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G -equivariance of formal models of flag varieties

ANDRES SARRAZOLA ALZATE (*)

ABsTrRACT — Let G be a split connected reductive group scheme over the ring of integers o
of a finite extension L|Q, and A € X(T') an algebraic character of a split maximal torus
T C G. Let us also consider the rigid analytic flag variety X"¢ of G and G = G(L). In the
first part of this paper, we introduce a family of A-twisted differential operators on a formal
model Y of X™¢. We compute their global sections and we prove coherence together with
several cohomological properties. In the second part, we define the category of coadmissible
G-equivariant arithmetic D(4)-modules over the family of formal models of the rigid flag
variety X2, We show that if A is such that A + p is dominant and regular (p being the Weyl
character), then the preceding category is anti-equivalent to the category of admissible locally
analytic G-representations, with central character A. In particular, we generalize the main
results from a paper by Huyghe, Patel, Schmidt and Strauch (2019) for algebraic characters.

MATHEMATICS SUBJECT CLASSIFICATION (2020) — Primary 22E50; Secondary 141.30, 13N10,
32C38.

Keyworps — Flag varieties, formal models, Beilinson—Bernstein correspondence, admissible
locally analytic representations, localization.

1. Introduction

Let L|Q, be a finite extension and o its ring of integers. Throughout this work,
G will denote a split connected reductive group scheme over o. We will fix a Borel
subgroup B C G which contains a split maximal torus T C B of G. We will also
denote by X = G /B the smooth flag o-scheme associated to G and by X the smooth
formal scheme. In [20] the authors have introduced certain sheaves of differential
operators (with congruence level k € N) D;, & on a family of formal models Y of X rig,
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the rigid analytic flag variety. They study their cohomological properties and show
that Y is DL’ -affine. Moreover, it is proved in [20, Theorem 5.3.12] that the category
of admissible locally analytic representations with trivial infinitesimal character of
the L-analytic group G (L) can be described in terms of G(L)-equivariant families
(My k) of modules over D;j & on the projective system of all formal models Y of X rig

Our motivation is to study the preceding equivalence (the localization theorem)
in the twisted situation. In this work we will treat the algebraic case, that is, we
will only consider characters of the Lie algebra t = Lie(T) arriving from characters
A € X(T) = Hom(T, Gy,) via differentiation. In this situation A induces an invertible
sheaf £(A) on X and we define ‘D;,k (A) as the sheaf of differential operators (with
congruence level k) acting on £(A). We will follow the philosophy described in [20]
introducing sheaves of differential operators on each admissible blow-up of X. Let
pr: Y — X be an admissible blow-up, then for k£ > 0

D;,k(k) = Ij)r”“DT k(k) o‘d ®pr_1(9x pr 1@1‘ k(A)

is a sheaf of rings' on Y. Let us denote by p the so-called Weyl character and let us
assume that A + p € t, = Homy (t ®, L, L) is a dominant and regular character of
tg =1t ®, L. In this situation, we will show that the direct image functor pr,, induces an
equivalence of categorles between the category of coherent DT P (k) modules and the
category of coherent i Yk (A)-modules. In addition, we have pr, Y k(/\) k()t)
which implies that

HO(Y, D, (1)) = HO(X. D, , (1)).

It is shown in [21] that H°(X, D;C (1)) can be identified with the central redaction?
D*™(G(k)°), of Emerton’s analytic distribution algebra D*"(G (k)°) of the wide open
rigid-analytic k-th congruence group G (k)°. Our first result is as follows.

THEOREM 1. Let pr:Y — X be an admissible blow-up. Suppose A € Hom(T, G,,)
is an algebraic character such that A + p € ta is a dominant and regular character
of tq. Then H°(Y, ¢) induces an equivalence between the categories of coherent
@:;)k (A)-modules and finitely presented D* (G (k)°) -modules.

As in the classical case, the inverse functor is determined by the localization functor

ioc;,k(k)(') = 93;,/((1) ®pan(G(k)°); (*)-

() The technical condition £ >> 0 is clarified in Proposition 4.2. Tt is also explained in (1.1)

below.
(?) Viathe classical Harish-Chandra isomorphism, the character A induces a central character

xa . Z(Lie(G) ®y L) — L which allows us to consider the central redaction.



G-equivariance of formal models of flag varieties 3

Let us now describe the most important tools in our localization theorem. On the
algebraic side, we will first assume that Go = G (o) and that D(Gy, L) is the algebra
of locally analytic distributions of the compact analytic group Gy (in the sense of
[34]). The key point will be to construct the structure of a weak Fréchet—Stein algebra
on D(Gy, L) (in the sense of [14, Definition 1.2.6]) that will allow us to localize the
coadmissible D(Gyg, L)-modules (relative to this weak Fréchet—Stein structure). In
fact, if C°"(Go, L)G (k)o-an 18 the vector space of locally analytic vectors of the space
of continuous L-valued functions and D(G (k)°, Go) = (C*"(Go, L)G (k)°-an)}, 18 its
strong dual, then we have an isomorphism

D(Go, L) = lim D(G(k)°, Go),
keN

which defines the structure of a weak Fréchet—Stein algebra and such that

DG(K).Go)= P D"GK))ss.
g€Go/Gk

Here Gy = G(k)(0) is a normal subgroup of Gy, the direct sum runs through a set of
representatives of the cosets of G in Gg and &, is the Dirac distribution supported
in g. We will denote by Cg, 1 the category of coadmissible D(Gy, L)-modules with
central character A (coadmissible D(Gy, L);-modules, where D(Gy, L), denotes the
central reduction).

Now, on the geometric side, we will consider a Gy-equivariant admissible blow-up
pr: Y — X such that the invertible sheaf £ (1) is equipped with a Gy-action that allows
us to define a left Go-action Ty : D}, , (1) — (pg)«D1 , (1) on D, , (1) (here g € Go
and pg : Y — Y is the morphism induced by Gy-equivariance), in the sense that for
every g, h € Go we have the cocycle condition T = (pg )+ Ty © Tg. So, we will say
that a coherent D;,k (A)-module M is strongly Go-equivariant if there is a family
(¢g)geG, of isomorphisms ¢g : M — (pg)«-M of sheaves of L-vector spaces, which
satisfies the following properties (conditions (})):

* Forevery g,h € Go we have (pg)«@p © 0g = @pg.
e IfU < Yisanopen subset, P € D; M) (W) and m € M(U), then

@g (P em) = Tg(P) * pg(m).

* Forany g € G the application ¢4 : M — (pg )M is equal to the multiplication
by §; € D*(G(k)°),.2

(3) We identify here H°(Y, D;k (1)) with D* (G (k)°) and we use Lemma 4.12 to give a
sense to this condition.
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A morphism between two strongly Gy-equivariant modules (M (<,0g )geG,) and
(N, ((pg )geGy) 18 aDy x (A)-linear map ¥ : M — N such that (pg oY =(pg)xV O(pg
for every g e Go. We denote by Coh(ﬂy (1), Go) the category of strongly Go-
equivariant D (A)-modules. We have the following result.

THeOREM 2. Let A € Hom(T, G,,) be an algebraic character such that A + p € r*
is a dominant and regular character of tg. The functors c‘ﬁocy ) and H 0(Y,) mduce
equivalences between the categories of finitely presented D (G (k)°, Go)-modules (with
central character A) and Coh(@@jk (1), Gy).

Still on the geometric side, let us consider the set - of couples (Y, k) such that Y
is an admissible blow-up of X and k > ky, where

(1.1) ky = minmin{k € N | ok e I}

and I is an ideal subsheaf of O«, such that Y is isomorphic to the blow-up along V(I).
This set carries a partial order. As is shown in [20] the group Gy acts on J- and this
action respects the congruence level. This means that for every couple (Y, k) € T
there is a couple (Y.g, ky o) € I with an isomorphism p, : Y — Y.g and such that
ky = ky . We will say that a family M = (My x)y,k)ez, Of coherent @;’k(k)-
modules is a coadmissible Go-equivariant D(A)-module on F if for any g € Gy, with
morphism pg : Y — Y.g, there is an isomorphism

@ Mygr = (pg)sMy i

that satisfies the conditions (7) and such that, if (Y, k") = (Y, k) with 7 : Y — Y, then
there is a transition morphism 74 My’ p» — My x which satisfies obvious transitivity
conditions. Moreover, a morphism M — N between two such modules is a morphism

My x — Ny x of Dy « (A)-modules Wthh is compatible with the additional structures.
Go

x. We will consider the

We will denote this category by G . For every M € €
projective limit
— 0
F(M) = Tim  HO(Y, My)
(Y,k)eF
in the sense of abelian groups.

Now, let M be a coadmissible D(Gy, L))-moduleand V = M l; its associated locally
analytic representation. The vector space of G (k)°-analytic vectors Vg x)o.an S V' is
stable under the action of G and its dual My = (Vg (k)o-an); p 18 a finitely presented
D(G(k)°, Gg)-module. In this situation, Theorem 2 produces a coherent D! k(/\)
module

iOC;’k(A)(Mk) = D;,k(l) ®Da“(G(k)°);l Mk



G-equivariance of formal models of flag varieties 5

for each element (Y, k) € Iy.. We will denote this family by
Locy (M) = (£oc!, , )(M)y syez -

TueoreM 3. Let A € Hom(T, G,,) be an algebraic character such that A + p € tQ
is a dominant and regular character of tq. The functors £oc, 0( ) and T () induce
equivalences of categories between the category Cg,, ;. (of coadmissible D(Gy, L)y -

Go
modules) and the category C°;

Finally, the last part of this work is devoted to the study of coadmissible* D(G, L) -
modules, where G := G(L). To do this, we will consider the Bruhat-Tits building
B of G (see [9, 10]). It is a simplicial complex equipped with a G-action. For any
special vertex v € B, the theory of Bruhat and Tits associates a reductive group G,
whose generic fiber is canonically isomorphic to G Xgpec(o) Spec(L). Let X, be the flag
scheme of G, and X, its formal completion along its special fiber. We consider the set &
composed of triples (Y, k, v) such that v is a special vertex, Y, — X, is an admissible
blow-up of X, and k > ky,. According to Definition 7.2, J is partially ordered. In
addition, for each special vertex v € B, each element g € G induces an isomorphism
pg + Xy = Ayg, such that if (,oé’i)n : Ox, = (pg)xOx, is the comorphism map and
7w Yy, = Xy is an admissible blow-up along V' (I), then the (admissible) blow-up
along V((,o}g’)_1 (pg)«I) produces a scheme Yy, with an isomorphism pg : Yy — Yug.,
such that ky, = ky,, and for every g, € G we have p,® o pp = p?,.

A coadmissible G-equivariant arithmetic D(A)-module on J consists of a family
(M, k,0))(Yy,k,v)eg Of coherent @;U,  (A)-modules satisfying the conditions () plus
some compatibility properties (see Definition 7.4) that allow us to form the projective
limit

L(M) = 1(1111 HO(HU: M(‘gv,k,v)),
(Yv.k,v)eF
which, as we will show, has the structure of a coadmissible D (G, L) -module. On the
other hand, given a coadmissible D (G, L);-module M, we consider its continuous dual
V' = M, whichis alocally analytic representation of G. Then let M, ; be the dual space
of the subspace Vg, (k)o-an € V of G, (k)°-analytic vectors. For every (Y,,k,v) € J,
we have a coherent DLU, «(A)-module

fOC;v,k(l)(Mv,k) = D;v,k()t) ® D (Gy(k)°); My k

We denote this family by :Cocf (M). We will show the following result (Theorem 7.6).

(%) Here Gg is a (maximal) compact subgroup of G. This compactness property allows us to
define the structure of a weak Fréchet—Stein algebra.
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TueoreM 4. Let A € Hom(T, G,,) be an algebraic character such that A + p €
tED is a dominant and regular character of tg. The functors SBOCE (¢) and T (e) give an
equivalence between the categories of coadmissible D(G, L)) -modules and coadmis-
sible G-equivariant arithmetic D(A)-modules.

The last task will be to study the projective limit

Xoo = L&n Y.
(Yo ,k,v)

This is the Zariski-Riemann space associated to the rigid flag variety X™¢. We can also
form the projective limit D(A) of the sheaves D];, x (A) whichis a sheaf of G -equivariant
differential operators on X. Similarly, if (M y, xv)) (Yy.k,v)es is a coadmissible G-
equivariant arithmetic D(A)-module, then we can form the projective limit M. The
data My, kv)eg »> Moo induces a faithful functor from the category of coadmissible
G -equivariant arithmetic D(A)-modules on JF to the category of G-equivariant D(A)-
modules on X, (Theorem 7.8). In fact, this is a fully faithful functor as we will briefly
explain in Remark 7.9.

We summarize the main results of this work with the following commutative diagram
of functors (cf. [30, Theorem 5.4.10]):

D(G, L), -modules arithmetic D(A)-modules

l l

Coadmissible Jﬁocso Coadmissible Go-equivariant
D(Gy, L) -modules = arithmetic D(A)-modules

{ Coadmissible } £oc§ {Coadmissible G—equivariant}

Here the left-hand vertical arrow is the restriction functor coming from the homo-
morphism D(Gy, L), — D(G, L), and the right-hand vertical arrow is the forgetful
functor.

NotaTtion 1.1. Throughout this work, o will denote a uniformizer of o. Further-
more, if Y is an arbitrary noetherian scheme over o, then for every j € N we will
denote by ¥, := Y Xgpec(o) Spec(o/ @/ *1) the reduction modulo w/*!, and by

Y =limY;
-
j
the formal completion of Y along the special fiber. Moreover, if € is a sheaf of o-modules
on Y then its w-completion
€:=lim&/w/te
<
J
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will be considered as a sheaf on Y. Finally, the base change of a sheaf of o-modules on Y
(resp. on Y) to L will always be denoted by the subscript Q. For instance Eg = € ®, L.

2. Arithmetic definitions
2.1 — p-adic coefficients and divided powers

Let p be a prime number and let us fix a positive integer m. Throughout this work,
we will denote by Z,, the ring of p-adic integers and by Z ) the localization of Z with
respect to the prime ideal (p). Moreover, if k € N, we will write g, for the quotient
of the euclidean division of k by p™. Berthelot has introduced in [3] the following
coeflicients for any two integers k, k” with k > k’:

k !
Ve B =k
k q;'q;!

