICxa).

This result can be proved by the same arguments as in the proof of [9, Prop. 3.22].
For M € DP ,(Dx), we set

Sol% (M) := Solgu (M™) (€ EY (ICxm)).
Then we obtain the following assertion:

ProrosiTioN 3.4, For M € Dﬁol(i)x), the enhanced solution complex Sol§‘( (M)
of M is an object ofE%_C (ICx).

Prookr. Itis enough to show the assertion in the case of M € Mody, (Dyx).

Let M € Modpo (Dx) and we put K := Sol% (M) € E%»c(ICXan). By Lemma 2.13,
Lemma 2.14 and [9, Prop. 3.18], there exist an algebraic stratification { Xy }gea of X
and a sequence of blow-ups by, : Yzl — X of X, along 0X, for each &« € A such that

a7 IC —u QEMBM 'K € EY, (IC

(X o)™\ Dan mero (Y';:)'“‘“(D;}"))

for any o € A, where Dy := b, ' (0X,) is a normal crossing divisor. Since the functor

7 C gty ® BBG)TNO)

is t-exact with respect to the standard t-structure (see [6, Prop.2.7.3 (iv) and Lem.

2.7.5(i)]), for any i € Z there exists an isomorphism in E2 _(IC &) D““)):
7-[_1 (C(Y(bxl)an\D&n ® E(bgn)_l (‘;(l K) x~ J€l (n_lc(yg)an\l)an ® E(b;n)_l K) u

On the other hand, the following proposition can be proved by Lemma 3.6 below
and the same arguments as in the proof of [9, Thm. 3.26].
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Proposition 3.5. Forany K € E%_C(I(CX), there exists M € D (Dx) such that
K = Sol% (M).

Lemma 3.6. Forany K € E?C_C (ICx), there exists an algebraic stratification { Xy }o
of X such that
7 'Cxap ® K € Soly (Dp;(Dx)).

Proor. By Lemma 2.14 and [9, Lem. 3.16], there exist an algebraic stratification
. . . bl
{Xa}o of X and algebraic meromorphic connections My on X 2 along D, such that

@ &y e © EbM 'K ~ 50§le (My) (for any a),

where by : Yzl — X is a sequence of blow-ups of Xy along 0X, and Dy := b;l (0Xq).

By applying the direct image functor Eb%}, we obtain an isomorphism in E>(ICxa):
7 'Cxar ® K => Sol (DbgsNy)[dx — dx, ] € Solg (DE;(Dx)).

Here we used [5, Cor. 9.4.10 (ii)]? and [8, Prop. 4.7.2 (ii), Thm. 3.2.3 (i)]. ]

Hence we obtain an essential surjective functor Solffz Dﬁol(i)x)ol’ — D%_C(I(C X).
This is not fully faithful in general. For example, D¢ /D¢ - (3, — 1) is not isomorphic
to Dc/Dc - 9, as algebraic Dc-modules, although

Sol (Dc/De - (9z = 1)) == Solf (Dc/De - 9z).
However if X is complete, then this is fully faithful.

THEOREM 3.7. Let X be a smooth complete algebraic variety over C. Then there
exists an equivalence of triangulated categories:

Solk: D, (Dx)*® = Eg. (ICx).
Proor. It is enough to show
Hongol(;DX) (eM, N) :) HOmEI(JC_C(I(CX) (SOI;‘( (JV), SOI;‘( (:A’{))

for any M, N € DY (Dx). By [5, Lem. 4.5.14], this follows by taking the 0-th coho-
mology in Lemma 3.8 below. u

(®) In [5], this result was proved under the assumption that M has a globally good filtration.
However, any analytic holonomic -module has a globally defined good filtration by [19-21]
(see also [27, Thm. 4.3.4]).
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LEMMA 3.8. Let X be a smooth complete algebraic variety over C. For any
M, N € D0 (Dx), there exists an isomorphism in D°(C):
RHomg, (M, N') = RHom"(Sol (), Sol (M)).
Proor. Letus denote by pxan: X — {pt} the map from X" to the set of one point.

Recall that the right-hand side is isomorphic to R pyus RHom® (Solk (), Sol% (M)).
Since Soly (V) € EE’C_C(I(CX) (C E]%_C(I(Cxan)) is stable (see [5, §4.9]), we have

RHom" (Sol% (M), Solk (M) ~ RHom"(CE.., RThom™ (Solk (N), Solk (M))).
Note that there exists an isomorphisms in E?(ICyn):
RIhom™ (Sols (M), Solf (M)) ~ DRE (N ®P Dy M)[—dx],

by [5, Prop.4.9.13 (2), Thm. 9.4.8 and Cors. 9.4.9 and 9.4.10 (iii)].
By [5, Thm. 9.1.2 (iii)], [8, Prop.4.7.2 (i1)] and the fact that the map pxa is proper
there exists an isomorphism in E>(IC,y):

EpxusDRE (N ®° Dy M) ~ DR (D px (N @ Dx M)).
Hence we have isomorphisms in D?(C):

R pxan RFHom" (Sol (M), Solk (M))
~ Rpyums RHom"™(CEu, RThom™ (Solk (M), Solk (M)))
~ Rpyms RHom (CE.., DRE (N &P Dy M)[—dx])
~ RHom™(Cyy, Epxani DR (N @ Dy M)[—dx])
~ RJItom™(CY, 4. DRY , (Dpx (N &P Dx M))[—dx])
~ Dpx«(N @P Dy M)[—dx].

where in the third isomorphism we used [5, Lem. 4.5.17] and in the last isomorphism
we used the fact that

RHom"™(Cp,, DRY 1 () =~ RHom" (Cyy, ey () =~ id

(see, e.g., [6, Ex.3.5.9] for DRl{zpt} = ey and see the proof of [5, Prop. 4.7.15] for the
second isomorphism). On the other hand, we have an isomorphism

Dpx«(N &P Dy M)[—dx] ~ RHomg,, (M, N)

in DP(C) by [8, Cor. 2.6.15]. Hence the proof is complete. ]
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We obtain the following corollary of Theorem 3.7, which is known to experts.

