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those canonical groups are parallel to the special models for complete first order theories.
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1. Introduction

1.1 – Background and aims

Our motivation is to investigate the class Klf of locally finite groups. The reader
may consider only this case ignoring the general case or may consider universal classes
(see Definition 1.4). The present work continues [15]. For historical remarks, see there
and [17]; for earlier history, see [11].

The main problem we are facing is the following:
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Problem 1.1. We consider the following questions:

(1) Is there a universal G 2 Klf
�

(D the class of members of Klf of cardinality �), see
Definition 1.3 (1); e.g., for � D Æ!? Or just � a strong limit cardinal of cofinality
@0 (which is not above a compact cardinal)?

(2) May there (consistently) be a universal G 2 Klf
�
, when � < �@0 , e.g., for � D

@1 < 2
@0?

For general background on the problem of the existence of a universal model for a
class in cardinality � see the classical works by Jonsson [9, 10], Morley–Vaught [13]
and the recent surveys by Džamonja [5] and by the author [19].

Returning to locally finite groups, concerning Problem 1.1 (1) recall that by
Grossberg–Shelah [7], if � D �@0 , then there is no universal member for Klf

�
. However,

if � is a strong limit cardinal of cofinality @0 above a compact cardinal �, then there is
G 2 Klf

�
which is universal. So Problem 1.1 addresses the remaining main open cases.

Let us consider the model theory of locally finite groups. Recall the following
definition.

Definition 1.2. Let G be a group.

(1) G is an lf (locally finite) group if every finitely generated subgroup of G is finite.

(2) G is an exlf (existentially closed locally finite) group (in [11] it is called ulf,
universal locally finite group) if G is a locally finite group and for any finite
groups K � L and embedding of K into G, the embedding can be extended to
an embedding of L into G.

(3) Let Klf be the class of lf (locally finite) groups (partially ordered by �, being a
subgroup) and let Kexlf be the class of existentially closed G 2 Klf .

Wehrfritz asked about the categoricity of the class of exlf groups in any � > @0.
This was answered by Macintyre–Shelah [12] who proved that in every � > @0 there
are 2� non-isomorphic members of Kexlf

�
. This was disappointing in some sense: in @0

the class is categorical, so the question was perhaps motivated by the hope that also
general structures in the class can be understood to some extent.

The existence of a universal object can be considered as a weak positive answer.
A natural and frequent question on a class of structures is the existence of rigid

members, i.e. those with no non-trivial automorphism. Now any exlf group G 2 Kexlf

has non-trivial automorphisms: the inner automorphisms (recalling it has a trivial
center). So the natural question is about complete members where a group is called
complete if and only if it has no non-inner automorphism.

Concerning the existence of a complete, locally finite group of cardinality �: Hickin
[8] proved that such group exists in @1 (and more: for example, he found a family of



Canonical universal locally finite groups 27

2@1 such groups pairwise far apart, i.e., no uncountable group is embeddable into two
of them). Thomas [22] assumed G.C.H. and built one in every successor cardinal (and
more: for example, it has no Abelian or just solvable subgroup of the same cardinality).
Related are works by Giorgetta–Shelah [6] and Shelah–Ziegler [21] who investigated
KG� getting similar results. Dugas–Göbel [4, Thm. 2] proved that for � D �@0 and
G0 2 Klf

��
there is a complete G 2 Kexlf

�C
extending G0; moreover 2�C pairwise non-

isomorphic ones. Then Braun–Göbel [1] got better results for complete locally finite
p-groups.

Now [15] shows that although the class Kexlf is very “unstable”, there is a large
enough set of definable types so we can imitate stability theory and have reasonable
control in building exlf groups, using quantifier free types. This may be considered as
a “correction” to the non-structure results discussed above. This was applied to build a
canonical extension of a locally finite group of the same cardinality and also endo-rigid
locally finite groups in a more relaxed way.

In the present work, we return to the universality problem for �D Æ! or just strong
limit of cofinality @0. We prove for Klf and similar classes that if there is a universal
model of cardinality �, then there is something like a special model of cardinality �,
in particular, universal and unique up to isomorphism. This relies on [18], which
proves the existence and even the density of so-called � -indecomposable (i.e., � is not
a possible cofinality) models in Klf of various cardinalities continuing the work of
Corson–Shelah [3] who deal with the class of all groups.

Returning to Problem 1.1 (1), a possible avenue is to try to prove the existence of
universal members in � when � D

P
n<! �n, each �n measurable < �, i.e., maybe

for some reasonable classes this holds.

1.2 – Definitions

We begin with describing the general context. In the sequel, K will be one of the
following cases:

Case 1 K D Klf , the class of locally finite groups, so the submodel relation is just
being a subgroup.

Case 2 K is a universal class, see Definition 1.4 (1) below, the submodel relation is
just being a submodel.

Case 3 K is k D .Kk;�k/, an a.e.c. with LSTk < �, see [14, §1]; we shall only
comment on it. In particular, in this context, in the definitions,M �N should
be replaced by M �k N .

We now need several definitions.
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Definition 1.3. We define the following:

(1) We say thatM 2 K� is universal (in K or in K�) when every member of K� can
be embedded into it.