In fact, we can generalize these coefficients for multi-indices k = (ky,...,ky) € NV
by defining gi! = gg,!...qk, ! and

-1
k 9! k\ _[k\]k
{k_/}=—qk,zqk~! N and <&>_(k_) {k_} ez,

Now, let A be a Z ) algebra. We say that a triple (/, J, y) is an m-PD ideal of A, if y
defines a structure of divided powers on J (a PD-structure in the sense of [5]) and /
is endowed with a system of partial divided powers, meaning that for any integer k,
which decomposes as k = p™q + r (with r < p™), there exists an operation defined

for every x € I by
x 8 =y (™).

ExampLE 2.1. Let o be a discrete valuation ring of unequal characteristic (0, p) and
uniformizing parameter @ . Let us write p = uw@®, with u a unit of o and e a positive
integer (called the absolute ramification index of o). Let k € N. Then y,(x) := x?/v!
defines a PD-structure on (w)* if and only if e < k(p — 1) (see [5, Examples 3.2 (3)]).
In particular, we dispose of a PD-structure on (p) C Z,). We let x*l =y (x) and
we denote by ((p), []) this PD-ideal. Moreover, if k < e — 1 and m > log,,(k), then
(w)¥ endowed with the preceding PD-structure defines an m-PD-structure on (@)
(see [3, Section 1.3, Examples (i)]).
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2.2 — Arithmetic differential operators

Let us suppose that o is endowed with the m-PD-structure (a, b, [ ]) defined in
Example 2.1. Let X be a smooth o-scheme, and J C Ox a quasi-coherent ideal. Let us
consider the sheaf of principal parties P, (J) (see [3, Section 2.1]), which contains
an m-PD structure (J, i []) and the sequence of ideals (7"}),en defining the m-PD-
filtration [4, Section 1.1.3]. For every n € N, the algebra

Pk omy = Pl /T

is quasi-coherent and can be considered as a sheaf on X. Moreover, the projections
P1, P2 - X X, X — X induce two morphisms dy,d : Ox — P4

% (m) €ndowing HE
of a left and a right structure of Oy -algebra, respectively.

X,(m)

DEerinITION 2.2. Let m, n be positive integers. The sheaf of differential operators
of level m and order less than or equal to n on X is defined by

DY) = Jomo (P iy Ox).

If n <n’, then [3, Proposition 1.4.1] gives us a canonical surjection fP;‘(/ m) P% (m)
which induces the injection D&mrz > TD)((m,z, and the sheaf of differential operators of

(m _ (m)
oy = DY
neN

level m is defined by

We remark for the reader that by definition D&m) is endowed with a natural filtration
called the order filtration, and like the sheaves iPS’(’ (m)* the sheaves Dgfmrz are endowed
with two natural structures of Oy -modules.

Moreover, the sheaf Dg(m) actson Oy:if P € D)(Zg, then this action is given by the

composition
d P
Ox — P () — Ox.

Finally, let us give a local description of @;mz

of X endowed with a family of local coordinates x1,...,xy5. Let dx;,...,dxy be
a basis of Qx(U) and dy,, ..., dx, the dual basis of Ty (U) (as usual, Ty and Qx
denote the tangent and cotangent sheaf on X, respectively). Let k € NV Let us use

. Let U be a smooth open affine subset

the notation

N
k| = Zki and al[_ki] = 0y;/k;! foreveryl <i <N.

i=1

Then, using the multi-index notation, we have Qm = ]_[}il Bl[ki Vand Q(@ = qy! Q[ﬂ.
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In this case, the sheaf ‘D&mz has the following description on U:

D&"Z(U) = { Z axd® | a € Ox(U) and k € NN}.

|k|<n

2.3 — Symmetric algebra of finite level

In this subsection, we will focus on introducing the constructions in [19]. As before,
let X denote a smooth o-scheme and let us consider a locally free Ox-module £ of finite
rank, the symmetric algebra Sy (£) associated to £, and the ideal J of homogeneous
elements of degree 1. If Pg, (), (m)(J) denotes the m-divided power enveloping algebra
of (Sx(£),J) (see [3, Proposition 1.4.1]), then we can consider the coherent sheaves
on X

Tx,m)(£) = Psy(c).my(@)  and  TF (L) = Ty my(£)/T"HD.

Those algebras are graded [19, Proposition 1.3.3] and if 74, ..., ny is a local basis
of £, we have
o () = € 0xn™.

lL]<n

i}

i

As before Q{L} = ]_[N=1 nl{li} and g;!n

1

= i . We define by duality

Sym™ (L) = U Homg, (F}?(m)([;v), Ox).
keN
By [19, Propositions 1.3.3 and 1.3.6] we know that Sym™ (£) = D, en Symflm)(ﬁ)
is a commutative graded algebra with noetherian sections over any open affine subset.
Moreover, locally over a basis 71, ..., ny of £ we have the following description:

LY :
Sym,({”)(L) = @ OxnY,  where '—n§l’) = nll.’.
- qi!
|l|=n
REMARK 2.3. By [5, Proposition A.10] we have that Sym® (£) is the symmetric
algebra of £, which justifies the terminology.

We end this subsection by mentioning the following results from [19]. Let J be the
kernel of the comorphism A¥ of the diagonal embedding A : X — X Xgpec(o) X. In
[19, Proposition 1.3.7.3] Huyghe shows that the graded algebra associated to the m-PD-
adic filtration of Py () is identified with the graded m-PD-algebra Ty () (J/9%) =
Cx,(m) (2 1}() More exactly, we dispose of a morphism of Oy -algebras

Sx (Q2x) — gr. Px,(m)
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which extends, via the universal property [3, Proposition 1.4.1], to a canonical morphism

)rf,(m) (Q)lr) — gr_(fP;’(,(m)),
By definition, it induces a graded morphism
2.1) Sym™ (Tx) — gr, DYV

which is in fact an isomorphism of Oy -algebras.

2.4 — Arithmetic distribution algebra of finite level

As in the introduction, let us consider a split connected reductive group scheme
G over o and m € N fixed. We give a description of the algebra of distributions of
level m introduced in [21]. Let / denote the kernel of the surjective morphism of
o-algebras eg : o[G] — o, given by the identity element of G. We know that 7 /12 is
a free o = o[G]/I-module of finite rank. Let ¢1,...,#; € I such that modulo /2 these
elements form a basis of 7 /12. The m-divided power enveloping algebra of (o[G], /),
denoted by Py, (G), is a free 0-module with the elements AL tl{k'} S tl{kl Yas basis,
where

thy _ gl

qi 't forevery k; = p™g; +r; and 0 < r; < p™.

These algebras are endowed with a decreasing filtration by ideals 7 (the m-PD
filtration), such that 7"} = @| kl>n og{k}. The quotients
Py (G) = Piuy(G)/ T+

are therefore o-modules generated by the elements ¢} with |k| < n (see [3, Proposi-
tion 1.5.3 (ii)]). Moreover, there exists an isomorphism of o-modules

Pl (@)= € o

|k|<n

and for any two integers n, n’ such that n < n’ we have a canonical surjection Pt
P(”W/l) (G)— P(’,’n) (G). The module of distributions of level m and order n is D,(lm) (G)=
Hom(P(’;n ) (G), 0). The algebra of distributions of level m is

D™ (G) = lim D" (),
n
where the limit is formed with respect to the maps Hom, (7" ", 0). The multiplication
is defined as follows. By the universal property (see [3, Proposition 1.4.1]) there exists
a canonical map

8 PEET(G) — P (G) @ Pl (G).
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(m) (m) .
If (u,v) € D, " (G) x D,,”(G), we define u.v as the composition

’ 8”‘"/ ’ UV
UL P(’;;;” (G) — P(y(G) ®o Py (G) — o.

Let us denote by g = Hom,( /12, o) the Lie algebra of G. This is a free o-module
with basis &1, ..., & defined as the dual basis of the elements ¢4, . .., #;. If for every
multi-index k € N, |k| < n, we denote by & ) the dual of the element ALNS P(’;n )((G),
then D,(,m)((G) is a free o-module of finite rank with a basis given by the elements § (k)

with |k| < n (see [21, Proposition 4.1.6]).

Remark 2.4. This remark exemplifies the local situation when X = Spec(A) with
A being a Zp)-algebra [19, Section 1.3.1].

Let A be an o-algebra and E a free A-module of finite rank with base (x1,...,xn).
Let (y1,...,yn) bethe dual base of EY = Homy (E, A). As in the preceding subsection,
let S(E) be the symmetric algebra and I(E") the augmentation ideal. Let ') (EY)
be the m-divided power enveloping algebra of (S(EY),I(EY)). We put

Ie (EY) = imy(EY)/ T,

These are free A-modules with base yik‘} . yl{\],w } with Y k; < n (see [19, Rappels
1.1.2Gii)]). Let {x®} )<, be the dual base of Homy(T'7,, (EY), 4). We define
Sym™(E) = |_) Homy(I'(,, (EY). A).
neN

This is a free A-module with a base given by all the x%. The canonical inclusion
Sym(”’)(E ) € S(E) ®, L gives the relation

: ki!

xkid = 25 ki

gi!
Moreover, it also has an algebra structure defined as follows. By [19, Proposition 1.3.1]
there exists an application A, rg;;;"’(EV) — Tl (EY) ®4 Fg,;)(EV), which
allows us to define the product

. Fn—l—n’ EV An’n’/ Fn EV Fn, EV u®u A
UYLy (EY) — (m)( ) ®4 (m)( ) —>

with u € HomA(F?m)(EV), A) and v € HomA(FE’,;)(EV), A). This map endows
Sym(m)(E ) with the structure of a graded noetherian o-algebra [19, Propositions 1.3.3
and 1.3.6].

We have the following important properties [21, Proposition 4.1.15].
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ProrositionN 2.5. (i) There exists a canonical isomorphism of graded o-algebras
gr. (D™ (G)) = Sym™ (g).

(ii) The o-algebras gr.(D™(G)) and D™ (G) are noetherian.

2.5 — Integral models

In this subsection, we will assume that X is a smooth o-scheme endowed with a
right G-action.

DerintTION 2.6. Let A be an L-algebra (resp. a sheaf of L-algebras). We say
that an o-subalgebra Aq (resp. a subsheaf of o-algebras) is an integral model of A if
Ao ®p L = A.

ReEmARKk 2.7. Let us recall that throughout this paper g denotes the Lie algebra
of the split connected reductive group o-scheme G and U(g) its universal enveloping
algebra. As we have remarked in the introduction, if gg denotes the L-Lie algebra
of the algebraic group Gg = G Xgpec(o) Spec(L) and U(gq) its universal enveloping
algebra, then U(g) is an integral model of U(gq ). Moreover, the algebra of distributions
of level m, introduced in the preceding subsection, is also an integral model of U(gg)
(see [21, Section 4.1]). This fact will be especially important in this work.

ProvposiTioN 2.8. The right G-action induces a canonical homomorphism of
filtered v-algebras
o™ : p"(G) — HO(X, DY)

Proor. For the proof we refer the reader to the proof of [21, Proposition 4.4.1 (ii)].
Here, we will briefly discuss the construction of ®) . The central idea in the con-
struction is that if p : X x, G — X denotes the G-action, then the comorphism
o' Ox — Ox ®, o[G] induces a morphism

P Py oy = Ox ®o Py (G)
for every n € N. Those applications are compatible when varying n. Let u € D,S”’) (G).
We define ) (1) by

o id®u

M () : Py —> Ox ®o Pl (G) —> Ox.

Again, those applications are compatible when varying n and we get the morphism of
the proposition. ]
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Remarks 2.9. (i) If X is endowed with a left G-action, then it turns out that G
is an anti-homomorphism.

(ii) In [21, Theorem 4.4.8.3] Huyghe and Schmidt have shown that if X = G and
we consider the right (resp. left) regular action, then the morphism of the preceding
proposition is in fact a canonical filtered isomorphism (resp. an anti-isomorphism)
between D (G) and H°(G, Dg’ ))G, the o-submodule of (left) G-invariant global
sections. This isomorphism induces a bijection between D,(,m) (G) and H°(G, Dgf ;)G,
and it is compatible when varying m.

We will denote by
Y"1 Oy ®, D™ (G) — DY

the morphism of sheaves (of o-modules) defined as follows: if U C X is an open subset
and f € Ox(U), u € D" (G), then

Y (f ®u) = f - 0 (w)|y.

Let us define A;m) = Ox ®, D (G), and let us remark that we can endow this sheaf
with the skew ring multiplication coming from the action of D (G) on Oy via the
morphism ®"™  that is,

2.2) (f@u)-(g®@v)=(f- o7 W)g @ v+ fg @ uv.

This multiplication defines over Ag(m) the structure of a sheaf of associative o-algebras,
such that it becomes an integral model of the sheaf U° = Ox, ®1 U(gg). To see this, let
us recall how the multiplicative structure of the sheaf U° is defined (cf. [29, Section 5.1]
or [27, Section 2]).

Differentiating the right action of Gg on Xg, we get a morphism of Lie algebras

T:80Q — HO(XQ,‘.TX@).

This implies that gg acts on Ox, by derivations and we can endow U° with the skew
ring multiplication

(23) (fenNEed)=(ftn)g®+ fg@nt

for n € g, ¢ € U(gq) and f, g € Ox,. With this product the sheaf U° becomes a
sheaf of associative algebras [27, p. 11].

REmARK 2.10. Asin (2.2) we can define a morphism (called the operator-repre-
sentation) of sheaves of L-algebras

Uy, : Oxo ®L UW(gQ) = Dxg. f @0+ fr(n) (f € Oxqy. 1 € go)-
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We get the commutative diagram

DGy 2" HO(X, D)

[ . 1

U(gz) — H°(Xq, Dxg)-

Given that D (G) is an integral model of the universal enveloping algebra U(gg),
then by (2.2) and (2.3) we can conclude that A&m) is also a sheaf of associative o-algebras
being a subsheaf of U°.

Prorosrtion 2.11 ([21, Corollary 4.4.6]). (i) The sheafﬂg(m) is a locally free Ox -
module.

