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Note on algebraic irregular Riemann–Hilbert correspondence

Yohei Ito (*)

Abstract – The subject of this paper is an algebraic version of the irregular Riemann–Hilbert
correspondence which was mentioned in [Tsukuba J. Math. 44 (2020), 155–201]. In partic-
ular, we prove an equivalence of categories between the triangulated category Db

hol.DX /

of holonomic D-modules on a smooth algebraic variety X over C and the triangulated
category Eb

C-c.ICX1/ of algebraic C-constructible enhanced ind-sheaves on a bordered
space X an

1. Moreover, we show that there exists a t-structure on the triangulated category
Eb

C-c.ICX1/ whose heart is equivalent to the abelian category of holonomic D-modules
on X . Furthermore, we shall consider simple objects of its heart and minimal extensions of
objects of its heart.

Mathematics Subject Classification (2020) – Primary 32C38; Secondary 14F10, 32S60,
35A27.

Keywords – Algebraic analysis, D-modules, enhanced ind-sheaves, irregular Riemann–Hilbert
correspondence.

1. Introduction

After the appearance of the regular Riemann–Hilbert correspondence of Kashiwara
[10], Beilinson and Bernstein developed systematically a theory of regular holonomic
D-modules on smooth algebraic varieties over the complex number field C and
obtained an algebraic version of the Riemann–Hilbert correspondence stated as fol-
lows: Let X be a smooth algebraic variety over C. We denote by X an the underling
complex analytic manifold of X , by Db

rh.DX / the triangulated category of regular
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holonomic DX -modules on X and by Db
C-c.CX / the triangulated category of algebraic

C-constructible sheaves on X an. Then there exists an equivalence of triangulated
categories

SolX WDb
rh.DX /

op �
�! Db

C-c.CX /; M 7! SolXan.Man/;

see [2, 4] and also [28] for the details. Here

SolXan.�/ WD RHomDXan . � ;OXan/WDb.DXan/! Db.CXan/

is the solution functor on the complex analytic manifold X an and Man is the analytifi-
cation of M (see Section 2.5 for the definition). The triangulated category Db

C-c.CX /

has a t-structure .pD�0C-c.CX /;
pD�0C-c.CX // which is called the perverse t-structure by

[1], see also [8, Thm. 8.1.27]. Let us denote by

Perv.CX / WD pD�0C-c.CX / \
pD�0C-c.CX /

its heart and call an object of Perv.CX / an algebraic perverse sheaf on X an. The
above equivalence induces an equivalence of categories between the abelian category
Modrh.DX / of regular holonomic D-modules on X and the one Perv.CX /.

On the other hand, the problem of extending the analytic regular Riemann–Hilbert
correspondence of Kashiwara to cover the case of analytic holonomic D-modules with
irregular singularities had been open for 30 years. After a groundbreaking development
in the theory of irregular meromorphic connections by Kedlaya [16,17] and Mochizuki
[23,24], D’Agnolo and Kashiwara established the Riemann–Hilbert correspondence
for analytic irregular holonomic D-modules in [5]. For this purpose, they introduced
enhanced ind-sheaves extending the classical notion of ind-sheaves introduced by
Kashiwara and Schapira in [12]. Let X be a complex analytic manifold. (In this paper,
we use bold letters for complex manifolds to avoid confusion with algebraic varieties.)
We denote by Db

hol.DX/ the triangulated category of holonomic DX-modules on
X and by Eb

R-c.ICX/ the one of R-constructible enhanced ind-sheaves on X (see
[6, Def. 3.3.1]). We set SolEX.M/ WD R	homDX.M;OE

X/. Here OE
X is the enhanced

ind-sheaf of tempered holomorphic functions, see [5, Def. 8.2.1]. Then D’Agnolo and
Kashiwara proved that the enhanced solution functor SolEX induces a fully faithful
embedding

SolEXWDb
hol.DX/

op ,! Eb
R-c.ICX/:

Moreover, in [6] they gave a generalized t-structure . 12E�cR-c.ICX/;
1
2E�cR-c.ICX//c2R

on Eb
R-c.ICX/ and proved that the enhanced solution functor induces a fully faithful

embedding of the abelian category Modhol.DX/ of holonomic D-modules on X into
its heart 12E�0R-c.ICX/\

1
2E�0R-c.ICX/. On the other hand, Mochizuki proved in [25] that
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the image of SolEX can be characterized by the curve test. In [9], the author defined
C-constructability for enhanced ind-sheaves on X and proved that they are nothing
but objects of the image of SolEX. Namely, we obtain an equivalence of categories
between the triangulated category Db

hol.DX/ of holonomic D-modules on X and the
one Eb

C-c.ICX/ of C-constructible enhanced ind-sheaves on X:

SolEXWDb
hol.DX/

op �
�! Eb

C-c.ICX/:

Remark that Kuwagaki introduced another approach to the irregular Riemann–Hilbert
correspondence via irregular constructible sheaves which are defined by C-con-
structible sheaves with coefficients in a finite version of the Novikov ring and special
gradings in [18].

Therefore, it seems to be important to establish an algebraic irregular Riemann–
Hilbert correspondence on a smooth algebraic variety. Although it may be known by
experts, it is not in the literature to our knowledge. Thus we want to prove the algebraic
irregular Riemann–Hilbert correspondence in this paper. Let X be a smooth algebraic
variety over C and denote by Db

hol.DX / the triangulated category of holonomic DX -
modules. The following result is the main theorem of this paper:

Theorem 3.11. There exists an equivalence of triangulated categories:

SolEX1 WD
b
hol.DX /

op �
�! Eb

C-c.ICX1/:

See Section 3.2 for the definition of SolEX1 and Definition 3.10 for the definition of
Eb

C-c.ICX1/.

Remark 1.1. In the case of quasi-projective variety, Kuwagaki [18] established an
algebraic version of the irregular Riemann–Hilbert correspondence.

2. Preliminary notions and results

In this section, we briefly recall some basic notions and results which will be used.

2.1 – Ind-sheaves on bordered spaces

Let us recall some basic notions of ind-sheaves on bordered spaces. For the details,
we refer to D’Agnolo–Kashiwara [5, §§2.3, 2.4, 2.5]. We also refer to Kashiwara–
Schapira [12, 13] for ind-sheaves on a topological space.

Let us denote by ICM1 the abelian category of ind-sheaves on a bordered spaces
M1 D .M; {M/ and denote by Db.ICM1/ the triangulated category of them. Note that
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there exists the standard t-structure .D�0.ICM1/;D�0.ICM1// on Db.ICM1/ which
is induced by the standard t-structure on Db.IC {M /. For a morphism f1WM1 ! N1

of bordered spaces, we have the Grothendieck operations˝, R	hom, Rf1�, Rf1ŠŠ,
f �11 , f Š1. Note that there exists an embedding functor �M1 WDb.CM / ,! Db.ICM1/.
We sometimes write Db.CM1/ for Db.CM /, when considered as a full subcategory
of Db.ICM1/. Note also that the embedding functor �M1 has a left adjoint functor
˛M1 WDb.ICM1/! Db.CM /.

2.2 – Enhanced ind-sheaves on bordered spaces I

We shall recall some basic notions of enhanced ind-sheaves on bordered spaces
and results on it. Reference are made to [14] and [6]. Moreover, we also refer to
D’Agnolo–Kashiwara [5] and Kashiwara–Schapira [15] for the notions of enhanced
ind-sheaves on good topological spaces.

Let M1 D .M; {M/ be a bordered space. We set R1 WD .R;R/ for R WD R t

¹�1;C1º, and let t 2 R be the affine coordinate. The triangulated category of
enhanced ind-sheaves onM1 is defined by

Eb.ICM1/ WD Db.ICM1�R1/=�
�1Db.ICM1/;

where � WM1 � R1 ! M1 is the morphism of bordered spaces given by the first
projection M � R! M . Note that the quotient functor QM1 WDb.ICM1�R1/!

Eb.ICM1/ has fully faithful left and right adjoints

LE
M1

;RE
M1
WEb.ICM1/! Db.ICM1�R1/:

Note also that Eb.ICM1/ has the standard t-structure .E�0.ICM1/;E�0.ICM1//
which is induced by the standard t-structure on Db.ICM1�R1/. We denote by
HnWEb.ICM1/! E0.ICM1/ the n-th cohomology functor, where we set

E0.ICM1/ WD E�0.ICM1/ \ E�0.ICM1/:

For a morphism f1WM1 ! N1 of bordered spaces, we have the six operations
˝C, R	homC, Ef �11 , Ef1�, Ef Š1, Ef1ŠŠ for enhanced ind-sheaves on bordered
spaces. Note that there exists a morphism Ef1ŠŠ ! Ef1� of functors Eb.ICM1/!
Eb.ICN1/ and it is an isomorphism if f1 is proper. Moreover, we have outer-hom
functors

R	homE.K1; K2/;

RHomE.K1; K2/ WD ˛M1 R	homE.K1; K2/;

RHomE.K1; K2/ WD R�.M IRHomE.K1; K2//
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with values in Db.ICM1/, Db.CM / and Db.C/, respectively. Here, Db.C/ is the
derived category of C-vector spaces.

For F 2 Db.ICM1/ and K 2 Eb.ICM1/, the objects

��1F ˝K WD QM1.��1F ˝ LE
M1

K/;

R	hom.��1F;K/ WD QM1.R	hom.��1F;RE
M1

K//

in Eb.ICM1/ are well defined. We set

CE
M1
WD QM1

�
“ lim
�!

”
a!C1

C¹t�aº
�
2 Eb.ICM1/:

Note that there exists an isomorphism CE
M1
' Ej�1CE

{M
in Eb.ICM1/. Then we

have a natural embedding

eM1 WDb.ICM1/! Eb.ICM1/; F 7! eM1.F / WD CE
M1
˝ ��1F:

By using [14, Prop. 2.18], for a morphism f1WM1 ! N1 of bordered spaces and
objects F 2 Db.ICM1/, G 2 Db.ICN1/ we obtain

Ef1ŠŠ.eM1F / ' eN1.Rf1ŠŠF /;
Ef �11 .eN1G/ ' eM1.f

�1
1 G/;

Ef Š1.eN1G/ ' eM1.f Š1G/:

Let us define
!E
M1
WD eM1.!M / 2 Eb.ICM1/

where !M 2Db.CM1/ (DDb.CM /) is the dualizing complex, see [11, Def. 3.1.16] for
the details. Then we have the Verdier duality functor DE

M1
WEb.ICM1/op!Eb.ICM1/

for enhanced ind-sheaves on bordered spaces which is defined by DE
M1

.K/ WD

R	homC.K; !E
M1

/. Note that for any K 2 Eb.IC {M / we have an isomorphism

DE
M1

.Ej�1K/ ' Ej�1.DE
{M
.K//

in Eb.ICM1/. Note also that for any F 2 Db.CM / there exists an isomorphism

DE
M1

.eM1F / ' eM1.DMF /

in Eb.ICM1/.
Let i0WM1 ! M1 � R1 be the inclusion map of bordered spaces induced by

x 7! .x; 0/. We set shM1 WD ˛M1 ı i Š0 ı RE
M1
WEb.ICM1/! Db.CM / and call it

the sheafification functor for enhanced ind-sheaves on bordered spaces. Note that for
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K 2 Eb.IC {M / we have an isomorphism

shM1.Ej�1K/ ' j�1.sh {M .K//

in Db.CM /. Note also that there exists an isomorphism F
�
�! shM1.eM1.F // for

F 2 Db.CM /.
For a continuous function 'WU ! R defined on an open subset U �M , we set

the exponential enhanced ind-sheaf by

E'
U jM1

WD CE
M1
˝
C QM1.C¹tC'�0º/;

where ¹t C ' � 0º stands for ¹.x; t/ 2 {M �R j t 2 R; x 2 U; t C '.x/ � 0º.