(2) We say thatM 2K is universal for K<� when everyM 2K<� can be embedded
into it; see Definition 1.4 (4) below.

(3) We define “M 2 K is universal for K�” and “M 2 K is universal for K��”
similarly.

Definition 1.4. We define the following:

(1) We shall say that K is a universal class when for some vocabulary � D �K:

(a) K is a class of � -models, closed under isomorphisms;

(b) a � -model belongs to K iff every finitely generated sub-model belongs to it.

(2) Let K� be the class of M 2 K of cardinality �. We define K<�;K�� naturally.

(3) For cardinals � � � let K�;� be the class of pairs .N;M/ such that N 2 K�,
M 2 K� and M � N .

(4) Let .N1; M1/ ��;� .N2; M2/ mean that .N`; M`/ 2 K�;� for ` D 1; 2 and
M1 �M2, N1 � N2.

(5) For � � � we define K�;<� and ��;<� similarly.

(6) A universal class K can be considered as the a.e.c. k D .K;�/.

Also some notation is needed.

Notation 1.5. We introduce the following notation.

(1) Let M;N and also G;H;L denote members of K.

(2) Let jM j be the universeD set of elements of M and kMk its cardinality.

(3) Let a; b; c; d denote members of such M , and let Na; Nb; : : : denote sequences of
such elements.

Finally, we introduce some more definitions.

Definition 1.6. (1) We say that the pair .N;M/ is an .�; �; �/-amalgamation
base (or amalgamation pair; but we may omit � when � D �, and we may even
omit �; � too) when

(a) .N;M/ 2 K�;� ;

(b) if N1 D N and M � N2 2 K�, then N1; N2 can be amalgamated over M ,
this mean that for some N3; f1; f2 we have M � N3 2 K and f`-embeds
N` into N3 over M .
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(2) We say that the pair .N;M/ is a universal .�; �/-amalgamation base (we may
omit �; �) when

(a) .N;M/ 2 K�;�;

(b) if N � N 0 2 K�, then N 0 can be embedded into N over M .

(3) In parts (1) and (2), we may omit �; � when .�; �/ D .kN k; kMk/.

2. Indecomposability

In this section we deal with indecomposability, equivalently CF.M/, see, e.g., [20].
We have Klf in mind, but still it is meaningful and of interest also for other classes.

Why do we deal with indecomposable members K? When we shall try to under-
stand universal members M of K�, we shall use some � -indecomposable N �M of
cardinality < �. How will this help us? The point is thatN 2 K<� may have too many
embeddings into M , but if (� D cf.�/ 6D cf.�/ and ˛ < �) j˛jkNk < � and) N is
� -indecomposable and � is regular uncountable < �, then this is not the case.

We need indecomposable c W Œ��! � in order to build enough � -indecomposable
locally finite groups (as done in [18]).

Definition 2.1. We define the following notions concerning decomposability.

(1) We say that M is �-indecomposable or � 2 CF.M/ when: � is regular and if
hMi W i < �i is �-increasing with union M , then M DMi for some i .

(2) We say that M is ‚-indecomposable when it is �-indecomposable for every
� 2 ‚. We say thatM is ‚orth-indecomposable when it is � -indecomposable for
every regular � … ‚.

(3) We say that G is � -indecomposable inside GC when

(a) � D cf.�/;

(b) G � GC;

(c) if hGi W i � �i is �-increasing continuous and G� D GC (hence G � G� ),
then for some i < � we have G � Gi .

(4) For � D cf.�/ � � � � such that � … ‚� (see Theorem 2.2 (1)), we say that K is
.�;�;�/-indecomposable when for every pair .N;M/2K�;� there is .N1;M1/2

K�;� which is ��;�-above it andM1 is � -indecomposable (really, not just inside
N1). For � D cf.�/ < � � � we say that K is .�;< �; �/-indecomposable when:
if � D cf.�/ � �1 < �, � … ‚�1 , then K is .�; �2; �/-indecomposable for some
�2 2 Œ�1; ��.
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(5) We say that c W Œ��2 ! S is �-indecomposable when: if hui W i < �i is a �-
increasing sequence of sets with union �, then S D ¹c¹˛; ˇº W ˛ ¤ ˇ 2 uiº for
some i < � .

(6) We may replace above the cardinal � by a set or class ‚ of regular cardinals (as
done in Definition 2.1 (2)).

A group G may be considered indecomposable as a group or as a semi-group; our
default choice is semi-group; but note that for locally finite groups the two interpretations
are equivalent. The following was proved in [18].

Theorem 2.2. The following holds.

(1) If � � @1 and we let ‚� D ¹cf.�/º except that ‚� D ¹cf.�/; @º D ¹�; @º when
(c)�;@ below holds, then clauses (a) and (b) hold:

(a) Some c W Œ��2 ! � is � -indecomposable for every � D cf.�/ … ‚�.

(b) For every G1 2 Klf
��

there is an extension G2 2 Klf
�

which is ‚orth
�

-inde-
composable.

(c)�;@ For some�, �D �C,� > @D cf.�/ and�D sup¹� < � W � is a regular
Jonsson cardinalº.

(2) If�� �� � D cf.�/ and � …‚�, �� @1, then Klf is .�;�; �/-indecomposable.