CoOROLLARY 3.9. Let X be a smooth complete algebraic variety over C. Then the
analytification functor (-)*: Mod(Dyx) — Mod(Dx) induces fully faithful embed-
dings

(_)an: MOdhOl (D(OX) —> MOdhOl(i)Xan),
()™ D (Dx) = DY (Dxan).

3.2 — The general case

In this subsection, we consider the general case. Thanks to Hironaka’s desingu-
larization theorem [7] (see also [26, Thm. 4.3]), for any smooth algebraic variety X
over C there exists a smooth complete algebraic variety X such that X ¢ X and
D := X \ X is a normal crossing divisor of X.

Let us consider a bordered space X3 = (X", X and the triangulated category
E°(ICxa ) of enhanced ind-sheaves on X . Recall that E*(ICxa ) does not depend
on the choice of X and there exists an equivalence of triangulated categories:

Eju ~
Eb(I(Cng)) . ~l 5 {K € Eb(I(Cfan) | m71Cxm @ K = K},
Ej~

where we denote by j: X3 — X the morphism of bordered spaces given by the
open embedding X — X for simplicity, see Section 2.3 for the details.
We shall denote the open embedding X < X by the same symbol j and set

Soly (M) := Ej'Solz(Dj«M) € E°(ICxa,)
for any M € D°(Dy). Note that for any M € Df,(Dx) we have
Sol2(DjxM) € {K € E'(ICg,,) | 77! Cxa ® K = K.
Furthermore, since D j« M =~ (Dj1.M)(xD), for any M € D ,(Dx) we have
Soly__ (M) =~ E;j~'Sol%(DjiM)

in E°(ICxa ).
Moreover, we obtain some functorial properties of the enhanced solution functor
Sol)E(Oo on X, see Proposition 3.12 below.

DEeFINITION 3.10. We say that an enhanced ind-sheaf K € E?(ICxu ) is algebraic
C-constructible on X2 if Ejy K € E° (IC g.n) is an object of E'j(’:_c (ICg).

We denote by E%_ .(ICx,,) the full triangulated subcategory of E°(ICxa ) consist-
ing of algebraic C-constructible enhanced ind-sheaves on X3.
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By [6, Lem. 3.3.2] and the fact that the triangulated category E%»c (ICxa) is a full
triangulated subcategory of E%_C (ICx), the triangulated category E'j(’:_ J(Cxm) is
also a full triangulated subcategory of EE{{- JCxm).

Then we obtain the first main theorem of this paper.

THeEOREM 3.11. Let X be a smooth algebraic variety over C. There exists an
equivalence of triangulated categories:

Soly__: Db (Dx)® = Eg (ICx,,).

Proor. For any M € DY (Dx), we have Soll)i? (DjsM) € E}?C_C (IC ) by Proposi-
tion 3.4. Then there exist isomorphisms:

EjuSoly_ (M) =~ Ej”Ej—‘sm‘j?(Dj*M)
~ n_l(CXan ® SOIE—(DJ*:M)
~ Sol% (D jx M).

Hence, by Theorem 3.7, we obtain Sol}E(OO (M) € E%»c (ICx,,) for any M € DP (Dx).
Moreover, by Theorem 3.7 and the fact that the direct image functor D j, of the open
embedding j: X — X is fully faithful, we obtain a fully faithful embedding

Dp,(Dx) = {K € B¢ (ICg,) | 77 Cxu ® K = K}, M > Solz(DjuM).
Thus the enhanced solution functor Sol}E(oo induces a fully faithful embedding
Soly__:Dpy(Dx)® — Eg_(ICx,,)

by the definition of Soly_ := E; _18011;? D).
On the other hand, let K € E. (ICx,,). Then

EjnK € {K € Ef. (ICg,) | 7 'Cxn ® K = K}

by the definition of the algebraic C-constructability for enhanced ind-sheaves on X3J.
Hence there exists an object N of Dp_ (D) such that

EjuK ~ Solz(N)
by Theorem 3.7. Moreover, since 7~ !Cxa @ E jn K = Ejn K, we have
Sol2(N) =~ 77 Cxan ® Sol%(N) = Sols (N (D)) =~ Sol’s (DjxDj*N).
We set M :=Dj*N € DP (Dx). Then there exists an isomorphisms in E>(ICy ):
Soly_ (M) ~ Ej 'S0l (N) ~Ej 'EjnK ~ K.

This completes the proof. =
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At the end of this subsection, we shall prove that the algebraic C-constructability
is closed under many operations. This follows from some functorial properties of
the enhanced solution functor SOIE(OO on X,. See Section 2.5 for the notations of
operations of Dy -modules.

ProposiTioN 3.12. (1) For M € D} (Dx), there is an isomorphism in E°(ICxa ):
Dy Soly_ (M) ~ Soly__ (Dx M)[2dx].

(2) Let f: X — Y be a morphism of smooth algebraic varieties. Then for N €
DY (Dy) there are isomorphisms in E°(IC X ):
E(f2)™'Soly_ (N) = Soly_ (D f*N),
E(f2)'Sol}y_ (N) =~ Soly_ (Df*N).

o0

(3) Let f: X — Y be a morphism of smooth algebraic varieties. For M € D} (Dx),
there are isomorphisms in E>(ICyan ):
E f&.Soly_ (M)[dx] ~ Soly_ (D fi-M)[dy],
E £, Soly__ (M)[dx] = Soly__ (D fM)[dy].

