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Abstract – The purpose of this work is to generalize, in the context of 1-motives, the p-adic
height pairings constructed by B. Mazur and J. Tate on abelian varieties. Following their
approach, we define a global pairing between the rational points of a 1-motive and its dual.
We also provide a local pairing between disjoint zero-cycles of degree zero on a curve, which
is done by considering the Picard and Albanese 1-motives associated to the curve.
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1. Introduction

In [12], Mazur and Tate gave a construction of a global pairing on the rational points
of paired abelian varieties over a global field, as well as Néron-type local pairings
between disjoint zero-cycles and divisors on an abelian variety over a local field. Their
approach involved the concept of �-splittings of biextensions of abelian groups, which
they mainly studied in the case of K-rational sections of a Gm-biextension of abelian
varieties over a local field. They proved that, when certain conditions on the base field,
the morphism �, and the abelian varieties are met, there exist canonical �-splittings for
this type of biextensions. They went on to construct canonical local pairings between
disjoint zero-cycles and divisors on an abelian variety using said �-splittings. By
considering a global field endowed with a set of places and its respective completions,
they were also able to construct a global pairing on the rational points of paired abelian
varieties.
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The Poincaré biextension of an abelian variety and its dual defined over a non-
archimedean local field of characteristic 0 will be of particular interest to us. When
considering this biextension, there is an alternate method of obtaining �-splittings,
due to Zarhin [16], starting from splittings of the Hodge filtration of the first de Rham
cohomology group of the abelian variety. His construction coincides with Mazur and
Tate’s in the case that � is unramified, or when � is ramified and the splitting of the
Hodge filtration is the one induced by the unit root subspace. In the latter case, the
equality of both constructions is a result of Coleman [6] in the case of ordinary reduction,
and of Iovita and Werner [10] in the case of semistable ordinary reduction.

For our generalization to 1-motives, we will focus on the ramified case. Following
Zarhin’s approach, we will construct �-splittings of the Poincaré biextension of a 1-
motive and its dual starting from a pair of splittings of the Hodge filtrations of their
de Rham realizations; this is the content of Section 4. In order to construct pairings
from these �-splittings, we will require them to be compatible with the canonical
linearization associated to the biextension; the conditions under which this happens
are studied in Section 3.

In Section 5 we consider a semi-normal irreducible curve C over a finite extension
of Qp and construct a local pairing between disjoint zero-cycles of degree zero on C
and on its regular locus Creg. We do this by considering the Poincaré biextension of the
Picard and Albanese 1-motives of C . This construction generalizes the local pairing of
Mazur and Tate [12, p. 212] in the case of elliptic curves.

Finally, in Section 6 we consider a 1-motive M over a number field F and a set
of places V of F . For each v 2 V we consider a homomorphism �v W F

�
v ! Qp, as

well as a �v-splitting  v W P.Fv/! Qp on the Fv-rational sections of the Poincaré
biextension P of M and its dual M_, satisfying certain properties. With this data
we construct a global pairing between the F -rational points of M and M_ under the
following condition on the family ¹ vºv: either  v is compatible with the canonical
LFv �Fv L

_
Fv

-linearization of PFv , or MFv has good reduction and  v is zero on
the set P.OFv / of sections of P over the ring of Fv-integers. The pairing is defined
similarly to the case of abelian varieties, hence generalizing the global pairing of Mazur
and Tate [12, Lem. 3.1] in the case of an abelian variety and its dual.

2. Preliminaries on abelian varieties and 1-motives

2.1 – �-splittings on abelian varieties

For the definition of biextension of abelian groups and group schemes we refer to
[13].
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Definition 2.1 ([12, p. 199]). Let A, B , H , Y be abelian groups and P a bi-
extension of .A;B/ by H . Let � W H ! Y be a homomorphism. A �-splitting of P is
a map  W P ! Y such that

(i)  .hC x/ D �.h/C  .x/, for all h 2 H and x 2 P , and

(ii) for each a 2 A (resp. b 2 B) the restriction of  to Pa;B (resp. PA;b) is a group
homomorphism,

where Pa;B (resp. PA;b) denotes the preimage of P over ¹aº � B (resp. A � ¹bº).

Thus, a �-splitting can be seen as a bi-homomorphic map which is compatible with
the natural action of H on P . Moreover,  induces a trivialization (as biextension) of
the pushout of P along �, hence its name.

The context in which these maps were classically studied is the following. Consider
a field K which is complete with respect to a place v, either archimedean or discrete,
A and B abelian varieties overK, P a biextension of .A;B/ by Gm, and � W K� ! Y

a homomorphism from the group of units of K to an abelian group Y . A key result
by Mazur and Tate [12, p. 199] states the existence of canonical �-splittings of the set
P.K/ of K-rational points of P in the following cases:

(i) v is archimedean and �.c/ D 0 for all c such that jcjv D 1,

(ii) v is discrete, � is unramified (i.e. �.R�/ D 0, where R is the valuation ring of K)
and Y is uniquely divisible by N , and

(iii) v is discrete, the residue field of K is finite, A has semistable ordinary reduction
and Y is uniquely divisible by M ,

where N is an integer depending on A and M is an integer depending on A and B .
We will mainly focus on case (iii). In this case, the �-splitting of P.K/ is obtained
by extending a local formal splitting of P , which exists and is unique because of the
semistable ordinary reduction of A.

In the case of a p-adic base field, when consideringB DA_ the dual abelian variety
of A and P D PA the Poincaré biextension, there is an alternate method of obtaining
�-splittings of P.K/ starting with a splitting of the Hodge filtration of the first de Rham
cohomology of A. This construction is due to Zarhin [16] and is done as follows. Let
K be a field which is the completion of a number field with respect to a discrete place
v over a prime p and consider a continuous homomorphism � W K�!Qp . Recall that,
associated to the first de Rham cohomology K-vector space of A, there is a canonical
extension

(2.1) 0! H0.A;�1A=K/! H1dR.A/! H1.A;OA/! 0

coming from the Hodge filtration of H1dR.A/. It is known that (2.1) can be naturally
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identified with the exact sequence of Lie algebras induced by the universal vectorial
extension A_# of A_:

0! !A ! A_#
! A_ ! 0;

where !A is theK-vector group scheme representing the sheaf of invariant differentials
on A (see [11, Prop. 4.1.7]). Therefore, it is possible to obtain a (uniquely determined)
splitting� WA_.K/!A_#.K/ at the level of groups from any splitting r WH1.A;OA/!
H1dR.A/ of (2.1) (see [16, Ex. 3.1.5] or [6, Lem. 3.1.1]). Since A_ represents the
functor ExtK.A;Gm/, while A_# represents the functor Extrig

K
.A;Gm/ of rigidified

extensions of A by Gm, the morphism � gives a multiplicative way of associating a
rigidification to every extension of A by Gm. Indeed, take a point a_ 2 A_.K/ and let
PA;a_ be the fiber of the Poincaré bundle PA overA�K ¹a_º. Then �.a_/ corresponds
to the extension PA;a_ of A by Gm endowed with a rigidification or, equivalently, a
splitting

sa_ W LiePA;a_.K/! Lie Gm.K/

of the exact sequence of Lie algebras induced by the extension PA;a_ . The composition
Lie � ı ta_ can then be extended to a group homomorphism PA;a_.K/! Qp (see
[16, Thm. 3.1.7]), for every a_ 2 A_, hence obtaining a �-splitting

 � W PA.K/! Qp:

When � is unramified,  � does not depend on the choice of splitting of (2.1),
recovering Mazur and Tate’s result for case (ii) (see [16, Thm. 4.1]). On the other hand,
when � is ramified, � does depend on the chosen splitting of (2.1) (see [16, Thm. 4.3]).
Coleman [6] demonstrated that, when A has good ordinary reduction, the canonical
�-splitting of PA.K/ constructed by Mazur and Tate comes from the splitting of (2.1)
induced by the unit root subspace, which is the subspace of H1dR.A/ on which the
Frobenius map acts with slope 0. Later, Iovita and Werner [10] were able to generalize
this result to abelian varieties with semistable ordinary reduction by considering their
Raynaud extension, which can be seen as a 1-motive whose abelian part has good
ordinary reduction (see also [15]).