(3) If � � � and .H1;G1/ 2 K��;��, then we can find a pair .H2;G2/ 2K�;� such
that

(a) G2 is ‚orth
�

-indecomposable;

(b) if � > �, then the pair .H2; G1/ is � -indecomposable for every regular � ;

(c) H2 is ‚orth
� -indecomposable.

For the convenience of the reader we give some details of the proof.

Proof. (1) By [18, Thm. 3.5].
(2) The proof will serve also for part (3). Let .N;M/ 2 K�;� be given. We choose a

pair .�;@/ of cardinals and c such that�� ���, @D cf.@/� �, @ 6D � and c W Œ��2! �

is � -indecomposable (possible here as � … ‚�, � � @1 even for � D �).
By induction on ˛ � @, we choose H˛; L˛ , but L˛ is chosen together with H˛C1

when ˛ is a successor ordinal, such that

(a) .H˛; L˛/ 2 K�;� is increasing continuous with ˛;

(b) .H0; L0/ D .N;M/;

(c) if ˛ D ˇ C 1 < � , then L˛ is � -indecomposable.
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Why can we carry out the induction? For ˛ D 0 this is trivial; similarly for ˛ a limit
ordinal. Lastly, by clause (b) of part (1), for ˛ D ˇ C 1 � ˛�, recall the proof of [18,
Prop. 3.4], pedantically as without loss of generality, Hˇ ; Lˇ are existentially closed,
hence generated by the elements of order 2. Let ha˛ W ˛ <�i list ¹a 2Lˇ W a of order 2º.
By [18, Prop. 3.4 (2)], withu˛D¹˛º, we can findH˛;1 2Klf

� extendingHˇ and pairwise
commuting b˛ 2 H˛;1 each of order 2, for ˛ < � (the order 2 was not mentioned but
proved) and pairwise commuting d˛ 2 H˛;1, each of order 2, for ˛ < � such that Lˇ
is included in the subgroup L˛;1 of H˛;1 generated by ¹b˛; d˛ W ˛ < �º.

Now apply [18, Prop. 3.4 (1)] for a � -indecomposable c W Œ��2 ! �.
(3) We deal with every regular � � � successively. Fixing � , we can use the proof

of part (2).

Now comes the central definition. What is its role? We like to sort out when there is
a universal member of K� and when there is a canonical universal member. For reasons
explained above we concentrate on the case � being a strong limit of cofinality @0, for
example Æ! . To find out the answer to those two questions for every universal class K

seems like too much to hope for. Definition 2.3 accomplishes a more modest task: it
gives a large frame satisfied by a large family of pairs .K; �/ for which we shall prove
an equivalence. In particular, our class Klf belongs to this family.

Definition 2.3. We say that K is �-nice when

(a) �K has cardinality < �;

(b) for every M 2 K<� there is N 2 K� extending M ;

(c) K has the JEP (joint embedding property);

(d) K is .�;< �; cf.�//-indecomposable;

or just

(d)0 for arbitrarily large �2 < � letting � D cf.�/ � �2 we have that K is
.�; �2; �/-indecomposable.

Naturally we like to prove that the pair .Klf;Æ!/ falls under the frame of Defini-
tion 2.3. This is the role of Claims 2.4 and 2.5. In Section 3 we point out an additional
family. For the main case, � is a strong limit of cofinality @0.

Claim 2.4. Klf is �-nice when � > @1.

Proof. In Definition 2.3 clause (a) is trivial. As Klf is closed under products,
clearly clauses (b) and (c) are clear. For � regular, clause (d) is trivial (and is not used),
and for � singular, it holds by Theorem 2.2 (3), see also Claim 2.5 (2) below.
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We give below more than what is strictly needed.

Claim 2.5. Assume K D Klf .

(1) We have (A)) (B) where:

(A) (i) � � @1;

(ii) ı� � � and �˛ < � for ˛ < ı�;

(iii) �˛ � j˛j is non-decreasing;

(iv) G1 2 K��;

(v) G1;˛ 2 K��˛ and G1;˛ � G1 for ˛ < ı�.

(B) There are G2; xG2 such that

(i) G2 2 K� extends G1;

(ii) xG2 D hG2;˛ W ˛ < ı�i is increasing;

(iii) G2;˛ 2 K�˛ extends G1;˛;

(iv) G2 is ‚-indecomposable where ‚ D .‚� [ ¹cf.ı�/º/orth;

(v) G2;˛ is ‚orth
�˛

-indecomposable (not just inside H2) for every ˛ < ı�;

(vi) if � D
P
¹�˛ W ˛ < ı�º, then G2 D

S
¹G2;˛ W ˛ < ı�º.

(2) If � > � � @1, then @0 2 ‚orth
cf.�/ [ ‚

orth
�

except possibly when � D �C and
cf.�/ D @0.