2.3 – Enhanced ind-sheaves on bordered spaces II

The aim of this subsection is to prepare some auxiliary results on enhanced ind-
sheaves on bordered spaces which will be used in Section 3. In particular, we will
prove – although this is known by experts – that for any smooth algebraic variety X
the triangulated category Eb.IC.Xan; zXan// does not depend on the choice of zX .

LetM1 D .M; {M/ and N1 D .N; {N/ be two bordered spaces.

Sublemma 2.1. Let f WM ! N be a continuous map and assume that {M and {N
are compact. Then the map f induces a semi-proper morphism fromM1 to N1.

This sublemma is clear. Moreover, Lemma 2.2 below follows from this sublemma
and [5, Lem. 3.2.3].

Lemma 2.2. In the situation of Sublemma 2.1, we assume that the continuous
map f is an isomorphism. Then the morphism induced by the map f is also an
isomorphism betweenM1 and N1.

By using [6, Lem. 2.7.6], for any K 2 Eb.ICM1/ we have

��1CM ˝K ' EjŠŠEj�1K;

where j WM1 ! {M is the morphism of bordered spaces given by the embedding
M ,! {M . Hence we have an equivalence of triangulated categories

Eb.ICM1/
EjŠŠ //
�

®
K 2 Eb.IC {M / j �

�1CM ˝K
�
�! K

¯
:

Ej�1
oo

Sublemma 2.3 below follows from [5, Lem. 3.3.12].
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Sublemma 2.3. Let f1WM1 ! N1 be the morphism of bordered spaces associ-
ated with a continuous map Lf W {M ! {N such that Lf .M/ � N .

(1) For any K 2 Eb.ICM1/, there exist isomorphisms in Eb.ICN1/:

Ef1ŠŠK ' Ej�1N1E Lf1ŠŠEjM1ŠŠK;

Ef1�K ' Ej�1N1E Lf1�EjM1�K:

(2) For any L 2 Eb.ICN1/, there exist isomorphisms in Eb.ICM1/:

Ef �11 L ' Ej�1M1E Lf �11 EjN1ŠŠL ' Ej�1M1E Lf �11 EjN1�L;

Ef Š1L ' Ej�1M1E Lf Š1EjN1ŠŠL ' Ej�1M1E Lf Š1EjN1�L:

Remark that {M and {N are not necessary compact. Hence we obtain:

Lemma 2.4. In the situation of Sublemma 2.3 ( {M and {N are not necessarily
compact), we assume that the restriction Lf jM of Lf to M induces an isomorphism
M
�
�! N . Then there exists an equivalence of triangulated categories:

Eb.ICM1/
Ef1ŠŠ //
� Eb.ICN1/:

Ef �11
oo

Proof. This follows from Sublemma 2.3 and the fact that the functor E LfŠŠ (resp.
E Lf �1) is an isomorphism overM (resp. N ) by the assumptionM �

�! N .

At the end of this subsection, we shall apply the above results to our situation. Let
X be a smooth algebraic variety over C and denote by X an the underlying complex
manifold of X . Then we can obtain a smooth complete algebraic variety zX such that
X � zX and D WD zX n X is a normal crossing divisor of zX by Hironaka’s desingu-
larization theorem [7] (see also [26, Thm. 4.3]). Hence we obtain a bordered space
.X an; zX an/ and an equivalence of triangulated categories:

Eb.IC.Xan; zXan//
EjŠŠ //
�

®
K 2 Eb.IC zXan/ j �

�1CXan ˝K
�
�! K

¯
:

Ej�1
oo

Let zXi (i D 1; 2) be smooth complete algebraic varieties over C such that X � zXi
(i D 1; 2), then the identity map idXan of X an induces an isomorphism of bordered
spaces .X an; zX an

1 / ' .X
an; zX an

2 / by Lemma 2.2. Hence we have an equivalence of
triangulated categories

Eb.IC.Xan; zXan
1
// ' Eb.IC.Xan; zXan

2
//:
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Remark that this equivalence can be proved by Lemma 2.4. Therefore the bordered
space .X an; zX an/ and the triangulated category Eb.IC.Xan; zXan// is independent of the
choice of a smooth complete variety zX . Hence we can write

X an
1 WD .X

an; zX an/

and
Eb.ICXan

1
/ WD Eb.IC.Xan; zXan//

for a smooth algebraic variety X .
For a morphism f WX ! Y of smooth algebraic varieties, we obtain a semi-

proper morphism of bordered spaces from X an
1 to Y an

1 by Sublemma 2.1. We denote
it by f an

1 WX
an
1 ! Y an

1 . On the other hand, since there exists a morphism of complete
algebraic varieties Qf W zX ! zY such that Qf jX D f , we obtain a morphism of bordered
spaces from X an

1 to Y an
1 , see Section 2.1 or [5, §3.2] for the details. It is clear that this

morphism is equal to f an
1 and hence we can apply Sublemma 2.3 to f an

1 . This fact will
be used in the proof of Proposition 3.12.

2.4 – Analytic C-constructible enhanced ind-sheaves

In this subsection, we shall recall some notions in [9].
Let X be a complex manifold andD � X a normal crossing divisor in it. Let us take

local coordinates .u1; : : : ; ul ; v1; : : : ; vdX�l/ of X such that D D ¹u1u2 � � �ul D 0º
and set Y D ¹u1D u2D � � � D ul D 0º. Then for a meromorphic function ' 2OX.�D/

on X alongD which has the Laurent expansion ' D
P
a2Zl ca.'/.v/ � u

a 2 OX.�D/

with respect to u1; : : : ; ul , where ca.'/ are holomorphic functions on Y , we define
its order ord.'/ 2 Zl by min.¹a 2 Zl j ca.'/ 6D 0º [ ¹0º/ with respect to the partial
order on Zl if it exists. For any f 2 OX.�D/=OX, we take any lift Qf to OX.�D/, and
we set ord.f / WD ord. Qf /, if the right-hand side exists. Note that it is independent of
the choice of a lift Qf . If ord.f / ¤ 0, then cord.f /. Qf / is independent of the choice of a
lift Qf , which is denoted by cord.f /.f /.

Definition 2.5 ([24, Def. 2.1.2]). In the situation as above, a finite subset 	 �

OX.�D/=OX is called a good set of irregular values on .X; D/, if the following
conditions are satisfied:

• For each element f 2 	, ord.f / exists. If f ¤ 0 in OX.�D/=OX, then cord.f /.f /
is invertible on Y .

• For two distinct f; g 2 	, ord.f � g/ exists and cord.f �g/.f � g/ is invertible
on Y .
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• The set ¹ord.f � g/ j f; g 2 	º is totally ordered with respect to the above partial
order � on Zl .

Definition 2.6 ([9, Def. 3.6]). We say that an enhanced ind-sheaf 1 K 2 E0.ICX/

has a normal form alongD if

(i) ��1CXnD ˝K
�
�! K,

(ii) for any x 2 X n D there exist an open neighborhood Ux � X n D of x and a
non-negative integer k such that KjUx ' .CE

Ux
/˚k ,

(iii) for any x 2 D there exist an open neighborhood Ux � X of x, a good set of
irregular values ¹'iºi on .Ux;D \Ux/ and a finite sectorial open covering ¹Ux;j ºj
of Ux nD such that

��1CUx;j ˝KjUx '
M
i

ERe'i
Ux;j jUx

for any j;

see the end of Section 2.2 for the definition of ERe'i
Ux;j jUx

.

Note that any enhanced ind-sheaf which has a normal form along D is an R-
constructible enhanced ind-sheaf on X.

A ramification of X along D on a neighborhood U of x 2 D is a finite map
r WU rm ! U of complex manifolds of the form

z0 7! z D .z1; z2; : : : ; zn/ D r.z
0/ D .z

0m1
1 ; : : : ; z0mrr ; z0rC1; : : : ; z

0
n/

for some .m1; : : : ; mr/ 2 .Z>0/r , where .z01; : : : ; z
0
n/ is a local coordinate system of

U rm and .z1; : : : ; zn/ is the one of U such thatD \ U D ¹z1 � � � zr D 0º.

Definition 2.7 ([9, Def. 3.11]). We say that an enhanced ind-sheaf K 2 E0.ICX/

has a quasi-normal form along D if it satisfies (i) and (ii) in Definition 2.6 and,
moreover, if for any x 2 D there exist an open neighborhood Ux � X of x and a
ramification rx WU rm

x ! Ux of Ux alongDx WD Ux \D such that Er�1x .KjUx / has a
normal form alongDrm

x WD r
�1
x .Dx/.

A modification of X with respect to an analytic hypersurface H is a projective
map mWXmd ! X from a complex manifold Xmd to X such thatDmd WD m�1.H/ is a
normal crossing divisor of Xmd andm induces an isomorphism Xmd nDmd ��! X nH .

(1) In [9], the author defined enhanced ind-sheaves that have a normal form alongD under
the assumption that they are R-constructible. However, this assumption is not needed.
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Definition 2.8 ([9, Def. 3.14]). We say that an enhanced ind-sheaf K 2 E0.ICX/

has a modified quasi-normal form alongH if it satisfies (i) and (ii) in Definition 2.6
and, moreover, if for any x 2 H there exist an open neighborhood Ux � X of x and
a modification mx WUmd

x ! Ux of Ux along Hx WD Ux \H such that Em�1x .KjUx /
has a quasi-normal form alongDmd

x WD m
�1
x .Hx/.