(ii) There exists a unique structure over Ag(m) of filtered Ox -rings and there is a canonical
isomorphism of graded Ox -algebras gr(flgfm)) = Ox ®, Sym™(q).

(iii) The sheaf A;m) (resp. gr(A)((m)) ) is a coherent sheaf of Ox -rings (resp. a coherent
sheaf of Ox -algebras), with noetherian sections over open affine subsets of X.

3. Twisted arithmetic differential operators with congruence level

In this section, we will introduce congruence levels to the constructions given
in Sections 2.2, 2.4 and 2.5. This means, deformations of our (integral) differential
operators. This notion will be a fundamental tool to define differential operators on an
admissible blow-up of the flag o-scheme.

3.1 — Linearization of group actions

Let us start with the following definition from [17, Chapter II, Exercise 5.18] (cf.
[8, Definition 3.1.1]).

DerintTioN 3.1. Let Y be an o-scheme. A (geometric) line bundle over Y is a
scheme L together with a morphism 7 : L — Y such that Y admits an open covering
(Us)ier satisfying the following two conditions:

(i) Forany i € I there exists an isomorphism ¥; : 7~ (U;) — Abi.

(ii) For any i, j € I and for any open affine subset V' = Spec(A[x]) € U; N U; the
automorphism 6;; : ¥; o Y7y 1 A, — Aj, of A}, is given by a linear automor-
phism Ql.uj of A[x]. This means, Ol.hj (a) = aforanya € A, and Ol.uj (x) =a;jx fora
suitable a;; € A.
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In the preceding definition, the scheme L is obtained by gluing the trivial line
bundles py,; : U; x A[l, — U; via the linear transition functions (a;;). Thus, each fiber
L, is a line, in the sense that it has a canonical structure of a 1-dimensional affine
space.

DerINITION 3.2. Given a line bundle 77 : L — Y and a morphism ¢ : Y’ — Y, the
pull-back ¢* (L) is the fiber product L xy Y’ equipped with its projection to Y.

Now, let 7 : L. — Y be aline bundle over Y, then a section of = over an open subset
U C Y is amorphism s : U — L such that 7 o s = idy. Moreover, the presheaf £
defined by
UCY — {s U —>L|sisasection0verU}

is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf.
On the other hand, if € is a locally free sheaf of rank 1 on Y and we let

V(©) = Spec, (Symo, (€)

be the line bundle over Y associated to & (see [16, Definition 1.7.8]), then we have a
one-to-one correspondence between isomorphic classes of locally free sheaves of rank
1 on Y and isomorphic classes of (geometric) line bundles over Y (see [17, Chapter I,
Exercises 5.1 (a) and 5.18 (d)]):

Isomorphic classes of
locally free sheaves of rank 1 <> Isomorphic classes of line bundles,

& — V(&Y),
L < L.

3.1

Let 7 : L — Y be aline bundle over Y, let £ be its sheaf of sectionsand ¢ : Y/ — Y
a morphism of schemes; an easy calculation shows that the sheaf of sections of the
pull-back line bundle ¢*(L) = L xy Y’ — Y’ is equal to ¢*(L).

Let us suppose now that ¥ is endowed with a right G-action @ : ¥ Xgpec(0) G — Y.
In particular, for every g € G (o) we dispose of a translation morphism

idy xg o
Pg 1 Y =Y Xgpee(o) Spec(0) —— ¥ Xgpee(o) G — Y.

In the next lines we will study (geometric) line bundles which are endowed with a right
G-action.

DeriniTioN 3.3. Let w : L — Y be aline bundle. A G-linearization of L is a right
G-action B : L Xgpec(o) G — L satisfying the following two conditions:
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(i) The diagram

B
L Xgpec(0) G —— L

[

Y X Spec(o) G L} Y
is commutative.

(i1) The action on the fibers is o-linear.

Let g € G(o) and let us suppose that ¥ : «* (L) — pj (L) is a morphism of line
bundles over ¥ Xgpec(0) G. Let us consider the translation morphism

idy xg o
Pg - Y =Y Xgpec(o) Spec(0) —— Y Xgpee(o) G — Y.

We have the relations (idy x g)*a*(L) = pz (L) and (idy x g)* pT (L) = L. So every
morphism of line bundles W : &* (L) — py (L) induces morphisms W : pz (L) — L for
all g € G(o). The following reasoning can be found in [12, p. 104] or [8, Lemma 3.2.4].

ProrosiTioN 3.4. Let w : L — Y be a line bundle over Y endowed with a G-
linearization B : L Xgpec(0) G — L. Then there exists an isomorphism

¥ :a*(L) = py(L)
of line bundles over L Xspec(0) G, such that Wgp = Wg 0 pz (W) for all g, h € G (o).

Proor. By definition of linearization we have the commutative diagram

nXxidg

a*(L) 2.y Xspec(o) G

lpl o

L—"——— Y.

By the universal property there is a unique morphism of line bundles ¥ : pf(L) —
a*(L), which is linear on the fibers since so is 8. Let g € G (o). To see that ¥ is an
isomorphism we can use the correspondence (3.1). In this case, if x € Y, g € G (o) and
Y(x,g) - Lx —> Lxg denotes the respective morphism between the stalks, then /(. ¢)
is an isomorphism, ¥, .—1) being the inverse.
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Let g, h € G(0). Applying (idx x g)* to ¥, we get the morphism ¥g : L — pg (L)
and given that f is a right action (o, © pg = pgp), it fits into the commutative diagram

L— s o)
Ven lﬂ; ¥n)

pgpp (L) = pg,(L).

Moreover, since ¥ : L — pg (L) is an isomorphism for every g € G(0), we can
consider the morphism ¥, = v/ L. pg (L) — L which coincides with the fibers of
the morphism

¥ =y ':a*L) > p(L).

By construction, these morphisms satisfy the cocycle condition of the proposition. This
means that for every g, h € G(0), we have

Wy, = Wg 0 p%(Uy). n

3.2 — Associated Rees rings and differential operators with congruence level

Throughout this subsection, X will denote a smooth scheme over o. As usual, we
will denote by D&m) the sheaf of level m differential operators on X. As we have
remarked in Section 2.2, those sheaves come equipped with a filtration

Ox CDY) S-S DY) - S DY,

with ‘Dgrm; the sheaf of level m differential operators of order less than or equal to d.

Now, let A be a sheaf of n-algebras endowed with a positive filtration (FzA)gen
and such that o C Fy.A.> The sheaf A gives rise to a subsheaf of graded rings R(A) of
the polynomial algebra A[¢] over A. This is defined by

RA) =P FA-1,
ieN
its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves
of subgroups

d
Ry(A) =P FA-1' € RA).
i=0

(5) This digression can be found before the proof of [20, Proposition 3.3.7].
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Specializing R(A) in an element p € o, we get a subsheaf of filtered subrings A,
of A. More exactly, A, equals the image under the homomorphism of sheaves of rings
¢, R(A) — A, sending ¢ — p, and it is equipped with the filtration induced by A.
Moreover, if the sheaf of graded rings gr(A), associated to the filtration (FyA)gen, is
flat over o, then

d
FaAu =) W FA,
i=0
see [20, Claim 3.3.10.]. If  : A — B is a morphism of positive filtered o-algebras
(with 0 € FyA and o € FyB), then the commutative diagram

d d
R(A) agté—y(ag)t R('B)
b b
A v , B

gives us a filtered morphism of rings v, : A, — B,. This in particular implies that
for u € o fixed, the preceding process is functorial.

ReMark 3.5. The previous digression is well known for rings. In this setting,
we have results completely analogues to the ones presented so far [26, Chapter 12,
Section 6]. We will use these results in Section 3.3.

Now, let k be a non-negative integer called a congruence level [23, Section 2.1].
By using the order filtration (D&m))deN of the sheaf D(m), we can define the sheaf
of arithmetic differential operators of congruence level k, ‘D;m’k), as the subsheaf of

k

ngfm) given by the specialization of R('Dg(m)) in @* € o. This means

(m,k) __ kd ~(m)
Dy = Z w Dx,d'
deN

By (2.1)and [19, Proposition 1.3.4.2] we can also conclude that, if (D;m[’lk)) deN denotes

the order filtration induced by DY, then

d
DY =" wk Dy,
i=0
In local coordinates we can describe the sheaf D)((m’k) in the following way. Let U € X
be an open affine subset endowed with coordinates x1,...,xx5. Let dx,...,dxy be
abasis of Qx(U) and 0y, , ..., dx, the dual basis of Tx (U). By using the notation in
Section 2.2, one has the following description [23, Section 2.1]:

<0
DO (1) = {Zw"‘ﬂ'aﬁ@ la, € oX(U)}.
v
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3.3 — Arithmetic differential operators acting on a line bundle

Throughout this subsection, X = G /B will always denote the flag scheme. For
technical reasons (cf. Proposition 2.8) in this work we will always suppose that the
group G and the scheme X are endowed with the right regular G-action. This means
that for any o-algebra A and g¢, g € G(A) we have

go°g =g "g0 and goB(A)eg =g 'goB(A).

Under this action, the canonical projection G — X is clearly G-equivariant.

Finally, we recall for the reader that the sheaf @;m) is endowed with a left and a
right structure of a Ox-module. These structures come from the canonical morphisms
of rings dy,d» : Ox — ﬂ’;‘(’(m),
projections. By construction, these actions also endow the sheaf @;m’k) with a left and

which are induced by the universal property and the

a right structure of a Ox-module.

DerintTiON 3.6 (Dominant and regular characters). Let us consider the positive
system AT C A C X(T) (X(T) = Hom(T, G,,) the group of algebraic characters)
associated to the Borel subgroup scheme B C G. The Weyl subgroup W = Ng(T)/T
acts naturally on the space ta = Homy (tz, L), and via differentiation d : X(T) < t*
we may view X (T) as a subgroup of t* in such a way that X*(T) ®, L = tg. Let
o= % Y gea+ @ be the so-called Weyl vector. Let & be a coroot of o € A viewed as
an element of tq. An arbitrary weight A € tg, is called dominant if A(¢) > 0 for all
a € A, The weight A is called regular if its stabilizer under the W -action is trivial.

DeriniTION 3.7 (Line bundles on the flag scheme). Let us suppose now that
X = G/B is again the smooth flag n-scheme. We dispose of a canonical isomorphism
T ~ B/N (here N is the unipotent radical of B) which in particular implies that
every algebraic character A € Hom(T, G,,) induces a character of the Borel subgroup
A : B — Gyy. Let us consider the locally free action of B on the trivial fiber bundle
G x Al over G given by

b.(g,u) = (gh™", A(b)u) (g€G,beB,ucA)).

We denote by L(1) = B \ (G x A]) the quotient space obtained by this action.

Let 7 : G — X be the canonical projection. Since the map G x AL — X, (g,u) —
7(x) is constant on B-orbits, it induces a morphism 7, : L(1) — X. Moreover, given
that 7t is locally trivial (see [24, Part II, §1.10 (2)]), &), : L(X) — X defines a line
bundle over X (see [24, Part I, §5.16]). Furthermore, the right G-action on G x A},
given by

(g0, u) e g+ (g7 g0, u) (g €G, (g0.u) € G x Ay)
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induces a right action on L(A) for which L(A) turns out to be a G-linearized line
bundle on X. By Proposition 3.4, the sheaf of sections £(A) of the line bundle L(A) is
a G-equivariant invertible sheaf.

DeriniTiON 3.8. Let A € Hom(T, G,) be an algebraic character. For every con-
gruence level k € N, we define the sheaf of level m arithmetic differential operators
acting on the line bundle £(A) by

DI (2) = L) ®oy DY @0y LY.

The multiplicative structure of the sheaf D(m k)(/\) is defined as follows. Let us
consider ¥, 8Y € L(A)Y, P,Q € D(m k) and a, B € L£L(}), then

(3.2) a®PRaVfRQO®L =a® Pla¥,B)0®p".
Moreover, the action of Dg(m’k)(k) on L£(A) is given by
QP RtY)es=(Pe(tY,s))t (s,t € LX), 1Y e L(L)).

ReEMARK 3.9. Given that the locally free Ox-modules of rank one £(1)Y and £ (1)
are in particular flat, the sheaf D(m k) (1) is filtered by the order of twisted differential
operators. That is, the subsheaf 9('" k) of 9('" k) of differential operators of order less
than d induces a subsheaf of tw1sted differential operators of order less than d by

k k
(33) DY) = £Q) ®oy, DY @0y LY.
Given that the tensor product preserves inductive limits, we obtain

DY) = lim DY ().
d

Moreover, the exact sequence

0 — DY — DY — DY /DI 0

and the relation (3.3) give us the isomorphisms
k k k
(DY () = £(2) oy gr(DY"™) ®oy LA)" = gr(DY"™Y).

The second isomorphism is defined by « ® P ® a¥ > «Y () P. This is well defined
(mk)y . .
because gr(Dy ") is in particular a commutative ring.

ProrosiTioN 3.10. There exists a canonical isomorphism of graded sheaves of
algebras
gr (DY (1) = Sym™ (wTy).
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Proor. By (2.1) and the fact that Dg(m,k) and wkTy are locally free sheaves (and
therefore free w-torsion) we have the short exact sequence

0= DY DI gym® (rkTy) 0,

which gives us the isomorphisms
Sym™ (@*Tx) = gr.(DY") = gr. (DY (1)). .
In the next proposition we will use the notation introduced in Sections 2.1 and 2.2.

ProposiTioN 3.11. There exists a covering 8 of X by affine open subsets such that
over every open subset U € § the rings @g"’k) (A) and Dg"’k) are isomorphic.