2.2 – 1-motives

According to Deligne [8, p. 59], a 1-motive M over a field K consists of

(i) a lattice L over K, i.e. a group scheme which, locally for the étale topology on K,
is isomorphic to a finitely generated free abelian constant group;

(ii) a semi-abelian varietyG overK, i.e. an extension of an abelian variety A by a torus
T ; and

(iii) a morphism of K-group schemes u W L! G.
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A 1-motive can be considered as a complex of K-group schemes

M D ŒL
u
�! G�

with the lattice in degree �1 and the semi-abelian variety in degree 0. A morphism of
1-motives can then be defined as a morphism of the corresponding complexes.

2.2.1. Cartier duality. Associated to a 1-motive M , there is a Cartier dual 1-motive

M_ D ŒL_
u_

��! G_�

defined as follows (see [8, p. 67]). The lattice L_ WD HomK.T;Gm/ is the Cartier dual
of T , the torus T _ WD HomK.L;Gm/ is the Cartier dual of L, the abelian variety A_

is the dual abelian variety of A, and the semi-abelian variety G_ is the image of the
composition v W L

u
�! G ! A under the natural isomorphism

HomK.L;A/
Š
�! Ext1K.A

_; T _/:

There is a canonical biextension P of .M;M_/ by Gm, called the Poincaré biex-
tension, expressing the duality between M and M_. It is defined as the pullback to
G �K G

_ of the Poincaré biextension PA of .A;A_/. The biextension P is naturally
endowed with trivializations

� W L �K G
_
! P; �_ W G �K L

_
! P

that coincide overL�K L_, which complete its structure of biextension of .M;M_/ by
Gm (see [8, p. 60]). Using the fact that the group scheme G_ represents the fppf-sheaf
ExtK.ŒL

v
�! A�;Gm/, it is possible to define the map u_ W L_ ! G_ as

u_ W HomK.T;Gm/! ExtK.ŒL
v
�! A�;Gm/

� 7! ŒL
�
�! PA;v_.x_/�;

where x_ 2 L_ is the element corresponding to � 2 HomK.T;Gm/ and � is obtained
from the trivialization of P over L �K L_.

2.2.2. De Rham realization. A 1-motive is endowed with a de Rham realization defined
via its universal vectorial extension (see [8, p. 58]). The universal vectorial extension
of a 1-motive M D ŒL

u
�! G� over K is a two-term complex of K-group schemes

M \
D ŒL

u\

�! G\�
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which is an extension ofM by theK-vector group !G_ of invariant differentials onG_

0 // 0 //

��

L

u\

��

L //

u

��

0

0 // !G_ // G\ // G // 0

and satisfies the following universal property: for all K-vector groups V , the map

HomOK .!G_ ; V /! Ext1K.M; V /;

which sends a morphism !G_ ! V of vector groups to the extension of M by V
induced by pushout, is an isomorphism. It is well known that the universal vectorial
extension of a 1-motive always exists. The de Rham realization ofM is then defined as

TdR.M/ WD LieG\:

This is endowed with a Hodge filtration, defined as follows:

F i TdR.M/ D

8̂̂<̂
:̂

TdR.M/ if i � �1,
!G_ if i D 0,
0 if i � 1.

We mention some properties concerning schemes involved in universal vectorial exten-
sions.

Lemma 2.2. (i) The group scheme G\ represents the fppf-sheaf

S 7!
®
.g;r/ j g 2 G.S/ and r is a \-structure on the extension

ŒL_S ! Pg;G_ � of M_S by Gm;S associated to g
¯
:

(ii) If we regard the semi-abelian variety G as the 1-motive GŒ0� D Œ0! G�, then its
universal vectorial extension is a group scheme G# which is an extension of G by
the vector group !A_ . Moreover, G# represents the fppf-sheaf

S 7!
®
.g;r/ j g 2 G.S/ and r is a \-structure on the extension

of ŒL_S
v_

��! A_S � by Gm;S associated to g
¯
:

(iii) If we regard the abelian varietyA as the 1-motiveAŒ0�D Œ0! A�, then its universal
vectorial extension is a group scheme A# which is an extension of A by the vector
group !A_ . Moreover, A# represents the fppf-sheaf

S 7!
®
.a;r/ j a 2 A.S/ and r is a \-structure on

the extension Pa;A_ of A_S by Gm;S

¯
:
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(iv) If we regard the lattice L as the 1-motive LŒ1� D ŒL ! 0�, then its universal
vectorial extension is the complex ŒL ! !T_ �. Via the identifications L D
HomK.T _;Gm/ and !T_ D HomOK

.LieT _;OK/, this map is described as

HomK.T
_;Gm/! HomOK

.LieT _;OK/

� 7! Lie�:

Proof. Parts (i) and (ii) follow from [4, Prop. 3.8] and [4, Lem. 5.2], respec-
tively. Part (iii) follows from [11, Props. 2.6.7 and 3.2.3 (a)] (see also [6, Thm. 0.3.1]).
And, finally, (iv) follows from [1, Lem. 2.2.2], once we notice that there is a natural
isomorphism L˝Z Ga Š !T_ mapping x ˝ 1 7! Lie�.

Let P \ be the biextension of .M \; M_\/ by Gm obtained from P by pullback.
There is a canonical connection r on P \ which endows it with a \-structure (see
[8, Prop. 10.2.7.4]). Its curvature is an invariant 2-form on G\ �K G_\ and therefore
it determines an alternating pairing R on LieG\ �K LieG_\ with values in Lie Gm.
Since the restriction of R to LieG\ and LieG_\ is zero, this map induces a pairing

ˆ W LieG\ �K LieG_\ ! Lie Gm:

Deligne’s pairing is then defined as

. � ; � /Del
M WD �ˆ W TdR.M/ �K TdR.M

_/! Lie Gm:

2.2.3. Albanese and Picard 1-motives. LetC0 be a curve over a fieldK of characteristic
0, i.e. a purely 1-dimensional variety. Note that originally Deligne considered only
algebraically closed fields, but these constructions can also be done over an arbitrary
field of characteristic 0 (see [3, pp. 87–90]). Consider the commutative diagram

C 0 xC 0

C xC

C0

�

j 0

q

x�

j

�0

where C 0 is the normalization of C0, xC 0 is a smooth compactification of C 0, and xC
(resp. C ) is the curve obtained from xC 0 (resp. C 0) by contracting each of the finite sets
q�1.x/, for x 2 C0. Notice that xC is projective and C is semi-normal. Let S be the set
of singular points of C , S 0 WD ��1.S/, and F WD xC 0 � C 0 D xC � C .
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The cohomological Albanese 1-motive of C0 is defined as

AlbC.C0/ D ŒuAlb W Div0F . xC
0/! Pic0. xC/�;

where:

(i) Pic0. xC/ denotes the group of isomorphism classes of invertible sheaves on xC
which are algebraically equivalent to 0. This is a semi-abelian variety: the map
x�� W Pic0. xC/! Pic0. xC 0/ is surjective and its kernel is a torus.