(4) For M1, My € DY (Dx), there exists an isomorphism in EP(ICxm ):
Solf__(M1) ®T Sol§ (M) ~ Solk__ (M1 @ Mp).
Moreover, for any M € D} (Dx) and any N € DY (Dy), there exists an isomor-
phism in EP(ICxa yyan):

Soly_ (M) ®* Soly_ (N) = Soly, (M RP N).

coXYoo
Prookr. (1) Let us recall that there exists an isomorphism D gD j« .M ~ D jiDy M
in DY, (D). Hence we have isomorphisms
D Soll__ (M) ~ Dy Ej ™' Sol’s (D ju M)
~ E;j~'Solt (D gD j«M)[2dx]
~ Ej_lsoll%(ngDXM)[de]
~ Soly_ (Dx M)[2dx].

where in the second isomorphism we used [5, Thm. 9.4.8] and [8, Prop.4.7.1].
(2) Since the proofs of (2) and (3) are similar, we shall skip the proof of (2).
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(3) By [6, Prop.3.3.3 (iv)] and the fact that the morphism f2': X3 — Y& of
bordered spaces is semi-proper, for K € E%» (ICxa ) we have an isomorphism in
E’(ICym):

E/f#.K ~ DyuE £ Dyu (K).

Hence it is enough to prove the second part of (3). In fact, we have isomorphisms

E £, Soly (M) =~ Ejy "E(f*)uEjxnSoly_ (M)
~ Ejy "E(f™)uSol% (D jx M)
~ Ejy ' Sol% (D £uD jx«M)[dy — dx]
~ Ejy 'Sol} (Djy.D faM)[dy — dx]
~ Soly_ (D fx:M)[dy — dx],
where in the second (resp. third) isomorphism we used Sublemma 2.3 (1) (resp.
[5, Cor.9.4.10 (ii)] and [8, Prop. 4.7.2 (ii)]).

(4) By (2) it is enough to show the first part of (4). Recall that there exists an iso-
morphism D js M1 ®P D ju My =~ Dji(M; ®P My) in DY (Dg) by [8, Cor. 1.7.5].
Hence we have isomorphisms in E>(ICx ):

Soly, (M1 ® Mz) ~ Ej~'Sol% (D ju(M; @ M>))
~ Ej'Sol% (D) M1 @ DjuM>)
~ E;j 'Sl (DjuM1) ® Ej ™' SolZ(DjxMs)
~ Solg”:(oo (M) @ SOIE(OO (M2),

where in the third isomorphism we used [5, Cor. 9.4.10 (ii), (iv)]. ]

CoroLLARY 3.13. Let f: X — Y be a morphism of smooth algebraic varieties
and K, K1, K> € E%_C(I(CXOO), L e EIE:_C(ICYOO)- Then we have
(1) Dyw (K) € Eg. (ICx,,) and K —> Dyuw Dy K,
(2) K1 @1 Ky, RThom™ (K1, K») and K RT L are algebraic C-constructible,
(3) E(f2) 'L and E(f2)' L are algebraic C-constructible,

4) Ef2, K and E f, K are algebraic C-constructible.

Proor. Since the proofs of these assertions in the corollary are similar, we only
prove (1). By Theorem 3.11, there exists M € Df(Dy) such that K =~ Solioo (M).
Then by Proposition 3.12 (1) we obtain

Dy (K) = Dyu Soly__ (M) =~ Soly_ (Dx M)[2dx] =~ Soly__ (Dx (M[2dx])).
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By Theorem 3.11 and the fact that Dy (M[2dx]) € D,(Dx) we have DE%(K) €
E%_ (ICx_,). Moreover, the second part of (1) follows from [6, Prop. 3.3.3 (ii)] and
the fact that any C-constructible enhanced ind-sheaf is R-constructible. ]

Let us recall that for any ¥ € DP(Cxa) we have
exm (F) = Ej ™ (egn (Rj{"(F))),
see Section 2.2 for the details.

ProposITION 3.14. The functor exm : D (Cxm) < E*(ICxa ) induces an embed-
ding
D (Cx) = B¢ (ICx,,)

and we have a commutative diagram

Soll)i(Oo
D} (Dx)® ——— Ef _(ICx,.)

U Q ]w

D}, (Dx)® ——s—— DY (Cx).

Proor. Itis enough to show the last part. Let M be an object of DY (Dx). Then
(DjM)™ € Db (D ) by the definition of algebraic regular holonomic. Hence we
have isomorphisms in E®(IC )

Sol% (D /M) = Solz,, (DjxM)™) == e gun(Solgu((DjxM)™))
by [5, Prop. 9.1.3]. On the other hand, we have an isomorphism in D°(C gan)i
Sol gu (D M)™) =~ Rji"(Solyxam (M™)) >~ Rj{" (Solx (M)),
see, e.g., [8, Thm. 7.1.1]. Hence there exist isomorphisms in E°(ICxu ):
Soly_ (M) ~ Ej 'S0l (D j.M)
~ Ej e 5 (S0l g (D s M)™)

= Ej_le)?anRj!an(SOIX (M))
X exam (SOIX (M)) n

Let us recall that for any K € E*(ICxa ) we have
shyz (K) = (j*) 7" (shgu (Eju(K))),

see Section 2.2 for the details.
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Lemma 3.15. For any M € DY (Dx), there exists an isomorphism in DP(Cxa):
shym (Soly__ (M)) = Soly (M).
Proor. By the definition of Sol)E(oo and shyan we have isomorphisms in DP(Cxm):

shxg, (Soly__ (M) ~ (j*) ™ shgumEjnEj ' Sol’t (D ju M)
~ (j*) ™ shgwSol’s (D jx M)
~ (j*) "' Solg (D jx M)
~ Soly (D *Dj. M)
~ Soly (M),

where in the third isomorphism we used [5, Lem. 9.5.5]. [
ProposITION 3.16. The functor shya : E°(ICxam ) — D®(Cxa) induces
E]E:-C(I(CXOO) - D]()C-C((CX)
and hence we have a commutative diagram

Solf
D}, (Dx)? ———— E%_C(ICXOO)

(')rng Q lShXé"o

D;, (Dx)? ——— D (Cx).