Proor. Let us start by considering an affine open subset U C X endowed with local
coordinates x1, ..., xp. Forevery v € NM and f € Ox(U) we have the following
relation [3, Proposition 2.2.4 (iv)]:

W= 3 {E/}Qw/)(f)Q(v”) e DO = plm).

v
v'4v’=v \ 7

Now, let us take an affine covering § of X such that every U € § is endowed with
local coordinates, and assume that there exists a local section o € £(A)(U) such that
L) |y =a0p and £(1)Y |y = YOy, where a¥ denotes the dual element associated
to . Let us show that

(34) DI =P oy - (@ ® Y ®a¥).
v

To do that, it is enough to show that for every v € N and f, g € Oy the section
o @ okl f Q@ ® ga belongs to the right side of (3.4). In fact, from the first part of
the proof we have

a® w—k|2|f§<2> ® gaV —a® w-km‘fé(ﬂ)g ®a\/

= Z wklvlf{%}éw)(g)o( ®Q(E//) ® o

and we get the relation (3.4). Let us consider the map 6 : Dg"’k) A) — Dg"’k) defined
by
g(wk\ylfa QY & av) = wklylfa(y)

and let us see that 6 is a homomorphism of rings (the multiplication on the left is given
by (3.2)). By (3.4), the elements in Dg"’k) (A) are linear combinations of the terms
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wkl fa® Q@) ® aY; therefore, it is enough to show that 8 preserves the multiplicative
structure over the elements of this form. So, let us take v, € N and f, g € Oy. On
the one hand

G(wkly‘fa ® Q(B) QoY e wklzlga ® Q(z) ®aY)
— g(wklg\fa ® Q(Q)wklz\gé(z) ®a)

= 3 by {i}@(v’)(wklulg)Q(v”)Q(m’

v/+v"=v -
and on the other hand

g(wklglfa ® Q(Q) QaY)e 9(wk|ﬂ|g(x ® Q(ﬂ) ®aY)
— wklglfé(g) . wklﬂlga(z)

= Z wklvlf{%}ﬁ(v')(wklug)Q(v”)Q(u)_

v'+v"=v Y

Both equations show that 6 is a ring homomorphism.
Finally, an analogous reasoning shows that the morphism 6~ : Dg”’k) — @g"’k) 1)
defined by
g—l(wklzlfa(y)) — wklﬂ‘foz QY @ oV

is also a homomorphism of rings and § 0 67! = 67! 0 0 = id. ]

DEeriniTION 3.12 (Congruence subgroups and wide open congruence subgroups).
Let us denote by F; = o/(w) the residue field of o, and let us consider the generic
fiber of G,

GQ =G XSpec(o) SPCC(L),

and the special fiber
<GT]Fq =G XSpec(o) SPeC(Fq)-

For every k € N, there exists a smooth model G (k) of G such that Lie(G (k)) = w*q.
In fact, we take G (0) = G and we construct G (1) as the dilatation of the trivial subgroup
of G, in G (see [7, Section 3.2]). This is a flat o-scheme which is an integral model
of G (see [35, Proposition 1.1]). In general, we let G (k + 1) be the dilatation of the
trivial subgroup of G (k)r, in G(k), in such a way that for every k € N we dispose of
a canonical morphism G (k + 1) — G (k).

Let us describe the distribution algebra D " (G (k)) of the congruence group G (k)
(see [20, Section 3.3]). Let us take a triangular decomposition g = n @ t @ 7 and let
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us consider the basis (f;), (%;) and (e;) of the o-Lie algebra u, t and T, respectively.
Then D (G (k)) equals the o-subalgebra of U(g) ®, L generated as an o-module
by the elements

v v Q//! :

2 2//
(35) qvgwk\gli' qv/!wk|v’|(h/)qv//!wkv//lg
v o1 12 ’ v =

An element of the preceding form has order d = |v| 4 |v’| + |v”|. Therefore, the o-spam
of elements of order at most d defines an o-submodule D;m) (G(k)) € D™ (G (k)).
In this way D (G (k)) becomes a filtered o-algebra, such that by (3.5) and the well-
known Poincaré-Birkhoff—-Witt theorem we have

D™ (G (k) ® L = U(g) ®, L.
The preceding discussion also tells us that
DI(G(0) gk = D™ (G(k)).

Finally, let us introduce a family of certain rigid-analytic “wide-open” groups G (k)°,
which will be important in our work. To do this, let us first consider the formal completion
& (k) of the group scheme G (k) along its special fiber, which is a formal scheme of
topological finite type over Spf(o). Now, we consider the completion & (k)° of & (k)°
along its unit section Spf(0) — & (k), and we denote by G (k)° its associated rigid-
analytic space [2, (0.2.6)], which is a rigid-analytic group.

We recall for the reader that in Section 2.5 we have introduced the sheaves

AF™ = 0x @ D™ (G (k).
which carries a structure of filtered Oy -rings, such that
er(Af?) = Ox @, Sym™ (w*g).

Prorosition 3.13. There exists a canonical surjective homomorphism of sheaves
of filtered v-algebras
oy AT - DY (1),

Proor. Let us start by showing the existence of such a morphism. By [21, Corollary
4.5.2], there exists a morphism of sheaves of filtered o-algebras

(3.6) AYO DO ),

Let us first show that after specializing in * the Rees ring associated to the twisted
order filtration of D&m’o) (A), we get D)((m’k) (A). To do that, we consider D)((m’o) filtered
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by the order of differential operators and we define the homomorphisms of Oy -modules

e

B L) ®oy ROY) @0y L)Y —=— ROYV (),

by
G(a ® Z Pit' ® av) = Z(a QP @ aV)r’
i i
with ord(P;) = i for every i in the sum, and the obvious definition for §~! such that
60671 =671 o0 = id. This shows that (3.7) is an isomorphism of Oy -modules and

an easy calculation shows that (3.7) is in fact an isomorphism of rings.
Let us denote by

o1 : RODYOM) = DY () and oy : RODYY) — DY

the morphisms sending ¢ +— w”, and let us consider the diagrams

0

L) ®oy RODYY) ®oy LAY 3 "~ RODYO ()

9—1

idL()L)®02®idL(A)v

DY ().

It is straightforward to check that both diagrams are commutative and we can conclude
that

(DY () i = im(0y) = im(idg ) ® 02 ® idayv)
= L(}) ®oy im(02) ®oy L)Y = DY (2).
On the other hand, taking the natural filtration of Ag(m,o)’ we have
R(AY™) = 0x ®, R(D"™(G(0))).

Therefore, (.Agfm’o))wk = Ag(m,k)_ The above two calculations tell us that passing to the

Rees rings in the map (3.6) and specializing in =*

of filtered sheaves of n-algebras

, we get the desired homomorphism

(3.8) YR L AYHR s DU (1),

Let us finally show that this morphism is surjective. To do that, let us recall that the
right G-action on X induces a canonical application

(3.9) Ox Qo wkq — wkTy,
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which is surjective by [28, Section 1.6]. Given that gr(A&m’k)) = Ox ®, Sym™ (wkyq),
we can conclude from Proposition 3.10 that <I>§(m’k) is surjective. ]

Proposition 3.11 and the same reasoning as in [23, Proposition 2.2.2 (iii)] imply the
following meaningful result.®

Prorosition 3.14. The sheaf @;m’k)(/\) is a sheaf of Ox -rings with noetherian
sections over all open affine subsets of X.

3.4 — Finiteness properties

NoraTion 3.15. To soft the notation in the arguments that we will realize throughout
this subsection, from now on we will denote by Dg(mik) the sheaf D)((m’k) (A) introduced
in Definition 3.8 (see [32, Proposition 3.5.18]).

Throughout this subsection, A € X(T') will denote an algebraic character. By abuse
of notation, we will denote again by A the character dA € Homg_y04(t, 0) induced
via differentiation. We will show one important property about the p-torsion of the
cohomology groups of coherent Dgﬁk)-modules, when the character A + p is dominant
and regular. We will follow the arguments in [28].

Let Y be a projective scheme. There exists a very ample sheaf O(1) on Y (see
[17, Chapter II, Remark 5.16.1]). Therefore, for any arbitrary Oy -module €& we can
consider the twist

€(r) = € ®oy O(r),

where r € Z means the r-th tensor product of O(1) with itself. We recall that there
exists ro € Z, depending of O(1), such that for every k € Z~ and for every s > ry,
H*(Y,0(s)) = 0 (see [17, Chapter II, Theorem 5.2 (b)]).

Let us start the results of this subsection with the following proposition which states
three important properties of coherent Ag"’k)—modules (see [21, Proposition A.2.6.1]).
This is a key result for our work. Let € be a coherent Ag,m’k)—module.

ProposiTion 3.16. (i) H(X, Ag,m’k)) = DG (k)) is a noetherian o-algebra.

(ii) There exists a surjection (Ag"’k) (=r)® - & - 0on Ag,m’k)-modulesfor suitable
r € Zanda € N.

(iii) For any k > 0 the group H*(X, &) is a finitely generated D™ (G (k))-module.

(®) Of course, this is also an immediately consequence of Proposition 3.13 and [19, Proposi-
tion 1.3.6].
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Inspired by Proposition 3.13, we will first focus on coherent Ag,m’k)—modules. The
next two results will play an important role when we consider formal completions.

Lemwma 3.17. For every coherent Ag"’k)-module &, there exists v = r(E) € Z such
that H* (X, &(s)) = O for every s > r.

PrOOF. Let us fix ry € Z such that H*(Y, O(s)) = 0 for every k > 0 and s > ry.
We have
HE (Y, AP () = HE (Y. 0(s) @ D™ (G (K)) = 0.

The rest of the proof follows the inductive argument given in [28, Proposition 2.2.1]. =

Let us suppose now that X = G/B is the smooth flag o-scheme of G. From

Proposition 3.13 and Lemma 3.17 we have the following result.
(m, k)-module E, there existr =r(E) € Z, a

D;mik) -modules

Lemma 3.18. For every coherent Dy,
natural number a € N and an epzmorphzsm of

(DY5P(=r)® — € 0.

ProposiTioN 3.19. Suppose that A + p € ta is a dominant and regular character
(cf. Definition 3.6).
(1) Let r € Z be fixed. For every positive integer k € Z~g, the cohomology group
H*(X, D(m k) (r)) has bounded p-torsion.

(ii) Forevery coherent Dg‘, 1 ) module &, the cohomology group H* (X, &) has bounded
p-torsion for all k > 0.

Proor. To show (i) we remark that by construction Dg(mk% = D, is the usual

sheaf of twisted differential operators on the flag variety Xy (see [24, Part I, §5.17]).
As @;mk% (r) is a coherent D -module, the classical Beilinson—Bernstein theorem
(see [1, p.2]) allows us to conclude that

H*(X, D(’" () @ L =0

for every positive integer k € Z~¢. This in particular implies that the sheaf 9('" k) (r)
has p-torsion cohomology groups Hk(X ®(m k) (r)),forevery k > Oand r € Z By
Proposition 3.13, we know that D( (r) isin partlcular a coherent A( *)_module and
hence, by the third part of Proposmon 3.16 we get that for every k > 0 the cohomology
groups H¥(X, D(m) (r)) are finitely generated D™ (G (k))-modules. Consequently,
they are of finite p-torsion for every integer 0 < k < dim(X) and r € Z.

By Lemma 3.18 we can use the same reasoning as in [28, Corollary 2.2.4] to show
(ii). [ ]
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3.5 — Passing to formal completions
We recall for the reader that throughout this work

X = li_r)an, X; = X Xgpec(o) Spec(o/w’*1)
JjeN

denotes the formal completion of X along its special fiber.

DerintTION 3.20. We will denote by

Pmk) _ (m.k) j+1 gy (m k)
Dy = lim Dy 5 /@ Dy;
JjeN
the w-adic completion of CD( 1 %) and we consider it as a sheaf on X. Following the
7 (m k)

xX,A,Q
of level m twisted differential operators with congruence level k on the formal flag

scheme X.

notation given at the beglnnlng of this work, the sheaf D will denote our sheaf

ProrosiTion 3.21. (i) There exists a basis B of the topology of X, consisting of
open affine subsets, such that for every U € 8B the ring D(m k) (W) is two-sided
noetherian.

(ii) The sheaf of rings @SZ"A% is coherent.

Proor. To show (i) we can take an open affine subset U € § and consider its formal
completion U along the special fiber. We have

H°U, DYP) > HOU. DYLP) ~ HOWU. DY) ~ HO(u. D).

The first and third isomorphisms are given by [15, (07, 3.2.6)] and the second one
arises from Proposition 3.11. By [23, Proposition 2.2.2 (v)] H°(U, Dgzn’k)) is two-sided
noetherian. Therefore, we can take B as the set of affine open subsets of X contained
in the @w-adic completion of an affine open subset U € 8. This proves (i).
By [3, Proposition 3.3.4] we can conclude that (ii) is an immediately consequence
of (i) because by [3, (3.4.0.1)]
HOW. DY L) = HOW DY) @, L .
From now on, we will always assume that A 4+ p € ta denotes a dominant and regular
character, which is induced by an algebraic character A € X(T'). Our next objective is

to prove an analogue of Proposition 3.19 for coherent Dgé" Ak()@ -modules and to conclude

that H°(X, ) is an exact functor over the category of coherent Dgznik()@ -modules.
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ProrosiTioN 3.22. Let & be a coherent D;mik) -module and /8\ its w -adic completion,
which we consider as a sheaf on X.

(i) Forallk > 0 one has H*(X,€) = lim H*(X,&/w/€).
(i) For all k > 0 one has H*(X,€) = H*(X, €).
(iii) The global sections satisfy H° (X, g) = l(ir_nj HY(X,&)/w/ H(X, &).

Proor. Let &, denote the torsion subpresheaf of €. As X is a noetherian space and
@;mik) has noetherian ring sections over open affine subsets of X (Proposition 3.14),

k)

we can conclude that &; is in fact a coherent D;Kmi -module. This is generated by a

coherent Ox-module which is annihilated by a power @w® of @, and so is £;. The
quotient G := £/¢&; is again a coherent D;mik)-module; therefore, we can assume, after

possibly replacing ¢ by a larger number, that
we, =0 and w'HX(X,&)=w H¥(X,9)=0 forallk > 0.

From here on the proof of the proposition follows the same reasoning given in [19,
Proposition 3.2]. |

The next proposition is a natural consequence of Lemmas 3.17 and 3.18. The proof
is exactly the same as that of [20, Proposition 4.2.2].7

ProrosiTION 3.23. Let & be a coherent @gznik)-module.

(1) There exists r, = r2(8) € Z such that for all r > r, there are a € 7 and an

epimorphism of @gnik)—modules

(@ggfik)(—r))@“ —- & —0.