(ii) Div0F . xC 0/ denotes the group of Weil divisors D on xC 0 such that suppD � F and
O.D/ 2 Pic0. xC 0/.

(iii) uAlb is the map D 7! O.D/ attaching to a divisor D the corresponding invertible
sheaf O.D/.

The homological Picard 1-motive of C0 is defined as

Pic�.C0/ D
�
uPic W Div0S 0=S . xC

0; F /! Pic0. xC 0; F /
�
;

where:

(i) Pic0. xC 0; F / denotes the group of isomorphism classes of pairs .L; �/, where
L is an invertible sheaf on xC 0 algebraically equivalent to 0 and � W LjF ! OF

is a trivialization of L over F . This is a semi-abelian variety: the natural map
Pic0. xC 0; F /! Pic0. xC 0/ is surjective and its kernel is a torus.

(ii) Div0S 0=S . xC
0; F / denotes the group of Weil divisors D on xC 0 which belong to the

kernel of x�� W Div0S 0. xC
0/! Div0S . xC/ and satisfy suppD \ F D ;.

(iii) uPic is the map D 7! O.D/ attaching to a divisor D the corresponding invertible
sheaf O.D/.

An important fact is that the dual of Pic�.C0/ is AlbC.C0/, and viceversa.

3. Linearizations of biextensions

For the entirety of this section, we fix a field K. The following is inspired by
[14, Def. 1.6].

Definition 3.1. LetC D ŒA
u
�!B�,C 0D ŒA0

u0

�!B 0� be complexes of commutative
group schemes over K. Let

� W A �K B ! B

.a; b/ 7! u.a/C b
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be the A-action on B induced by u, and define � 0 W A0 �K B 0 analogously. Let P
be a biextension of .B; B 0/ by Gm. We define an A �K A0-linearization of P as an
A �K A

0-action on P ,
† W .A �K A

0/ �K P ! P;

satisfying the following conditions:

(i) Gm-equivariance: For a 2 A, a0 2 A0, c 2 Gm and x 2 P ,

†.a; a0; c C x/ D c C†.a; a0; x/:

(ii) Compatibility with � and � 0: For a 2 A and a0 2 A0, if x 2 P lies above .b; b0/ 2
B �K B

0, then †.a; a0; x/ lies above .�.a; b/; � 0.a0; b0//.

(iii) Compatibility with the partial group structures of P : For a 2 A, a01; a
0
2 2 A

0 and
x1; x2 2 P lying above b 2 B ,

†.a; a01 C a
0
2; x1 C1 x2/ D †.a; a

0
1; x1/C1 †.a; a

0
2; x2/;

and for a1; a2 2 A, a0 2 A0 and x1; x2 2 P lying above b0 2 B 0,

†.a1 C a2; a
0; x1 C2 x2/ D †.a1; a

0; x1/C2 †.a2; a
0; x2/:

Remark 3.2. An action † W .A �K A0/ �K P ! P satisfying conditions (i) and
(ii) is an A �K A0-linearization of the line bundle P in the sense of [14, Def. 1.6]; this
can be summed up as saying that † is a “bundle action” lifting the actions � and � 0.
Notice that � and � 0 are homomorphisms, and so condition (iii) may then be interpreted
as a lifting to P of the compatibility of � and � 0 with the group structures of B and
B 0. In the rest of the article, we will only use the term linearization in the sense of
Definition 3.1 above.

Remark 3.3. By considering constant group schemes, we will also be able to talk
about linearizations of biextensions of abelian groups.

Let C D ŒA
u
�! B� and C 0 D ŒA0

u0

�! B 0� be as in Definition 3.1 and consider a
biextension P of .B; B 0/ by Gm. Whenever P has the structure of biextension of
.C; C 0/ by Gm with trivializations

� W A �K B
0
! P; � 0 W B �K A

0
! P;

we can define an A �K A0-linearization of P as

† W .A �K A
0/ �K P ! P

.a; a0; x/ 7! Œ� 0.u.a/; a0/C2 �
0.b; a0/�C1 Œ�.a; b

0/C2 x�;
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where x 2 P lies above .b; b0/ 2 B �K B 0. This construction is due to [5, Thm. 6.8]
(see also [15, p. 306]). Conversely, given an A �K A0-linearization

† W .A �K A
0/ �K P ! P

ofP , we can define a biextension structure of .C;C 0/ by Gm onP as the one determined
by the trivializations

� W A �K B
0
! P � 0 W B �K A

0
! P

.a; b0/ 7! †.a; 0; 0b0/; .b; a0/ 7! †.0; a0; 0b/;

where 0b; 0b0 are the zero elements in the groups .Pb;B0 ;C1/; .PB;b0 ;C2/, respectively.
These constructions are inverses of each other.

Proposition 3.4. Let C;C 0 and P be as in Definition 3.1 and suppose that u.K/
and u0.K/ are injective. Then an A �K A0-linearization † of P induces a biextension
Q.K/ of .B.K/=A.K/; B 0.K/=A0.K// by K�.

Proof. Notice that P.K/ is a biextension of .B.K/; B 0.K// by K� and that

†.K/ W .A.K/ � A0.K// � P.K/! P.K/

is an A.K/ � A0.K/-linearization of P.K/. We define Q.K/ as the set consisting of
the orbits

Œx� WD
®
†.a; a0; x/ j a 2 A.K/; a0 2 A0.K/

¯
of elements x 2 P.K/ under †. Then Q.K/ maps surjectively onto B.K/=A.K/ �
B 0.K/=A0.K/ and is endowed with a K�-action which is free and transitive on fibers.
To see that it is a biextension it is then enough to prove that C1 and C2 induce
partial group structures on Q.K/. For this, take elements x1; x2 2 P.K/ lying above
.b1; b

0
1/; .b2; b

0
2/ 2 B.K/�B

0.K/, respectively, such that the orbits of b1 and b2 under
� are equal. This is equivalent to having

b1 D �.a; b2/;

for some (unique) a 2 A.K/. Then x1 and †.a; 0; x2/ project to b1 2 B.K/ and we
are able to define

Œx1�C1 Œx2� WD Œx1 C1 †.a; 0; x2/�:

This is well defined and commutative. We define the partial group structureC2 in the
analogous way.
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Consider a pair of 1-motives M D ŒL
u
�! G�, M 0 D ŒL0

u0

�! G0� over K and a
biextension P of .M;M 0/ by Gm. For our purposes, we give the following definition
which is inspired by [9, p. 326].

Definition 3.5. We define the group of K-points of M , denoted M.K/, as

M.K/ WD Ext1K.M
_;Gm/:

Consider the following short exact sequence of complexes:

0 // 0 //

��

L_

u_

��

L_ //

v_

��

0

0 // T _ // G_ // A_ // 0

and the long exact sequence of abelian groups that it induces:

� � � ! L.K/
u.K/
���! G.K/!M.K/! Ext1K.T

_;Gm/! � � � :

It follows that, when T _ is split (or, equivalently, when L is constant), the group of
K-points of M can be described as

M.K/ D G.K/= Im.u.K//:

If L, L0 are constant and u.K/, u0.K/ are injective, then P.K/ induces a biextension
of .M.K/;M 0.K// byK�, by Proposition 3.4. WhenM 0 DM_ and P is the Poincaré
biextension, we will denote by QM .K/ the induced biextension of .M.K/;M_.K//
by K�.