Proor. The first part follows from Theorem 3.11 and Lemma 3.15. Moreover,
since there exists an isomorphism Soly (M) =~ Soly (M) in DP(Cx) for any M €
Dﬁol(o‘DX) (see Section 2.5 for the details), we obtain the commutative diagram. |

3.3 — Perverse t-structure

In this subsection, we define a t-structure on the triangulated category E?C_C (ICx.)
of algebraic C-constructible enhanced ind-sheaves on X3 and prove that its heart is
equivalent to the abelian category Mody,(Dyx) of algebraic holonomic Dy -modules.
A similar results for the analytic case is proved in [9, §4].

We denote by Dyan: DP(Cxam)° — DP(Cyan) the Verdier dual functor for sheaves,
see [11, §3] for the definition. By the same arguments as in the proof of [9, Lem. 4.1],
the sheafification functor shyan : E%_ Cx) — D%_ .(Cx) commutes with the duality
functor as follows.
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Lemma 3.17. Forany K € E%»C (ICx.,), there exists an isomorphism in D®(Cxan):
shyg, (Dgu (K)) =~ Dy (shyg (K)).
Let us recall that the triangulated category D'é_ .(Cx) has the t-structure
("DZ’,(Cx). ”DZ(Cx))

which is called perverse t-structure; denote by Perv(Cy) the heart of its t-structure,
see [1] (also [8, Thm. 8.1.27]) for the details.

DeriniTION 3.18. We define full subcategories of E'(E_C(I(C X..,) by
PEZ’ (ICx,,) == {K € E% (ICx..) | shyw (K) € ?DZ°(Cx)}.
PEE’(ICx,,) := {K € B (ICx,,) | D}u (K) € PEZ..(ICx )}

= {K € E} (ICx..) | shyn (K) € ’DZ° (Cx)}.
(The last equality follows from Lemma 3.17.)

The next theorem 3.19 follows from Theorem 2.11 and Lemma 3.15.

TueOREM 3.19. Let X be a smooth algebraic variety over C and M € DY, (Dx).
Then we have

(1) M € DE)(Dx) <> Solk__ (M)[dx] € PEZ’ (ICx,,).
(2) M € DZ)(Dx) <> Sol§__(M)[dx] € PEZ’ (ICx,,).

Therefore, the pair (P Eé?c (ICx..).? E%?C(I(C Xoo)) IS a t-structure on E'(E:_ ICx)
and its heart is equivalent to the abelian category Mody, (Dx) of holonomic Dy -
modules.

DEerinITION 3.20. We say that K € E'(JC_ .(ICx,,) is an algebraic enhanced perverse
ind-sheaf on X if

K € Perv(ICyx,,) := PEZ° (ICx. ) N PEZ2.(ICx ).

By the definition of the t-structure (PEZ’(ICx,.), PEZ% (ICx_)), the duality
functor D?(gg induces an equivalence of abelian categories:

Dggg :Perv(ICx,_ ) = Perv(ICx,_).

By Proposition 3.14 and the fact that there exists an isomorphism id => shya o ey
of functors, we obtain:
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; b b ;
ProposiTioN 3.21. The embedding functor exm: D¢ (Cx) — E¢ (ICx_) is
t-exact with respect to the perverse t-structures and hence it induces an embedding:

Perv(Cx) < Perv(ICx_,).
Moreover, we obtain a commutative diagram:

Soly o, Oldx]
MOdhOl(@X)Op N PGI‘V(ICXOO)

U o ]w

op ;)
Mod (Dx) Sox Oldx] Perv(Cy).

By the definition of the t-structure (? Eé?c (ICx,),”? E%?C (ICx.,)), the sheafifica-
tion functor shya induces a functor

Perv(ICx. ) — Perv(Cy).
Moreover, by Proposition 3.16 we obtain a commutative diagram:

Soly . O)ldx]

Modpo (Dx)® ————  Perv(ICx,,)
(~)regl Q lShX(a)r(l)
op ~
Mod,, (Dx) S Ola] Perv(Cy).

Recall that there exists a generalized t-structure (% Eﬁfc (ICxm ), %E]?Ri (ICxm ))cer
on E% .(ICxa ) by [6, Thm. 3.5.2 (i)]. Then the pair (PEZ° (ICx_ ), PEZ>.(ICx,. )) is
related to this as follows:

PropositioN 3.22. We have

PEEL(Cx,) = YE51(Cxg) NEL (Cx).

C

PEZ’ (ICx,,) = 2E3°(ICxa) N E  (ICx,,).

C
Proor. By Corollary 3.13 (1) and the facts

PEE(ICx,,) = {K € B¢ (ICx,,) | Du (K) € PEE’.(ICx )}

C

1 1<
2ER° (ICxy) = {K € B} (ICxp) | Dyu (K) € 2EZ".(ICx)},

C
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it is enough to show the first part. Let us recall that for any K € E%_ ICxa ), we have
K € B3’ (ICxy) <= EjxauK € 7E5(ICz.,)

by [6, Lem. 3.3.2, Prop. 3.5.6 (i), (iv)]. Hence the first part follows from Lemma 3.23 (1)
and Sublemma 3.24 (1) below. [ ]