(ii) There exists r3 = r3(8) € Z such that for all r > r3 one has H*(X, &) = 0 for all
k > 0.

The same inductive argument exhibited in [19, Proposition 3.4 (i)] shows the fol-
lowing result.

COROLLARY 3.24. Let & be a coherent @g”ik)-module. There existsc = c(6) e N
such that for all k > 0 the cohomology group H* (X, &) is annihilated by w*.

(") We skip the proof here, but the reader can take a look at [31, Proposition 4.1.2] where we
have treated the case k& = 0. The proof for k € Z~ is exactly the same.
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Now, we want to extend part (i) of the preceding proposition to the sheaves Dg’cn Ak()Q.
To do that, we need to show that the category of coherent Dgc Ak(g—modules admits
integral models (Definition 2.6).

Let Coh(D(m k)) be the category of coherent D( ; )-modules. Let Coh(D(m k))
be the category of coherent Dgg"/lk)-modules up to 1sogeny, whose class of obJects is
the same as that of Coh(ﬂ(m k)) For any two objects M and N in Coh(ﬁ(m k))Q, one
has

Homeon@ 479 (M, N) = Homeon@¢:0) (M. N) ®, L

ProrosiTion 3.25. The functor M +— M ®, L induces an equivalence of categories
between Coh(®(m k))Q and Coh(D(m’k) ).

X,A,Q
Proor. By definition, the sheaf D%% satisfies [3, Conditions 3.4.1] and therefore
[3, Proposition 3.4.5] allows us to conclude the proposition. u

The proof of the next theorem follows exactly the same lines as that of [20, Theo-
rem 4.2.8].
THEOREM 3.26. Let & be a coherent ‘Dg"xk()@—module
(i) Thereisr (&) € Z such that for everyr > r(8) there exista € N and an epimorphism
7 (m.k)
of D3 g modules
(DYLEr® —> € —o.

(ii) Foralli > 0 one has H (X,8) = 0.

Proor. By the preceding proposition, there exists a coherent D(m ©)_module ¥
such that ¥ ®, L ~ &. Therefore, applying Proposition 3.23 to ¥ glves (i). Moreover,
as X is a noetherian space, Corollary 3.24 allows us to conclude that

H (X, 8)=H (X, F)Q,L =0

for every k > 0 (see [3, (3.4.0.1)]). [

3.6 — The arithmetic Beilinson—Bernstein theorem with congruence level

3.6.1. Calculation of global sections. Inspired by the arguments exhibited in [22], in
(m k)

x,4,Q°

Let us identify the universal enveloping algebra U(tg) of the Cartan subalgebra tg

with the symmetric algebra S(tg), and let Z(gg) denote the center of the universal

this subsection we calculate the global sections of the sheaf D

enveloping algebra U(gq) of gg. The classical Harish-Chandra isomorphism Z (gg) =~
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S (tQ)W (the subalgebra of Weyl invariants) [1 1, Theorem 7.4.5] allows us to define
for every linear form A € ta a central character [11, §7.4.6]

Yato - Z(gQ) > L,

which induces the central reduction U(gg)r = U(gQ) ®z(gg),xr+p L- If we put
Ker(xa4p)o = D™ (G (k)) N Ker(y+ p)> we can consider the central redaction

DG (k) = D™ (G(k))/ D™ (G (k) Ker(xa+p)o

and its w-adic completion D™ (G (k))y. It is clear that DU (G (k));, is an integral
model of U(gg) . We denote by DT(G(k));, the limit of the inductive system

D™(G(k))r ® L — D™D(G (k) ®o L

TueoreM 3.27. The morphism @ : D(G (k) — H°(X, DY5), defined
by taking global sections in Proposition 3.13, induces an isomorphism of L-algebras

D™ (G (k) ®o L = HO(X, DY)

Proor. The key in the proof is the commutative diagram

(m k)
DM (G (k) —*—s HO(X, DY)

l [

(o))
U(gg) ——— H%(Xq.Dy).

Here ® is the morphism in [18, (11.2.2)].8 By the classical Beilinson—Bernstein
theorem [1] and the preceding commutative diagram, we have that @gm’k) factors
through the morphism

"0 DM (G (k) — HO(X. DY),

which becomes an isomorphism after tensoring with L. By [22, Lemma 3.3] we have
that Eﬁm) gives rise to an isomorphism

D™ (G (k))x ® L = H(X, DY) @, L

Proposition 3.22 together with the fact that X is in particular a noetherian topological
space end the proof of the theorem. |

(®) We recall that £(A) is a G-equivariant line bundle, which implies the existence of this
morphism [18, Section 11.1].
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3.6.2. The localization functor. In this subsection, we will introduce the localiza-
tion functor. Let E be a finitely generated D" (G (k))) ®, L-module. We define
iﬂoc(m k)(E ) as the associated sheaf to the presheaf on X defined by

k)
U € X DELA) @500 6wy, 0oL E-

Then l’ocx A ) is a functor from the category of finitely generated D (Gk))y ®, L-

DF) _modules.

modules to the category of coherent D A0

3.6.3. The arithmetic Beilinson—Bernstein theorem. We are finally ready to prove one
of the principal results of this work. To start with, we will enunciate the following
proposition whose proof can be founded in [31, Proposition 4.4.1].

PropositioN 3.28. Let & be a coherent Dgé"l ()@-module Then & is generated by

its global sections as Dgz"i Q-module Furthermore every coherent Dgz"ik()@-module

admits a resolution by finite free ®x 2 Q—modules.

THEOREM 3.29. Let us suppose that A € X(T) is an algebraic character such that
A+pe t[& is a dominant and regular character of tq. The functors Iocggjik) and
HO(X, ) are quasi-inverse equivalences of categories between the abelian categories

of finitely generated 13('”)(@ (k))x ®o L-modules and coherent D_Sx ))L @ modules.

Proor. The proof of [19, Proposition 5.2.1] carries over word by word. |

3.7 — The sheaves D' k(/\)

In this subsection, we will study the problem of passing to the inductive limit when
m varies, this means

DI M) = (lim DY) @ L, DTG K)) = (lim D (G (k))x) ®o L.

meN meN

As in Section 3.6.2 let us consider the following localization functor éﬁoc;rc )
from the category of finitely presented DT (G (k)),-modules to the category of coher-
ent D&, «(A). Let E be a finitely presented DT(G (k)),-module, then éCoch, cM(E)
denotes the associated sheaf to the presheaf on X defined by

Uc X Dl , (M) @pr@wy; E.

As before, it is clear that l’ocx «(A) is a functor from the category of finitely presented
DT(G (k)),-modules to the category of coherent i k(/\) -modules.
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DerintTioN 3.30 (Analytic distribution algebra). The wide-open rigid analytic
groups, defined in Definition 3.12, play an important role in the work developed by
Emerton in [13], to treat locally analytic representations of p-adic groups. The analytic
distribution algebra of G (k)° is defined to be the continuous dual space of the space
of rigid-analytic functions on G (k)°. That is,

D™(G (k)°) = (Og e (G (k))), = HomP™ (0 k) (G (k)°), L),,
which is a topological L-algebra of compact type.
In [21, Proposition 5.2.1] Huyghe and Schmidt have shown that
DT (G (k)) =~ D™(G (k)°).
As X is a noetherian space, Theorem 3.27 and the preceding relation tell us that

(3.10)  HO(X. D} (W) = D™(G(K)°)x
= DG (k)°)/ D™ (G (k)°) (Ker(xa+,))-

We will concentrate our efforts to prove the following Beilinson—-Bernstein theorem for
the sheaves D];C ).

Tueorem 3.31. Let A € X(T) be an algebraic character, such that A + p € ta
is dominant and regular. The functors Iocgc’k (A) and H°(X, ¢) are quasi-inverse
equivalences of categories between the abelian categories of finitely presented (left)
DY(G (k))p-modules and coherent ‘D;, « A)-modules.

Let us start by recalling the following proposition [3, Proposition 3.6.1].

ProposiTion3.32. Let Y be atopological space, and {D;};c y be afiltered inductive
system of coherent sheaves of rings on Y, such that for any i < j the morphisms
D; — D; are flat. Then the sheaf Df = li_n)l,ej D; is a coherent sheaf of rings.

14

Proposrtion 3.33. The sheaf of rings @&,k (A) is coherent.

Proor. The previous proposition tells us that we only need to show that the transition
morphisms @%% — @_g";&k) are flat. As this is a local property we can take U € §
(see the notation in Proposition 3.11) and verify this property over the formal completion
U. In this case, the argument used in the proof of the first part of Proposition 3.21 gives

us the following commutative diagram:
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k N k
DY @) —— DY P

N

The flatness theorem [23, Proposition 2.2.11 (iii)] states that the lower morphism is flat
and so is the morphism on the top. |

Lemwma 3.34. For every coherent Dl k()k) module & there exist m > 0, a coherent
Dg?’kk()@ -module &,, and an isomorphism of Dl k()L) -modules

71Dl (1) @B, Em — €.

Moreover, if (m’, &y ‘c ) is another such triple, then there exist | > max{m,m’} and
an isomorphism of Dx 1 Q—modules

2)(”‘) R Em SDE0 o &
2,Q X,4,Q CDEAL B

such that v/ o (idD-}D-C.k(A) ®17)=r1.

Proor. This is [3, Proposition 3.6.2 (ii)]. We remark that X is quasi-compact and

separated, and the sheaf @gﬁké satisfies the conditions in [3, §3.4.1]. [

ProposiTioN 3.35. Let & be a coherent DZC « (A)-module.
(i) There exists an integer r (&) such that for all r > r(&) there are a € N and an
epimorphism of DTX « A)-modules
(D KA (= % - & —0.
(ii) Foralli > 0 one has H (X,8) = 0.

The proof is exactly as the one of [20, Theorem 4.2.8].

Proor. Let & be a coherent DJr « (A)-coherent module. The preceding proposition
tells us that there exist m € N, a coherent Dgg” Ak()@ -module &, and an isomorphism of

Dy k(/\)—modules
7: D] (M) @B &y — 6.

Now we use Proposition 3.26 for &,, and we get the desired surjection in (i) after
tensoring with DI x & (4)- To show (ii) we may use the fact that, as X is a noetherian
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topological space, cohomology commutes with direct limits. Therefore, given that

e k)Q ®’\(m k) &,, is a coherent D&’?Q—module for every [ > m, we have

H (X, 8) = lim H' (X, DY) @50, &) =

I>m

for every i > 0. |

PROPOSITION 3.36. Let & be a coherent D! k()k) -module. Then & is generated
by its global sections as @x & A)-module. Moreover, & has a resolution by finite free
k(/\) -modules and HO(DC &) isa DT(G(k))) ®o L-module of finite presentation.

The proof is exactly as the one of [19, Theorem 5.1].

D(m k)

YA Q—module &,, such that

Proor. Theorem 3.34 gives us a coherent

€ ~ DI () @D Em.
g;"/’\k()Q—modules (Proposition 3.28). Both
results clearly imply the first and the second part of the proposition. The final part is

Moreover, &, has a resolution by finite free D

therefore a consequence of the first part and the acyclicity of the functor H%(X,s). m

Proor orF THEOREM 3.31. All in all, we can follow the arguments of [28, Corol-
lary 2.3.7]. We start by taking

(DT (G (k))z ® L)% — (DT (G (k) ® L)®? — E — 0,

a finitely presented DT (G (k)); ®, L-module. By localizing and applying the global
sections functor, we obtain a commutative diagram

(DG (k)i ® L)® — (DTG (K))s ® L) ———— E

| | |

(DHGKh))1 ®s L) — (DG (K))z ®0 L)® —» HO(X, Locl, , (1)(E)).

which tells us that E — H%(X, Loc! k()t) (E)) is an 1somorph1sm The reader can
follow the same arguments to show that if € is a coherent D] k()t) -module, then
the canonical morphism Dx ) ®DH(G(|))®oL H°(X, &) — 8 is an isomorphism.
The second assertion follows because any equivalence between abelian categories is
exact. ]
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4. Twisted differential operators on formal models of flag varieties

Throughout this section, X = G /B will denote the smooth flag o-scheme and
A € X(T) = Hom(T, G,,) will always denote an algebraic character. As before, we
will denote by £(A) the (algebraic) line bundle on X induced by A (Section 3.1). In this
section, we will generalize the construction given by Huyghe—Patel-Strauch—Schmidt in
[20] by introducing sheaves of twisted differential operators on an admissible blow-up
of the smooth formal flag o-scheme X. The reader will figure out that some reasoning
is inspired by the results in [20].

4.1 — Differential operators on admissible blow-ups
We start with the following definition.

DeriniTION 4.1. Let J € Ox be a coherent ideal sheaf. We say that a blow-up
pr: Y — X along the closed subset V'(J) is admissible if there is k € N such that
wkOx < J.

Let us fix an open ideal J € Ox and an admissible blow-up pr: ¥ — X along V(J).
We point out to the reader that J is not uniquely determined by the space Y. In the
sequel we will use the notation

ky = mjinmin{k €N | wk e J},
where the first minimum runs over all open ideal sheaves J such that the blow-up along
V(J) is isomorphic to Y.

Now, as J is an open ideal sheaf, the blow-up induces a canonical isomorphism
Yo >~ X between the generic fibers. Moreover, as = is invertible on X, we have

DY xy = Dxlxg = Dxq-
the usual sheaf of (algebraic) differential operators on Xq. Therefore
- k
pr (DX )yg = Dg.

In particular, Oy, has the natural structure of a (left) pr! (£D§(m’k))ly@ -module. The
idea is to find those congruence levels k € N such that the preceding structure extends
to a module structure on Oy over pr—! (®§m’k)). Let us denote

DY = pr* (DY) = Oy Bypesoy DY,

The problem to find those congruence levels was studied in [20,23]. In fact, we have
the following result (see [20, Corollary 2.1.18]).
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ProrosiTiON 4.2. Letk > ky. The sheafD(Ym’k) is a sheaf of rings on Y . Moreover,
it is locally free over Oy.

Explicitly, if d1, d are both local sections of pr—! (Dgfm’k)), and if f1, f> are local
sections of Oy, then

(f1®01)*(f2®02) = f101(f2) ® 02 + f1.f2 ® 3102.

