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1. Introduction

Let Xn, n 2 N D ¹1; 2; : : : ; º, be a sequence of independent identically distributed
Bernoulli random variables with mean 0 < p < 1. For the partial sums Sn D
X1 C � � � C Xn, n 2 N, Kolmogorov proved in 1963 [5] (see also [6]) the maximal
inequalities
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for any 0 � " � 1. The second inequality corresponds to the parameter p D 1=2.
Later, the second inequality was reproved by Young et al. [14]. In fact, the second
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Kolmogorov inequality can be easily deduced from the Okamoto [12] result. One can
easily deduce two-sided inequalities
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:

The Kolmogorov inequalities were improved by Banjević [3], Young et al. [13, 15],
Kruglov [8], Antonov and Kruglov [1]. Now we recall some of the sharpest inequalities.
Young et al. [13] proved that for any 0� " <min¹p;q D 1� pº and 0 < p < 1, n 2N,
the following inequality holds:
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The same authors, Young et al. [13], strengthened the one-sided inequality as follows:
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. Also, Young et al. [15] proved rather sharp the one-sided

inequality of the form
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Proofs of all the mentioned inequalities are based on previous studies of the function
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where 0 < p < 1, q D 1� p and 0 � " < q. Progress in the lower bound estimation of
this function leads to further progress in the upper bound estimation of the inequalities
(1)–(3). For example, inequalities (1) and (2) are based on the following inequalities
due to Kraft [7]:
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Inequality (3) is a consequence of the bound
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which was proved by Young et al. [15].
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One can easily verify that the first inequality in (4) and inequality (5) hold for "D q.
It follows that
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An important feature of inequalities (4) and (5) is that the right part of each inequality
is the function of the only argument " and not of p. It is possible to prove analogues
of the mentioned inequalities with right sides depending on both arguments p and ".
Massart [11] proved the following inequality:

(7) L.p; "/ �
"2

2.p C "=3/.q � "=3/
; 0 � " � q D 1 � p:

Inequality (7) is an essential tool in the investigations of Kolmogorov and Smirnov
statistics. Let �n, n 2 N, be independent random variables with the same continuous
distribution function F . Let Fn stand for the empirical distribution function constructed
with the help of random variables �1; : : : ; �n. With the help of (7) Massart [11] proved
the following inequality for the Smirnov statistic:
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Massart [11] explained the importance of this inequality for some problems from
mathematical statistics. As an application of the theory of large deviations Bahadur
[2, §3] showed that the right part of (8) can be replaced by 2 exp¹�2�2 CO.�3/º.

Recall that the sequence of random variables �n, n 2N, satisfies the large deviation
principle with rate function J.x/, x 2 R, if
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1

n
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J.x/ for each open set G � R:

By the well-known Cramér theorem the sequence Sn=n, n 2 N, satisfies the large
deviation principle with rate function J.x/ D1 for x < 0 and x > 1 and

J.x/ D x ln
�x
p

�
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�
; 0 � x � 1; q D 1 � p:

Inequalities (1)–(7) and our refined inequalities add new information about the rate
function J.x/. Our refined inequalities also contain all one needs to generalize the
Cramér theorem about large deviations for the sequence supk�n.

Sk

k
� p/, n 2 N.
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In this paper we refine all inequalities (1)–(7). All these refined inequalities are
strictly sharper than (1)–(7). With the help of inequalities (12) and (13) instead of
(7) and some new technique it is possible to replace the right-hand side of (8) with
2 exp¹�2�2 � �4=.36n/º. This new inequality is much sharper than (8) especially for
big �.

From the previous remarks it follows that the problem of refinement of the maximal
Kolmogorov inequality for the binomial distribution has a long history. Based on the
investigations of A. N. Kolmogorov himself and his numerous followers, the required
maximal inequality can be written in the form
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Function L.p; "/ can be expanded in a series with terms that are polynomials of
variables " and p. It appears natural to estimate the function L.p; "/ with the simplest
polynomials; the inequalities presented in this paper are obtained largely in this way.

Calculations and graphs show that the suggested approximation of the function
L.p; "/ has a high accuracy which implies high accuracy of the inequalities proved in
this paper. In particular, for "! 0 all inequalities in Theorems 2.1–2.3 and Corollaries
2.4–2.6 turn to equalities.

An investigation of the optimality of the obtained inequalities has not been carried
out. Obviously, it is possible to prove more precise inequalities by taking the more
complex approximations of the function L.p; "/. At the same time, these inequalities
may be very complicated and, hence, have low applicability.

Our approach to inequalities (4)–(6) is new. It relies upon applications of the Budan–
Fourier theorem and the Sturm theorem on the number of real roots of any polynomial
of degree n 2 N with real coefficients:

(9) P.x/ D anxn C an�1xn�1 C � � � C a1x C a0; an ¤ 0; x 2 R D .�1;1/:

Let c1; : : : ; cn be real numbers which are not all zero. Let ck1
; : : : ; ckm

be the ones which
are non-zero. Denote by W.c1; : : : ; cn/ the number of sign changes in the sequence
ck1
; : : : ; ckm

if m > 1, and let W.c1; : : : ; cn/ D 0 if m D 1.