LemmMA 3.23. Forany K € E%_C(I(CXOO), we have
(1) K € PEE’,(ICx,.) <= EjxgnK € PEE.(Cy),
(2) K € PEZ? (ICx_) <= EjxunK € PEZ° (IC ;).
Proor. Since the proof of (2) is similar, we only prove (1).
First, we assume K € ? Eé?c (ICx_,)- Then there exists an object M € D}i?(i)x)

such that
K ~ Soly_ (M)[dx]

by Theorems 3.11 and 3.19 (2). Furthermore, since the canonical embedding j: X — X
is affine, we have Dj. M € Dli? (D), and hence we have

EjxmnK ~ Sols (Dj.M)[dx] € PEZ(ICx)

C

by Theorem 3.19 (2).
We assume E jxya K € PEE?C(I(C)?). Then we obtain

shgu (EjxanK) € PDZ° (Cy).
Since the functor
(") DE.(Cx) = De.o(Cx)
is t-exact with respect to the perverse t-structures, we have
shxz, (K) 2 (j*) ! (shgu (EjxznK)) € PDZ(Cx)

and hence K € ? Eé?c (ICx.). ]

Let us recall that the triangulated category E'(’C_C (ICy) is a full triangulated subcate-
gory of EY._(ICxu) and E2.__ (ICxan) has the t-structure (PEZ°, (ICxu),?EZ>, (ICxa)),
see Sections 2.4, 3.1 and [9, Def. 4.2, Thm. 4.4] for the details.

SuBLEMMA 3.24. Let X be a smooth complete algebraic variety over C. Then we
have

(1) PEZ’ (ICx) = PEZ® (ICxw) N EY, (ICx) = 2EZ° (ICxw) N EL_ (ICx),
(2) PEZ° (ICx) = PEZ° (ICxw) N EY, (ICx) = 2EZ° (ICxw) N EL_ (ICx).
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Proor. Since the proof of (2) is similar, we only prove (1). By [9, Cor. 4.5], it is
enough to prove

PE((S;‘(.)C (I(CX) = pE((Sj(.)c (I(CX"“) N E%»c (I(CX)

Let K be an object of 7 Eé?c (ICx). By Proposition 3.5 and Theorem 3.19 (2), there
exists an object M of D}i?(i)x) such that K ~ Solf( (M)[dx] := Solffan(,/%a“)[dx]).
Since the analytification functor (-)*": Mod(Dy) — Mod(Dyx) is exact, we have
M € DZ0(Dyun), and hence we have

Sol%. (M™)[dx] € PEZ? (ICxm)
by [9, Thm. 4.4 (2)]. Therefore we obtain
K € PEZ’ (ICx=) NEY (ICx).

Let K be an object of PEE(_)C(I(CXM) N E%_C(I(CX). Since K € E%_C(I(CX), there
exists an object M € D (Dx) such that K ~ Sol% (M)[dx] by Proposition 3.5.
Since K € PEZ" (ICxa), we have M™ € D2 (Dx) by [9, Thm. 4.4 (2)], and hence
we obtain M € Di)?(i)x) because the analytification functor (-)*": Mod(Dx) —
Mod(Dxa) is exact and faithful. Therefore, by Theorem 3.19 (2), we have

K = Sol§ (M)[dx] € PEZ® (ICx). "

Thanks to [6, Prop. 3.5.6], the next proposition follows from Corollary 3.13 (3), (4)
and Proposition 3.22. We skip its proof.

ProprosiTiON 3.25. Let f: X — Y be a morphism of smooth algebraic varieties.
We assume that there exists a non-negative integer d such that dim f~1(y) < d for
anyy €Y.

(1) Forany K € pEé?c(I(CXOO), we have E 2", K € pEéfic(I(Cyoo).

ool!!
(2) Forany K € pE((Z:(_)C(I(CXOO), we have E f2. K € pE«Z:__Cd (ICy,).
(3) Forany L € pEé(_)C(I(CYOQ), we have E(f2) 1L € pEéfl (ICx.)-

C

(4) Forany L € I’E%(_)C(I(CYOO), we have E(f2")'L € I’E%__cd (ICx,)-

CoRrROLLARY 3.26. Let X be a smooth algebraic variety over C and Z a locally
closed smooth subvariety of X. We denote by izu:Z5 — X& the morphism of
bordered spaces induced by the natural embedding Z — X.

(1) Eizaw « and Ei !Zan are left t-exact with respect to the perverse t-structures.
o0

(2) Eizwm 1 and Ei Egl‘}) are right t-exact with respect to the perverse t-structures.
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In particular, if Z is open (resp. closed), then the functor
.1 .1 . ~ T
Eiza >~ Eizw (resp. Eizam >~ Eizm ,)
is t-exact with respect to the perverse t-structures.

REMARK 3.27. Let X be a smooth algebraic variety over C and Z a locally closed
smooth subvariety of X. We assume that the natural embedding iz: Z < X is affine.
Then we have exact functors

Diz.,Dizy: Modpo(Dz) — Modpo (Dx).

Hence by Proposition 3.12 (3) and Theorem 3.19, we obtain exact functors

Eizan ., Eiza:Perv(ICz_ ) — Perv(ICx_).
Note that there exists a canonical morphism

Eizuy — Eigmn ,
of functors Perv(ICz__ ) — Perv(ICx__) and it is an isomorphism if Z is closed.
NoraTion 3.28. For a functor F: EY. (ICx, ) — EY_(ICy,,), we set

PF :=P3%0 F:Perv(ICx_ ) — Perv(ICy_ ),

where ? #0 is the 0-th cohomology functor with respect to the perverse t-structures.