We have all the ingredients that allow us to construct the desired sheaves over Y, that
is, to extend the sheaves of rings defined in the preceding section to an admissible
blow-up ¥ of X. Let k > ky be fixed. Let us first recall that taking arbitrary sections
P, Qe Dg(m’k), s,t € L(A) and sV, 1Y € L(A)Y (the last two are not necessarily the
duals of s and ¢#) over an arbitrary open subset U C X, the multiplicative structure of
the sheaf DY} is defined by (cf. (3.2))

SEPRsVet®0®tY=5s® P(sV.1)0®1".
Now, if pr : ¥ — X denotes the projection, we put
DY () = pr* (DY) = pr* LX) ®oy pr DY @0, priL(d)Y.

Proposition 4.2 allows us to endow the sheaf of Oy -modules Dg"’k)(/l) with a multi-
plicative structure for every k > ky. On local sections we have

SEPRs"et0®tY=s®@ PV, 1)0®1Y,

where 5,1 € pr*L(A), sV, Y € pr*L(A)Y and P, Q € Dgf”’k) are local sections.
Let Y be the completion of Y along its special fiber Yr, = Y Xspec(o) Spec(o/m).

NotaTtion 4.3. In this work we will only consider formal blow-ups Y arising from
the formal completion along the special fiber of an admissible blow-up ¥ — X (see
[20, Proposition 2.2.9]). Under this assumption we will identify ky = ky.

DEeriniTION 4.4. Letpr: ¥ — X be an admissible blow-up of the flag variety X
and let k > ky. The sheaves

Dy’ ) = (lim DO /w1 DO () @, L
ieN
Dl () = lim DI (A).

mEN

are called sheaves of A-twisted arithmetic differential operators on Y.
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ProrosiTiON 4.5. (i) The sheaves Dg"’k)()t) are filtered by the order of twisted
differential operators and there is a canonical isomorphism of graded sheaves of
algebras

gr(DYF (1)) = Sym™ (wFpr*Ty),

where k > ky.

(ii) There is a basis for the topology of Y, consisting of affine open subsets, such that
for any open subset U € Y in thiskbasis, the ring Dg"’k) (A)(U) is noetherian. In
particular, the sheaf of rings @g"’ )()L) is coherent.

(iii) The sheaf @fém@k)()t) is coherent.
Proor. By (2.1), we have an exact sequence of Oy-modules

0— Dg’;’ik_)l — D;K”,’a’lk) — Sym;m)(wk‘TX) — 0.

Taking the tensor product with £(A) and £(A)" on the left and on the right, respectively,
and applying pr*, we obtain the exact sequence (since Symfim) (w*Ty) is a locally free
Ox-module of finite rank)

0 — DY (1) - DY ()
— pr*L(A) o, Symfim)(wkpr*‘ll'x) Roy pril(l)Y — 0,
which implies (i) because
prL(d) ®o, Sym™ (@ pr*Ty) ®o, priL(h)” ~ Sym™ (w*pr*Ty)

by commutativity of the symmetric algebra.

Let U € X be an affine open subset endowed with local coordinates x1, . .., X
and such that £L(1)|y = sOy for some s € L(A)(U). Then, by Lemma 3.11 we have
the following local description for Dg,m’k)()t) onV =pr 1(U):

<0
DI () (V) = {Z o 2, 9% | v = (vy,... ) eNM ay € oy(V)}.

By (i), the graded algebra gr,(@%"’k) (A)(V)) is isomorphic to Sym™ (@ pr*Tx (V))
which is known to be noetherian [19, Proposition 1.3.6]. Therefore, taking as a basis
the set of affine open subsets of Y that are contained in some pr=! (U), we get (ii).
As ngf"’k) (A) is Oy -quasi-coherent and has, by (ii) and [23, Proposition 2.2.2 (iii)],
noetherian sections over the affine open subsets of Y, it is certainly a sheaf of coherent
rings by [3, Proposition 3.1.3]. Finally, by definition, we see that @ém,k) (A) satisfies the
conditions (a) and (b) of [3, (3.3.3)] and hence [3, Proposition 3.3.4] gives us (iii). =
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Let us briefly study the problem of passing to the inductive limit when m varies.
Let U C X be such that Dg(m’k)()t)w ~ 'Dg(m’k) | and let us take an affine open
subset V' C Y such that V C pr~!(U). We have the commutative diagram

y <y

LS
U Yy x,
which implies that Dg"’k) My =~ @g"’k)lv, as sheaves of rings. In particular, if 8

denotes the formal p-adic completion of V' along the special fiber Vf,, we have the
commutative diagram (cf. Proposition 3.33)

DI (2)(B) —— DI (1) (D)
4.1) l'z l'z
®(m k)(%) . .D(m+1 o 3).

Given that the morphism of sheaves @fdek) — @;’"6 16 is left and right flat [23,
Proposition 2.2.11 (iii)], the preceding diagram allows us to conclude that the morphism

(m k) A) - ®(m+1 k) () is also left and right flat. By Proposition 3.32 we have the
followmg result.

ProposiTiON 4.6. The sheaf of rings DJ,;’ «(A) is coherent.

As we will explain later, there exists a canonical epimorphism of sheaves of filtered
o-algebras®
APD = 0y ®, D™ (G (K) - DY),
which allows us to conclude the following proposition exactly as we have done in the
proof of Proposition 3.28 (cf. [20, Proposition 4.3.1]).

Prorosition 4.7. Let A € Hom(T, G,,) be an algebraic character such that A +
pE ta is a dominant and regular character of tg.
(i) Let & be a coherent D(m k)(/\) module. Then & is generated by its global sections
as fD(m k) (A)-module. Furthermore & has a resolution by finite free fD(m k) A)-
modules

(ii) Let & be a coherent D} k()k) -module. Then & is generated by its global sections as
()t) module. Furthermore & has a resolution by finite free fD (/\) modules.

(°) We construct this morphism in (7.3). The arguments given there are independent and we
will not introduce a circular argument.



G-equivariance of formal models of flag varieties 39

4.2 — An invariance theorem for admissible blow-ups

Let pr : Y — X be an admissible blow-up along a closed subset V() defined by
an open ideal sheaf 7 € O«. Using Notation 4.3, we can suppose that Y is obtained as
the formal completion of an admissible blow-up® ¥ — X along a closed subset V(J)
defined by an open ideal sheaf J C Oy, such that T is the formal w-adic completion of
J. Letus denote by ¥; := Y Xgpec(o) Spec(o/ @’ 1) the redaction module w’*! and
by y; : Y; — Y the canonical closed embedding. In [23] the authors have studied the

cohomological properties of the sheaves
7y (m k) : (m.k) T ) mym.k)
Dyg’ =limy Dy"" ® L and Dy, = lim D",
ieN meN

Let us consider the commutative diagram

Y,' L} X,‘
[
y X5 x.

Here pr; : Y; — X; denotes the redaction modulo w'*1 of the morphism pr. We put

L)Y = Li;nyi*pr*ﬂ(k)v and £(A) = Lir_nyfpr*ﬁ(k).
4 1
By using the preceding commutative diagram, we have
*Q(m,k) 1) = X * (A D(m,k) oY
¥ Dy () =y (pr* L) ®oy Dy ®oy priL(A)Y)
k
= 77 (pr* L) ®oy, ¥ DY @0y, v (pr* L))

Taking the projective limit and tensoring with L, we get the following description of
the sheaves Dfém@k)(k):

~(mk ~ (m ke
DYy (M) = LRy ®oyo DG ®oy o L)Yy
Taking the inductive limit, we get the characterization

i i
D‘é,k(x) = ‘f(A)Q ®0y.0 D‘d,k ®oy.0 i(A)VQ'

(1°) By abuse of notation we will denote again by pr : ¥ — X the canonical morphism of
this algebraic blow-up.
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As in the preceding subsection, the sheaf éﬁ(k) is endowed with the following (left)
()L) action:

C®P®tV)es=(Pe(t¥,s)t (5,1 €LA)gandr¥ e LAY ).

We end this first discussion by remarking that the relation pr} o y* = y* o pr*, coming
from the preceding commutative diagram, implies that

D} o) = pr* Dl ().

Let us suppose that 7 : Y/ — Y is a morphism of admissible blow-ups. By abuse
of notation, we will denote by 7 : Y — Y also the respective morphism obtained
by functoriality by completing along the special fiber. This is a morphism of formal
admissible blow-ups in the sense of [6, Part II, Section 8.2, Definition 3]. We have
commutative diagrams

4 k4

Y —— Y Yy —Y
N Nl
X. X.
Let k > max{ky’, ky}. Let us write
Dy O = DO/ H DO (),

considered as a sheaf over X;. Let 7; : YI/ — Y; denote the redactions module w1,
The preceding commutative diagram implies that

4.2) DY M) = (i) DY) = 7 DY ().

In this way, the sheaf D(m .k)()t) can be endowed with the structure of a right
_1D(m k) (A)-module. Passmg to the projective limit, the sheaf D(m k)(/\) is a sheaf
of right ﬂ_lD(m k)(A) modules. So, passing to the inductive 11m1t over m, we can
conclude that Dy, (A) is aright & -1pf k(k) -module. For a Dy x(A)-module &, we
define
'€ = D, ;) ®r1pt 1y 7€,

with analogous definitions for D(m k) A).

THEOREM 4.8. Let 7w : Y' — Y be a morphism over X of admissible blow-ups. Let

k > max{ky/,ky}.
(i) If & is a coherent DL’,k (A)-module, then R/ & = 0 for every j > 0. Moreover,

DY, (V) = DI L (V).
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so T« induces an exact functor between coherent modules over Dy, ) and
k()t) respecttvely

(ii) The formation 7" is an exact functor from the category of coherent D:;’ « A)-modules
to the category of coherent D];, « (A)-modules.

(iii) The functors s and 7" are quasi-inverse equivalences between the categories of
coherent @3;, x (A)-modules and coherent @; « (A)-modules.

We remark for the reader that this theorem has an equivalent version for the sheaves
DY (1) and DY Y (1)

Proor. Let us first assume that & = D;, «(A). Let us consider the covering 8
of X, defined in Proposition 3.21 and let us take U € B. We put V' = pr'~}(U) and
V = pr~!(U). By assumption V' = 7~ !(V) in such a way that

R-in*(iD (l))|\7 = RJJT*('DH/ k(/\)|\7’) = R‘i”*(D;/’kW’) = R‘/”*(D;/’k)h?'

Now we can use [23, Theorem 2.3.8 (i)] to conclude that R/ n*D;, «(A) = 0 for every
j > 0. Furthermore, by (4.2) there exists a canonical map

DI (A) = DY, (),

which is an isomorphism by the preceding reasoning and [23, Theorem 2.3.8 (i)].
To handle with the second part let us define the assertion a; for every j > 1 as
follows:

R'7,& = 0 for any coherent 0l (A)-module & and forall [ > ;.

Y.k

The assertion a; is true for j = dim(Y) + 1. Let us suppose that a; 1 is true and let
us take a coherent 99’ «(A)-module €. By Proposition 4.7 there exist b € N and a
short exact sequence of coherent Dy, « (A)-modules

0> % — (@w’k(x))@b — & —0.
Since R/ n*D;/ «(A) = 0 forevery j > 0, the long exact sequence for 7, gives us
R/my & ~ R n, 7,

which is 0 by induction hypothesis. This ends the proof of (i).
Let us show (ii) for the sheaves D:; «(A). The proof for the sheaves 9('" k) (A)
follows the same argument. Given that

7' (M) = DI, , (),

. . . !
and since the tensor product is right exact, we can conclude that 77* preserves coherence.
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Now, let M be a coherent D% «(A)-module. We have a morphlsm 7 IM - 7'M
sending m > 1 ® m. This map induces the morphism M — 7,7 M. To show that
this is an isomorphism is a local question on Y. If V C Y is the formal completion of
an affine open subset V' C pr1(U), and U C X is an affine open subset such that
DIF W)y ~ DIF|y (Lemma 3.11), then by (4.1) and [23, Corollary 2.2.15] we
can conclude that the previous map is in fact an isomorphism over V. Finally, if ¥ is a
coherent @3;,, x (A)-module, then we have the map n'meF — F,sending P @ m —
Pm. To see that this is an isomorphism, we can use the preceding reasoning. |

Let us recall that if A € Hom(T, G,,) is an algebraic character such that A + p € ta
is a dominant and regular character of tg, then by (3.10) we have

HO(X, DL (1) = D™(G(K)°)x = D™(G(k)°)/ D™ (G (k)°)(Ker 12+,).
Theorem 4.8 has the following corollary.

CororLarY 4.9. Let A € Hom(T, G,,) be an algebraic character suchthat A + p €
t(a is a dominant and regular character of tg. In the situation of Theorem 4.8 one has

HO(Y, D (V) = HX, D, (W) = DI G (k)x = H(Y, D], , (V).

THEOREM 4.10. Letpr: Y — X be an admissible blow-up. Let us suppose that
A € Hom(T, G,,) is an algebraic character such that A + p € ta is a dominant and
regular character of t@.

(i) For any coherent D! k()t) -module & and for all ¢ > 0 one has H1(Y,&) = 0.

(i) The functor H°(Y, ¢) is an equivalence between the category of coherent Dl k()k)
modules and the category of finitely presented DT (G (k));-modules.

The same statement holds for coherent modules over D(m k)(/\)

Proor. The first part of the theorem follows from H%(Y,+) = H°(X, ¢) o m4. Now
we only have to apply Theorems 4.8 and 3.31.

Let us consider the category MOdfp(DT(G (k)),) of finitely presented DT(G (k))-
modules, and the category Modwh(ﬂDC (1)) of coherent i k()L) -modules (with
analogous notation on Y). We denote by éﬁoc;’ « (1) the exact functor defined by the
composition

+

+ .Jﬁocx'k(l) ¥ ! +
MOdfp(D Gy —— MOdcoh(Dx’k (1) — MOdcoh(Dy,k(A))-

Fixing a finitely presented DT (G (k));-module E, we see that
7! (Lock L W(E)) = D () -1l () 7 'DL L () @@, E
=D} (M) ®pt Gy, E-
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Now, to show that
HO(Y. ' (Lock , )(E)) = E,

we can take a resolution
(DT (G(k)))® — (DT (G (k))1)®* — E — 0,

to get the diagram

(DY G k) —— (DTG (k))2)® » E

! J !