We will now introduce the concept of compatibility between a linearization and
a �-splitting of a biextension (see Definition 2.1 for the definition of �-splitting of a
biextension).

Definition 3.6. LetC D ŒA
u
�!B�,C 0D ŒA0

u0

�!B 0� be complexes of commutative
group schemes over K and P a biextension of .C; C 0/ by Gm. Let Y be an abelian
group and � WK�! Y a homomorphism. We will say that a �-splitting W P.K/! Y

of P.K/ is compatible with the A �K A0-linearization † of P if any of the following
equivalent conditions is satisfied:

(i)  .†.a; a0; x// D  .x/, for all a 2 A.K/, a0 2 A0.K/ and x 2 P.K/,

(ii)  ı � and  ı � 0 vanish on A.K/ � B 0.K/ and B.K/ � A0.K/, respectively.

Remark 3.7. Assuming that u.K/ and u0.K/ are injective in Definition 3.6, a
�-splitting  is compatible with the A �K A0-linearization if and only if it induces a
�-splitting on the biextension Q.K/ of Proposition 3.4.
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4. �-splittings in the ramified case

Let K be a finite extension of Qp and consider a 1-motive M D ŒL
u
�! G� over K

with dual
M_ D ŒL_

u_

��! G_�:

We will assume that L and T are split (or, equivalently, that L_ and T _ are split). Let

M \
D ŒL

u\

�! G\� and M_\ D ŒL
u_\

��! G_\�

be their corresponding universal vectorial extensions. We will denote Deligne’s pairing
associated to M and its dual as

. � ; � /Del
M W TdR.M/ �K TdR.M

_/! Lie Gm D Ga:

LetP \ be the canonical biextension of .M \;M_\/ by Gm. We will denote by eP \=G\ and
eP \=G_\ the zero sections of P \ over G\ and G_\, respectively, and by
�\ W P \ ! G\ �K G

_\ the projection:

P \

G\ �K ¹0º G\ �K G
_\ ¹0º �K G

_\.

�\

e
P\=G\

e
P\=G_\

The canonical connection onP \ determines, and is determined by, a normal bi-invariant
1-form ! 2 �1

P \=K
(see [6, Prop. 2.1]). In particular, if we denote by !1 and !2 the

images of ! under the canonical maps

�1
P \=K

! �1
P \=G_\

and �1
P \=K

! �1
P \=G\

;

then !1 and !2 are invariant differentials over G_\ and G\, respectively. Let

r1 W Lie.P \=G_\/! Ga;G_\ and r2 W Lie.P \=G\/! Ga;G\

be the homomorphisms corresponding to !1 and !2, respectively.
We fix a branch � W K�! K of the p-adic logarithm for the rest of the section. For

a commutative algebraic groupH overK we will denote by �H W H.K/! LieH.K/
the uniquely determined homomorphism of Lie groups extending � as constructed in
[17, §1]. We have the following result:

Lemma 4.1. Let h 2 G\.K/, h_ 2 G_\.K/ and y 2 P \.K/ be such that
�\.y/ D .h; h_/. Then

.�G\.h/; �G_\.h
_//Del

M D r1;h_ ı �P \
G\;h_

.y/ � r2;h ı �P \
h;G\_

.y/:
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Proof. Let T P \ denote the tangent sheaf of P \. Notice that the germ of T P \ at
y 2 P \ can be expressed as the contracted product of Ga-torsors

.T P \/y D LieP \
G\;h_

^
Ga LieP \

h;G_\
;

where .h; h_/ D �\.y/. Let F1; F2 2 �.P \; T P \/ be the global sections given by

F1.y/ D �P \
G\;h_

.y/ ^ �
P
\

h;G_\

.eP \=G\.h// 2 LieP \
G\;h_

^
Ga LieP \

h;G_\
;

F2.y/ D �P \
G\;h_

.eP \=G_\.h
_// ^ �

P
\

h;G_\

.y/ 2 LieP \
G\;h_

^
Ga LieP \

h;G_\
:

We have the formula

d!.F1; F2/ D F1 � !.F2/ � F2 � !.F1/ � !.ŒF1; F2�/;

where F1 � !.F2/ denotes the vector field F1 applied as a differential operator to the
scalar field !.F2/. First, we observe that ŒF1; F2� D 0. Furthermore,

F1 � !.F2/ D F1 � !2.F2/ D !2.F2/;

where the first equality is due to eP \=G_\ being the zero section of P \ over G_\, and
the second one due to eP \=G\ being the zero section of P \ over G\. Similarly, we have

F2 � !.F1/ D !1.F1/:

Therefore, the alternating map on T P \ � T P \ induced by d! satisfies

d!.F1.y/; F2.y// D r2;h ı �P \
h;G_\

.y/ � r1;h_ ı �P \
G\;h_

.y/;

where .h; h_/ D �\.y/.
Now, let  be the 2-form on G\ �K G_\ inducing Deligne’s pairing. Since d! D

�\� (see [6, Prop. 2.1]) we have that

..�G\.h/; 0/; .0; �G_\.h
_/// D d!.F1.y/; F2.y//:

Finally, note that Deligne’s pairing ([8, (10.2.7.3)]) on the pair .�G\.h/; �G_\.h_// is
given by the formula

.�G\.h/; �G_\.h
_//Del

M D �..�G\.h/; 0/; .0; �G_\.h
_///:

Putting together the last three equalities, we obtain the desired result.
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Definition 4.2. Let � W G.K/! G\.K/ and �_ W G_.K/! G_\.K/ be a pair
of splittings of the exact sequences of Lie groups

0! !G_.K/
�
�! G\.K/

�
�! G.K/! 0;(4.1)

0! !G.K/
�_

�! G_\.K/
�_

��! G_.K/! 0:(4.2)

We say that .�; �_/, or also that .Lie �; Lie �_/, are dual with respect to Deligne’s
pairing if

.Lie �;Lie �_/Del
M D 0:

The following result is a slight generalization of [6, Lem. 3.1.1] (see also [16,
Thm. 3.1.3]). It implies, in particular, that from any section r of Lie � W LieG\.K/!
LieG.K/ we can always obtain a canonical section � of � W G\.K/! G.K/ such that
Lie � D r .

Lemma 4.3. Let
0! V ! X ! Y ! 0

be an exact sequence of algebraicK-groups with V a vector group. There is a bĳection
between splittings of the exact sequence

(4.3) 0! V.K/! X.K/! Y.K/! 0

and splittings of the exact sequence of Lie algebras

(4.4) 0! LieV.K/! LieX.K/! LieY.K/! 0:

Proof. Consider the commutative diagram

0 V.K/ X.K/ Y.K/ 0

0 LieV.K/ LieX.K/ LieY.K/ 0.

�X �Y

If s W X.K/! V.K/ is a splitting of (4.3), then Lie s W LieX.K/! Lie V.K/ is a
splitting of (4.4); notice that Lie s ı �X D s. For the converse, let r W LieX.K/!
LieV.K/ be a splitting of (4.4). Then

s W X.K/
�X
��! LieX.K/

r
�! LieV.K/ D V.K/

is a splitting of (4.3). Moreover, by the properties of the logarithm (see [17, §1]), this
map is such that Lie s D r . We remark that the above also implies that the functor
Lie provides a bĳection between splittings s0 W Y.K/! X.K/ of (4.3) and splittings
r 0 W LieY.K/! LieX.K/ of (4.4).
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Theorem 4.4. Let � W G.K/! G\.K/ and �_ W G_.K/! G_\.K/ be splittings
of the exact sequences (4.1) and (4.2), respectively. Then:

(i) There is a �-splitting  1 W P.K/! K of P.K/ defined as follows. For z 2 P.K/
lying above .g; g_/ 2 G.K/ �G_.K/, denote by sg_ the rigidification of PG;g_
corresponding to �_.g_/. The map sg_ sits in the following diagram:

K� K

PG;g_.K/ LiePG;g_.K/

G.K/ � ¹g_º LieG.K/.