In this paper, for an object K € E*(ICxa ), let us define the support of K by the
complement of the union of open subsets U*" of X" such that K |yan := Ei 5;2 K~0
and denote it by supp(K). Namely, we set

supp(K) := ( U Ua“)c c X,

an an -
U oan ,K|Ugr<1) 0

Note that we have

U U™ — U yan

Ua C Xan, K| an =0 Van C Xan K|y an=0
open oo open

Moreover, for a closed smooth subvariety Z of X, we set

Pervz(ICx_ ) := {K € Perv(ICx_,) | supp(K) C Za“}.
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ProposiTiON 3.29. Let X be a smooth algebraic variety over C and Z a closed
smooth subvariety of X. Then we have an equivalence of abelian categories:

PEi

Pervz(ICx_,) 2 ~— Perv(ICz_,).
Eiza
Furthermore, for any K € Pervz(1Cx_ ) there exists an isomorphism in Perv(ICz__):
PEizh K ~ PEiym K.
Proor. Let L be an object of Perv(ICz_, ). Then we have Eiza L € Perv(ICx)
by Corollary 3.26. Furthermore, since

Eiym\ zm EizamnL ~ 0,
we obtain supp(Eiza L) C Z*. This implies that
Eizgré”L € Peer(ICXOO).

Note that there exists an isomorphism Ei Eé}) EizunyL = L in E’(IC za ). Thus we
have

PEizun BizmnL = L.

Let K be an object of Pervz(ICx__). Then we have
7' Cix\zym ® K =~ Ei(X\Z)g%”Ei(_Xl\Z)&K ~ 0,
where in the first isomorphism we used [6, Lem. 2.7.6]. Thus we obtain
K =5 77'Cza ® K (~ EizunEizun K).

Since the functor Eiza ), is t-exact with respect to the perverse t-structures, we obtain

K = Eizmn?Eizn K.

Therefore the proof of the first part is complete.
For any K € Pervz(ICx,,), there exists an object L € Perv(ICz__) such that

K ~EizanL >~ Eizu L.
Hence we have isomorphisms in Perv(ICz_):
PEizh K ~ PRizh BizmsL ~ L ~ PEiyuRizn L ~ "Eily K.
This completes the proof of the second part. ]

RemMARrk 3.30. By using Theorem 3.19, Proposition 3.29 also follows from Kashi-
wara’s equivalence, see, e.g., [8, Thm. 1.6.1].
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3.4 — Minimal extensions

In this subsection, we shall consider simple objects of Perv(ICy_ ), and a counter-
part of minimal extensions of algebraic holonomic £D-modules.

DerintTION 3.31. Let X be a smooth algebraic variety over C. A non-zero alge-
braic enhanced perverse ind-sheaf K € Perv(ICyx,_,) is called simple if it contains no
subobjects in Perv(ICyx_ ) other than K or 0.

ProrosiTioN 3.32. Let X be a smooth algebraic variety over C. For any simple
algebraic perverse sheaf ¥ € Perv(Cy), the natural embedding exx (¥) of ¥ is also
simple.

Proor. Let ¥ € Perv(Cy) be a simple algebraic perverse sheaf on X and K €
Perv(ICyx_, ) a subobject of exa (F') which is not isomorphic to exa (¥'). Then there
exists M € Modpe (Dyx ) such that K >~ Sol}i(oo (M)[dx] by Theorem 3.19. Since the
functor shya : Perv(ICy, ) — Perv(Cy) is t-exact with respect to the perverse t-
structures, we obtain shya (K) C shyu exan (7). Then Soly (Me,)[dx] (= shym (K))
is a subobject of ¥ which is not isomorphic to ¥. Since ¥ is simple, we obtain
Solx (Mreg)[dx] >~ 0, and hence M., > 0. This implies that M =~ 0, thus we have
K ~0. ]

In this paper, we shall say that K € E®(ICxa ) is an enhanced local system on Xoo
if for any x € X there exist an open neighborhood U C X of x and a non-negative
integer k such that K |ym =~ (Cum )&k Note that for any enhanced local system K
on X, there exists an integrable connection £ on X such that

K[dx] =~ Soly__ (£)[dx] € Perv(ICx,,).

ProrositioN 3.33. (1) Let Z be a locally closed smooth connected subvariety of a
smooth algebraic variety X and K a simple algebraic enhanced perverse ind-sheaf
on Xeo. We assume that the natural embedding iz: Z — X is affine. Then the
image of the canonical morphism EizmnK — Eizu K is also simple, and it
is characterized as the unique simple submodule (resp. unique simple quotient
module) of Ei zm K (resp. Eizam 1 K).

(2) For any simple algebraic enhanced perverse ind-sheaf K on X, there exist a
locally closed smooth connected subvariety Z whose natural embedding is affine
and a simple enhanced local system L on Z o such that

K ~ Im(Eizgno!!L[dz] — Eizgg)*L[dz]).
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(3) Let (Z, L) be asin (1) and (Z', L") be another such pair. Then we have
Im(EizgnL[dz] — Eizg.L[dz]) ~ Im(BizanL'[dz/] — Eizw.L'[dz])

if and only if Z = Z' and there exists an open dense subset U of Z 0 Z' such that
L|ang ~ L/|ang.

Proor. Let us denote by £(Z; M) the minimal extension of M € Mody(Dz)
along Z, see, e.g., [8, §3.4] for the definition. Then there exist isomorphisms in
Perv(ICx_,):

Soly_ (£(Z: M))[dx] ~ Soly_ (Im(Dizi M — Diz.M))[dx]
~ Im(Eizu nSoly_ (M)[dz] — Eizu .Soly_(M)[dz]),

where in the second isomorphism we used Theorem 3.19 and Proposition 3.12 (3).
Therefore this theorem follows from Theorem 3.19 and [8, Thm. 3.4.2]. ]

From now on, we shall consider the image of a canonical morphism
pEizg%!!K — pEizgno*K

for a locally closed smooth subvariety Z of X whose natural embedding iz: Z — X
is not necessarily affine and K € Perv(ICz__). In this paper, we shall define minimal
extensions of algebraic enhanced perverse ind-sheaves as follows.