(DTG (k))® — (DTG (k) — HO(Y, D] (V) ®piwy, E).

where the sequence on the top is clearly exact. By definition l’oc; (M) (0) is an exact
functor and by (i) the global section functor H°(Y, #) is also exact. This shows that the
sequence at the bottom is also exact and we end the proof of the theorem. ]

In the sequel we will denote by G the compact locally L-analytic group G¢ := G (o).

4.3 — Group action on blow-ups

Let & be the w-completion of G, along its special fiber Gr, = G Xspec(o)
Spec(o/w). Let us denote by o : X Xgp() & — X the induced right &-action on
the formal flag o-scheme X (cf. Section 3.3). For every g € &(v) = G, we have an
automorphism pg of X given by

idyxg o
pg X=X XSpf(O) Spf(O) — X XSpf(O) 6’ — X.
As & acts on the right, we have the relation

43) (Pe)«(P}) 0 P = phe (2,1 € Go).

Here pg : Ox — (pg)+Ox denotes the comorphism of pg.

Let H € Gy be an open subgroup. We say that an open ideal sheaf 7 € Ox is
H -stable if for all g € H the comorphism ,02, maps I € Ox into (pg)«d S (pg)+Ox.
In this case pg induces a morphism of sheaves of graded rings

B 14 - (00)- (P 1)
deN deN

on X. This morphism induces an automorphism of the blow-up Y = Proj(D ;e £ 4y,
let us say pg by abuse of notation, and the action of H on X lifts to a right action of H
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on Y, in the sense that for every g, h € H the relation (4.3) is verified. We have the
commutative diagram

Pg

Yy —>9Y
4.4) pr lpr
x 2 x.

DeriniTioN 4.11. Let H € Gy be an open subgroup and pr : Y — X an admissible
blow-up defined by an open ideal subsheaf I € O-. We say that Y is H -equivariant if
I is H-stable.

We will need the following result in the next sections. The reader can find its proof
in [20, Lemma 5.2.3].

Lemma 4.12. Let pr : Y — X be an admissible blow-up, and let us assume that
k > ky = ky. Then'Y is Gy = G (k)(0)-equivariant and the induced action of every
g € G4 on the special fiber of Y is the identity. Therefore, Gi 41 acts trivially on
the underlying topological space of Y.

As noted, for every g € &(0) = G(o) = Gy there exists an isomorphism

idy xXg o
pg : X ——= X Xspec(o) & = X,

which induces an Ox-linear isomorphism ® : £(A) — (pg )+ (L (1)) (Proposition 3.4)
verifying the cocycle condition

4.5) Dpe = (pg)x(Pp) 0o @y (g.h € G(0)).
In particular, we have an induced Gy-action on the sheaf D& USE
(4.6) Tg : DL () = (pg)«Dh (M), P> Bg0 P o ()"

Locally, if U € X and P € D&} « L) (W), then the cocycle condition (4.5) tells that the

diagram

LOU(hg) ™) = M) UghY) —= P e yagth )

lq)h,lu.g—l =(Pg)*¢;’lu D) g1 =(pg)*q’h.u]\
4.7 E£M)Ug™) LU.g™h)

ld);lu Pq UT

L)W £ » L)W
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is commutative and we get the relation
The = (pg)«Tho Ty (g, h € Go).

Letus suppose that H € Gy is an open subgroup and that pr: Y — X is an H -equivariant
admissible blow-up. Using the commutative diagram (4.4), we get

pri(pg) LX) = (pg)"pr*L(A) = (pg)*L(A)

(notation given at the beginning of the preceding subsection). Pulling back the isomor-
phism (pg)*£(1) — £(A), via (pr)*, we get by adjointness the map

Lg : £(0) = (pg)+Z(A).
which satisfies, by functoriality, the cocycle condition
4.8) Lyg = (pg)LnoLg (g.h e H).

As in (4.6) we can define (from now on we will work on admissible blow-ups of Y so
we will use the same notation)

(4.9) Te : DY (M) = (pg)xD] (1), P —>LgoPolLy".
Exactly as we have done in (4.7) we can conclude that
Thg = (Pg)*Th oTy,

forevery g,h € H.

5. Localization of locally analytic representations

We recall for the reader that Gy denotes the compact locally L-analytic group
Go = G(0). In this section, we will show how to localize admissible locally analytic
representations of Go. We will denote by C*"(Gy, L) the space of L-valued locally
L-analytic functions on Gy and by D(Gy, L) its strong dual (the space of locally
analytic distributions in the sense of [34, Section 11]). This space contains a set of delta
distributions {Jg }¢eG, defined by 8, (f) = f(g), if f € €*"(Go, L), in such a way
that the map g > §, is an injective group homomorphism from Gy into D(Gy, L)*.
We also recall that given that G is compact, this space carries the structure of a nuclear
Fréchet—Stein algebra [34, Theorem 24.1]. For our work it will be enough to define
a weak Fréchet—Stein structure (in the sense of [ 14, Definition 1.2.8]) on the algebra
D(Go, L).
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We finally recall that in Definition 3.30 we have introduced Emerton’s distribution
algebra as the continuous dual space of the space of rigid-analytic functions on G (k)°:

D*™(G(k)°) = Hom{™ (Og k)e (G (k)°), L).

5.1 — Coadmissible modules

Let us start by recalling that G acts on the space C*(Gy, L), of continuous -
valued functions, by the formula

(g+ f)(x):= flg7'x) (g.x € Go, f € C(Go, L)),

Moreover, given an admissible locally analytic representation V of G (see [34, first def-
inition of Lecture VI]) then, by definition, its strong dual M := (V);) is a coadmissible
module! over D(Gy, L).

Given a continuous representation W of G, we can consider the subspace W (k)e
C W of G (k)°-analytic vectors [14, Definition 3.4.1]. In particular, the Gy-action on
C™(Gyg, L), defined at the beginning of this subsection, allows us to consider the
subspace C°*(Go, L)G(k)o-an and we have a canonical isomorphism of topological
L-vector spaces

(5.1) lim €*(Go, L) (k)o-an = €™ (G, L).
k
As in [14, Proposition 5.3.1], for each k € Z~ we denote the strong dual of the space
of G (k)°-analytic vectors of C“*(Gy, L) by
D(G(k)°, Go) = (€**(Go, L)G (k)>-an)y-

The ring structure on D**(G (k)°) extends naturally to a ring structure on D (G (k)°, Gy),
such that

(5.2) DGK)’.Go)= @ D(GKk)),.
g€Go/Gg
Dualizing the isomorphism (5.1) yields an isomorphism of topological L-algebras

(5.3) D(Go, L) = lim D(G(k)°. Go).
k€Z-o

(1Y) We recall for the reader that the category of coadmissible D(Go, L)-modules is a full
abelian subcategory of the category of D(Gg, L)-modules and the “strong dual” functor induces
an anti-equivalence of categories to the category of admissible locally analytic representations
[34, Theorem 20.1].
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This is the weak Fréchet—Stein structure on the locally analytic distribution algebra
D(Gy, L) (see [14, Proposition 5.3.1]).

Let V be an admissible locally analytic representation and M := Vb’ . By [14,
Lemma 6.1.6] the subspace Vg k)e.an € V is a nuclear Fréchet space; therefore, its
strong dual My := (Vg k)e-an)}, is a space of compact type and a finitely generated
topological D(G (k)°, Gg)-module (see [14, Lemma 6.1.13]). By [14, Theorem 6.1.20]
the module M is a coadmissible D(Gy, L)-module relative to the weak Fréchet—Stein
structure of D(Gy, L) defined in the previous paragraph.

We have the following result from [20, Lemma 5.1.7].

LemMma 5.1. (i) The D(G(k)°, Go)-module My, is finitely generated.

(i) There are natural isomorphisms
D(G(k = 1)°, Go) ®p(G (k)°,Go) Mk — Mk—1.
(iii) The natural map D(G(k —1)°, Go) ®p(Go,L) M — M is bijective.

Now, let A € Hom(T, G,,) be an algebraic character such that A + p € t(’é isa
dominant and regular character of tg. Let us recall that we have identifications

D(G(k)); = DTG (K))x = lim (D™ (G (K))x) ®s L.
meN
The preceding relation and the fact that the ring structure of D**(G(k)°) extends
naturally to a ring structure on D(G(k)°, Gy) allow us to consider the ring

D(G(k)°, Go)r = D(G(k)®, Go)/ Ker()24p) D(G (k)°, Go).

From now on, we will denote by Cg,, the full subcategory of Mod(D(Gy, L)) consisting
of coadmissible modules, with respect to the preceding weak Fréchet—Stein structure
on D(Gy, L).

DEeFINITION 5.2. We define the category Cg,,,1 of coadmissible D(Gy, L)-modules
with central character A € Hom(T, G,,) by

CGo,a 1= Mod(D(Go, L)/ Ker(yx)D(Gy, L)) N Cg,-

We point out that the preceding definition is completely legal because the center
Z(gq) of the universal enveloping algebra U(gg) lies in the center of D(Gy, L) (see
[32, Proposition 3.7]). We also recall that the group G := G(k)(0) is contained in
D*(G(k)®) as a set of Dirac distributions. For each g € G we will write §, for the
image of the Dirac distribution supported at g in

H°(Y, D (1) = D™(G(K)*).

Inspired by [20, Definition 5.2.7] we have the following definition.
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DeriniTION 5.3. Let H C Gy be an open subgroup and Y an H -equivariant admis-
sible blow-up of X. Let us suppose that k > ky (notation as in Notation 4.3). A
strongly H -equivariant CD;’ ¢ (A)-module is a DL’ «(A)-module M together with a fam-
ily (¢g)gen of isomorphisms

Pg : M —> (pg)sM

of sheaves of L-vector spaces, satisfying the following conditions:

(i) Forall g,h € H one has (pg)+(¢p) © 9z = ¢pg.
(i1) For all open subsets U C Y, all P € @;’ M) (U), and all m € M(U) one has
pg(P em) =Tg(P)eqpg(m).
(iii) Forall g € H N Gg4 the map ¢g : M — (pg)s M = M is equal to multiplication
by 8¢ € HO(Y. DI , (1)).2

A morphism between two strongly H -equivariant D; «(A)-modules (M, (¢ g‘) g€H)
and (N, ((p;v)geH) isa D:; «(A) linear morphism ¢ : M — N such that forall g € H

‘P;v oy = (pg)«(¥) °€0g'M.

We denote the category of strongly H -equivariant coherent D;,k (A)-modules by
Coh(D] , (1). Go).

REMARK 5.4. Let M € Coh(D;, (1), Go). In what follows we will use the notation
gm = g (m) € M(U.g71), for U € Y an open subset, g € Go and m € M(U). This
notation is inspired by property (ii) of the previous definition. In fact, if g, 7 € Gy,
then by (ii) we have h(gm) = (hg)m.

THeoreM 5.5. Let A € Hom(T, G,,) be an algebraic character suchthat A + p € ta
is a dominant and regular character of tg. Let pr : Y — X be a Go-equivariant
admissible blow-up, and let k > ky. The functors éﬁoc;’k (A) and H®(Y, ») induce
quasi-inverse equivalences between the category of finitely presented D(G (k)°, Gg) -
modules and Coh(D;’k (1), Gy).

Before starting the proof, we recall that the functor iiocz; & (A) has been defined in
the proof of Theorem 4.10. An explicit expression is given in (5.4) below.

(12) This condition makes sense because the elements g € G 41 act trivially on the underlying
topological space of Y, cf. Lemma 4.12.
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Proor. If M € Coh(DL,k (1), Gy), then in particular M is a coherent D:;,k (A)-
module. Since by Corollary 4.9 and Theorem 4.10 we have that H°(Y, M) is a finitely
presented D* (G (k)°);-module, we can conclude by (5.2) that H°(Y, M) is a finitely
presented D(G(k)°, Go),-module.

On the other hand, let us suppose that M is a finitely presented D(G (k)°, Go)a-
module. By (5.2) we can consider

(5.4) M = Zoc] [ (W)(M) = D (1) ®pumcy), M.
For every g € Gy we want to define an isomorphism of sheaves of L-vector spaces
Pg : M — (pg)sM

satisfying the conditions (i), (ii) and (iii) of Definition 5.3. As we have remarked, the
Dirac distributions induce an injective morphism from Gy to the group of units of
D(Gy, L). Since by (5.3) M is in particular a Go-module, we have an isomorphism

M — ((pg)*DL,k(k)) ®pan(G(k)°), M-

On local sections it is defined by ¢g 1 (P ® m) = Tg 1 (P) ® gm. Here Ty is the
isomorphism defined in (4.9).
One has an isomorphism

(p2) (M) = ((pg)+ D] 1 (1) @punGiirey, M.

Indeed, (pg )« is exact and so choosing a finite presentation of M as D**(G (k)°),-
module reduces to the case M = D*" (G (k)°), which is trivially true. This implies
that the preceding isomorphism extends to an isomorphism

Qg 1 M — (pg)sM.

Let g,h € Gy, U € Y an open subset, P, Q € D;’k(/\)(U) and m € M. Then

Pnatg—1 (P 1) (P @m) = Tp o1 (Tgu(P)) ® hgm
= Theu(P) ® (hg)m
= §0hg,U(P ® m)?

and the family of isomorphisms (¢¢)seG, verifies condition (i). Now, by definition
Teu(PQ) = Tg 1 (P)Tgu(Q) and thus

e u(PO @ m) = Tgu(P)pgu(Q ® m),
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which gives (ii). Finally, given that the delta distributions §, for g in the normal subgroup
G 41 0f G are contained in D*(G (k)°), wehave g. P = Tg (P) = 8¢ P§4—1, therefore

Peu(P ®@m) =g.P ®gm=3,P8,-18g @ m =8, P @ m,
and condition (iii) follows. ]

ReEMaRk 5.6. If A € Hom(T, G,,) denotes the trivial character, then ‘D;C A=
TD;C « 1s the sheaf of arithmetic differential operators introduced in [20]. Moreover,
by construction, if pr : Y — X denotes an H -equivariant admissible blow-up, then
D;,k 1) = D;,k and for every g € H the isomorphism 7, equals the isomorphism
Ad(g) defined in [20, (5.2.6)].