Proof. (1) We prove the claim step by step. By induction on ˛ � ı� we choose
H˛; xH˛; L˛, but L˛ is chosen together with H˛C1 and not chosen for ˛ D ˛�, such
that

(a) H˛ is increasing continuous with ˛;

(b) H0 D G1 and ˛ > 0) H˛ 2 K�;

(c) .H˛; Lˇ / 2 K�;�ˇ when ˛ D ˇ C 1 � ˛�;

(d) xH˛ D hH˛;" W " < ı�i such that if � D
P
¹�" W " < ı�º, then this sequence is

increasing with union H˛, and H˛;" has cardinality �" when ˛ > 0 and � �"
when ˛ D 0;

(e) G1;ˇ ;Hˇ;"; L
 are subgroups of L˛ when ˇ � ˛, " � ˛, 
 < ˛;

(f) Lˇ is ‚orth
�ˇ

-indecomposable;

(g) G2 is ‚-indecomposable where ‚ D .‚� [ ¹cf.ı�/º/orth.

Why can we carry out the induction? We choose xH˛ just after H˛ was chosen.
For ˛ D 0 this is trivial (note that L˛ is not chosen), similarly for ˛ a limit ordinal.
Lastly, for ˛ D ˇ C 1 � ˛�, Definition 2.1 (4) and Theorem 2.2 (3) give the desired
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conclusion. In details, first choose LC
ˇ
� Hˇ of cardinality at most �˛ satisfying the

desired sets (listed in clause (e)). Then apply Theorem 2.2 (3) to the pair .Hˇ ; LCˇ / to
get .H˛; L˛/. Lastly, let G2 2 K� extend Hı� and let it satisfy the indecomposability
demand. Letting G2;˛ D L˛ , we are done.

(2) Easy.

The final claim of this section is immediate and we omit its proof.

Claim 2.6. If � is strong limit singular and N 2 K�, then the set

IDC<�.N / D ¹M WM � N has cardinality < � and is cf.�/-indecomposableº

has cardinality � �.

3. Universality

For quite many classes, there are universal members in any (large enough) � which
is a strong limit of cofinality @0, see [16] which includes history. Below we investigate
“is there a universal member of Klf

� for such �”. We prove that if there is a universal
member, e.g., in Klf

�, then there is a canonical one.
What do we mean by “canonical”? This is not a precise definition, but we mean it

is unique up to isomorphism, by a natural definition. Examples we have in mind are
the algebraic closure of a field, the saturated model of a complete first-order theory T
in cardinality �C D 2� > jT j, and the special model of a complete first-order theory
T in a singular strong limit cardinal � > jT j, see [2]. The last one means:

(�) For such T;� we say thatM is a special model of T of cardinality � when some
xM witnesses M , which means

(a) xM D hMi W i < cf.�/i;

(b) Mi is �-increasing with i ;

(c) each Mi has cardinality < �;

(d) M D
S
¹Mi W i < cf.�/º;

(e) for every � < � and for every large enough i < cf.�/ the model Mi is
�C-saturated.

Considering our main case, Klf , a major difference between what we prove here
(e.g., for Klf) and (�) is that here amalgamation fails, so clause (B) of Theorem 3.1 is a
poor man’s replacement.
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Theorem 3.1. Assume � is a strong limit of cofinality @0 and K is �-nice.

(1) The following conditions are equivalent:

(A) There is a universal G 2 K�.

(B) IfH 2K� is @0-indecomposable for some � < �, then there is a sequence
xG D hG˛ W ˛ < ˛� � �i such that

(a) H � G˛ 2 K�;

(b) if G 2 K� extends H , then for some ˛, G is embeddable into G˛
over H .

(B)C We can add in (B):

(c) If ˛1 < ˛2 < ˛�, thenG˛1 ;G˛2 cannot be amalgamated overH , that
is, there are no G; f1; f2 such that H � G 2 K and f` embeds G˛`
into G over H for ` D 1; 2.

(d) .H;G˛/ is an amalgamation pair (see Definition 1.6 (1)), moreover
a universal amalgamation base (see Definition 1.6 (2)).

(2) We can add in part (1):

(C) There is G� such that

(a) G� 2 K� is universal for K<�;

(b) E
@0
G�;<�

(see Definition 3.2 below) is an equivalence relation with
� � equivalence classes;

(c) G� is �-special (see Definition 3.2 (5) below).

(C)C Like clause (C) but we add:

(d) If G; G� 2 K� are �-special, then G; G� are isomorphic (that is,
uniqueness).

Before we prove Theorem 3.1, we state the following definition, which is not just
used in the proof but also in phrasing Theorem 3.1 (2).

Definition 3.2. For � D cf.�/ < � and M� 2 K� we define:

(1) IND�M�;<� D ¹N W N �k M� has cardinality < � and is � -indecomposableº.

(2) F�M�;<� D ¹f W for some � -indecomposable N D Nf 2 K<� with universe an
ordinal, f is an embedding of N into M�º.

(3) E�M�;<� D ¹.f1; f2/ W f1; f2 2 F�M�;<�; Nf1 D Nf2 and there are embeddings
g1; g2 of M� into some extension M 2K� of M� such that g1 ı f1 D g2 ı f2º.

(4) We say that M� is �-E�M�;<�-indecomposably homogeneous (or just M� is �-
indecomposably homogeneous) when some xM witnesses it, which means:
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(a) xM D hMi W i < cf.M/i is increasing continuous with limit �;

(b) if f1; f2 2 F�M�;<� and .f1; f2/ 2 E�M�;<� and there exists i < � such that
A � Mi has cardinality < �, then there is .g1; g2/ 2 E�M�;<� such that
f1 � g1 ^ f2 � g2 and A � Rang.g1/ \ Rang.g2/.