DerintTION 3.34. For any K € Perv(ICz_, ), we call the image of the canonical

morphism PEiza y K — PEizmx , K the minimal extension of K along Z, and denote
it by pEiz&g!*K.

Note that we have a functor #Eizam y14: Perv(ICz_ ) — Perv(ICx_,).

RemARrk 3.35. (1) If Z is open, then we have (PEizu 1, K)|zm ~ K.
(2) If Z is closed, then we have

PEizw 4« K ~ Eizm K ~ Eizmn K € Pervz(ICx_,).
(3) If the natural embedding iz: Z < X is affine, then we have
PEizm 4 (-) >~ Im(Eizm 1 (-) — Eizm 4(-)).
Moreover, for any M € Modp (D7) there exists an isomorphism in Perv(ICy,_):

PEizum nxSoly_ (M)[dz] = Soly_ (£(Z: M))[dx].
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The minimal extension functor ?Eizax 1, commutes with the duality functor of

algebraic enhanced perverse ind-sheaves.

ProrosiTiON 3.36. In the situation as above, there exists a commutative diagram:

PEi
Perv(ICz_ )P s LN Perv(ICx_, )P
DEZ?,“O Jz @) leEZa&D
Perv(ICz,,) ———— Perv(ICx,).
Elzdn ™

Proor. Note that we have isomorphisms in Perv(ICyx__ ):

Dggg (PEizunK) ~ ”Eizgno*D%g% K,

Dg(g% (pEl'Zéno*K) ~ pEizg%ggD%g% K.
Therefore we obtain isomorphisms in Perv(ICx__):

Dyw (PEizan«K) ~ Im(PEizgnD5m K — PEizy «D5w K)
~ pEl.Zg%!!*DFé&K- ]

We denote by PRiz1. ¥ the minimal extension of a perverse sheaf ¥ along Z, see
[1] for the details. By the same arguments as in the proof of the previous proposition,
we have:

Prorosition 3.37. In the situation as above, there exists a commutative diagram:

PE; Zoo

Perv(ICz..) — T Perv(ICyx_.)

Perv(Cz) —> Perv(Cy).

PRizan
The following lemma will be used in the proof of Theorem 3.44.

LemMA 3.38. Let X be a smooth algebraic variety over C, and let Z and W
be locally closed smooth subvarieties of X. We assume W C Z and we consider a

commutative diagram:
Zan Xdl'l

T%

Wan
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where iz | iwa and k are the morphisms of bordered spaces induced by the natural
embeddings, respectively. Then for any K € Perv(ICyw,__) we have

(1) PEiwan K >~ PEizunPEkyK and PEiym K ~ PEizan PEk.K,
(2) PEiwmn« K >~ PEizn 1 PEkn« K.

Proor. Let K be an object of Perv(ICy_,).

(1) Since the proof of the first assertion of (1) is similar, we shall only prove the
second one. Recall that the functor Ei za , is left t-exact with respect to the perverse t-
structures. Hence for any K € Perv(ICy,_ ), we have an isomorphism in Perv(ICy ):

PRiwm K ~ P HBiyum K ~ ? O (Eizm . * H°(Eks K)) = PEizu L Ek.K.

See, e.g., [8, Prop. 8.1.15 (i)] for the second isomorphism.
(2) Recall that there exist canonical morphisms:

PEiwmn K —>PEiymn K < PEipn . K,
PEkyK —»PEkn.K — PEk.K,
PEizan wPEkn« K —PEizu 1. Ekn« K — PEizn LEkn« K,
where —» (resp. <) is an epimorphism (resp. a monomorphism) in the abelian cat-
egory of algebraic enhanced perverse ind-sheaves. Since the functor Eiza . (resp.

Eizau 1) is left (resp. right) t-exact with respect to the perverse t-structures, the canoni-
cal morphism

pEiWoag”K = pEizg“O”pEk”K — pEizgno*pEk*K = pEl'Wéﬂg*K
can be decomposed as follows:

PEizm PEknK — PEizn "Ekn« K — PEizm 1 PEky K

— pEizg%*pEk!!*K — pEizg%*pEk*K.
This implies that
Im(PEiwmnK — PEiymK) >~ PEizu 1. Ekn. K. n

Recall that in the case when Z is a closed smooth subvariety of X, minimal
extensions along Z can be characterized by Proposition 3.29, see also Remark 3.35 (2).
On the other hand, in the case when Z is open and its complement is a smooth
subvariety, the minimal extensions along Z can be characterized as follows. Let U be
such an open subset of X and set W := X \ U.
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ProposITION 3.39. In the situation as above, the minimal extension PEiya 4« K of
K € Perv(ICy,,) along U is characterized as the unique algebraic enhanced perverse
ind-sheaf L on X satisfying the conditions

(1) Bigh L ~ K,
() EipiL € EZ ' (ICw,),
(3) EijyuL € EZ. (ICw..).

Proor. Let K be an object of Perv(ICy,, ). Set L := PEiyam 1+ K € Perv(ICyx_,).
Then we have Ei 552 L ~ K by the definition of L. Moreover, we have

EijwL € EZ°(ICw,,) (resp. Eijyu L € EG%(ICw,.))

by Corollary 3.26 (2) (resp. (1)).
By using [6, Lem. 2.7.7], there exist distinguished triangles in E?(ICx_,):

. . - +1
EiymnK — L — EZWOagggElWégL —,
. N . +1
Elwgg*ElegL — L — Eigan K — .

By Corollary 3.26, we have ? # 1EiUggggK ~ (0 and p%_lEiUgg*K ~ (, and hence
there exist exact sequences in Perv(ICy_,):

pEl'UggggK - L — pJfO(El.WégggEiﬁ,};gL) — 0,

0 — P (Biwm«"Eijym L) — L — PEigzm.K.