Budan–Fourier theorem. Let P and P .k/, k D 1; : : : ; n, be polynomial (9) and
its derivatives, respectively. Let W.x/ be the number of sign changes in the sequence
P.x/;P .1/.x/; : : : ; P .n/.x/, x 2 R. Then for any a; b 2 R, a < b, the number of roots
of P in .a; b�, counted with their orders of multiplicity, is equal toW.a/�W.b/� 2m
for some non-negative integer m.

Proof. See, for example, Leung et al. [10].
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Let us denote by P0.�/ D P.�/ polynomial (9) and calculate its first derivative
P1.�/ D P

0.�/. Then we proceed as in the Euclidean algorithm to find

(10) Pk�1.x/ D Pk.x/Qk.x/ � PkC1.x/; k D 1; : : : ; s � 1; s � n;

where Ps.x/ is a constant. The sequence of polynomials P0; P1; : : : ; Ps is called the
Sturm sequence for the polynomial P .

Sturm’s theorem. LetP be polynomial (9) which may have only simple roots in a
segment Œa; b�. LetW.x/ be the number of sign changes in the sequence P0.x/;P1.x/;
: : : ; Ps.x/, x 2 R. If P.a/P.b/ ¤ 0, then the number of roots of P in .a; b/ is equal
to W.a/ �W.b/.

Proof. See, for example, Leung et al. [10].

2. Refined inequalities

This section contains the main results of the paper. The principle step in the proofs
of (1)–(3) is an application of the maximal inequality due to Banjević [3]. Instead, we
use a maximal inequality for a reversed martingale, as it was done for the first time by
Kruglov [8]. Theorem 2.1 contains a substantial improvement of inequalities (6). At
the same time, it is a special stronger case of Theorem 2.2 with " D q D 1 � p. It also
simplifies the proof of Theorem 2.2, since now we may suppose that " < q.

Theorem 2.1. The following inequalities hold:
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Theorem 2.3. Let 0 < p < 1, 0 � " � q D 1� p. The following inequality holds:
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Corollary 2.4. Let 0 < p < 1, 0 � " � q D 1 � p. The following inequalities
hold:
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Corollary 2.5. Let 0 < p < 1, 0 � " � min¹p; qº, q D 1 � p. The following
inequality holds:
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Corollary 2.6. Let 0 < p < 1, 0 � " � q D 1 � p. The following inequality
holds:
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3. Proofs

We postpone the proof of Theorems 2.1–2.3. At first we deduce Corollaries 2.4–2.6
from Theorems 2.1–2.3.

Proof of Corollaries 2.4–2.6. Let Fn be the� -algebra generated by the random
variables Sk , k 2N, k � n. Note that the sequence ¹Fnºn�1 decreases, that is, FnC1 �

Fn. On page 369 of the textbook [9] by Laha and Rohatgi one can find a proof of the
equality
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for the conditional mathematical expectations. For any real number � by the conditional
Jensen inequality we get
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The sequence ¹exp¹�n�1Snººn�1, according to the previous inequality, is a reversed
sub-martingale with respect to the decreasing sequence ¹Fnºn�1 of � -algebras. For any
� > 0 by the maximal inequality for sub-martingales (see Laha and Rohatgi [9, p. 433])
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we get
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Corollaries 2.4 and 2.6 follow from inequality (14) and Theorems 2.2 and 2.3.
Recall that Xn, n 2 N, are independent identically distributed Bernoulli random

variables with mean 0 < p < 1. It follows that Yn D 1 �Xn, n 2 N, are independent
identically distributed Bernoulli random variables with mean q D 1 � p. Inequality
(14) may be applied to random variables S 0n D Y1 C � � � C Yn, n 2 N, with p replaced
by q D 1 � p. Since Sk=k � p D q � S 0k=k, we have°ˇ̌̌Sk
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It follows that
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Now we may apply inequality (14) to Sk and S 0
k
, k 2 N, and Theorem 2.2. Corollaries

2.4–2.6 are proved.

Proof of Theorem 2.1. The first inequality in (11) means that the function
Q."/ D ln.1 � "/C 2"2 C .5=8/"4 of argument " 2 Œ0; 1/ takes only negative (non-
positive) values. We need the following derivatives:

Q.1/."/ D
P."/

1 � "
; P."/ D �

5

2
"4 C

5

2
"3 � 4"2 C 4" � 1;

P .1/."/ D �10"3 C
15

2
"2 � 8"C 4;

P .2/."/ D �30"2 C 15" � 8:

The polynomial P .2/."/ of second order is negative, since P .2/.0/ D �8 < 0 and
its discriminant is negative. This means that the function P."/ is concave on Œ0; 1�.
Since P.0/ D P.1/ D �1 and P.1=2/ D 5=32 > 0, there are "1 and "2 such that
0 < "1 < "2 < 1 and P."1/ D P."2/ D 0. Direct calculation shows that P.15=20/ D
7=512 > 0 and P.16=20/ D �13=125 < 0, and hence 15=20 < "2 < 16=20. Since
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P."/ � 0 for " 2 Œ0; "1� [ Œ"2; 1� and P."/ � 0 for " 2 Œ"1; "2�, we have that Q."2/ is
the maximal value of Q."/ on .0; 1/. Recall that the first derivative P .1/."/ decreases.
Since P .1/.15=20/ D �2 < 0, we have P .1/."/ � 0 for all " 2 Œ15=20; 16=20�, and
hence P."/ decreases on the segment Œ15=20; 16=20�. By the Taylor formula there is a
number "0 2 Œ15=20; "2� such that