It follows that if cf.�/ D @0, then for some g 2 aut.M�/ we have f2 D g ı f1.

(5) We say that M� 2 K� is �-special when it is �-indecomposably homogeneous
and is universal for K<�, that is, every M 2 K<� is embeddable into it.

It is worth making the following remark.

Remark 3.3. We may consider in Theorem 3.1 also (A)0) (A) where (A)0 is as
follows:

(A)0 If � < �,H �G1 2K<� and jH j � �, then for someG2 we haveG1 �G2 2
K<� and .H;G2/ is a .�; �; �/-amalgamation base.

Proof of Theorem 3.1. It suffices to prove the following implications:

(A)) (B). Let G� 2 K� be universal and choose a sequence hG�n W n < !i such that
G� D

S
nG
�
n , G�n � G�nC1, jG

�
n j < �.

LetH be as in Theorem 3.1 (B) and let GD ¹g W g embeds H into G�n for some nº.
So clearly jGj �

P
n jG

�
n j
jH j �

P
�<� 2

� D � (an over-kill).
Let hg�˛ W ˛ < ˛� � �i list G and let .G˛; g˛/ be such that

(�)1 (a) H � G˛ 2 K�;

(b) g˛ is an isomorphism from G˛ onto G� extending g�˛ .

Why? Let U be a set of cardinality � extendingH . As jUj D jG�j D � > jH j, there is
a one-to-one function g˛ from U onto G� extending g�˛ . Let G˛ 2 K have universe U
such that g˛ is an isomorphism from G˛ onto G�.

It suffices to prove that xG D hG˛ W ˛ < ˛�i is as required in clause (B). Now clause
(B) (a) holds by (�)1 (a) above. As for clause (B) (b), let G satisfy H � G 2 K��,
hence there is an embedding g ofG intoG�. We know that g.H/�G D

S
nGn hence

hg.H/ \Gn W n < !i is �-increasing with union g.H/; but g.H/ by the assumption
on H is @0-indecomposable, hence g.H/ D g.H/ \ G�n � G

�
n for some n. This

implies g � H 2 G and so for some ˛ < ˛� we have g � H D g�˛ . Hence g�1˛ g is
an embedding of G into G� extending .g˛ � H/�1.g � H/ D .g�˛/�1.g�˛/ D idH as
promised.

(B)) (B)C. What about (B)C (c)? While xG does not necessarily satisfy it, we can
“correct it”, e.g., we choose u˛; v˛ , and if ˛ …

S
¹vˇ W ˇ < ˛º, we also choose G0˛ by
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induction on ˛ < ˛� such that1

(�)2˛ (a) G˛ � G
0
˛ 2 K� if ˛ …

S
¹vˇ W ˇ < ˛º;

(b) u˛ � ˛ and v˛ � ˛� n .˛ C 1/;

(c) if ˇ < ˛, then uˇ D u˛ \ ˇ and u˛ \ vˇ D ;;

(d) if ˛ D ˇ C 1, then ˇ 2 u˛ iff ˇ …
S
¹v
 W 
 < ˇº;

(e) if ˛ …
S
¹v
 W 
 < ˛º, then:

�1 
 2 v˛ iff (
 > ˛ and) G
 is embeddable into G0˛ over H ;

�2 if 
 2 ˛� n .˛ C 1/ n .
S
¹vˇ W ˇ � ˛º/, then G
 is not embeddable

over H into any G0 satisfying G0˛ � G0 2 K;

(f) if ˛ D ˇ C 1 and ˇ … u˛ , then vˇ D ;.

Why is this sufficient? Because if we let u˛� D ˛� n .
S
¹v
 W 
 < ˛�º/, then

hG0˛ W ˛ 2 u˛�i is as required; but we elaborate.
First, for clause (B)C (c) assume that ˛ < ˇ are from u˛� . As ˇ … v˛ , by (�)2˛ (e) �2

we know thatGˇ is not embeddable into any extension ofG0˛ overH ; but asGˇ � G0ˇ
clearly also G0

ˇ
is not embeddable into any extension of G0˛ over H . Renaming this

means that G0˛; G0ˇ cannot be amalgamated over H , as promised.
Second, for clause (B)C (d), let ˛ 2 u˛� . We have to prove that the pair .G0˛;H/

is a universal .�; �/-amalgamation base where � is the cardinality of H . So assume
G0 2 K� extends G0˛; recall that we are assuming that hG˛ W ˛ < ˛�i is as in clause
(B), hence there are ˇ < ˛� and an embedding f of G0 into Gˇ over H . We shall
prove that ˇ D ˛ hence (recalling G˛ � G0˛) f embeds G0 into G0˛ over H , which
completes the proof of (B)) (B)C.

If ˇ 2 u˛� n ¹˛º, then f � G0˛ embeds G0˛ into G0
ˇ

over H , a contradiction to
(B)C (c) which we have already proved.

If ˇ 2 ˛� n u˛� , then for some 
 we have ˇ 2 v
 hence 
 < ˇ andGˇ is embeddable
into G0
 over H ; hence G0 is embeddable into G0
 over H . As in the previous sentence
necessarily 
 D ˛ and we are done.