Let us denote by E0mero.ICX.H// the abelian category of enhanced ind-sheaves
which have a modified quasi-normal forms alongH and set

Eb
mero.ICX.H// WD

®
K 2 Eb

R-c.ICX/ j H
i .K/ 2 E0mero.ICX.H// for any i 2 Z

¯
:

A complex analytic stratification of X is a locally finite partition ¹X˛º˛2A of X
by locally closed analytic subsets X˛ such that for any ˛ 2 A, X˛ is smooth, X˛
and @X˛ WD X˛ n X˛ are complex analytic subsets and X˛ D

F
ˇ2B Xˇ for a subset

B � A.

Definition 2.9 ([9, Def. 3.19]). We say that an enhanced ind-sheaf K 2 E0.ICX/

is C-constructible if there exists a complex analytic stratification ¹X˛º˛ of X such that

��1CXbl
˛nD˛

˝ Eb�1˛ K

has a modified quasi-normal form alongD˛ for any ˛, where b˛WX
bl
˛ !X is a sequence

of complex blow-ups of X˛ along @X˛ D X˛ n X˛ andD˛ WD b�1˛ .@X˛/.

We denote by E0C-c.ICX/ the full subcategory of E0.ICX/ whose objects are C-
constructible and set

Eb
C-c.ICX/ WD

®
K 2 Eb.ICX/ j H

i .K/ 2 E0C-c.ICX/ for any i 2 Z
¯
� Eb.ICX/:

2.5 – Algebraic D-modules

In this subsection, we recall some basic notions and results on D-modules. Refer-
ences are made to [2, 4, 8]. We also refer to [3], [5, §§8, 9], [12, §7], [15, §§3, 4, 7] for
analytic D-modules.

Let X be a smooth algebraic variety over C and denote by dX its complex dimen-
sion. We shall denote by OX and DX the sheaves of regular functions and algebraic
differential operators on X , respectively. Let Db.DX / be the bounded derived category
of left DX -modules. Moreover, we denote by Db

hol.DX / and Db
rh.DX / the full triangu-

lated subcategories of Db.DX / consisting of objects with algebraic holonomic and
algebraic regular holonomic cohomologies, respectively. For a morphism f WX ! Y

of smooth algebraic varieties, we denote by˝D the tensor product functor, by �D the
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external tensor product functor, by Df� the direct image functor, by Df � the inverse
image functor, and by DX the duality functor for D-modules. See, e.g., [8, §3] for the
details. In this paper, for convenience, we set

DfŠ WD DY ı Df� ıDX ; Df F
WD DX ı Df � ıDY :

Remark that in [8, Def. 3.2.13] the functor DX ı Df �.�/ŒdX � dY � ıDY is denoted by
Df F. Note that these functors preserve the holonomicity. See [8, Props. 3.2.1, 3.2.2,
Thm. 3.2.3 and Cor. 3.2.4] for the details.

We denote by X an the underlying complex manifold of X and by Q�W .X an;OXan/!

.X;OX / the morphism of ringed spaces. Since there exists a morphism Q��1OX !OXan

of sheaves on X an, we have a canonical morphism Q��1DX ! DXan . Then we obtain a
functor

.�/anWMod.DX /! Mod.DXan/; M 7!Man
WD DXan ˝Q��1DX

Q��1M:

It is called the analytification functor on X . Since the sheaf DXan is faithfully flat
over Q��1DX , the analytification functor is faithful and exact, and hence we obtain
.�/anWDb.DX /! Db.DXan/. Note that the analytification functor preserves the holo-
nomicity. Moreover, we have some functorial properties of the analytification functor.
See [8, Props. 4.7.1, 4.7.2] for the details.

The classical solution functor on X is defined by

SolX WDb
hol.DX /

op
! Db.CXan/; M 7! SolX .M/W D SolXan.Man/:

Theorem 2.10 ([2,4], see also [8, Thms. 4.7.7, 7.2.2]). There exists an equivalence
of triangulated categories:

SolX WDb
rh.DX /

op �
�! Db

C-c.CX /:

This is an algebraic version of the regular Riemann–Hilbert correspondence. The
following result means that the classical solution functor is t-exact with respect to the
standard t-structure on Db

hol.DX / and the perverse t-structure on Db
C-c.CX /. See, e.g.,

the proof of [8, Thm. 7.2.5] for the details.

Theorem 2.11. For any M 2 Db
hol.DX /, we have

(1) M 2 D�0hol .DX /” SolX .M/ŒdX � 2
pD�0C-c.CX /,

(2) M 2 D�0hol .DX /” SolX .M/ŒdX � 2
pD�0C-c.CX /.

Moreover, the above equivalence induces an equivalence of abelian categories:

SolX .�/ŒdX �WModrh.DX /
op �
�! Perv.CX /:
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By Theorems 2.10 and 2.11, we have a functor .�/regWDb
hol.DX /! Db

rh.DX / which
is defined by Mreg WD RHX .SolX .M//. Here RHX WDb

C-c.CX /
op ��! Db

rh.DX / is the
inverse functor of SolX WDb

rh.DX /
op ��! Db

C-c.CX /. We call it the regularization functor
for algebraic holonomic D-modules. By Theorem 2.11, we also have the functor
.�/regWModhol.DX /! Modrh.DX / between abelian categories.

At the end of this subsection, we shall recall algebraic meromorphic connections.
Let D be a divisor of X , and j WX nD ,! X the natural embedding. Then we set
OX .�D/ WD j�OX and also set M.�D/ WD M ˝D OX .�D/ for M 2 Mod.DX /.
Note that we have M.�D/ ' Dj�Dj �M. We say that a DX -module is an algebraic
meromorphic connection alongD if it is isomorphic as an OX -module to a coherent
OX .�D/-module. We denote by Conn.X ID/ the category of algebraic meromorphic
connections alongD. Note that it is full abelian subcategory of Modhol.DX /. Moreover,
we set

Db
mero.DX.D// WD

®
M 2 Db

hol.DX / j H
i .M/ 2 Conn.X ID/ for any i 2 Z

¯
:

We say that a Zariski locally finite partition ¹X˛º˛2A of X by locally closed
subvarieties X˛ is an algebraic stratification of X if for any ˛ 2 A, X˛ is smooth and
there exists a subset B � A such that X˛ D

F
ˇ2B Xˇ .

Lemma 2.12. For any M 2 Modhol.DX /, there exists an algebraic stratification
¹X˛º˛2A such that any cohomology of Di�X˛ .M/ is an integrable connection on X˛
for each ˛ 2 A.

This result is known. See, e.g., [8, Thm. 3.3.1] for the details.

Lemma 2.13. Let M be a holonomic DX -module. Then there exists an algebraic
stratification ¹X˛º˛2A ofX such that for any ˛ 2A and any sequence of complex blow-
ups b˛WX

bl
˛ ! X of X˛ along X˛ nX˛ we have .Db�˛M/.�D˛/ 2 Db

mero.DX
bl
˛.D˛/

/,
whereD˛ WD b�1˛ .X˛ nX˛/.

This lemma follows from Lemma 2.12 and will be used in the proof of Proposi-
tion 3.4.

The analytification functor .�/an W Mod.DX /! Mod.DXan/ induces

.�/anWConn.X ID/! Conn.X an
IDan/;

.�/anWDb
mero.DX.D//! Db

mero.DXan.Dan//

where we set Dan WD X an n .X nD/an and Conn.X anIDan/ is an abelian category
of meromorphic connections on X an along Dan, Db

mero.DXan.Dan// is a full triangu-
lated subcategory of Db

hol.DXan/ consisting of objects whose cohomologies are in
Conn.X anIDan/.
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We note that if X is complete, there exists an equivalence of categories between the
abelian category Conn.X ID/ and the one of effective meromorphic connections on
X an alongDan by [8, §5.3]. However as a consequence of [22, Thm. 4.2] any analytic
meromorphic connection is effective. Hence we have:

Lemma 2.14 ([8, (5.3.2)], [22]). If X is complete, there exists an equivalence of
abelian categories: .�/anWConn.X ID/ ��! Conn.X anIDan/. Moreover, this induces an
equivalence of triangulated categories: .�/anWDb

mero.DX.D//
�
�! Db

mero.DXan.Dan//.

3. Main results

In this section, we define algebraic C-constructible enhanced ind-sheaves and prove
that the triangulated category of them is equivalent to the one of algebraic holonomic
D-modules (Theorem 3.7).

3.1 – The condition (AC)

A result for the analytic case similar to the result in this section is proved in [9, §3.5].
Let X be a smooth algebraic variety over C and denote by X an the underlying

complex analytic manifold of X .

Definition 3.1. We say that an enhanced ind-sheaf K 2 E0.ICXan/ satisfies the
condition (AC) if there exists an algebraic stratification ¹X˛º˛ of X such that

��1C
.X

bl
˛/

annDan
˛
˝ E.ban˛ /�1K

has a modified quasi-normal form along Dan
˛ for any ˛, where b˛WX

bl
˛ ! X is a

sequence of blow-ups of X˛ along

@X˛ WD X˛ nX˛; D˛ WD b
�1
˛ .@X˛/ and Dan

˛ WD .X
bl
˛ /

an
n .X

bl
˛ nD˛/

an:

We call such a family ¹X˛º˛2A an algebraic stratification adapted to K.

We denote by E0C-c.ICX / the full subcategory of E
0.ICXan/ whose objects satisfy

the condition (AC). Note that E0C-c.ICX / is the full subcategory of the abelian category
E0C-c.ICXan/ of C-constructible enhanced ind-sheaves on X an. Moreover, we set

Eb
C-c.ICX / WD

®
K 2 Eb.ICXan/ j H i .K/ 2 E0C-c.ICX / for any i 2 Z

¯
� Eb

C-c.ICXan/:



Y. Ito 14

Remark 3.2. Definition 3.1 does not depend on a choice of a sequence of blow-ups
b˛ by [9, Sublem. 3.22]. Hence we obtain the following properties:

(1) By Hironaka’s desingularization theorem [7] (see also [26, Thm. 4.3]), there exists
a smooth complete algebraic variety Xbl

˛ in Definition 3.1.

(2) Let ¹X˛º˛2A be an algebraic stratification of X adapted to K 2 E0C-c.ICX /. Then
any algebraic stratification of X which is finer than ¹X˛º˛2A is also adapted to K,
see [9, Sublem. 3.22] for the analytic case.

Proposition 3.3. The category E0C-c.ICX / is a full abelian subcategory of
E0C-c.ICXan/.

Hence the category Eb
C-c.ICX / is a full triangulated subcategory of Eb

C-c.ICXan/.

This result can be proved by the same arguments as in the proof of [9, Prop. 3.22].
For M 2 Db

hol.DX /, we set

SolEX .M/ WD SolEXan.M
an/ .2 Eb

C-c.ICXan//:

Then we obtain the following assertion:

Proposition 3.4. For M 2 Db
hol.DX /, the enhanced solution complex SolEX .M/

of M is an object of Eb
C-c.ICX /.