Q."2/ D Q
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CQ0."0/
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D Q
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�
� Q
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C
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D Q
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�
C
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4

D � ln 4C
356671

268288
< �0:05686 < 0:

The first inequality in (11) is proved.
The second inequality in (11) means that the functionQ."/D ln.1� "/C 2"2C 3"4

of argument " 2 Œ0; 1=2� takes only negative (non-positive) values. Again we need the
following derivatives:

Q.1/."/ D
P."/

1 � "
; P."/ D �12"4 C 12"3 � 4"2 C 4" � 1;

P .1/."/ D �48"3 C 36"2 � 8"C 4;

P .2/."/ D �144"2 C 72" � 8;

P .3/."/ D �288"C 72:

Note that we use the same symbols for the polynomial and derivatives as above. This
cannot lead to misunderstanding since they are used only for local proofs.

We intend to apply the Budan–Fourier theorem and the Sturm theorem to the
polynomial P .1/."/ to prove the inequality P .1/."/ � 0 for all " 2 Œ0; 1=2�. Direct
calculation shows that

P .1/.0/ D 4 > 0; P .1/.1=2/ D 3 > 0;

P .2/.0/ D �8 < 0; P .2/.1=2/ D �8 < 0;

P .3/.0/ D 72 > 0; P .3/.1=2/ D �72 < 0;

P .4/.0/ D �288 < 0; P .4/.1=2/ D �288 < 0:

The numbers of sign changes of the sequence P .1/."/; : : : ; P .4/."/ at points " D 0 and
" D 0:4 are not equal: W.0/ D 3 and W.0:4/ D 1. By the Budan–Fourier theorem,
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the polynomial P .1/."/ may have two roots or it has no roots in the segment Œ0; 1=2�.
Suppose that it has two roots, say, "1 and "2. If "1 D "2, then P .1/."/D ."� "1/2Z."/
where the polynomial Z."/ has no roots in Œ0; 1=2�. Since P .1/.0/ D 4 > 0, the poly-
nomial P .1/."/ is positive for all " 2 Œ0; 1=2�. If "1 ¤ "2, then both roots are simple.
In this case we may apply the Sturm theorem to the polynomial P0."/ D P .1/."/. Let
us calculate the Sturm sequence (10) for P0."/:

P0."/ D �48"
3
C 36"2 � 8"C 4;

P1."/ D �144"
2
C 72" � 8;

P2."/ D �
2

3
" �

10

3
;

P3."/ D 3968:

Direct calculation shows that

P0.0/ D 4 > 0; P0.1=2/ D 3 > 0;

P1.0/ D �8 < 0; P1.1=2/ D �8 < 0;

P2.0/ D �10=3 < 0; P2.1=2/ D �11=3 < 0;

P3.p/ D 3968 > 0; P3.1=2/ D 3968 > 0:

The numbers of sign changes W.0/ D 2 and W.1=2/ D 2 of the sequence P0."/; : : : ;
P3."/ at points "D 0 and "D 1=2 are equal, and hence the polynomialP0."/DP .1/."/
has no roots in the segment Œ0; 1=2�. Since P .1/.0/D 4 > 0, the first derivative P .1/."/
is positive for all "2 Œ0;1=2�. This means that the functionP."/ increases on the segment
Œ0; 1=2�. It has the only root "0 2 .0; 1=2/ since P.0/ D �1 and P.1=2/ D 3=4. It
follows that the function Q."/ decreases on Œ0; "0� and increases on Œ"0; 1=2�. Since
Q.0/ D 0 and Q.1=2/ < �0:00564 < 0, we have Q."/ � 0 for " 2 Œ0; 1=2�.

The third inequality in (11) means that the function

Q."/ D ln.1 � "/C 2"2 C 6"4

takes only negative (non-positive) values for all " 2 Œ0;0:4�. Again we need the following
derivatives:

Q.1/."/ D
P."/

1 � "
; P."/ D �24"4 C 24"3 � 4"2 C 4" � 1;

P .1/."/ D �96"3 C 72"2 � 8"C 4;

P .2/."/ D �288"2 C 144" � 8;

P .3/."/ D �576"C 144:
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Prove that the polynomial P .1/."/ is positive for all " 2 Œ0; 0:4�. Direct calculation
shows that

P .1/.0/ D 4 > 0; P .1/.0:4/ D 772=125 > 0;

P .2/.0/ D �8 < 0; P .2/.0:4/ D 88=25 > 0;

P .3/.0/ D 144 > 0; P .3/.0:4/ D �432=5 < 0;

P .4/.0/ D �576 < 0; P .4/.0:4/ D �576 < 0:

By the Budan–Fourier theorem the polynomial P .1/."/may have two roots or it has no
roots in the segment Œ0; 0:4�. Suppose that it has two roots, say, "1 and "2. If "1 D "2,
then one can prove as above that the polynomial P .1/."/ is positive for all " 2 Œ0; 1=2�.
If "1 ¤ "2, then both roots are simple. In this case we may apply the Sturm theorem
to the polynomial P0."/ D P .1/."/. Let us calculate the Sturm sequence (10) for
P0."/ D P