�

�PG;g_

sg_

�G

We define the image of z by  1 as

 1.z/ D sg_ ı �PG;g_ .z/:

(ii) There is a �-splitting  2 W P.K/! K of P.K/ defined as follows. For z 2 P.K/
lying above .g; g_/ 2 G.K/ � G_.K/, denote by sg the rigidification of Pg;G_
corresponding to �.g/. The map sg sits in the following diagram:

K� K

Pg;G_.K/ LiePg;G_.K/

¹gº �G_.K/ LieG_.K/.

�

�Pg;G_

sg

�G_

We define the image of z by  2 as

 2.z/ D sg ı �Pg;G_ .z/:

(iii) If .�; �_/ are dual with respect to Deligne’s pairing, then  1 D  2.

Proof. By construction, the invariant 1-form !1 2 �
1
P \=G_\

is obtained via pull-
back from an invariant differential

x!1 2 �
1
P
G;G_\

=G_\
;

wherePG;G_\ denotes the pullback ofP along the map Id� �_ WG �G_\!G �G_

(see the proof of [4, Prop. 3.9]). Similarly, !2 2 �1P \=G\ comes from an invariant
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differential
x!2 2 �

1
P
G\;G_

=G\
:

Denote by

Nr1 W Lie.PG;G_\=G
_\/! Ga;G_\ and Nr2 W Lie.PG\;G_=G

\/! Ga;G\

the homomorphisms corresponding to x!1 and x!2, respectively.
Consider the following diagram, where � � �_ W P \ ! P denotes the morphism

of biextensions obtained from � � �_ by pullback:

P \ P

G\ �K G
_\ G �K G

_.

���_

�\ �

���_

Let z 2 P.K/ and .g; g_/ D �.z/. Let y 2 P \.K/ be the rational point such that

�\.y/ D .�.g/; �_.g_// and � � �_.y/ D z:

We have the following diagram:

Gm Gm Gm

P
\

�.g/;G_\
P�.g/;G_ Pg;G_

¹�.g/º �K G
_\ ¹�.g/º �K G

_ ¹gº �K G
_,

N�_

�\

�

�

�_ �

where the lower squares are pullback diagrams, so that N�_ denotes the morphism of
extensions obtained from �_ by pullback. Notice that the isomorphism

P�.g/;G_
�
�! Pg;G_

sends N�_.y/ to z. We now consider the corresponding diagram of rigidified extensions
of Lie algebras:

Lie Gm Lie Gm Lie Gm

LieP \
�.g/;G_\

LieP�.g/;G_ LiePg;G_

¹�.g/º �K LieG_\ ¹�.g/º �K LieG_ ¹gº �K LieG_.

r2;�.g/

Lie N�_

Lie�\

Nr2;�.g/

�

sg

Lie�

Lie �_ �
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From the commutativity of this diagram and the properties of the logarithm we obtain
the following equalities:

r2;�.g/ ı �P \
�.g/;G\_

.y/ D Nr2;�.g/ ı Lie N�_ ı �
P
\

�.g/;G\_

.y/

D Nr2;�.g/ ı �P�.g/;G_ .
N�_.y//

D sg ı �Pg;G_ .z/:

Analogously, we have

r1;�_.g_/ ı �P \
G\;�_.g_/

.y/ D sg_ ı �PG;g_ .z/:

Therefore, �
Lie � ı �G.g/;Lie �_ ı �G_.g_/

�Del
M

D
�
�G\ ı �.g/; �G_\ ı �

_.g_/
�Del
M

D r1;�_.g_/ ı �P \
G\;�_.g_/

.y/ � r2;�.g/ ı �P \
�.g/;G\_

.y/

D sg_ ı �PG;g_ .z/ � sg ı �Pg;G_ .z/

D  1.z/ �  2.z/:

Since z 2 P.K/ was arbitrary, it is clear from the above formula that if .�; �_/ are
dual with respect to Deligne’s pairing, then  1 D  2.

It remains to check that  1 and  2 are indeed �-splittings. First, notice that for all
c 2 K� and z; z0 2 PG;g_.K/ we have

 1.c C z/ D sg_ ı �PG;g_ .c C z/

D sg_ ı �PG;g_ .c/C sg_ ı �PG;g_ .z/

D �.c/C  1.z/;

 1.z C z
0/ D sg_ ı �PG;g_ .z C2 z

0/

D sg_ ı �PG;g_ .z/C sg_ ı �PG;g_ .z
0/

D  1.z/C  1.z
0/:

In a similar way we prove the compatibility of  2 with the partial group structureC1
of P.K/ and the K�-action. If .�; �_/ are dual with respect to Deligne’s pairing, then
 1 D  2 and both  1 and  2 are �-splittings. To prove that  1 is a �-splitting in the
general case (the proof for  2 is done similarly), notice that it is always possible to
find a splitting Qr W LieG.K/! LieG\.K/ of

0! !G_.K/
Lie �
��! LieG\.K/

Lie �
���! LieG.K/! 0
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such that . Qr; Lie �_/ are dual, due to the fact that Deligne’s pairing is perfect (see
[4, Thm. 4.3]). Applying Lemma 4.3, we can obtain a splitting Q� of (4.1) such that
Lie Q� D Qr . Proceeding as before with . Q�; �_/, we are able to prove that  1 is a
�-splitting.

Theorem 4.5. Let � W G.K/! G\.K/ and �_ W G_.K/! G_\.K/ be a pair
of splittings of the exact sequences (4.1) and (4.2), respectively, which are dual with
respect to Deligne’s pairing. Assume, moreover, that � and �_ make the following
diagrams commute:

L.K/

u

��

L.K/

u\

��

G.K/
�
// G\.K/,

L_.K/

u_

��

L_.K/

u_\

��

G_.K/
�_
// G_\.K/.

Then the �-splitting  W P.K/! K constructed in Theorem 4.4 is compatible with the
L �K L

_-linearization of P . In particular, it induces a �-splitting of the biextension
QM .K/ of .M.K/;M_.K// by K� in the case that u.K/ and u_.K/ are injective.

Remark 4.6. The condition � ı uD u\ says that, onK-sections, .Id; �/ is a splitting
of the complex M \ seen as an extension of M by !G_ ; and similarly for �_.

Proof. We have to prove that the �-splitting  W P.K/! K constructed in Theo-
rem 4.4 satisfies that  ı � and  ı �_ vanish on K-sections. We will only prove this
for  ı � since the proof for  ı �_ is carried out in a similar way.

We fix a splitting of the following short exact sequence of vector groups:

(4.5) 0 !A_ !G_ !T_ 0.