Why can we carry out the induction? For ˛ D 0 and for ˛ a limit ordinal, we have
nothing to do because u˛ is determined by (�)2˛ (b) and (�)2˛ (c). For ˛ D ˇ C 1, if
ˇ 2

S

<ˇ v
 , we have nothing to do, in the remaining case we choose G0

ˇ;i
2 K� by

induction on i 2 Œ˛; ˛��, increasing continuous with i . For i D 0 let G0
ˇ;i
D Gˇ and

for limit i let G0
ˇ;i
D

S
¹G0

ˇ;j
W j < iº. Then choose G0

ˇ;iC1
to make clause (e) true.

(1) The idea is that if ˇ 2 v˛ , then ˇ > ˛ and Gˇ is discarded being embeddable into some
G0˛ , and G0˛ is the “corrected” member.
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That is, first, if G0
ˇ;i

has an extension into which Gi is embeddable over H , then
there is such an extension of cardinality �; and choose G0

ˇ;iC1
as such an extension.

Second, if G0
ˇ;i

has no extension into which Gi is embeddable over H , then we let
G0
ˇ;iC1

D G0
ˇ;i

.
Lastly, let G0˛ D G0˛;˛� and u˛ D uˇ [ ¹˛º and v˛ D ¹i W i 2 ˛�; i > ˛; i …S
¹v
 W 
 < ˇº and Gi is embeddable into G0

ˇ
over H º.

(B)C ) (A). We prove below more: there is something like a “special model”, i.e.
Theorem 3.1 (2), that is, (B)C) (C)C.

(C)C) (C)) (A). This is trivial so we are left with proving the following.

(B)C) (C)C. Let Kslf
� be the class of G such that

(�)3G (a) G 2 K�;

(b) if H � G, H 2 K<�, then there are @0-indecomposable Hn � G for
n < ! with union of cardinality< � such thatH �

S
¹Hn W n < !º, and

there are @0-indecomposable Gn � G for n < ! such that Gn 2 K<�,
Gn � GnC1 and G D

S
¹Gn W n < !º;

(c) ifH � G is @0-indecomposable of cardinality< �, then the pair .G;H/
is a universal .�;< �/-amalgamation base (see Definition 1.6 (2));

(d) if H � G is @0-indecomposable of cardinality < �, H � H 0 2 K<�,
H 0 is @0-indecomposable2, and G;H 0 are compatible over H (in K��),
then H 0 is embeddable into G over H .

Now we can finish by proving (�)4 and (�)5 below.

(�)4 If G 2 K��, then some H 2 Kslf
N�

extends G;

We break the proof into four steps; (�)4:3 gives the desired conclusion of (�)4.

(�)4:0 If G 2 K��, then for some H; xH we have

(a) G � H 2 K�;

(b) xH D hHn W n < !i;

(c) Hn � HnC1 � H ;

(d) H D
S
¹Hn W n < !º;

(e) each Hn is @0-indecomposable of cardinality < �;

(2) The @0-indecomposability is not always necessary, but we need it sometimes.
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(f) (not really needed) when KDKlf , ifK �Hn, jKj � @ and 2@� jHnj, then
there is a subgroup L ofHn extendingK which is‚orth

@
-indecomposable.

Why? For clauses (a)–(e) by the definition of K being nice. For clause (f) by
Claim 2.5 (1), (2).

(�)4:1 If N1 2 K��, then there is N2 such that

(a) N2 2 K�;

(b) N1 � N2;

(c) ifH 2 IDC<�.N1/, then .N2;H/ is a universal .�;< �/-amalgamation
base.

Why? By Claim 2.6 it is enough to deal with one such H , which is okay by clause
(d) of Definition 2.3, recalling “universal .�;< �/-amalgamation base” by (B)C which
we are assuming.

(�)4:2 Like (�)4:1 but clause (c) is replaced by

(c)0 if H1 2 IDC<�.N1/ and H1 � H2 2 K<� (and we may add: H2 is
@0-indecomposable), then either N2; H1 are incompatible over H1 in
K�� or H2 is embeddable into N2 over H1.

Why? Again it is enough to deal with one pair .H1;H2/, which is done by hand.

(�)4:3 If N1 2 K��, then there is N2 such that

(a) N2 2 K�;

(b) N1 � N2;

(c) ifH 2 IDC<�.N2/, then .N2;H/ is a universal .�;< �/-amalgamation
base;

(d) if H1 2 IDC<�.N2/ and H1 � H2 2 K<� (and we may add: H2 is
@0-indecomposable), then either N2; H1 are incompatible over H1 in
K�� or H2 is embeddable into N2 over H1.

Why? We choose L" 2 K� by induction on " � cf.�/, such that

(a) L˛ 2 K�;

(b) hLˇ W ˇ � ˛i is increasing continuous;

(c) G1 � L0;

(d) if ˛ D 3ˇ C 1, then L˛ relates to L3ˇ as N2 relates to N1 in (�)4:0;

(e) if ˛ D 3ˇ C 2, then L˛ relates to L3ˇC1 as N2 relates to N1 in (�)4:1;

(f) if ˛ D 3ˇ C 3, then L˛ relates to L3ˇC2 as N2 relates to N1 in (�)4:2.
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There is no problem to carry out the induction. Note that if N � Lcf.�/ is cf.�/-
indecomposable, then for some " < cf.�/ we have N � L". Then N2 D Lcf.�/ is as
required in (�)4:3 hence in (�)4.