.1/."/:

P0."/ D �96"
3
C 72"2 � 8"C 4;

P1."/ D �288"
2
C 144" � 8;

P2."/ D �
20

3
" �

10

3
;

P3."/ D 152:

Direct calculation shows that

P0.0/ D 4 > 0; P0.0:4/ D 772=125 > 0;

P1.0/ D �8 < 0; P1.0:4/ D 88=25 > 0;

P2.0/ D �10=3 < 0; P2.0:4/ D �6 < 0;

P3.0/ D 152 > 0; P3.0:4/ D 152 > 0:

The numbers of sign changes of the sequence P0."/; : : : ; P3."/ at points " D 0 and
"D 0:4 are equal:W.0/D 2 andW.0:4/D 2. Hence the polynomial P0."/D P .1/."/
has no roots in the segment Œ0; 0:4�. SinceP0.0/D P .1/.0/D 4 > 0, the first derivative
P .1/."/ is positive for all " 2 Œ0; 0:4�. This means that the function P."/ increases on
the segment Œ0; 0:4�. It has the only root "0 2 .0; 0:4/, since P.0/ D �1 and P.0:4/ D
551=625. It follows that the functionQ."/ decreases on Œ0; "0� and increases on Œ"0; 0:4�.
Since Q.0/ D 0 and Q.0:4/ D �0:0372256 < 0, all values of the function Q."/ are
negative. Theorem 2.1 is proved.

Proof of Theorem 2.2. All inequalities (12) hold for " D 0. They hold for " D q
by Theorem 2.1. From now on, we suppose that 0 < " < q.
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Proof of the second inequality in (12) for p � 1=2. Let us rewrite it

(15) L.p; "/ � 2"2 C
25

18
"4:

If inequality (15) holds for all 1=2 < p < 1, it holds for p D 1=2 by letting p # 1=2.
So we need to prove inequality (15) for 1=2 < p < 1. It is enough to prove that the
function

�.x/ D x ln
�x
p

�
C .1 � x/ ln

�1 � x
q

�
� 2.x � p/2 �

25

18
.x � p/4; p � x � 1;

takes only positive (non-negative) values. The first two derivatives of the function � are

�.1/.x/ D ln
�x
p

�
� ln

�1 � x
q

�
� 4.x � p/ �

50

9
.x � p/3;

�.2/.x/ D
Q.x/

3x.1 � x/
;

where

Q.x/ D 50x4 � .100p C 50/x3 C .50p2 C 100p C 12/x2 � .50p2 C 12/x C 3:

If Q.x/ � 0 for all p � x � 1, then the first derivative �.1/.x/ increases. Since
�.1/.p/ D 0, the function �.1/.x/ is positive. This means that the function �.x/
increases, and hence 0 D �.0/ � �.x/ for all p � x � 1. Prove that Q.x/ is positive
for all p � x � 1. At first we prove that Q.x/ � 0 for all p � x � 1, if 3=5 � p < 1.
We intend to apply the Budan–Fourier theorem to the polynomial Q. The first three
derivatives of it are

(16)

8̂̂̂̂
<̂
ˆ̂̂:
Q.1/.x/ D 200x3 � .300p C 150/x2 C .100p2 C 200p C 24/x

� .50p2 C 12/;

Q.2/.x/ D 600x2 � .600p C 300/x C .100p2 C 200p C 24/;

Q.3/.x/ D 1200x � .600p C 300/:

Direct calculation shows that

Q.p/ D 3.2p � 1/2 > 0; Q.1/ D 3 > 0;

Q.1/.p/ D 12.2p � 1/ > 0; Q.1/.1/ D 50p2 � 100p C 62 > 0;

Q.2/.p/ D 100
�
p �

2

5

��
p �

3

5

�
� 0; Q.2/.1/ D 100p2 � 400p C 324 > 0;

Q.3/.p/ D 300.2p � 1/ > 0; Q.3/.1/ D �600p C 900 > 0;

Q.4/.p/ D 1200 > 0; Q.4/.1/ D 1200 > 0:
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Most of these expressions are obviously positive (non-negative), we need only to prove
that Q.1/.1/ > 0 and Q.2/.1/ > 0. The polynomial Q.1/.1/ D 50p2 � 100p C 62 of
second order is positive because its discriminant is negative. The polynomial

Q.2/.1/ D 100p2 � 400p C 324 D 100.p � .10 �
p
19/=5/.p � .10C

p
19/=5/

of second order is positive for all 0 < p < 1 because both its roots are bigger
than 1. The numbers of sign changes W.p/ D 0 and W.1/ D 0 of the sequence
Q.x/; Q.1/.x/; : : : ; Q.4/.x/ at points x D p and x D 1 are equal. By the Budan–
Fourier theorem the polynomial Q.x/ has no roots in Œp; 1�. Since Q.p/ > 0, the
desired inequality Q.x/ > 0 holds for all p � x � 1.