Proof. It is enough to show the assertion in the case of M 2 Modhol.DX /.
Let M 2Modhol.DX / and we putK WD SolEX .M/ 2 Eb

C-c.ICXan/. By Lemma 2.13,
Lemma 2.14 and [9, Prop. 3.18], there exist an algebraic stratification ¹X˛º˛2A of X
and a sequence of blow-ups b˛WX

bl
˛ ! X of X˛ along @X˛ for each ˛ 2 A such that

��1C
.X

bl
˛/

annDan
˛
˝ E.ban˛ /�1K 2 Eb

mero.IC.Xbl
˛/

an.Dan
˛ /
/

for any ˛ 2 A, whereD˛ WD b�1˛ .@X˛/ is a normal crossing divisor. Since the functor

��1C
.X

bl
˛/

annDan
˛
˝ E.ban˛ /�1.�/

is t-exact with respect to the standard t-structure (see [6, Prop. 2.7.3 (iv) and Lem.
2.7.5 (i)]), for any i 2 Z there exists an isomorphism in E0mero.IC.Xbl

˛/
an.Dan

˛ /
/:

��1C
.X

bl
˛/

annDan
˛
˝ E.ban˛ /�1.H iK/ ' H i .��1C

.X
bl
˛/

annDan
˛
˝ E.ban˛ /�1K/:

On the other hand, the following proposition can be proved by Lemma 3.6 below
and the same arguments as in the proof of [9, Thm. 3.26].
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Proposition 3.5. For any K 2 Eb
C-c.ICX /, there exists M 2 Db

hol.DX / such that

K
�
�! SolEX .M/:

Lemma 3.6. For anyK 2E0C-c.ICX /, there exists an algebraic stratification ¹X˛º˛
of X such that

��1CXan
˛
˝K 2 SolEX .D

b
hol.DX //:

Proof. By Lemma 2.14 and [9, Lem. 3.16], there exist an algebraic stratification
¹X˛º˛ of X and algebraic meromorphic connections M˛ on Xbl

˛ alongD˛ such that

��1C
.X

bl
˛/

annDan
˛
˝ E.ban˛ /�1K ' SolE

X
bl
˛

.M˛/ .for any ˛/;

where b˛WX
bl
˛ ! X is a sequence of blow-ups of X˛ along @X˛ andD˛ WD b�1˛ .@X˛/.

By applying the direct image functor Eban
˛ŠŠ

we obtain an isomorphism in Eb.ICXan/:

��1CXan
˛
˝K

�
�! SolEX .Db˛�N˛/ŒdX � dX˛ � 2 SolEX .D

b
hol.DX //:

Here we used [5, Cor. 9.4.10 (ii)]2 and [8, Prop. 4.7.2 (ii), Thm. 3.2.3 (i)].

Hence we obtain an essential surjective functor SolEX WDb
hol.DX /

op ! Db
C-c.ICX /.

This is not fully faithful in general. For example, DC=DC � .@z � 1/ is not isomorphic
to DC=DC � @z as algebraic DC-modules, although

SolEX .DC=DC � .@z � 1// ' SolEX .DC=DC � @z/:

However if X is complete, then this is fully faithful.

Theorem 3.7. Let X be a smooth complete algebraic variety over C. Then there
exists an equivalence of triangulated categories:

SolEX WD
b
hol.DX /

op �
�! Eb

C-c.ICX /:

Proof. It is enough to show

HomDb
hol.DX /

.M;N /
�
�! HomEb

C-c.ICX /
.SolEX .N /;SolEX .M//

for any M;N 2 Db
hol.DX /. By [5, Lem. 4.5.14], this follows by taking the 0-th coho-

mology in Lemma 3.8 below.

(2) In [5], this result was proved under the assumption that M has a globally good filtration.
However, any analytic holonomic D-module has a globally defined good filtration by [19–21]
(see also [27, Thm. 4.3.4]).
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Lemma 3.8. Let X be a smooth complete algebraic variety over C. For any
M;N 2 Db

hol.DX /, there exists an isomorphism in Db.C/:

RHomDX .M;N /
�
�! RHomE.SolEX .N /;SolEX .M//:

Proof. Let us denote by pXan WX an!¹ptº the map fromX an to the set of one point.
Recall that the right-hand side is isomorphic to RpXan�RHomE.SolEX .N /;SolEX .M//.

Since SolEX .N / 2 Eb
C-c.ICX / (� Eb

R-c.ICXan/) is stable (see [5, §4.9]), we have

RHomE.SolEX .N /;SolEX .M// ' RHomE.CE
Xan ;R	homC.SolEX .N /;SolEX .M///:

Note that there exists an isomorphisms in Eb.ICXan/:

R	homC.SolEX .N /;SolEX .M// ' DRE
X .N ˝

D DXM/Œ�dX �;

by [5, Prop. 4.9.13 (2), Thm. 9.4.8 and Cors. 9.4.9 and 9.4.10 (iii)].
By [5, Thm. 9.1.2 (iii)], [8, Prop. 4.7.2 (ii)] and the fact that the map pXan is proper

there exists an isomorphism in Eb.IC¹ptº/:

EpXan�DRE
X .N ˝

D DXM/ ' DRE
¹ptº.DpX�.N ˝

D DXM//:

Hence we have isomorphisms in Db.C/:

RpXan�RHomE.SolEX .N /;SolEX .M//

' RpXan�RHomE.CE
Xan ;R	homC.SolEX .N /;SolEX .M///

' RpXan�RHomE.CE
Xan ;DRE

X .N ˝
D DXM/Œ�dX �/

' RHomE.CE
¹ptº;EpXan�DRE

X .N ˝
D DXM/Œ�dX �/

' RHomE.CE
¹ptº;DR

E
¹ptº.DpX�.N ˝

D DXM//Œ�dX �/

' DpX�.N ˝D DXM/Œ�dX �;

where in the third isomorphism we used [5, Lem. 4.5.17] and in the last isomorphism
we used the fact that

RHomE.CE
¹ptº;DR

E
¹ptº.�// ' RHomE.CE

¹ptº; e¹ptº.�// ' id

(see, e.g., [6, Ex. 3.5.9] for DRE
¹ptº D e¹ptº and see the proof of [5, Prop. 4.7.15] for the

second isomorphism). On the other hand, we have an isomorphism

DpX�.N ˝D DXM/Œ�dX � ' RHomDX .M;N /

in Db.C/ by [8, Cor. 2.6.15]. Hence the proof is complete.
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We obtain the following corollary of Theorem 3.7, which is known to experts.

Corollary 3.9. Let X be a smooth complete algebraic variety over C. Then the
analytification functor .�/anWMod.DX /! Mod.DXan/ induces fully faithful embed-
dings

.�/anWModhol.DX / ,! Modhol.DXan/;

.�/anWDb
hol.DX / ,! Db

hol.DXan/:

3.2 – The general case

In this subsection, we consider the general case. Thanks to Hironaka’s desingu-
larization theorem [7] (see also [26, Thm. 4.3]), for any smooth algebraic variety X
over C there exists a smooth complete algebraic variety zX such that X � zX and
D WD zX nX is a normal crossing divisor of zX .

Let us consider a bordered space X an
1 D .X

an; zX an/ and the triangulated category
Eb.ICXan

1
/ of enhanced ind-sheaves on X an

1. Recall that Eb.ICXan
1
/ does not depend

on the choice of zX and there exists an equivalence of triangulated categories:

Eb.ICXan
1
/

EjŠŠ //
�

®
K 2 Eb.IC zXan/ j �

�1CXan ˝K
�
�! K

¯
;

Ej�1
oo

where we denote by j WX an
1 !

zX an the morphism of bordered spaces given by the
open embedding X ,! zX for simplicity, see Section 2.3 for the details.

We shall denote the open embedding X ,! zX by the same symbol j and set

SolEX1.M/ WD Ej�1SolE
zX
.Dj�M/ 2 Eb.ICXan

1
/

for any M 2 Db.DX /. Note that for any M 2 Db
hol.DX / we have

SolE
zX
.Dj�M/ 2

®
K 2 Eb.IC zXan/ j �

�1CXan ˝K
�
�! K

¯
:

Furthermore, since Dj�M ' .DjŠM/.�D/, for any M 2 Db
hol.DX / we have

SolEX1.M/ ' Ej�1SolE
zX
.DjŠM/

in Eb.ICXan
1
/.

Moreover, we obtain some functorial properties of the enhanced solution functor
SolEX1 on X1, see Proposition 3.12 below.

Definition 3.10. We say that an enhanced ind-sheaf K 2 Eb.ICXan
1
/ is algebraic

C-constructible on X an
1 if EjŠŠK 2 Eb.IC zXan/ is an object of Eb

C-c.IC zX /.
We denote by Eb

C-c.ICX1/ the full triangulated subcategory of Eb.ICXan
1
/ consist-

ing of algebraic C-constructible enhanced ind-sheaves on X an
1.
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By [6, Lem. 3.3.2] and the fact that the triangulated category Eb
C-c.ICXan/ is a full

triangulated subcategory of Eb
R-c.ICXan/, the triangulated category Eb

C-c.ICXan
1
/ is

also a full triangulated subcategory of Eb
R-c.ICXan

1
/.

Then we obtain the first main theorem of this paper.

Theorem 3.11. Let X be a smooth algebraic variety over C. There exists an
equivalence of triangulated categories:

SolEX1 WD
b
hol.DX /

op �
�! Eb

C-c.ICX1/:

Proof. For any M 2 Db
hol.DX /, we have SolEzX .Dj�M/ 2 Eb

C-c.IC zX / by Proposi-
tion 3.4. Then there exist isomorphisms:

EjŠŠSolEX1.M/ ' EjŠŠEj�1SolEzX .Dj�M/

' ��1CXan ˝ SolE
zX
.Dj�M/

' SolE
zX
.Dj�M/:

Hence, by Theorem 3.7, we obtain SolEX1.M/ 2 Eb
C-c.ICX1/ for any M 2 Db

hol.DX /.
Moreover, by Theorem 3.7 and the fact that the direct image functor Dj� of the open
embedding j WX ,! zX is fully faithful, we obtain a fully faithful embedding

Db
hol.DX / ,!

®
K 2 Eb

C-c.IC zXan/ j �
�1CXan ˝K

�
�! K

¯
; M 7! SolE

zX
.Dj�M/:

Thus the enhanced solution functor SolEX1 induces a fully faithful embedding

SolEX1 WD
b
hol.DX /

op ,! Eb
C-c.ICX1/

by the definition of SolEX1 WD Ej�1SolE
zX
.Dj�.�//.