This induces by duality a splitting of the following exact sequence of Lie algebras:

(4.6) 0 LieT _ LieG_ LieA_ 0.

j

Consider the following commutative diagram with exact rows and columns, where
the splitting of the middle column is obtained by pushout along � from the split exact
sequence (4.5):
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0 0

0 !A_ G# G 0

0 !G_ G\ G 0

!T_ !T_

0 0,

�
p

�

�

x�

Let x 2 L.K/ and denote by � W T _ ! Gm the homomorphism corresponding to
it. We have the following diagram with exact rows (see [1, §1.2]):

0 T _ G_ A_ 0

0 Gm Pv.x/;A_ A_ 0

0 Gm Pu.x/;G_ G_ 0,

�� � 0x

where v is the composition L
u
�! G ! A. We also have the corresponding diagram of

Lie algebras with exact rows and splittings induced from (4.6) by pushout and pullback:

(4.7)

0 LieT _ LieG_ LieA_ 0

0 Lie Gm LiePv.x/;A_ LieA_ 0

0 Lie Gm LiePu.x/;G_ LieG_ 0.

�Lie�

j

�

By Lemma 2.2 (i), u\.x/ 2 G\.K/ corresponds to the extension ŒL_ ! Pu.x/;G_ �

of M_ by Gm endowed with a \-structure. By Lemma 2.2 (iv), we know that the
invariant differential � ı u\.x/ 2 !T_.K/ is the one associated to the homomorphism
Lie� 2 HomOK .LieT _;Ga/. On the other hand, x� ı u\.x/ 2 G#.K/ is the extension
ŒL_! Pv.x/;A_ � of ŒL_

v
�! A_� by Gm endowed with the normal invariant differential
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associated to � W LiePv.x/;A_! LieGm. The above can be summarized in the following
diagram:

!T_.K/ G\.K/ G#.K/

Lie� u\.x/ .ŒL_ ! Pv.x/;A_ �; �/.

� x�

The way in which we obtain an element in G\.K/ from a pair of elements in !T_.K/
and G#.K/ is by considering the decomposition

LiePu.x/;G_ Š LieT _ �K LiePv.x/;A_

induced by (4.6), as displayed by the following diagram:

0 0

Lie Gm Lie Gm

0 LieT _ LiePu.x/;G_ LiePv.x/;A_ 0

0 ¹u.x/º �K LieT _ ¹u.x/º �K LieG_ ¹v.x/º �K LieA_ 0

0 0.

j

From the decomposition of LiePu.x/;G_ and our hypothesis that � ı u D u\, it follows
that su.x/ can be expressed as

su.x/ D Lie�C � W LiePu.x/;G_ Š LieT _ �K LiePv.x/;A_ ! Ga:

Observe, moreover, that �Pu.x/;G_ .�.x; g
_// 2 LiePu.x/;G_ corresponds under this

isomorphism to

.j ı �G_.g
_/; �Pv.x/;A_ ı �

0
x.g
_// 2 LieT _ �K LiePv.x/;A_ :

Furthermore, the middle row in diagram (4.7) allows us to identify LiePv.x/;A_ with
Lie Gm �K LieA_; under this identification, �Pv.x/;A_ ı �

0
x.g
_/ 2 LiePv.x/;A_ cor-

responds to

.�Lie� ı j ı �G_.g_/; �A_.a_// 2 Lie Gm �K LieA_;
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where a_ 2 A_ is the image of g_ 2 G_ under the canonical projection. Therefore,

 ı �.x; g_/ D su.x/ ı �Pu.x/;G_ .�.x; g
_//

D Lie�.j ı �G_.g_//C �.�Pv.x/;A_ ı �
0
x.g
_//

D Lie� ı j ı �G_.g_/ � Lie� ı j ı �G_.g_/
D 0:

Corollary 4.7. Let � W K� ! Qp be a ramified homomorphism and consider a
pair r W LieG.K/! LieG\.K/ and r_ W LieG_.K/! LieG_\.K/ of splittings of
the exact sequences of Lie algebras

0! !G_.K/
Lie �
��! LieG\.K/

Lie �
���! LieG.K/! 0;

0! !G.K/
Lie �_
���! LieG_\.K/

Lie �_
����! LieG_.K/! 0;

respectively, which are dual with respect to Deligne’s pairing. Then:

(i) There is a �-splitting  W P.K/! Qp .

(ii) Let � W G.K/ ! G\.K/ and �_ W G_.K/ ! G_\.K/ be the splittings of (4.1)
and (4.2), respectively, such that Lie � D r and Lie �_ D r_, as constructed in
Lemma 4.3. If the diagrams

L.K/

u

��

L.K/

u\

��

G.K/
�
// G\.K/,

L_.K/

u_

��

L_.K/

u_\

��

G_.K/
�_
// G_\.K/

commute, then the �-splitting  W P.K/ ! Qp of (i) is compatible with the
L �K L

_-linearization of P . In particular, if u.K/ and u_.K/ are injective, then
 induces a �-splitting of the biextension QM .K/ of .M.K/;M_.K// by K�.

Proof. (i) By [16, p. 319], there exist a branch � WK�!K of the p-adic logarithm
and a Qp-linear map ı W K ! Qp such that � D ı ı �. Let  W P.K/! K be the
�-splitting constructed as in Theorem 4.4 from the splittings �; �_ of (4.1), (4.2),
respectively, satisfying Lie � D r and Lie �_ D r_. Then  � WD ı ı  W P.K/! Qp

is a �-splitting of P.K/.
(ii) If � ı uD u\ and �_ ı u_ D u_\, then � ı � D ı ı ı � is zero onK-sections,

and similarly for  � ı �_. Therefore,  � is compatible with the L�K L_-linearization
of P and thus induces a �-splitting of QM .K/, in the case that u.K/ and u_.K/ are
injective.
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5. Local pairing between zero-cycles

In this section we construct a pairing between disjoint zero-cycles of degree zero
on a curve over a local field and its regular locus, which generalizes the local pairing
defined in [12, p. 212] in the case of an elliptic curve (see also [7]).

Let K be a finite extension of Qp and C a semi-normal irreducible curve over K.
Consider the commutative diagram

C 0 xC 0

C xC ,

�

j 0

x�

j

where C 0 is the normalization of C , xC 0 is a smooth compactification of C 0, and xC
(resp. C ) is the curve obtained from xC 0 (resp. C 0) by contracting each of the finite
sets ��1.x/, for x 2 C . Let S be the set of singular points of C , S 0 WD ��1.S/, and
F WD xC 0 �C 0 D xC �C . We recall from Section 2.2.3 the homological Picard 1-motive
of C ,

Pic�.C / D
�
u W Div0S 0=S . xC

0; F /! Pic0. xC 0; F /
�
;

and the cohomological Albanese 1-motive of C ,

AlbC.C / D Pic�.C /_ D
�
u_ W Div0F . xC/! Pic0. xC/

�
:

Denote by xCreg the set of smooth points of xC and let aCx W xCreg ! Pic0. xC/ be the
Albanese mapping, which depends on a base point x 2 xCreg which we assume to
be rational over K (see [3, p. 50]). Extending by linearity, one obtains a mapping
aC
xC
W Z0. xCreg=K/ ! Pic0. xC/ on the group of zero-cycles of degree zero on xCreg

defined over K; notice that aC
xC

does not depend on any base point. Finally, we denote
by P the Poincaré biextension of .Pic�.C /;AlbC.C // by Gm.