Now we prove thatQ.x/ � 0 for all p � x � 1, if 1=2 < p < 3=5. SinceQ.p/ D
3.2p � 1/2 > 0, it suffices to prove that the first derivative Q.1/.x/ is positive for
all x 2 Œp; 1�. To this goal we intend to apply the Budan–Fourier theorem. Note that
Q.2/.p/D 100.p � 2=5/.p � 3=5/ < 0. The numbers of sign changesW.p/D 2 and
W.1/ D 0 of the sequence Q.x/;Q.1/.x/; : : : ; Q.4/.x/ at points x D p and x D 1
are not equal. By the Budan–Fourier theorem the polynomial Q.1/.x/ may have two
roots or it has no roots in the segment Œp; 1�. Suppose that there are two roots x1 and
x2. If x1 D x2, then Q.1/.x/ D .x � x1/

2Z.x/ where the polynomial Z.x/ has no
roots in the segment Œp; 1�. SinceQ.1/.p/D 12.2p � 1/ > 0, the polynomialQ.1/.x/

is positive for all x 2 Œp; 1�. If x1 ¤ x2, then both roots are simple, and we may apply
the Sturm theorem. Let us construct the Sturm sequence (10) for P0.x/ D Q.1/.x/:

(17)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

P0.x/ D 200x
3
� .300p C 150/x2 C .100p2 C 200p C 24/x

� .50p2 C 12/;

P1.x/ D 600x
2
� .600p C 300/x C .100p2 C 200p C 24/;

P2.x/ D
�100
3
p2 �

100

3
p C 9

�
x �

�50
3
p3 �

25

3
p2 C

62

3
p � 10

�
;

P3.x/ D
8R.x/

.100p2 � 100p C 27/2
;

where

R.x/ D 62500p6 � 187500p5 C 238125p4 � 163750p3 � 340875p2

C 391500p � 100062:

Prove that

P0.p/ D 12.2p� 1/ > 0; P0.1/ D 50p
2
� 100pC 62 > 0;

P1.p/ D 100
�
p�

2

5

��
p�

3

5

�
< 0; P1.1/ D 100p

2
� 400pC 324 > 0;
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P2.p/ D
50

3
p3 � 25p2 �

35

3
pC 10 < 0; P2.1/ D �

50

3
p3C

125

3
p2 � 54pC 19;

P3.p/ D
8R.p/

.100p2 � 100pC 27/2
; P3.1/ D

8R.p/

.100p2 � 100pC 27/2
:

We need only to verify the signs of the polynomials. The sign of P2.1/ does not matter.
The polynomial P2.p/ can be written as follows:

P2.p/ D
50

3

�
p �

1

2

��
p �

5 �
p
145

10

��
p �

5C
p
145

10

�
:

Since .5 �
p
145/=10/ < 0 and .5C

p
145/=10 > 3=5, we have P2.p/ < 0 for all

1=2 < p < 3=5.
Prove that R.p/ < 0 for all 0 < p � 3=5. Indeed,

R.p/ D .62500p6 � 187500p5/ � 125p.1310p2 C 2727p � 3132/

C .238125p4 � 100062/

< p5
�
62500 �

3

5
� 187550

�
� 125p.1310p2 C 2727p � 3132/

C

�
238125 �

34

54
� 100062

�
D �150050p5 � 125p.1310p2 C 2727p � 3132/ � 69201 < 0

since the polynomial 1310p2 C 2727p � 3132 of second order is positive. To see this
we note that its discriminant .2727/2 � 4 � 1310 � 3132 D �11452151 is negative.

It was established above that the polynomialP0.1/D 50p2 � 100pC 62 is negative.
The polynomial

P1.1/ D 100p
2
� 400p C 234 D 100

�
p �

10 �
p
19

5

��
p �

10C
p
19

5

�
of second order is positive for all 1=2 < p < 3=5 since both its roots are greater
than 3/5. We see that the numbers of sign changes W.p/ D 1 and W.1/ D 1 of the
sequence P0.x/; : : : ; P3.x/ at points x D p and x D 1 are equal. By the Sturm
theorem the polynomial P0.x/ D Q.1/.x/ has no roots in the segment Œp; 1�. Since
P0.p/ D Q

.1/.p/ D 12.p � 1=2/ > 0, the first derivative Q.1/.x/ is positive.

Proof of the second inequality in (12) for p C " � 1=2. The inequality is rewritten in
(15). At first we suppose that 2=5� p. Recall that 0 < " < q, and hence 2=5� p < 1=2.
Prove that the first derivative Q.1/.x/ is negative for all x 2 Œp; 1=2�. We intend to
apply the Budan–Fourier theorem to the polynomial Q.1/.x/. Let us consider the
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derivatives (16). Direct calculation shows that

Q.1/.p/ D 12.2p � 1/ < 0; Q.1/
�1
2

�
D 25

�
p �

1

2

�
< 0;

Q.2/.p/ D 100
�
p �

2

5

��
p �

3

5

�
� 0; Q.2/

�1
2

�
D 100

�
p �

2

5

��
p �

3

5

�
� 0;

Q.3/.p/ D 300.2p � 1/ < 0; Q.3/
�1
2

�
D 300.1 � 2p/ > 0;

Q.4/.p/ D 1200 > 0; Q.4/
�1
2

�
D 1200 > 0:

The polynomial Q.2/.p/ D 100.p � 2=5/.p � 3=5/ has the root p D 2=5. Never-
theless, Q.2/.2=5/ D 0, the numbers of sign changes W.p/ D 1 and W.1=2/ D 1

of the sequence Q.1/.x/; : : : ;Q.4/.x/ at points x D p and x D 1=2 are equal for all
p 2 Œ2=5; 1=2/. This means that the polynomialQ.1/.x/ has no roots in Œp; 1=2/. Since
Q.1/.p/ D 12.2p � 1/ < 0, the polynomial Q.1/.x/ is negative (non-positive) for all
x 2 Œp; 1=2�. This means that the polynomialQ.x/ decreases on the segment Œp; 1=2�.
Since

Q.p/ D 12
�
p �

1

2

�2
> 0; Q.1=2/ D �

25

2

�
p �

1

2

�2
< 0;

we have Q.x0/ D 0 for some p < x0 < 1=2. It follows that the function �.1/.x/
increases on the segment Œp; x0� and decreases on the segment Œx0; 1=2�. Let us prove
that �.1/.1=2/ > 0. Denote Z.p/ D �.1/.1=2/. We may consider the function

Z.p/ D �.1/.1=2/ D ln.1 � p/ � lnp � 4
�1
2
� p

�
�
50

9

�1
2
� p

�3
on the segment Œ2=5; 1=2�. Note that for 2=5 � p � 1=2 the first derivative

Z.1/.p/ D �
1

p.1 � p/
C 4C

50

3

�1
2
� p

�2
increases and Z.1/.1=2/ D 0. It follows that Z.1/.p/ � 0 for all 2=5 � p � 1=2. This
means that the function Z.p/ D �.1/.1=2/ attains its minimal value at point p D 1=2.
Since Z.1=2/ D 0 and �.1/.p/ D 0, the function �.1/.x/ is positive (non-negative)
for all x 2 Œp; 1=2�, and hence the function �.x/ increases on segment Œp; 1=2�. Since
�.p/ D 0, the function �.x/ is positive for all x 2 Œp; 1=2�. This proves the inequality
(15) if p � 2=5 and p C " � 1=2.

Next, let us prove inequality (15) for 0 < p < 2=5 and p C " � 1=2. Again it is
sufficient to prove that the first derivative Q.1/.x/ is negative for all x 2 Œp; 1=2�. We



Refined Kolmogorov inequalities for the binomial distribution 145

may apply the Sturm theorem to the polynomial P0.x/DQ.1/.x/. Consider the Sturm
sequence (17) and prove that

P0.p/ D 12.2p � 1/; P0

�1
2

�
D 25

�
p �

1

2

�
;

P1.p/ D 100
�
p �

2

5

��
p �

3

5

�
; P1

�1
2

�
D 100

�
p �

2

5

��
p �

3

5

�
;

P2.p/ D
50

3
p3 � 25p2 �

35

3
p C 10; P2

�1
2

�
D �

50

3
p3 C 25p2 �

112

3
p C

29

2
;

P3.p/ D
8R.p/

.100p2 � 100p C 27/2
; P3

�1
2

�
D

8R.p/

.100p2 � 100p C 27/2
:

We need only to verify the signs of the polynomials. They are as follows:

P0.p/ < 0; P0

�1
2

�
< 0;

P1.p/ > 0; P1

�1
2

�
> 0;

P2.p/ > 0; P2

�1
2

�
> 0;

P3.p/ < 0; P3

�1
2

�
< 0:

Prove that P2.1=2/ > 0. We have

P2.1=2/ D �
50

3
p3 C 25p2 �

112

3
p C

29

2
;

d

dp
P2.1=2/ D �50p

2
C 50p �

112

3
:

The polynomial �50p2 C 50p � 112=3 of second order is negative, since its discrim-
inant 2500 � 200 � 112=3 < 0 is negative. The function P2.1=2/ is positive for all
p 2 .0; 2=5�, since its minimal value 5=2 at point p D 2=5 is positive. This completes
the proof of the second inequality in (12).

Proof of the first inequality in (12) for any 0 � " � q D 1 � p < 1. Rewrite the
inequality

(18) L.p; "/ � 2"2 C
4

9
"4 C

1

30
"6:

By the second inequality in (12) we have that

L.p; "/ � 2"2 C
4

9
"4 C

17

18
"4 � 2"2 C

4

9
"4 C

1

30
"6
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if p � 1=2 or p C " � 1=2. We need to prove inequality (18) only for 0 < p < 1=2,
pC " > 1=2, 0 < " � q. Let x D 1� 2p and y D 1� 2.pC "/. Note that 0 � x < 2"
and y D x � 2". Kambo and Kotz [4] proved the equality

(19) L.p; "/ D

1X
rD1

1

2r.2r � 1/

�
y2r � 2ryx2r�1 C .2r � 1/x2r

�
and that all terms in the last series are not negative. The first term of this series is equal
to 2"2. Kraft [7] proved that the minimal value of the second term is equal to 4"2=9.
To prove (18) it suffices to show that the third term of the series is not less than "6=30.
Rewrite the third term of the above series as follows:

1

30
.y6 � 6yx5 C 5x6/ D

2"2

15
.15x4 � 40"x3 C 60"2x2 � 48"3x C 16"4/:

To prove inequality (18) it suffices to prove that the polynomial

(20) P.x/ D 15x4 � 40"x3 C 60"2x2 � 48"3x C
63

4
"4

takes only positive (non-negative) values for all 0 � x � 2". The first two derivatives
of P.x/ are

P .1/.x/ D 60x3 � 120"x2 C 120"2x � 48"3;

P .2/.x/ D 180x2 � 240"x C 120"2:

The polynomial P .2/.x/ of second order is positive because P .2/.0/ D 120"2 > 0 and
its discriminant .240"/2 � 4 � 180 � 120"2 D �28800"2 is negative. This means that
the function P.x/ is convex. Since P .1/.0/ D �48" < 0 and P .1/.2"/ D 192"3 > 0,
the polynomial P .1/."/ has the only root "0 2 Œ0; 2"�. It follows that the polynomial
P."/ may have only simple roots in Œ0; 2"�. We may apply the Sturm theorem to this
polynomial. Let us calculate the Sturm sequence (10) for the polynomial (20):

P0.x/ D 15x
4
� 40"x3 C 60"2x2 � 48"3x C

63

4
"4;

P1.x/ D 60x
3
� 120"x2 C 120"2x � 48"3;

P2.x/ D �10"
2x2 C 16"3x �

31

4
"4;

P3.x/ D �
351

10
"2x C

147

5
"3;

P4.x/ D
74695

54756
"4:
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Direct calculation shows that

P0.0/ D
63

4
"4 > 0; P0.2"/ D 316"

4 > 0;

P1.0/ D �48"
3 < 0; P1.2"/ D 192"

3 > 0;

P2.0/ D �
31

4
"4 < 0; P2.2"/ D �

63

4
"4 < 0;

P3.0/ D
147

5
"3 > 0; P3.2"/ D �

204

5
"3 < 0;

P4.0/ D
74695

54756
"4 > 0; P4.2"/ D

74695

54756
"4 > 0:

The numbers of sign changes W.0/ D 2 and W.2"/ D 2 of the sequence P0.x/; : : : ;
P4.x/ at points x D 0 and x D 2" are equal, and hence the polynomial P.x/ has no
roots in segment Œ0; 2"�. Since P.0/ D 63"4=4 > 0, the polynomial P.x/ is positive
for all x 2 Œ0; 2"�. Inequality (18) is proved.

Proof of the last inequality in (12), if 0 � " < 1=2 and p C " � 1=2. Rewrite the
inequality as follows:

(21) L.p; "/ � �
1

2
ln.1 � 4"2/ D 2"2 C

1X
rD2

.2"/2r

2r
:

Let us compare the two series (19) and (21). It suffices to prove that

1

2r.2r � 1/

�
y2r � 2ryx2r�1 C .2r � 1/x2r

�
�
.2"/2r

2r
; r 2 N; r � 2:

Recall that x D 1 � 2p, y D 1 � 2.p C "/, y D x � 2". This inequality means that
the function

Q."/ D .x � 2"/2r C 2r.2"/x2r�1 � x2r � .2r � 1/22r"2r

takes only positive (non-negative) values for all admissible x and ". Inequality (20) holds
for "D 0. It follows from 0 < " < 1=2 and pC "� 1=2 that 0 < 2"� x D 1� 2p < 1.
Fix x and calculate the first three derivatives with respect to ":

Q.1/."/ D �2.2r/.x � 2"/2r�1 C 2.2r/x2r�1 � .2r/.2r � 1/22r"2r�1;

Q.2/."/ D 4.2r/.2r � 1/.x � 2"/2r�2 � .2r/.2r � 1/222r"2r�2;

Q.3/."/ D �8.2r/.2r � 1/.2r � 2/.x � 2"/2r�3 � .2r/.2r � 1/2.2r � 2/22r"2r�3:
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Note that the third derivative is negative, and hence the function Q.2/."/ decreases.
Since

Q.2/.0/ D 4.2r/.2r � 1/x2r�2 > 0;

Q.2/.x=2/ D �.8r/.2r � 1/222rx2r�2 < 0;

the equalityQ.2/."1/D 0 holds for some 0< "1 <x=2. It follows that the first derivative
Q.1/."/ increases on Œ0; "1� and decreases on Œ"1; x=2�. Since Q.1/.0/ D 0, the first
derivative Q.1/."/ is positive on the segment Œ0; "1�. It follows that Q."/ � 0 for
0 � " � "1 since Q.0/ D 0.

It is possible that Q.1/.x=2/ is positive (non-negative) or negative. If the value
Q.1/.x=2/ is positive, then Q.1/."/ � 0 and the function Q."/ increases on Œ"1; x=2�.
Since Q."1/ � 0, the function Q."/ is positive (non-negative) for all " 2 Œ"1; x=2�.

Suppose now that Q.1/.x=2/ < 0. Since Q.1/."1/ � 0, there exists "2 2 Œ"1; x=2�
such that Q.1/."2/ D 0. It follows that the function Q."/ increases on Œ"1; "2� and
decreases on Œ"1; x=2�. SinceQ.x=2/D 0, the functionQ."/ is positive (non-negative)
for all "2 � "� x=2. Thus it is proved thatQ."/� 0 for all 0� "� x=2. This completes
the proof of Theorem 2.2.