On the other hand, let K 2 Eb
C-c.ICX1/. Then

EjŠŠK 2
®
K 2 Eb

C-c.IC zXan/ j �
�1CXan ˝K

�
�! K

¯
by the definition of the algebraic C-constructability for enhanced ind-sheaves on X an

1.
Hence there exists an object N of Db

hol.D zX / such that

EjŠŠK ' SolE
zX
.N /

by Theorem 3.7. Moreover, since ��1CXan ˝ EjŠŠK ��! EjŠŠK, we have

SolE
zX
.N / ' ��1CXan ˝ SolE

zX
.N / ' SolE

zX
.N .�D// ' SolE

zX
.Dj�Dj �N /:

We set M WD Dj �N 2 Db
hol.DX /. Then there exists an isomorphisms in Eb.ICXan

1
/:

SolEX1.M/ ' Ej�1SolE
zX
.N / ' Ej�1EjŠŠK ' K:

This completes the proof.
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At the end of this subsection, we shall prove that the algebraic C-constructability
is closed under many operations. This follows from some functorial properties of
the enhanced solution functor SolEX1 on X1. See Section 2.5 for the notations of
operations of DX -modules.

Proposition 3.12. (1) For M 2 Db
hol.DX /, there is an isomorphism in Eb.ICXan

1
/:

DE
Xan
1
SolEX1.M/ ' SolEX1.DXM/Œ2dX �:

(2) Let f W X ! Y be a morphism of smooth algebraic varieties. Then for N 2

Db
hol.DY / there are isomorphisms in Eb.ICXan

1
/:

E.f an
1 /
�1SolEY1.N / ' SolEX1.Df

�N /;

E.f an
1 /

ŠSolEY1.N / ' SolEX1.Df
FN /:

(3) Let f WX ! Y be a morphism of smooth algebraic varieties. For M 2 Db
hol.DX /,

there are isomorphisms in Eb.ICY an
1
/:

Ef an
1�Sol

E
X1

.M/ŒdX � ' SolEY1.DfŠM/ŒdY �;

Ef an
1ŠŠSol

E
X1

.M/ŒdX � ' SolEY1.Df�M/ŒdY �:

(4) For M1;M2 2 Db
hol.DX /, there exists an isomorphism in Eb.ICXan

1
/:

SolEX1.M1/˝
C SolEX1.M2/ ' SolEX1.M1 ˝

D M2/:

Moreover, for any M 2 Db
hol.DX / and any N 2 Db

hol.DY /, there exists an isomor-
phism in Eb.ICXan

1�Y
an
1
/:

SolEX1.M/�C SolEY1.N / ' SolEX1�Y1.M �D N /:

Proof. (1) Let us recall that there exists an isomorphism D zXDj�M ' DjŠDXM

in Db
hol.D zX /. Hence we have isomorphisms

DE
Xan
1
SolEX1.M/ ' DE

Xan
1
Ej�1SolE

zX
.Dj�M/

' Ej�1SolE
zX
.D zXDj�M/Œ2dX �

' Ej�1SolE
zX
.DjŠDXM/Œ2dX �

' SolEX1.DXM/Œ2dX �;

where in the second isomorphism we used [5, Thm. 9.4.8] and [8, Prop. 4.7.1].
(2) Since the proofs of (2) and (3) are similar, we shall skip the proof of (2).
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(3) By [6, Prop. 3.3.3 (iv)] and the fact that the morphism f an
1 WX

an
1 ! Y an

1 of
bordered spaces is semi-proper, for K 2 Eb

R-c.ICXan
1
/ we have an isomorphism in

Eb.ICY an
1
/:

Ef an
1�K ' DE

Y an
1
Ef an
1ŠŠD

E
Xan
1
.K/:

Hence it is enough to prove the second part of (3). In fact, we have isomorphisms

Ef an
1ŠŠSol

E
X1

.M/ ' Ej�1Y E. Qf an/ŠŠEjXŠŠSolEX1.M/

' Ej�1Y E. Qf an/ŠŠSolEzX .DjX�M/

' Ej�1Y SolE
zY
.D Qf�DjX�M/ŒdY � dX �

' Ej�1Y SolE
zY
.DjY �Df�M/ŒdY � dX �

' SolEY1.Df�M/ŒdY � dX �;

where in the second (resp. third) isomorphism we used Sublemma 2.3 (1) (resp.
[5, Cor. 9.4.10 (ii)] and [8, Prop. 4.7.2 (ii)]).

(4) By (2) it is enough to show the first part of (4). Recall that there exists an iso-
morphism Dj�M1 ˝

D Dj�M2 ' Dj�.M1 ˝
D M2/ in Db

hol.D zX / by [8, Cor. 1.7.5].
Hence we have isomorphisms in Eb.ICXan

1
/:

SolEX1.M1 ˝
D M2/ ' Ej�1SolE

zX
.Dj�.M1 ˝

D M2//

' Ej�1SolE
zX
.Dj�M1 ˝

D Dj�M2/

' Ej�1SolE
zX
.Dj�M1/˝

C Ej�1SolE
zX
.Dj�M2/

' SolEX1.M1/˝
C SolEX1.M2/;

where in the third isomorphism we used [5, Cor. 9.4.10 (ii), (iv)].

Corollary 3.13. Let f WX ! Y be a morphism of smooth algebraic varieties
and K;K1; K2 2 Eb

C-c.ICX1/, L 2 Eb
C-c.ICY1/. Then we have

(1) DE
Xan
1
.K/ 2 Eb

C-c.ICX1/ and K
�
�! DE

Xan
1
DE
Xan
1
K,

(2) K1 ˝C K2, R	homC.K1; K2/ and K �C L are algebraic C-constructible,

(3) E.f an
1 /
�1L and E.f an

1 /
ŠL are algebraic C-constructible,

(4) Ef an
1ŠŠK and Ef an

1�K are algebraic C-constructible.

Proof. Since the proofs of these assertions in the corollary are similar, we only
prove (1). By Theorem 3.11, there exists M 2 Db

hol.DX / such that K ' SolEX1.M/.
Then by Proposition 3.12 (1) we obtain

DE
Xan
1
.K/ ' DE

Xan
1
SolEX1.M/ ' SolEX1.DXM/Œ2dX � ' SolEX1.DX .MŒ2dX �//:
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By Theorem 3.11 and the fact that DX .MŒ2dX �/ 2 Db
hol.DX / we have DE

Xan
1
.K/ 2

Eb
C-c.ICX1/. Moreover, the second part of (1) follows from [6, Prop. 3.3.3 (ii)] and

the fact that any C-constructible enhanced ind-sheaf is R-constructible.

Let us recall that for any F 2 Db.CXan/ we have

eXan
1
.F / ' Ej�1.e zXan.Rj an

Š .F ///;

see Section 2.2 for the details.

Proposition 3.14. The functor eXan
1
WDb.CXan/ ,! Eb.ICXan

1
/ induces an embed-

ding
Db

C-c.CX / ,! Eb
C-c.ICX1/

and we have a commutative diagram

Db
hol.DX /

op � //

SolE
X1

˚

Eb
C-c.ICX1/

Db
rh.DX /

op
SolX

� //

S
Db

C-c.CX /:
?�

eXan
1

OO

Proof. It is enough to show the last part. Let M be an object of Db
rh.DX /. Then

.Dj�M/an 2 Db
rh.D zXan/ by the definition of algebraic regular holonomic. Hence we

have isomorphisms in Eb.IC zXan/:

SolE
zX
.Dj�M/ ' SolE

zXan..Dj�M/an/ ' e zXan.Sol zXan..Dj�M/an//

by [5, Prop. 9.1.3]. On the other hand, we have an isomorphism in Db.C zXan/:

Sol zXan..Dj�M/an/ ' Rj an
Š .SolXan.Man// ' Rj an

Š .SolX .M//;

see, e.g., [8, Thm. 7.1.1]. Hence there exist isomorphisms in Eb.ICXan
1
/:

SolEX1.M/ ' Ej�1SolE
zX
.Dj�M/

' Ej�1e zXan.Sol zXan..Dj�M/an/

' Ej�1e zXanRj an
Š .SolX .M//

' eXan
1
.SolX .M//:

Let us recall that for any K 2 Eb.ICXan
1
/ we have

shXan
1
.K/ ' .j an/�1.sh zXan.EjŠŠ.K///;

see Section 2.2 for the details.
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Lemma 3.15. For any M 2 Db
hol.DX /, there exists an isomorphism in Db.CXan/:

shXan
1
.SolEX1.M// ' SolX .M/:

Proof. By the definition of SolEX1 and shXan
1

we have isomorphisms in Db.CXan/:

shXan
1
.SolEX1.M// ' .j an/�1sh zXanEjŠŠEj�1SolEzX .Dj�M/

' .j an/�1sh zXanSolEzX .Dj�M/

' .j an/�1Sol zX .Dj�M/

' SolX .Dj �Dj�M/

' SolX .M/;

where in the third isomorphism we used [5, Lem. 9.5.5].

Proposition 3.16. The functor shXan
1
WEb.ICXan

1
/! Db.CXan/ induces

Eb
C-c.ICX1/! Db

C-c.CX /

and hence we have a commutative diagram

Db
hol.DX /

op � //

SolE
X1

.�/reg

��

˚

Eb
C-c.ICX1/

shXan
1

��

Db
rh.DX /

op
SolX

� // Db
C-c.CX /:

Proof. The first part follows from Theorem 3.11 and Lemma 3.15. Moreover,
since there exists an isomorphism SolX .M/ ' SolX .Mreg/ in Db.CXan/ for any M 2

Db
hol.DX / (see Section 2.5 for the details), we obtain the commutative diagram.

3.3 – Perverse t-structure

In this subsection, we define a t-structure on the triangulated category Eb
C-c.ICX1/

of algebraic C-constructible enhanced ind-sheaves on X an
1 and prove that its heart is

equivalent to the abelian category Modhol.DX / of algebraic holonomic DX -modules.
A similar results for the analytic case is proved in [9, §4].

We denote by DXan WDb.CXan/op ! Db.CXan/ the Verdier dual functor for sheaves,
see [11, §3] for the definition. By the same arguments as in the proof of [9, Lem. 4.1],
the sheafification functor shXan

1
WEb

C-c.ICX1/! Db
C-c.CX / commutes with the duality

functor as follows.
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Lemma 3.17. For anyK 2 Eb
C-c.ICX1/, there exists an isomorphism in Db.CXan/:

shXan
1
.DE
Xan
1
.K// ' DXan.shXan

1
.K//:

Let us recall that the triangulated category Db
C-c.CX / has the t-structure

.pD�0C-c.CX /;
pD�0C-c.CX //

which is called perverse t-structure; denote by Perv.CX / the heart of its t-structure,
see [1] (also [8, Thm. 8.1.27]) for the details.