We consider a homomorphism � W K� ! Qp and a �-splitting  W P.K/! Qp

which is compatible with the Div0S 0=S . xC
0; F / �K Div0F . xC/-linearization of P . Our

aim is to construct a pairing

Œ � ; � �C W .Z
0.C=K/ �Z0.Creg=K//

0
! Qp;

where .Z0.C=K/ � Z0.Creg=K//
0 denotes the subset of Z0.C=K/ � Z0.Creg=K/

consisting of pairs of zero-cycles of degree zero defined over K with disjoint support.
First, we define a pairing

Œ � ; � �0C W .Div0. xC 0; F / �Z0. xCreg=K//
0
! Qp
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on the set of all pairs .D; z/, withD a divisor on xC 0 algebraically equivalent to 0 whose
support is contained in xC 0 � F , and z a zero-cycle of degree zero on xCreg defined
over K, satisfying suppD \ supp z D ;. Notice that a divisor D 2 Div0. xC 0; F / �
Div0. xC 0/ corresponds to a line bundle L.D/ over xC 0 together with a rational section
sD W xC

0ÜL.D/which is defined on the open subset xC 0 � suppD � xC 0; in particular,
sD is defined on F since suppD \ F D ;. Moreover, the pullback along aCx of PO.D/,
the fiber of the Poincaré bundle P over O.D/ 2 Pic0. xC 0; F /, is the restriction ofL.D/
to xCreg, and so aCx induces a map aCx;D W L.D/j xCreg

! PO.D/ by pullback:

L.D/j xCreg
PO.D/

xCreg ¹O.D/º �K Pic0. xC/.

a
C

x;D

y

a
C
x

sD j xCreg

Therefore, we can define

ŒD; z�0C WD
X

nj ı a
C

x;D ı sD.xj /;

where z D
P
njxj 2 Z

0. xCreg=K/. Notice that since z has degree zero, ŒD; z�0C does
not depend on the base point x.

When D 2 Div0S 0=S . xC
0; F / � Div0. xC 0; F /, we have that aCx;D ı sD D � ı a

C
x on

xCreg:

L.D/j xCreg
Pu.D/

xCreg ¹Dº �K Pic0. xC/.

a
C

x;D

y

a
C
x

sD j xCreg

�

This implies that ŒD; z�0C D 0, for all D 2 Div0S 0=S . xC
0; F /. Notice that, since every

closed point in C 0 is also closed in xC 0, the subgroup of divisors in Div0. xC 0; F / that
are defined over K is Z0.C 0=K/. Moreover, since xC 0 is irreducible, the subgroup
of divisors in Div0S 0=S . xC

0; F / that are defined over K is the free abelian subgroup
generated by cycles of the form x0 � x1, where �.x0/ D �.x1/; denote this group
by Z0..S 0=S/=K/. Recalling that the pushforward of cycles along � preserves the
degree, we obtain the following exact sequence:

0! Z0..S 0=S/=K/! Z0.C 0=K/
��
�! Z0.C=K/! 0:

Therefore, Œ � ; � �0 is a pairing on .Z0.C 0=K/ � Z0. xCreg=K//
0 which is zero when

restricted to .Z0..S 0=S/=K/ �Z0. xCreg=K//
0, yielding a pairing

Œ � ; � �00C W .Z
0.C=K/ �Z0. xCreg=K//

0
! Qp:
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By restricting to Z0.Creg=K/ � Z
0. xCreg=K/, we get the desired pairing

Œ � ; � �C W .Z
0.C=K/ �Z0.Creg=K//

0
! Qp:

We make the observation that ŒD; z�0C D 0 whenever z 2 Z0.F=K/ (notice that
F D xCreg �Creg). Indeed, since xC 0 is irreducible, the subgroup of divisors in Div0F . xC/
defined over K is Z0.F=K/, and so the restriction of aC

xC
to Z0.F=K/ equals u_:

Z0.F=K/ Div0F . xC/

Z0. xCreg=K/ Pic0. xC/.

u_

a
C

xC

Moreover, we have that the trivialization �_ is given by the formula

�_
�
O.D/;

X
njxj

�
D

X
nja
C

x;D ı sD.xj /;

for D 2 Div0. xC 0; F / and
P
njxj 2 Z

0.F=K/, which implies thath
D;
X

njxj

i0
C
D  ı �_

�
O.D/;

X
njxj

�
D 0:

6. Global pairing on rational points

In this section we define a global pairing between the rational points of a 1-motive
over a number field and its dual. The construction, which is given in Proposition 6.3,
generalizes the global pairing defined in [12, Lem. 3.1] in the case of abelian varieties
(see also [16, p. 337]).

Let F be a number field endowed with a set of places V . For each place v, let
Fv denote the completion of F with respect to v. For v discrete, denote by OFv the
ring of integers of Fv, and let �v be a uniformizer of OFv such that �v 2 F . Let
MF D ŒLF

uF
��! GF � be a 1-motive over F , where GF is an extension of AF by TF .

For each place v, denote byMFv D ŒLFv
uFv
��! GFv � its base change to Fv , so thatGFv

is an extension of AFv by TFv . Denote by PF the Poincaré biextension of .MF ;M
_
F /

and by PFv its base change to Fv, which coincides with the Poincaré biextension of
.MFv ;M

_
Fv
/. Finally, denote by

�Fv W LFv �Fv G
_
Fv
! PFv ; �_Fv W GFv �Fv L

_
Fv
! PFv

the trivializations associated to the 1-motive MFv and its dual. Observe that MFv has
good reduction over OFv for almost all discrete places v (see [2, Lem. 3.3]). When this
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is the case, there exists an OFv -1-motive

MOFv
D ŒLOFv

uOFv
����! GOFv

�

with GOFv
an extension of an abelian scheme AOFv

by a torus TOFv
, whose generic

fiber is MFv . Furthermore, the Poincaré biextension POFv
of .MOFv

; M_
OFv

/ has
generic fiber equal to PFv and its trivializations

�OFv
W LOFv

�OFv
G_OFv

! POFv
; �_OFv

W GOFv
�OFv

L_OFv
! POFv

extend �Fv and �_Fv , respectively.
Consider a family �D .�v/v2V of homomorphisms �v W F �v !Qp and, for every v,

a �v-splitting  v W PFv .Fv/! Qp of PFv .Fv/ such that

(i) �v.O�Fv / D 0 for almost all discrete places v,

(ii) the “sum formula” X
v2V

�v.c/ D 0

holds for all c 2 F �, and

(iii)  v.POFv
.OFv // D 0 for almost all discrete places v for which MFv has good

reduction.

Denote by V 0 the set of discrete places v satisfying condition (iii); then this condition
is equivalent to V � V 0 being a finite set. Notice that �v.O�Fv / D 0 for all v 2 V 0. We
have the following result:

Proposition 6.1. There is a pairing

h � ; � i W GF .F / �G
_
F .F /! Qp

such that if y 2 PF .F / lies above .g; g_/ 2 GF .F / �G_F .F /, then

(6.1) hg; g_i D
X
v2V

 v.y/:

Proof. First, we prove that the right-hand side of (6.1) is a finite sum. For this, we
use the fact that the 1-motiveMF has good reduction over OF Œ1=N �, forN sufficiently
divisible (see [2, Lem. 3.3]). This implies thatMF extends to a 1-motiveMOF Œ1=N� D

ŒLOF Œ1=N�!GOF Œ1=N�� over OF Œ1=N �, and similarly forM_F . Moreover, the Poincaré
biextension PF extends as well to a biextension POF Œ1=N� over OF Œ1=N �. We then
obtain a tower of two biextensions as follows:
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OF Œ1=N �
� F �

POF Œ1=N�.OF Œ1=N �/ PF .F /

GOF Œ1=N�.OF Œ1=N �/ �G
_
OF Œ1=N�

.OF Œ1=N �/ GF .F / �G
_
F .F /.