Proof of Theorem 2.3. Inequality (13) holds for " D 0. If inequality (13) holds
for all 0 < " < q, it holds for " D q by letting " " q. The following function will help
to prove the inequality:

�.x/ D x �
x2

2.1C 2x=3/
� ln.1C x/ for x � 0:

Note that 0 D �.0/ � �.x/ and

�0.x/ D
x3

9.1C 2x=3/2.1C x/
> 0 for x > 0:

Denote y D p C " and t D q=.q � "/. Now let us study the function

h.p; "/ D L.p; "/ �
"2

2.p C "=3/.q � "=3/
�

"4

36.p C "/3
�
"�.t/

t

D y lny � y ln.y � "/ �
"4

36y3
�

"2

2.y � 2"=3/
� ":

Let us fix 0 < y < 1 and consider the function h.p; "/ of argument 0 � " < q. One
can estimate the first derivative of this function as

h0.p; "/ D
"3

9.y � "/.y � 2"=3/2
�
"3

9y3
>

"3

9y3
�

1

9y3
"3 D 0:
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It follows that the functionh.p;"/, 0� "< q, increases, and henceh.p;"/� h.p;0/D 0
and

L.p; "/ �
"2

2.p C "=3/.q � "=3/
C

"4

36.p C "/3
C
"�.t/

t
:

Since �.t/ � 0, Theorem 2.3 is proved.
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Zbl 0126.33203 MR 178484

[6] A. N. Kolmogorov, Some inequalities related to the strong law of large numbers. Teor.
Veroyatnost. i Primenen. 48 (2003), no. 2, 249–253; translation in Theory Probab. Appl. 48
(2003), no. 2, 221–225. Zbl 1059.60040 MR 2014970

[7] O. Kraft, A note on exponential bounds for binomial probabilities, Ann. Inst. Statist. Math.
21 (1969), 219–220.

[8] V. M. Kruglov, Inequalities for large deviation probabilities in the Bernoulli scheme.
Teor. Veroyatn. Primen. 49 (2004), no. 4, 785–790; translation in Theory Probab. Appl. 49
(2005), no. 4, 695–700. MR 2142568

https://zbmath.org/?q=an:1181.60034
https://mathscinet.ams.org/mathscinet-getitem?mr=2575440
https://zbmath.org/?q=an:0257.62015
https://mathscinet.ams.org/mathscinet-getitem?mr=0315820
https://zbmath.org/?q=an:0542.60021
https://mathscinet.ams.org/mathscinet-getitem?mr=749927
https://zbmath.org/?q=an:0151.24101
https://mathscinet.ams.org/mathscinet-getitem?mr=205298
https://zbmath.org/?q=an:0126.33203
https://mathscinet.ams.org/mathscinet-getitem?mr=178484
https://zbmath.org/?q=an:1059.60040
https://mathscinet.ams.org/mathscinet-getitem?mr=2014970
https://mathscinet.ams.org/mathscinet-getitem?mr=2142568


R. Giuliano Antonini – V. M. Kruglov – A. Volodin 150

[9] R. G. Laha – V. K. Rohatgi, Probability theory. Wiley Ser. Probab. Stat., John Wiley &
Sons, New York, 1979. Zbl 0409.60001 MR 534143

[10] K. T. Leung – I. A. C. Mok – S. N. Suen Polynomials and Equation, Hong Kong University
Press, 1993.

[11] P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab.
18 (1990), no. 3, 1269–1283. Zbl 0713.62021 MR 1062069

[12] M. Okamoto, Some inequalities relating to the partial sum of binomial probabilities. Ann.
Inst. Statist. Math. 10 (1958), 29–35. Zbl 0084.14001 MR 99733

[13] D. W. Turner – D. M. Young – J. W. Seaman, Jr., Improved Kolmogorov inequalities
for the binomial distribution. Statist. Probab. Lett. 13 (1992), no. 3, 223–227.
Zbl 0747.60020 MR 1158862

[14] D. M. Young – J. W. Seaman, Jr. – V. R. Marco, A note on a Kolmogorov inequality.
Statist. Probab. Lett. 5 (1987), no. 3, 217–218. Zbl 0616.60021 MR 881200

[15] D. M. Young – D. W. Turner – J. W. Seaman, A note on a Kolmogorov inequality for
the binomial distribution. Teor. Veroyatnost. i Primenen. 33 (1988), no. 4, 804–806.
Zbl 0662.60028 MR 979755

Manoscritto pervenuto in redazione il 6 agosto 2020.

https://zbmath.org/?q=an:0409.60001
https://mathscinet.ams.org/mathscinet-getitem?mr=534143
https://zbmath.org/?q=an:0713.62021
https://mathscinet.ams.org/mathscinet-getitem?mr=1062069
https://zbmath.org/?q=an:0084.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=99733
https://zbmath.org/?q=an:0747.60020
https://mathscinet.ams.org/mathscinet-getitem?mr=1158862
https://zbmath.org/?q=an:0616.60021
https://mathscinet.ams.org/mathscinet-getitem?mr=881200
https://zbmath.org/?q=an:0662.60028
https://mathscinet.ams.org/mathscinet-getitem?mr=979755

	1. Introduction
	2. Refined inequalities
	3. Proofs
	References