Definition 3.18. We define full subcategories of Eb
C-c.ICX1/ by

pE�0C-c.ICX1/ WD
®
K 2 Eb

C-c.ICX1/ j shXan
1
.K/ 2 pD�0C-c.CX /

¯
;

pE�0C-c.ICX1/ WD
®
K 2 Eb

C-c.ICX1/ j D
E
Xan
1
.K/ 2 pE�0C-c.ICX1/

¯
D
®
K 2 Eb

C-c.ICX1/ j shXan
1
.K/ 2 pD�0C-c.CX /

¯
:

(The last equality follows from Lemma 3.17.)

The next theorem 3.19 follows from Theorem 2.11 and Lemma 3.15.

Theorem 3.19. Let X be a smooth algebraic variety over C and M 2 Db
hol.DX /.

Then we have

(1) M 2 D�0hol .DX /” SolEX1.M/ŒdX � 2
pE�0C-c.ICX1/,

(2) M 2 D�0hol .DX /” SolEX1.M/ŒdX � 2
pE�0C-c.ICX1/.

Therefore, the pair .pE�0C-c.ICX1/;
pE�0C-c.ICX1// is a t-structure on Eb

C-c.ICX1/
and its heart is equivalent to the abelian category Modhol.DX / of holonomic DX -
modules.

Definition 3.20. We say thatK 2 Eb
C-c.ICX1/ is an algebraic enhanced perverse

ind-sheaf on X an
1 if

K 2 Perv.ICX1/ WD
pE�0C-c.ICX1/ \

pE�0C-c.ICX1/:

By the definition of the t-structure .pE�0C-c.ICX1/;
pE�0C-c.ICX1//, the duality

functor DE
Xan
1

induces an equivalence of abelian categories:

DE
Xan
1
WPerv.ICX1/

op �
�! Perv.ICX1/:

By Proposition 3.14 and the fact that there exists an isomorphism id ��! shXan
1
ı eXan

1

of functors, we obtain:
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Proposition 3.21. The embedding functor eXan
1
WDb

C-c.CX / ,! Eb
C-c.ICX1/ is

t-exact with respect to the perverse t-structures and hence it induces an embedding:

Perv.CX / ,! Perv.ICX1/:

Moreover, we obtain a commutative diagram:

Modhol.DX /
op � //

SolE
X1

.�/ŒdX �

˚

Perv.ICX1/

Modrh.DX /
op

SolX .�/ŒdX �
� //

S
Perv.CX /:
?�

eXan
1

OO

By the definition of the t-structure .pE�0C-c.ICX1/;
pE�0C-c.ICX1//, the sheafifica-

tion functor shXan
1

induces a functor

Perv.ICX1/! Perv.CX /:

Moreover, by Proposition 3.16 we obtain a commutative diagram:

Modhol.DX /
op � //

SolE
X1

.�/ŒdX �

.�/reg
��

˚

Perv.ICX1/

shXan
1

��

Modrh.DX /
op

SolX .�/ŒdX �
� // Perv.CX /:

Recall that there exists a generalized t-structure . 12E�cR-c.ICXan
1
/;
1
2E�cR-c.ICXan

1
//c2R

on Eb
R-c.ICXan

1
/ by [6, Thm. 3.5.2 (i)]. Then the pair .pE�0C-c.ICX1/;

pE�0C-c.ICX1// is
related to this as follows:

Proposition 3.22. We have

pE�0C-c.ICX1/ D
1
2E�0R-c.ICXan

1
/ \ Eb

C-c.ICX1/;
pE�0C-c.ICX1/ D

1
2E�0R-c.ICXan

1
/ \ Eb

C-c.ICX1/:

Proof. By Corollary 3.13 (1) and the facts

pE�0C-c.ICX1/ D
®
K 2 Eb

C-c.ICX1/ j D
E
Xan
1
.K/ 2 pE�0C-c.ICX1/

¯
;

1
2E�0R-c.ICXan

1
/ D

®
K 2 Eb

R-c.ICXan
1
/ j DE

Xan
1
.K/ 2

1
2E�0R-c.ICXan

1
/
¯
;
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it is enough to show the first part. Let us recall that for any K 2 Eb
R-c.ICXan

1
/, we have

K 2
1
2E�0R-c.ICXan

1
/” EjXan

1ŠŠK 2
1
2E�0R-c.IC zXan/

by [6, Lem. 3.3.2, Prop. 3.5.6 (i), (iv)]. Hence the first part follows from Lemma 3.23 (1)
and Sublemma 3.24 (1) below.

Lemma 3.23. For any K 2 Eb
C-c.ICX1/, we have

(1) K 2 pE�0C-c.ICX1/” EjXan
1ŠŠK 2

pE�0C-c.IC zX /,

(2) K 2 pE�0C-c.ICX1/” EjXan
1ŠŠK 2

pE�0C-c.IC zX /.

Proof. Since the proof of (2) is similar, we only prove (1).
First, we assume K 2 pE�0C-c.ICX1/. Then there exists an object M 2 D�0hol .DX /

such that
K ' SolEX1.M/ŒdX �

by Theorems 3.11 and 3.19 (2). Furthermore, since the canonical embedding j WX ,! zX
is affine, we have Dj�M 2 D�0hol .D zX /, and hence we have

EjXan
1ŠŠK ' SolE

zX
.Dj�M/ŒdX � 2

pE�0C-c.IC zX /

by Theorem 3.19 (2).
We assume EjXan

1ŠŠK 2
pE�0C-c.IC zX /. Then we obtain

sh zXan.EjXan
1ŠŠK/ 2

pD�0C-c.C zX /:

Since the functor
.j an/�1WDb

C-c.C zX /! Db
C-c.CX /

is t-exact with respect to the perverse t-structures, we have

shXan
1
.K/ ' .j an/�1.sh zXan.EjXan

1ŠŠK// 2
pD�0C-c.CX /

and hence K 2 pE�0C-c.ICX1/.

Let us recall that the triangulated category Eb
C-c.ICX / is a full triangulated subcate-

gory ofEb
C-c.ICXan/ andEb

C-c.ICXan/ has the t-structure .pE�0C-c.ICXan/;pE�0C-c.ICXan//,
see Sections 2.4, 3.1 and [9, Def. 4.2, Thm. 4.4] for the details.

Sublemma 3.24. Let X be a smooth complete algebraic variety over C. Then we
have

(1) pE�0C-c.ICX / D
pE�0C-c.ICXan/ \ Eb

C-c.ICX / D
1
2E�0R-c.ICXan/ \ Eb

C-c.ICX /,

(2) pE�0C-c.ICX / D
pE�0C-c.ICXan/ \ Eb

C-c.ICX / D
1
2E�0R-c.ICXan/ \ Eb

C-c.ICX /.
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Proof. Since the proof of (2) is similar, we only prove (1). By [9, Cor. 4.5], it is
enough to prove

pE�0C-c.ICX / D
pE�0C-c.ICXan/ \ Eb

C-c.ICX /:

LetK be an object of pE�0C-c.ICX /. By Proposition 3.5 and Theorem 3.19 (2), there
exists an object M of D�0hol .DX / such that K ' SolEX .M/ŒdX � (WD SolEXan.Man/ŒdX �).
Since the analytification functor .�/anWMod.DX / ! Mod.DXan/ is exact, we have
Man 2 D�0hol .DXan/, and hence we have

SolEXan.M
an/ŒdX � 2

pE�0C-c.ICXan/

by [9, Thm. 4.4 (2)]. Therefore we obtain

K 2 pE�0C-c.ICXan/ \ Eb
C-c.ICX /:

Let K be an object of pE�0C-c.ICXan/ \ Eb
C-c.ICX /. Since K 2 Eb

C-c.ICX /, there
exists an object M 2 Db

hol.DX / such that K ' SolEX .M/ŒdX � by Proposition 3.5.
Since K 2 pE�0C-c.ICXan/, we have Man 2 D�0hol .DXan/ by [9, Thm. 4.4 (2)], and hence
we obtain M 2 D�0hol .DX / because the analytification functor .�/anWMod.DX / !

Mod.DXan/ is exact and faithful. Therefore, by Theorem 3.19 (2), we have

K ' SolEX .M/ŒdX � 2
pE�0C-c.ICX /:

Thanks to [6, Prop. 3.5.6], the next proposition follows from Corollary 3.13 (3), (4)
and Proposition 3.22. We skip its proof.

Proposition 3.25. Let f WX ! Y be a morphism of smooth algebraic varieties.
We assume that there exists a non-negative integer d such that dim f �1.y/ � d for
any y 2 Y .

(1) For any K 2 pE�0C-c.ICX1/, we have Ef
an
1ŠŠ
K 2 pE�dC-c.ICY1/.

(2) For any K 2 pE�0C-c.ICX1/, we have Ef
an
1�K 2

pE��dC-c .ICY1/.

(3) For any L 2 pE�0C-c.ICY1/, we have E.f
an
1 /
�1L 2 pE�dC-c.ICX1/.

(4) For any L 2 pE�0C-c.ICY1/, we have E.f
an
1 /

ŠL 2 pE��dC-c .ICX1/.

Corollary 3.26. Let X be a smooth algebraic variety over C and Z a locally
closed smooth subvariety of X . We denote by iZan

1
WZan
1 ! X an

1 the morphism of
bordered spaces induced by the natural embedding Z ,! X .

(1) EiZan
1�

and Ei Š
Zan
1

are left t-exact with respect to the perverse t-structures.

(2) EiZan
1ŠŠ and Ei�1Zan

1
are right t-exact with respect to the perverse t-structures.
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In particular, if Z is open (resp. closed), then the functor

Ei�1Zan
1
' Ei ŠZan

1
.resp. EiZan

1ŠŠ ' EiZan
1�
/

is t-exact with respect to the perverse t-structures.

Remark 3.27. Let X be a smooth algebraic variety over C and Z a locally closed
smooth subvariety of X . We assume that the natural embedding iZ WZ ,! X is affine.

Then we have exact functors

DiZ�;DiZŠWModhol.DZ/! Modhol.DX /:

Hence by Proposition 3.12 (3) and Theorem 3.19, we obtain exact functors

EiZan
1�
;EiZan

1ŠŠWPerv.ICZ1/! Perv.ICX1/:

Note that there exists a canonical morphism

EiZan
1ŠŠ ! EiZan

1�

of functors Perv.ICZ1/! Perv.ICX1/ and it is an isomorphism if Z is closed.

Notation 3.28. For a functor FWEb
C-c.ICX1/! Eb

C-c.ICY1/, we set

pF WD pH0
ı FWPerv.ICX1/! Perv.ICY1/;

where pH0 is the 0-th cohomology functor with respect to the perverse t-structures.