(�)5 (a) If G1; G2 2 Kslf
� , then G1; G2 are isomorphic.

(b) If G1; G2 2 Kslf
� , H 2 K<� is @0-indecomposable and f` embeds H

into G` for ` D 1; 2, and this diagram can be completed (i.e., there are
G 2 K� and an embedding g` W G` ! G� such that g1 ı f1 D g2 ı f2),
then there is h such that

(˛) h is an isomorphism from G1 onto G2;

(ˇ) h ı f1 D f2.

Why? Clause (a) follows from clause (b) using as H the trivial group. For clause
(b), let F D FŒG1; G2� be the set of f such that

(a) f is an isomorphism from G1;f 2 IDC<�.G1/ onto G2;f 2 IDC<�.G2/;

(b) G1;G2 are f -compatible in K�, which means that there areG 2K� and embed-
dings g` of G` into G for ` D 1; 2 such that g2 ı f D g1 � G1;f .

First, F is non-empty (the function f with domain f1.H/ and range f2.H/ will
do). Second, use the hence and forth argument; here we use cf.�/ D @0.

We make a final remark in this section.

Remark 3.4. (1) Can we prove for strong limit singular� of uncountable cofinality
� a parallel result? Well, we have to consider the following game:

(�) The game is defined as follows:

(a) A play last � moves.

(b) In the " move, first, player I chooses M" 2 K<� and then, player II chooses
N" 2 K<�.

(c) M" 2 K<�, and if " is non-limit, then M" is cf.�/-indecomposable.

(d) hM� W � � "i is increasing continuous.

(e) M" � N" �M"C1.

(f) In the end of the play, player II wins iff for every limit ordinal " < cf.�/,
M" is an amalgamation base inside K<�.

Now, if player II does not lose, then we can imitate the proof above; this should be
clear. Does the existence of a universal member of K� implies this? We hope to return
to this elsewhere.
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(2) Another remark is that the proof works for any a.e.c. k with LSTk < �. But we
may wonder: can we weaken the demand on k? Actually we can: there is no need of
smoothness; that is, if hM˛ W ˛ � ıi is �k-increasing, then

S
¹M˛ W ˛ < ıº �k Mı .

Moreover, while we need the existence of an upper bound for any �k-increasing
sequence, we also demand the union being such upper bound only for the cofinality
cf.�/. Finally, we may add a version fixing N�.

4. Universal in Æ!

In Section 2 we have characterized when there are special models in K of cardi-
nality, e.g., Æ! . We try to analyze a related combinatorial problem. Our intention is
to first investigate kfnq (the class structures consisting of a set and a directed family of
equivalence relations on it, each with a finite bound on the size of equivalence classes).
So kfnq is similar to Klf but seems easier to analyze. We consider some partial orders
on k D kfnq.

First, under the substructure order, �1 D �, this class fails amalgamation. Second,
we have other orders:�3 and�2, demanding a Tarski–Vaught condition TV (see below).
However using �3, where we have a similar demand for countably many points and
finitely many equivalence relations, we have amalgamation. This is naturally connected
to locally finite groups, see Definition 4.6 and Discussion 4.7.

Definition 4.1. Let K D Kfnq be the class of structures M such that3

(a) PM ;QM is a partition of M;PM non-empty;

(b) EM � PM � PM �QM (is a three-place relation) and we write aEMc b for
.a; b; c/ 2 EM ;

(c) for c 2QM ,EMc is an equivalence relation onPM with sup¹ja=EMc j W a 2PM º
finite (see more later);

(d) QM
n;k
� .QM /n for n; k � 1;

(e) if NcDhc` W `< ni 2 n.QM /, we letEM
Nc be the closure of

S
`E` to an equivalence

relation;

(f) n.QM / D
S
k�1Q

M
n;k

;

(g) if Nc 2 QM
n;k

, then k � ja=EM
Nc j for every a 2 PM .

We need a further definition.

(3) The vocabulary is defined implicitly and is �K, i.e. depends just on K.
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Definition 4.2. We define some partial orders on K.

(1) �1 D �
1
K D �

1
fnq is a sub-model.

(2) �3 D �
3
K D �

3
fnq is the following: M �3 N iff

(a) M;N 2 K;

(b) M � N ;

(c) if A � N is countable and A \QN is finite, then there is an embedding of
N � A into M over A \M or just a one-to-one homomorphism.

(3) �2 D �
2
K D �

2
fnq is defined like �3 but in clause (c), A is finite.

We first state an easy claim.

Claim 4.3. (1) K is a universal class, so .K;�/ is an a.e.c.

(2) �3K;�
2
K;�

1
K are partial orders on K.

(3) .K;�2K/ is an a.e.c.

(4) .K;�3K/ has disjoint amalgamation.

Proof. (1)–(3) Easy. (4) By Claim 4.4 below.