Consider a pair of F -points .g; g_/ 2 GF .F / � G_F .F /. We have that, for S
sufficiently divisible, .g; g_/ belongs to the image of

GOF Œ1=S�.OF Œ1=S�/ �G
_
OF Œ1=S�

.OF Œ1=S�/ ,! GF .F / �G
_
F .F /:

So, up to multiplying N by a factor, we can assume that .g; g_/ is in the image of

GOF Œ1=N�.OF Œ1=N �/ �G
_
OF Œ1=N�

.OF Œ1=N �/ ,! GF .F / �G
_
F .F /

(notice that now N also depends on the pair .g; g_/). Let y 2 POF Œ1=N�.OF Œ1=N �/

be an element lying above .g; g_/; observe that y 2 POFv .OFv /
for almost all v. From

this we get that  v.y/ D 0 for almost all v, thus proving thatX
v2V

 v.y/

is a finite sum.
Observe that if y 2 PF .F / lies above .g; g_/, then any other element lying above

.g; g_/ is of the form c C y, for c 2 F �. From (ii) and the fact that each  v is a
�v-splitting we obtain the equalitiesX

v2V

 v.c C y/ D
X
v2V

�v.c/C
X
v2V

 v.y/ D
X
v2V

 v.y/;

which proves that the right-hand side of (6.1) indeed defines a map on GF .F / �
G_F .F /. It remains to check that this map is bilinear. Let y1; y2 2 PF .F / mapping
to .g1; g_/; .g2; g_/ 2 GF .F / �G_F .F /, respectively. Since the  v are �v-splittings,
we get that

hg1 C g2; g
_
i D

X
v2V

 v.y1 C2 y2/

D

X
v2V

 v.y1/C
X
v2V

 v.y2/

D hg1; g
_
i C hg2; g

_
i:

In a similar way we verify linearity in G_F .
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From now on we will assume that LF and TF are split. We assume, moreover, that
any  v factors through a �v-splitting  A;v of PAFv .Fv/:

 v W PFv .Fv/! PAFv .Fv/
 A;v
���! Qp:

Lemma 6.2. For every x_ 2 L_F .F / and g 2 GF .F / there exists t 2 TF .F / such
that X

v2V

 v ı �
_
Fv
.g; x_/ D

X
v2V�V 0

 v ı �
_
Fv
.t�1g; x_/;

and similarly for every x 2 LF .F / and g_ 2 G_F .F /.

Proof. Fix x_ 2 L_F .F / and g 2 GF .F /. Suppose that L_F Š ZrF and let
.m1; : : : ; mr/ 2 ZrF be the element corresponding to x_. Notice that this induces
an isomorphism TF Š Gr

m;F . Consider a discrete place v in V 0. Since GFv has good
reduction, we have AFv .Fv/ D AOFv

.OFv /, which induces isomorphisms

(6.2)
GFv .Fv/

GOFv
.OFv /

Š
TFv .Fv/

TOFv
.OFv /

Š Zr :

Moreover, since MFv has good reduction, the following diagram commutes:

0 Qp

POFv
.OFv / PFv .Fv/

GOFv
.OFv / �G

_
OFv

.OFv / GFv .Fv/ �G
_
Fv
.Fv/

GOFv
.OFv / � L

_
OFv

.OFv / GFv .Fv/ � L
_
Fv
.Fv/.

 v jPOFv  v

Id�u_
OFv

�_
OFv

Id�u_
Fv

�_
Fv

This implies that the map

 v ı �
_
Fv
. � ; x_/ W GFv .Fv/! Qp

factors through the quotient GFv .Fv/=GOFv
.OFv /. Thus, any tv 2 TFv .Fv/ whose

class in TFv .Fv/=TOFv
.OFv / equals that of g satisfies

(6.3)  v ı �
_
Fv
.g; x_/ D  v ı �

_
Fv
.tv; x

_/;

where we identify tv with the corresponding point in GFv .Fv/. If the class of g corre-
sponds to .n1; : : : ; nr/ 2 Zr under the isomorphism (6.2), we may choose tv of the
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form tv WD .�
n1
v ; : : : ; �

nr
v /; in this way, tv belongs to TF .F / and

(6.4)  w ı �
_
Fw
.tv; x

_/ D 0;

for all w 2 V 0 such that w ¤ v. To prove this last assertion, start by considering any
place w 2 V . We have the following commutative diagram with exact rows:

Gm;Fw Gm;Fw

0 TFw PGFw ;¹x_º PAFw ;a_ 0

0 TFw �Fw ¹x
_º GFw �Fw ¹x

_º AFw �Fw ¹a
_º 0,

i

Š
y

�_
Fw

where a_ 2 A_Fw .Fw/ denotes the image of x_ under the composition

L_Fw

uFw
���! G_Fw ! A_Fw :

The map i is the one that when composed with PGFw ;¹x_º ! GFw �Fw ¹x
_º equals

the natural injection and when composed with PGFw ;¹x_º! PAFw ;a_ equals zero. Let
� W TF ! Gm;F be the map corresponding to x_ 2 L_F . With this notation we have

�_Fw .t; x
_/ D �.t/C i.t/;

for all t 2 TFw . In particular, for w ¤ v in V 0 and t D tv we get

 w ı �
_
Fw
.tv; x

_/ D  w.�.tv/C i.tv//

D �w.�.tv//

D �w.�
P
nimi

v /

D .n1m1 C � � � C nrmr/�w.�v/

D 0;

where the second equality is deduced from  w.i.tv// D 0 (since  w is obtained from
a �w -splitting of PAFw ), and the last one from the fact that �v 2 O�Fw . Define

t WD
Y
v2V 0

tv 2 TF .F /:

Notice that this is a finite product, since g 2 GOFv
.OFv / for almost all v 2 V 0. From

(6.3) and (6.4), we get that t satisfies

 v ı �
_
Fv
.t; x_/ D  v ı �

_
Fv
.g; x_/;
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for every v 2 V 0. Therefore, we obtainX
v2V

 v ı �
_
Fv
.g; x_/ D

X
v2V�V 0

 v ı �
_
Fv
.g; x_/C

X
v2V 0

 v ı �
_
Fv
.g; x_/

D

X
v2V�V 0

 v ı �
_
Fv
.g; x_/C

X
v2V 0

 v ı �
_
Fv
.t; x_/

D

X
v2V�V 0

 v ı �
_
Fv
.g; x_/ �

X
v2V�V 0

 v ı �
_
Fv
.t; x_/

D

X
v2V�V 0

 v ı �
_
Fv
.t�1g; x_/;

where the third equality is derived fromX
v2V

 v ı �
_
Fv
.t; x_/ D

X
v2V

�v.�.t// D 0:

Proposition 6.3. Suppose that uF .K/ and u_F .K/ are injective, and that the
�v-splittings  v are compatible with the LFv �Fv L_Fv -linearization of PFv , for every
place v 2 V � V 0. Then the pairing h � ; � i of Proposition 6.1 descends to a pairing

h � ; � iM WMF .F / �M
_
F .F /! Qp:

Proof. Fix g 2 GF .F / and x_ 2 L_F .F /, and let t 2 TF .F / be the element
constructed in Lemma 6.2. We haveX

v2V

 v ı �
_
Fv
.g; x_/ D

X
v2V�V 0

 v ı �
_
Fv
.t�1g; x_/ D 0:

Since we have the analogous equality for every x 2 LF .F / and g_ 2 G_F .F /, the
pairing h � ; � i is zero on G.F / � Im.u_.F // and Im.u.F // � G_.F /, inducing a
pairing

h � ; � iM WMF .F / �M
_
F .F /! Qp:
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