Since the morphism PEiyax K — L (resp. L — PEiya 4« K) is an epimorphism (resp.
a monomorphism), we obtain

P3O (BiwanEipi L) ~ 0 (resp. ? J°(BiwmEijym L) ~ 0).
Therefore we have
PHOEipinl) ~0 and PHO(EijywmL) ~ 0,
and hence
EiywL € EZ'(ICw,,) and EijwL € EZ. (ICw,,).

Let L be an object of Perv(ICx,_, ) which satisfies the conditions (1)—(3) as above.
By (1), we obtain morphisms in Perv(ICx_, ):

PEigunK <> L 25 PEiyw . K.
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It is enough to show that the morphism « (resp. 8) is an epimorphism (resp. a monomor-
phism). Since the proofs are similar, we only prove that 8 is a monomorphism.

Let us consider exact sequences 0 — Ker 8 — L — PEiyam 4K in Perv(ICx_,).
Since Eann (Ker B) ~ 0, we have Ker 8 € Perviy (ICx_, ), and hence there exist Lg €
Perv(ICwy,, ) such that Eiyany (Lg) ~ Ker B by Proposition 3.29. Moreover, we have
exact sequences in Perv(ICy,_,):

0— (Lp ) PEijywEiwnyLg — PEijyw L — PEijyu Eiygn. K.

Since L satisfies the condition (3), we have PEi I!’VSSL 2~ 0. Thus we obtain Lg =~ 0.
This implies that the morphism § is a monomorphism. ]

Furthermore, the minimal extensions along U have the following properties.

ProrpositioN 3.40. In the situation as above, for any K € Perv(ICy.,),
(1) PEigm«K € Perv(ICx,,) has no non-trivial subobject in Pervy (ICx_,),

(2) PEiymnK € Perv(ICx,,) has no non-trivial quotient object in Pervy (ICx_, ).

Proor. Since the proof of (2) is similar, we only prove (1).

Let L € Peer(I(CXOO) be a subobject of PEiyam « K € Perv(ICx_, ). Since we have
ElenanlenL = Lin Peer(ICXOO) it is enough to prove pElenL ~ 0. We
have a monomorphism ? Elen L—7? Elen PEiym 4 K in Perv(ICx_, ), because the
functor ? ElWan is left t-exact with respect to the perverse t-structures by Corollary
3.26(1). Then we have

PEijyum "Eiys« K ~ P H°(EBijywEiyn.K) ~ 0,
and hence PEiI’)VggL ~ 0. ]

Recall that there exist the canonical morphisms PEiyamn K — PEigamn«K —
PEiym « K in Perv(ICx_, ). Hence we have:

CoroLLARY 3.41. In the situation as above, for any K € Perv(ICy,_,), the minimal
extension PEiya 14 K has neither a non-trivial subobject nor a non-trivial quotient
object in Perv(ICx__ ) whose support is contained in W,

CoRroLLARY 3.42. In the situation as above, the following holds:

(1) For an exact sequence 0 — K — L in Perv(ICy,,), the associated sequence
0 — PEiyamn« K — PEiyan« L in Perv(ICx_, ) is also exact.

(2) For an exact sequence K — L — 0 in Perv(ICy_,), the associated sequence
PEiym 1« K — PEiyan. L — 0in Perv(ICx,,) is also exact.
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Proor. Since the proof of (2) is similar, we only prove (1).
Let a: K < L be a monomorphism in Perv(ICy.,). Since (PEiyam 4« K)|ym ~ K
and (PEiya 4 L)|ya ~ L, we obtain

(Ker(PEigamn«a))|ym =~ Ker((PEiymwa)|ym) ~ Kero 2~ 0.

This implies that Ker(PEiya o) € Pervy (ICx_, ). Hence Ker(PEiyan«o) >~ 0 by
Proposition 3.40 (1). Therefore Eiyan 1+« is a monomorphism in Perv(ICx_ ). =

CoroLLARY 3.43. In the situation as above, for any simple object in Perv(ICy_,),
its minimal extension along U is also a simple object in Perv(ICx_,).

Proor. Let K be a simple object in Perv(ICy_,) and L a subobject of PEiyan 14 K.
Then we have an exact sequence 0 — L — PEiyann,K — L’ — 0in Perv(ICx_,).
Since (PEiyamn« K)|ya ~ K, there exists an exact sequence

0—EighL - K - Eigin L' — 0

in Perv(ICy_ ). Hence we have Eann L ~0or EzUm L’ ~ 0 because K is simple.
This implies that supp(L) C W or supp(L/) C W™ and hence L >~ O or L' >~ 0O by
Corollary 3.41. Therefore PEiyan 14 K is a simple object in Perv(ICx_, ). |

Therefore by Proposition 3.29 and Lemma 3.38, we obtain the following results.

THEOREM 3.44. Let X be a smooth algebraic variety over C, and Z a locally
closed smooth subvariety of X whose natural embedding iz: Z < X is not necessarily
affine. We assume that Z = U N W where U C X is an open subset whose complement
X\ U is smoothand W C X is a closed subvariety.

(1) () For an exact sequence 0 — K — L in Perv(ICz_,), the associated sequence
0 — PEizn n« K — PEizmn 4L in Perv(ICyx,, ) is also exact.

(ii) For an exact sequence K — L — 0 in Perv(ICz_)), the associated sequence
PEizunn« K — PEizmnn L — 0in Perv(ICx,,) is also exact.

(2) For any simple object in Perv(IC z_,), its minimal extension along Z is also simple.
Proor. Let us consider a commutative diagram:

ipran

an o0 an
U =, xan

kT /
lzdono

an
ZOO
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Then we have PEiza 14 = PEiyam 1, o PEkny by Lemma 3.38. Therefore the asser-
tion (1) (resp. (2)) follows from Corollary 3.42 (resp. Corollary 3.43) and Proposition
3.29. [
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