In this paper, for an object K 2 Eb.ICXan
1
/, let us define the support of K by the

complement of the union of open subsets U an of X an such thatKjU an
1
WD Ei�1

U an
1
K ' 0

and denote it by supp.K/. Namely, we set

supp.K/ WD
� [
U an �

open
Xan; KjU an

1
D0

U an
�c
� X an:

Note that we have [
U an �

open
Xan; KjU an

1
D0

U an
D

[
V an �

open
Xan; KjV anD0

V an:

Moreover, for a closed smooth subvariety Z of X , we set

PervZ.ICX1/ WD
®
K 2 Perv.ICX1/ j supp.K/ � Z

an¯:
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Proposition 3.29. Let X be a smooth algebraic variety over C and Z a closed
smooth subvariety of X . Then we have an equivalence of abelian categories:

PervZ.ICX1/
pEi�1

Zan
1 //
� Perv.ICZ1/:

EiZan
1ŠŠ

oo

Furthermore, for any K 2 PervZ.ICX1/ there exists an isomorphism in Perv.ICZ1/:
pEi�1Zan

1
K ' pEi ŠZan

1
K:

Proof. LetL be an object of Perv.ICZ1/. Then we have EiZan
1ŠŠL 2 Perv.ICX1/

by Corollary 3.26. Furthermore, since

Ei�1Xan
1nZ

an
1
EiZan

1ŠŠL ' 0;

we obtain supp.EiZan
1ŠŠL/ � Z

an. This implies that

EiZan
1ŠŠL 2 PervZ.ICX1/:

Note that there exists an isomorphism Ei�1
Zan
1
EiZan

1ŠŠL
�
�! L in Eb.ICZan

1
/. Thus we

have
pEi�1Zan

1
EiZan

1ŠŠL
�
�! L:

Let K be an object of PervZ.ICX1/. Then we have

��1C.XnZ/an ˝K ' Ei.XnZ/an1ŠŠEi
�1
.XnZ/an1

K ' 0;

where in the first isomorphism we used [6, Lem. 2.7.6]. Thus we obtain

K
�
�! ��1CZan ˝K .' EiZan

1ŠŠEi
�1
Zan
1
K/:

Since the functor EiZan
1ŠŠ is t-exact with respect to the perverse t-structures, we obtain

K
�
�! EiZan

1ŠŠ
pEi�1Zan

1
K:

Therefore the proof of the first part is complete.
For any K 2 PervZ.ICX1/, there exists an object L 2 Perv.ICZ1/ such that

K ' EiZan
1ŠŠL ' EiZan

1�
L:

Hence we have isomorphisms in Perv.ICZ1/:
pEi�1Zan

1
K ' pEi�1Zan

1
EiZan

1�
L ' L ' pEi ŠZan

1
EiZan

1ŠŠL '
pEi ŠZan

1
K:

This completes the proof of the second part.

Remark 3.30. By using Theorem 3.19, Proposition 3.29 also follows from Kashi-
wara’s equivalence, see, e.g., [8, Thm. 1.6.1].
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3.4 –Minimal extensions

In this subsection, we shall consider simple objects of Perv.ICX1/, and a counter-
part of minimal extensions of algebraic holonomic D-modules.

Definition 3.31. Let X be a smooth algebraic variety over C. A non-zero alge-
braic enhanced perverse ind-sheaf K 2 Perv.ICX1/ is called simple if it contains no
subobjects in Perv.ICX1/ other than K or 0.

Proposition 3.32. Let X be a smooth algebraic variety over C. For any simple
algebraic perverse sheaf F 2 Perv.CX /, the natural embedding eXan

1
.F / of F is also

simple.

Proof. Let F 2 Perv.CX / be a simple algebraic perverse sheaf on X and K 2
Perv.ICX1/ a subobject of eXan

1
.F / which is not isomorphic to eXan

1
.F /. Then there

exists M 2 Modhol.DX / such that K ' SolEX1.M/ŒdX � by Theorem 3.19. Since the
functor shXan

1
W Perv.ICX1/ ! Perv.CX / is t-exact with respect to the perverse t-

structures, we obtain shXan
1
.K/� shXan

1
eXan
1
.F /. Then SolX .Mreg/ŒdX � (' shXan

1
.K/)

is a subobject of F which is not isomorphic to F . Since F is simple, we obtain
SolX .Mreg/ŒdX � ' 0, and hence Mreg ' 0. This implies that M ' 0, thus we have
K ' 0.

In this paper, we shall say that K 2 E0.ICXan
1
/ is an enhanced local system on X1

if for any x 2 X there exist an open neighborhood U � X of x and a non-negative
integer k such that KjU an

1
' .CE

U an
1
/˚k . Note that for any enhanced local system K

on X1 there exists an integrable connection L on X such that

KŒdX � ' SolEX1.L/ŒdX � 2 Perv.ICX1/:

Proposition 3.33. (1) Let Z be a locally closed smooth connected subvariety of a
smooth algebraic variety X and K a simple algebraic enhanced perverse ind-sheaf
on X1. We assume that the natural embedding iZ WZ ,! X is affine. Then the
image of the canonical morphism EiZan

1ŠŠK ! EiZan
1�
K is also simple, and it

is characterized as the unique simple submodule (resp. unique simple quotient
module) of EiZan

1�
K (resp. EiZan

1ŠŠK).

(2) For any simple algebraic enhanced perverse ind-sheaf K on X1, there exist a
locally closed smooth connected subvariety Z whose natural embedding is affine
and a simple enhanced local system L on Z1 such that

K ' Im.EiZan
1ŠŠLŒdZ �! EiZan

1�
LŒdZ �/:



Y. Ito 30

(3) Let .Z;L/ be as in (1) and .Z0; L0/ be another such pair. Then we have

Im.EiZan
1ŠŠLŒdZ �! EiZan

1�
LŒdZ �/ ' Im.EiZan

1ŠŠL
0ŒdZ0 �! EiZan

1�
L0ŒdZ0 �/

if and only if Z D Z0 and there exists an open dense subset U of Z \Z0 such that
LjU an

1
' L0jU an

1
.

Proof. Let us denote by L.ZIM/ the minimal extension of M 2 Modhol.DZ/

along Z, see, e.g., [8, §3.4] for the definition. Then there exist isomorphisms in
Perv.ICX1/:

SolEX1.L.ZIM//ŒdX � ' SolEX1.Im.DiZŠM! DiZ�M//ŒdX �

' Im.EiZan
1ŠŠSol

E
Z1

.M/ŒdZ �! EiZan
1�

SolEZ1.M/ŒdZ �/;

where in the second isomorphism we used Theorem 3.19 and Proposition 3.12 (3).
Therefore this theorem follows from Theorem 3.19 and [8, Thm. 3.4.2].

From now on, we shall consider the image of a canonical morphism

pEiZan
1ŠŠK !

pEiZan
1�
K

for a locally closed smooth subvariety Z of X whose natural embedding iZ WZ ,! X

is not necessarily affine and K 2 Perv.ICZ1/. In this paper, we shall define minimal
extensions of algebraic enhanced perverse ind-sheaves as follows.

Definition 3.34. For any K 2 Perv.ICZ1/, we call the image of the canonical
morphism pEiZan

1ŠŠK !
pEiZan

1�
K the minimal extension of K along Z, and denote

it by pEiZan
1ŠŠ�K.

Note that we have a functor pEiZan
1ŠŠ�WPerv.ICZ1/! Perv.ICX1/.

Remark 3.35. (1) If Z is open, then we have .pEiZan
1ŠŠ�K/jZan

1
' K.

(2) If Z is closed, then we have

pEiZan
1ŠŠ�K ' EiZan

1�
K ' EiZan

1ŠŠK 2 PervZ.ICX1/:

(3) If the natural embedding iZ WZ ,! X is affine, then we have

pEiZan
1ŠŠ�.�/ ' Im.EiZan

1ŠŠ.�/! EiZan
1�
.�//:

Moreover, for any M 2 Modhol.DZ/ there exists an isomorphism in Perv.ICX1/:

pEiZan
1ŠŠ�Sol

E
Z1

.M/ŒdZ � ' SolEX1.L.ZIM//ŒdX �:
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The minimal extension functor pEiZan
1ŠŠ� commutes with the duality functor of

algebraic enhanced perverse ind-sheaves.

Proposition 3.36. In the situation as above, there exists a commutative diagram:

Perv.ICZ1/op
pEiZan

1ŠŠ� //

DE
Zan
1
o

��

˚

Perv.ICX1/op

DE
Zan
1

o

��

Perv.ICZ1/ pEiZan
1ŠŠ�

// Perv.ICX1/:

Proof. Note that we have isomorphisms in Perv.ICX1/:

DE
Xan
1
.pEiZan

1ŠŠK/ '
pEiZan

1�
DE
Zan
1
K;

DE
Xan
1
.pEiZan

1�
K/ ' pEiZan

1ŠŠD
E
Zan
1
K:

Therefore we obtain isomorphisms in Perv.ICX1/:

DE
Xan
1
.pEiZan

1ŠŠ�K/ ' Im.pEiZan
1ŠŠD

E
Zan
1
K ! pEiZan

1�
DE
Zan
1
K/

'
pEiZan

1ŠŠ�D
E
Zan
1
K:

We denote by pRiZŠ�F the minimal extension of a perverse sheaf F along Z, see
[1] for the details. By the same arguments as in the proof of the previous proposition,
we have:

Proposition 3.37. In the situation as above, there exists a commutative diagram:

Perv.ICZ1/
pEiZan

1ŠŠ� //

˚

Perv.ICX1/

Perv.CZ/
?�

eZan
1

OO

pRiZanŠ�

// Perv.CX /:
?�

eXan
1

OO

The following lemma will be used in the proof of Theorem 3.44.

Lemma 3.38. Let X be a smooth algebraic variety over C, and let Z and W
be locally closed smooth subvarieties of X . We assume W � Z and we consider a
commutative diagram:

Zan
1

iZan
1 // X an

1

W an
1

iW an
1

88
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where iZan
1
; iW an
1

and k are the morphisms of bordered spaces induced by the natural
embeddings, respectively. Then for any K 2 Perv.ICW1/ we have

(1) pEiW an
1ŠŠK '

pEiZan
1ŠŠ

pEkŠŠK and pEiW an
1�
K ' pEiZan

1�
pEk�K,

(2) pEiW an
1ŠŠ�K '

pEiZan
1ŠŠ�

pEkŠŠ�K.