Claim 4.4. IfM0 �
1
K M1,M0 �

3
K M2 andM1 \M2 DM0, thenM DM1CM2,

the disjoint sum of M1; M2 belongs to K and extends M` for ` D 0; 1; 2 and even
M1 �

3
fnq M and ŒM0 �

2
K M1)M2 �

2
K M� when:

(�) M DM1 CM0 M2 means that M is defined as follows:

(a) jM j D jM1j [ jM2j.

(b) PM D PM1 [ PM2 .

(c) Q D QM1 [QM2 .

(d) We define EM by defining EMc for c 2 QM by cases:

(˛) if c 2 QM0 , then EMc is the closure of EM1
`
[E

M2
`

to an equivalence
relation;

(ˇ) if c 2 QM` nQM0 and ` 2 ¹1; 2º, then EMc is defined by

• aEMc b iff a D b 2 PM3�` nM0 or aEM`c b so a; b 2 PM` .

(e) QM
n;k

is the union of QM1
n;k
;Q

M2
n;k

and the set of Nc satisfying

(˛) Nc 2 n.QM /;

(ˇ) Nc … n.QM1/ [ n.QM2/;

(
 ) EM
Nc , which is now well defined, has no equivalence class with more than

k members, that is, for some finiteA and pairwise distinct a0; : : : ;ak 2A,
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which are members of a=E�
Ec

, the closure of
S
¹EMci � A W i < lg. Nc/º

to an equivalence relation satisfies aiE 0a for i � k.

Proof. Clearly M is a well-defined structure, extends M0;M1;M2 and satisfies
clauses (a), (b), (c) of Definition 4.1. There are two points to be checked:

(�)1 If a 2 PM and Nc 2 QM
n;k

, then ja=EM
Nc j � k.

(�)2 If Nc 2 n.QM /, then Nc 2
S
kQ

M
n;k

.

Proof of (�)1. If Nc 2 QM
n;k
n .Q

M1
n;k
[Q

M2
n;k
/, this holds by the definition, so assume

Nc 2 Q
M�
n;k

, � � 2. If this fails, then there is a finite set A �M such that Nc � A, a 2 A
and the closure of

S
¹EMc` � A W ` < lg. Nc/º to an equivalence relation satisfies: some

equivalence class has > k members. Letting N D M � A, we have ja=EN
Nc j > k.

By M0 �
1
K M1, M0 �

3
K M2 (really M0 �

2
K M2 suffice) there is a one-to-one homo-

morphism f from A \M2 into M0 over A. Let B 0 D .A [M1/ [ f .A \M2/ and
N 0 D M � B and let g D f [ idA\M1 . So g is a homomorphism from N onto N 0

and g.a/=EN 0
g. Nc/

has > k members, which implies that g0.a/=EM1
g0. Nc/

has > k mem-
bers. Moreover, g. Nc/ 2 QM1

n;k
(Why? Trivially if � D 1; if � D 2 by the choice of f ),

contradiction to M1 2 K.

Proof of (�)2. If Nc 2M1 or Nc �M2, this is obvious by the definition ofM , so assume
that they fail. By the definition of the QM

n;k
’s we have to prove that sup¹a=EM

Nc W a 2

PM º is finite. Toward contradiction assume this fails for each k � 1, hence there is
ak 2 P

M such that ak=EMNc has � k elements, hence there is a finite Ak �M such
that ak=E

M�Ak
Nc has � k elements. Let A D

S
k�1Ak , so A is a countable subset of

M and we continue as in the proof of (�)1.
Additional points (not really used) are proved like (�)1:

(�)3 M1 �
3
K M .

(�)4 M0 �
2
K M1)M2 �

2
K M .

(�)5 M1 CM0 M2 is equal to M2 CM0 M1.

Claim 4.5. (1) If � D �<� and M 2 K has cardinality � �, then there is N
such that

(a) N 2 K� extends M ;

(b) if N0 �3K N1 and N0 has cardinality < � and f0 embeds N0 into N , then
there is an embedding f1 of N1 into N extending f0.

(2) For every M 2 K we can define an equivalence relation E D EK on the class
¹N 2 K WM �2 N º with � 2kMk

@0 -equivalence classes such that if N1; N2 are
E-equivalence, then they can be amalgamated over M (in .K;�2/).
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(3) If � is a strong limit, then .K;�2/ is �-nice.

What is the connection to Klf? The following definition explains this (see [11]).

Definition 4.6. (1) For a groupG 2Klf we defineM D fnqG 2Kfnq as follows:

(a) PM is the set of elements of G.

(b) QM D ¹.c; 1/ W c 2 Gº, a copy of G.

(c) EM is the set of triples .a; b; .c; 1// such that a; b; c 2 G and for some
n;m 2 Z we have G ˆ cnacm D b.

(2) ForM 2 K we define G D grpM as the subgroup of sym.PM / consisting of the
permutations � of PM such that for some finite sequence Nc of elements of QM

we have �.x/EM
Nc x for every x 2 PM .

Discussion 4.7. The problem is that cases of amalgamation in .K;�2/ cannot be
lifted to one in Klf . For a related theorem on the existence of universal members in
cardinals as above, see [16, Th. 1.16].
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