Proof. Let K be an object of Perv.ICW1/.
(1) Since the proof of the first assertion of (1) is similar, we shall only prove the

second one. Recall that the functor EiZan
1�

is left t-exact with respect to the perverse t-
structures. Hence for any K 2 Perv.ICW1/, we have an isomorphism in Perv.ICX1/:

pEiW an
1�
K ' pH0EiW an

1�
K ' pH0.EiZan

1�
pH0.Ek�K// ' pEiZan

1�
pEk�K:

See, e.g., [8, Prop. 8.1.15 (i)] for the second isomorphism.
(2) Recall that there exist canonical morphisms:

pEiW an
1ŠŠK �pEiW an

1ŠŠ�K ,! pEiW an
1�
K;

pEkŠŠK �pEkŠŠ�K ,! pEk�K;
pEiZan

1ŠŠ
pEkŠŠ�K �pEiZan

1ŠŠ�
pEkŠŠ�K ,! pEizan1�

pEkŠŠ�K;

where � (resp. ,!) is an epimorphism (resp. a monomorphism) in the abelian cat-
egory of algebraic enhanced perverse ind-sheaves. Since the functor EiZan

1�
(resp.

EiZan
1ŠŠ) is left (resp. right) t-exact with respect to the perverse t-structures, the canoni-

cal morphism

pEiW an
1ŠŠK D

pEiZan
1ŠŠ

pEkŠŠK ! pEiZan
1�

pEk�K D pEiW an
1�
K

can be decomposed as follows:

pEiZan
1ŠŠ

pEkŠŠK � pEiZan
1ŠŠ

pEkŠŠ�K � pEiZan
1ŠŠ�

pEkŠŠ�K
,! pEiZan

1�
pEkŠŠ�K ,! pEiZan

1�
pEk�K:

This implies that

Im.pEiW an
1ŠŠK !

pEiW an
1�
K/ ' pEiZan

1ŠŠ�
pEkŠŠ�K:

Recall that in the case when Z is a closed smooth subvariety of X , minimal
extensions along Z can be characterized by Proposition 3.29, see also Remark 3.35 (2).
On the other hand, in the case when Z is open and its complement is a smooth
subvariety, the minimal extensions along Z can be characterized as follows. Let U be
such an open subset of X and set W WD X n U .
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Proposition 3.39. In the situation as above, the minimal extension pEiU an
1ŠŠ�K of

K 2 Perv.ICU1/ along U is characterized as the unique algebraic enhanced perverse
ind-sheaf L on X1 satisfying the conditions

(1) Ei�1
U an
1
L ' K,

(2) Ei�1
W an
1
L 2 E��1C-c .ICW1/,

(3) Ei Š
W an
1
L 2 E�1C-c.ICW1/.

Proof. Let K be an object of Perv.ICU1/. Set L WD pEiU an
1ŠŠ�K 2 Perv.ICX1/.

Then we have Ei�1
U an
1
L ' K by the definition of L. Moreover, we have

Ei�1W an
1
L 2 E�0C-c.ICW1/ .resp. Ei ŠW an

1
L 2 E�0C-c.ICW1//

by Corollary 3.26 (2) (resp. (1)).
By using [6, Lem. 2.7.7], there exist distinguished triangles in Eb.ICX1/:

EiU an
1ŠŠK ! L! EiW an

1ŠŠEi
�1
W an
1
L
C1
��!;

EiW an
1�

Ei ŠW an
1
L! L! EiU an

1�
K
C1
��! :

By Corollary 3.26, we have pH1EiU an
1ŠŠK ' 0 and

pH�1EiU an
1�
K ' 0, and hence

there exist exact sequences in Perv.ICX1/:

pEiU an
1ŠŠK ! L! pH0.EiW an

1ŠŠEi
�1
W an
1
L/! 0;

0! pH0.EiW an
1�

pEi ŠW an
1
L/! L! pEiU an

1�
K:

Since the morphism pEiU an
1ŠŠK ! L (resp. L! pEiU an

1�
K) is an epimorphism (resp.

a monomorphism), we obtain

pH0.EiW an
1ŠŠEi

�1
W an
1
L/ ' 0 .resp. pH0.EiW an

1�
Ei ŠW an

1
L/ ' 0/:

Therefore we have

pH0.Ei�1W an
1
L/ ' 0 and pH0.Ei ŠW an

1
L/ ' 0;

and hence

Ei�1W an
1
L 2 E��1C-c .ICW1/ and Ei ŠW an

1
L 2 E�1C-c.ICW1/:

Let L be an object of Perv.ICX1/ which satisfies the conditions (1)–(3) as above.
By (1), we obtain morphisms in Perv.ICX1/:

pEiU an
1ŠŠK

˛
��! L

ˇ
��!

pEiU an
1�
K:
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It is enough to show that the morphism ˛ (resp. ˇ) is an epimorphism (resp. a monomor-
phism). Since the proofs are similar, we only prove that ˇ is a monomorphism.

Let us consider exact sequences 0! Ker ˇ ! L! pEiU an
1�
K in Perv.ICX1/.

Since Ei�1
U an
1
.Kerˇ/ ' 0, we have Kerˇ 2 PervW .ICX1/, and hence there exist Lˇ 2

Perv.ICW1/ such that EiW an
1ŠŠ.Lˇ / ' Kerˇ by Proposition 3.29. Moreover, we have

exact sequences in Perv.ICW1/:

0! .Lˇ ' /
pEi ŠW an

1
EiW an

1ŠŠLˇ !
pEi ŠW an

1
L! pEi ŠW an

1

pEiU an
1�
K:

Since L satisfies the condition (3), we have pEi Š
W an
1
L ' 0. Thus we obtain Lˇ ' 0.

This implies that the morphism ˇ is a monomorphism.

Furthermore, the minimal extensions along U have the following properties.

Proposition 3.40. In the situation as above, for any K 2 Perv.ICU1/,

(1) pEiU an
1�
K 2 Perv.ICX1/ has no non-trivial subobject in PervW .ICX1/,

(2) pEiU an
1ŠŠK 2 Perv.ICX1/ has no non-trivial quotient object in PervW .ICX1/.

Proof. Since the proof of (2) is similar, we only prove (1).
Let L 2 PervW .ICX1/ be a subobject of pEiU an

1�
K 2 Perv.ICX1/. Since we have

EiW an
1ŠŠ

pEi Š
W an
1
L
�
�! L in PervW .ICX1/, it is enough to prove pEi Š

W an
1
L ' 0. We

have a monomorphism pEi Š
W an
1
L ,! pEi Š

W an
1

pEiU an
1�
K in Perv.ICX1/, because the

functor pEi Š
W an
1

is left t-exact with respect to the perverse t-structures by Corollary
3.26 (1). Then we have

pEi ŠW an
1

pEiU an
1�
K ' pH0.Ei ŠW an

1
EiU an

1�
K/ ' 0;

and hence pEi Š
W an
1
L ' 0.

Recall that there exist the canonical morphisms pEiU an
1ŠŠK � pEiU an

1ŠŠ�K ,!
pEiU an

1�
K in Perv.ICX1/. Hence we have:

Corollary 3.41. In the situation as above, for anyK 2 Perv.ICU1/, the minimal
extension pEiU an

1ŠŠ�K has neither a non-trivial subobject nor a non-trivial quotient
object in Perv.ICX1/ whose support is contained in W an.

Corollary 3.42. In the situation as above, the following holds:

(1) For an exact sequence 0 ! K ! L in Perv.ICU1/, the associated sequence
0! pEiU an

1ŠŠ�K !
pEiU an

1ŠŠ�L in Perv.ICX1/ is also exact.

(2) For an exact sequence K ! L ! 0 in Perv.ICU1/, the associated sequence
pEiU an

1ŠŠ�K !
pEiU an

1ŠŠ�L! 0 in Perv.ICX1/ is also exact.



Algebraic irregular Riemann–Hilbert correspondence 35

Proof. Since the proof of (2) is similar, we only prove (1).
Let ˛WK ,! L be a monomorphism in Perv.ICU1/. Since .pEiU an

1ŠŠ�K/jU an
1
'K

and .pEiU an
1ŠŠ�L/jU an

1
' L, we obtain

.Ker.pEiU an
1ŠŠ�˛//jU an

1
' Ker..pEiU an

1ŠŠ�˛/jU an
1
/ ' Ker˛ ' 0:

This implies that Ker.pEiU an
1ŠŠ�˛/ 2 PervW .ICX1/. Hence Ker.pEiU an

1ŠŠ�˛/ ' 0 by
Proposition 3.40 (1). Therefore pEiU an

1ŠŠ�˛ is a monomorphism in Perv.ICX1/.

Corollary 3.43. In the situation as above, for any simple object in Perv.ICU1/,
its minimal extension along U is also a simple object in Perv.ICX1/.

Proof. LetK be a simple object in Perv.ICU1/ andL a subobject of pEiU an
1ŠŠ�K.

Then we have an exact sequence 0! L! pEiU an
1ŠŠ�K ! L0 ! 0 in Perv.ICX1/.

Since .pEiU an
1ŠŠ�K/jU an

1
' K, there exists an exact sequence

0! Ei�1U an
1
L! K ! Ei�1U an

1
L0 ! 0

in Perv.ICU1/. Hence we have Ei�1U an
1
L ' 0 or Ei�1

U an
1
L0 ' 0 because K is simple.

This implies that supp.L/ � W an or supp.L0/ � W an, and hence L ' 0 or L0 ' 0 by
Corollary 3.41. Therefore pEiU an

1ŠŠ�K is a simple object in Perv.ICX1/.

Therefore by Proposition 3.29 and Lemma 3.38, we obtain the following results.

Theorem 3.44. Let X be a smooth algebraic variety over C, and Z a locally
closed smooth subvariety ofX whose natural embedding iZ WZ ,!X is not necessarily
affine. We assume thatZDU \W whereU �X is an open subset whose complement
X n U is smooth and W � X is a closed subvariety.

(1) (i) For an exact sequence 0! K ! L in Perv.ICZ1/, the associated sequence
0! pEiZan

1ŠŠ�K !
pEiZan

1ŠŠ�L in Perv.ICX1/ is also exact.

(ii) For an exact sequence K ! L! 0 in Perv.ICZ1/, the associated sequence
pEiZan

1ŠŠ�K !
pEiZan

1ŠŠ�L! 0 in Perv.ICX1/ is also exact.

(2) For any simple object in Perv.ICZ1/, its minimal extension alongZ is also simple.

Proof. Let us consider a commutative diagram:

U an
1

iU an
1 // X an

1

Zan
1

iZan
1

88
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Then we have pEiZan
1ŠŠ� D

pEiU an
1ŠŠ� ı

pEkŠŠ� by Lemma 3.38. Therefore the asser-
tion (1) (resp. (2)) follows from Corollary 3.42 (resp. Corollary 3.43) and Proposition
3.29.
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