Now, let us take a morphism 7 : Y — Y of Gg-equivariant admissible blow-ups of
X (whose lifted actions we denote by p“’/ and p?), and let us suppose that k > ky and
k' > max{k;,, k}. By Theorem 4.8 we have an injective morphism of sheaves

(5.5) v z,Df, () = D]

e = D;,k(k).

Moreover, this inclusion is Gg-equivariant in the sense that if g € G, then we have
TS oW = (p)u(V) o mu(T).

Now, let us consider My € Coh(D:;,’k,()L), Go) and My € Coh(DL’k (1), Gy) together

with a morphism ¢ : w4« My — My linear relative to ¥ and which is Gy-equivariant,
i.e. satisfying
Moyr
P oy = (pD)u¥ o muley V)

for all g € G¢. Using W, we obtain a morphism of DL, « (A)-modules
D} ) B, () TeMyr — My.

Let us denote by X the submodule of 2)3;’ ) ®r.nl, ., (2) T+ My locally generated
by all the elements of the form P, @ m — P @ (hem), where h € Gy, mis a
local section of ..My, and P is a local section of D;,k (A). As in [20, p. 35] we will
consider the quotient

(56) DI (D) ®manl, ,(1).Gepy TeMy =D} L (A) ®rydl, ) TaMy /K.

Y’ k! Y’ k!

Let us see that this module lies in Coh(@i{; (), Go). To do that let us first show that

(pg)*lD‘;,k(/\) ®(pg)*”*D.‘;/_k/(/1) (g )+ 7T My
> (Pg)*(D;,k(A) B0, (3 TxMy).



G-equivariance of formal models of flag varieties 51

As My is a coherent Dy, o
find a finite presentation of My,

(A)-module, by Proposition 3.36 and Theorem 4.8 we can

(DY o ()® = (Df, . (1) — My — 0,
which induces, by exactness of (pg )« and 74« (Theorem 4.8.), the exact sequence

((Pg)+ DY 1 AN = ((Pg) DY 1 AN — (pg)emra My — 0.

Tensoring the previous exact sequence with (0g )« i k()k) over (pg)«m+«D y, o (4) and
using the relation JT*D%/ o) = ]; o (A), we see that the canonical map

() (DY) 1 (X) @i, 1) T M)
e (pg)*'D;,k(k) ®(Pg)*ﬂ*'D;/’k,(l) (g )xTs My

is an isomorphism. We dispose of a diagonal action
¢ : DY ) @, ) TaMy = (pg)x (D] () @m0y Tx M)
defined on simple tensor products by
ge(P@m)=gePQgem,

for g € Gy, and P and m local sections of DL’ (A) and . My, respectively (in order
to soft the notation we use the accord introduced in Remark 5.4). Now to see that (5.6)
is a strongly Go-equivariant D;’ «(A)-module, we only need to check that the diagonal
action fixes the submodule X, i.e., ¢4 (K) C K. We have

ge(Pép,@m—P Q@ hem)
=g+ (Pép)@gem—geP Qge(hoem)
=(g*P)g*Sp)@gem—gs P ®(ghg™")s(gem)
= (geP)ypg-1®gem—gs P ®(ghg™")e(gem).

As Gy 1 is a normal subgroup, we can conclude that ghg™! € Gy and Gy fixes K.
Moreover, since the target of the preceding morphism is strongly Go-equivariant, this
factors through the quotient and we thus obtain a morphism of @3; « (A)-modules

5.7 v D;’k()t) ®n*'D;,’k,(A),Gk+l TaMyr — My.

By construction ¥ € Coh(D;’k (L), Go).
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6. Admissible blow-ups and formal models

The following discussion is given in [20, (3.1.1) and (5.2.10)]. Let us start by
considering the generic fiber X := X Xgpec(o) Spec(L) of the flag scheme X (the flag
variety). For the rest of this work X "¢ will denote the rigid-analytic space associated
via the GAGA functor to X (see [6, Part I, Section 5.4, Definition and Proposition 3]).
Any admissible formal o-scheme Y (in the sense of [6, Part II, Section 7.4, Definitions 1
and 4]) whose associated rigid-analytic space is isomorphic to X" will be called a
formal model of X"'¢. For any two formal models Y; and Y, there exist a formal model
Y and admissible formal blow-up morphisms Y — Y; and Y’ — Y, (see [6, Part II,
Section 8.2, Remark 10]).

Now, let us denote by Fx the set of admissible formal blow-ups Y — X. This set
is ordered by Y’ > Y if the blow-up morphism Y’ — X factors as the composition of
a morphism Y' — Y and the blow-up morphism Y — X. In this case, the morphism
Y — Y is unique (see [6, Part II, Section 8.2, Proposition 9]) and it is itself a blow-
up morphism (see [25, Section 8.1.3, Proposition 1.12 (d) and Theorem 1.24]). By
[6, Part II, Section 8.2, Remark 10] the set F« is directed and it is cofinal in the set
of all formal models. Furthermore, any formal model Y of X g js dominated by one
which is a Gy-equivariant admissible blow-up of X (see [20, Proposition 5.2.14]). In
particular, if X, denotes the projective limit of all formal models of X", then

Xoo = l(iLnld.
Fx

We will be interested in the following directed subset of Jy.

DEerinITION 6.1. We denote by I the set of pairs (Y, k), where Y € Fxy andk € N
satisfies k > ky. This set is ordered by (Y', k") > (Y,k) ifand only if Y > Y and k' > k.

We will need the following auxiliary result.

Lemma 6.2. Let Y, Y € Fx be Go-equivariant admissible blow-ups. Suppose
Y, k") = (Y, k) with canonical morphism 7t - Y — Y over X and let M be a coherent
D(G(k")°, Go)p-module with

M = £ocl, |, (2)(M) € Coh(D], ,(2). Go).

Then there exists a canonical isomorphism in COh(D;, (L), Go) given by

D;,k(/\) ®maDl), (1).Grpr TxM — iOC;,k(/\)(D(G(kﬂ Go) ®D(G(Kk')°,Go) M).
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Proor. The proof follows word for word the reasoning given in [20, Lemma 5.2.12]
when A € Hom(T, G,,) is equal to the trivial character. Let X be a system of rep-
resentatives in Gg 4 for the cosets in Gg41/ Gy +1. By (5.2) we have a canonical
map

D*™(G(k)*)n — D(G(k)°, Go)a,
which is compatible with variation in k. Now, let us take a D(G (k)°, Go),-module M
and let us consider the free D*(G (k)°) -module

DGK))E = P DVGCE))remn
(m,h)eM xZ
whose formation is functorial in M and it comes with a linear map
for 2 DG (k)*)3F = D™ (G (k))r ®pn(G ko), M.
Am,hem,h = (Am,hsh) @m — Am,h ® (8p.m),

which fits into an exact sequence

an o / an °
DG (k)3T = DM (G (K)°)r @ vy, M
— D(G(k)°, Go)r ®p@GK)°,60), M

if M is a finitely presented D(G (k’)°, Go)-module; see Claim 1 in the proof of
[20, Lemma 5.2.12].
Now, let M be a finitely presented D**(G (k”)°),-module and

M = Locl, |, Q)(M).
Then the natural morphism
6.1) Locl  A)(D™(G(K)°)z ®pnGkne); M) = DY (1) ®x,nl, 2y M

is bijective. In fact, by Theorem 4.8 we know that the functor 7, is exact on coherent
@;/5 k,(k)—modules, so taking a finite presentation of M, we reduce to the case M =
D* (G (k")°), which is clear.

Finally, let M be a finitely presented D(G (k')°, Go) x-module. Let my, ..., m, be
generators for M as a D* (G (k’)°) ,-module. We have a sequence of D**(G (k)°) ;-
modules

n o Ja n o
P DG h)*)aem; 1 —> DG (K)*)i ®pin(e o), M
@,h)
— D(G(k)°, Go)r ®DG(k)°,Go)x M.
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where f, denotes the restriction of the morphism fas to the free submodule of
Dan((G(k)")ﬁ’lxz generated by finitely many vectors e, p, with1 <i <aand h € X.
Since im( f;) = im( far), the sequence is exact. Since it consists of finitely presented
D* (G (k)°),-modules, we can apply the localization functor :ﬁoc;’ ¢ (A) to it. Given
that

Zoch , () (D) DG (k) 1em 1)
@,h)

=Dl (V) ®pwc), @D D™ G (k) rem,.n = D} (1)®,
@,h)

the morphism in (6.1) gives us the exact sequence
DI W@ - DI () @y oy TeM — Locl] (W) (M 2) — 0,

em; h @ P (Pé, @m; — P ® §,m),

where M = éﬁoc;,,k, (l)(M) and Mk,/l = D(G(k)o, G()))L ®D(G(k’)°,G0),\ M. The
cokernel of the first map in this sequence equals by definition

9;,]( (1) ®7T*'D;/)k/(/l),6k+l s M,

and we get the desired isomorphism. ]

Now, let I be an open ideal sheaf on X, and let g € G¢. Then
# 1= (pp) " ((pe)« (D))

is again an open ideal sheaf on X. Let Y be the blow-up of I and Y.g the blow-up
of ¢, with canonical morphism pr, : J.g — X. We have the following result from
[20, Lemma 5.2.16].

LemMMa 6.3. There exists a morphism pg : Y — Y.g such that the diagram

y L ye

bk

x4 x

is commutative. Moreover, we have ky o = ky and for any two elements g, h € G, we
have a canonical isomorphism (Y4.g).h >~ Y.(gh), such that the composition morphism
Y—Y.g = (Y.2).h ~Y.(gh) is equal to pgy. This gives a right action of the group
Gy on the family F.
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Let pr : Y — X be an admissible blow-up and let us denote by &£(A) the invertible

sheaf on Y induced by pulling back the invertible sheaf on X induced by the character
A.Thisis £(A) = pr*£(A). Furthermore, for g € Gy if pg : Y — Y.g is the morphism
given by the_previous lemma and pr, : Y.g — X is the blow-up morphism, then we
will denote

£,(4) = prZ,éC()k).

The notation being fixed, we advise the reader that, in order to simplify the notation,

we will avoid underlining these sheaves in the rest of this work if the context is clear
and there is not risk to any confusion.

Let us recall that in Section 4.3 we have built for any g € G an O«-linear iso-
morphism @, : £(1) = (pg)«L(A), where pg = « o (idx x g) is the translation
morphism and « the right &-action on X. By pulling back this morphism and using
the commutative diagram in the previous lemma (p, o pry = pr* o pg), we have an
Oy-linear isomorphism (pg)*prg £(A) — pr*£(4). By adjointness and following the
accord established in the previous paragraph, we get an Oy ,-linear morphism

Lg: Lg(A) = (pg)«L(R).
By construction L, satisfies the cocycle condition (4.8). This means that for every

g.h € Gy we have

Lg (pg)*Lp
Lig = L) =5 (0)= L4 (1) 22 (04g)n 2 (1),

In particular, L, is an isomorphism for every g € Gy.
Exactly as we have done in (4.9), and given that by construction D; (A) acts on
£(A) (resp. @;.g «(A) acts on £4 (1)), we can build an isomorphism

Tg : DY (M) = (p)« D] (V). P> LgoPolLy!
satisfying the cocycle condition
Thg = (pg)xTho Ty (g, h € Go).
From the previous lemma we get [20, Corollary 5.2.18]:

COROLLARY 6.4. Let us suppose that (Y, k") = (Y, k) for Y, Y € Fx and let
7 .Y — Y be the unique morphism over X. Let g € Gg. Then (Y'.g, k') = (Y.g,k) and
if we denote by w.g : Y'.g¢ — Y.g the unique morphism over X, we have a commutative
diagram
y/ L y/g
ln |ms

Y _Pe Y.g.
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Based on [20, Definition 5.2.19] we introduce the following definition.

DEeFINITION 6.5. A coadmissible Gy-equivariant D (A)-module on F« consists of
a family M := (My i)y k) of coherent D; x (A)-modules My i for all (Y, k) € Ty,
with the following properties:

(a) For any g € Go with morphism pg : Y — Y.g, there exists an isomorphism

Qg My.gk = (Pg)xMyi

of sheaves of L-vector spaces, satisfying the following properties:

(i) Forall g,h € Go one has (pg)«(¢n) © g = Qng.
(ii) For all open subsets U C Y.g,all P € DL.g AW, and all m € My ¢ 1 (U)
one has @g (P e m) = Tg y(P) * g u(m).

(iii) Forall g € Gi4q themap @g : My g = My —> (pg)s My = My is equal
to multiplication by 8, € H°(Y, D:; cL).1

(b) Suppose Y, Y’ € Fy are both Gy-equivariant, and assume further that (Y, k") >
(Y,k), and that r : Y — Y is the unique morphism over X. We require the existence
of a transition morphism Yy’ y : me My 7 — My g, linear relative to the canonical
morphism W : 7, D;,, oA — D;, «(A). By using the commutative diagram in the
preceding corollary, we require

(6.2) Pg o Vy .gy.g = (Pg)x(Yyy) o (1.8)x(@g).
The morphism induced by yry y,
Yy y D;,k(k) Bl 1 ().Grgr e My — My,

is required to be an isomorphism of D:; « (A)-modules. Additionally, the morphisms
Yrys y are required to satisfy the transitivity rule

Yy y o wx(Yyry) = Yyry
for (Y, k") = (Y, k') > (Y,k) in Fy.. Moreover, Yry y = idagy -

A morphism M — N between such modules consists of morphisms My  — Ny
of @; « (A)-modules, which is compatible with the extra structures imposed in (a)
and (b). We denote the resulting category by Ggok.

(13) As is remarked in [20, Definition 5.2.19 (iii)], if g € Gx+1, then Y.g =Y and g acts
trivially on the underlying topological space |Y|.
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Let us build now the bridge to the category Cg, 1 of coadmissible D(Gg, L);-
modules. Given such a module M, we have its associated admissible locally analytic
Go-representation V' := M, together with its subspace of G (k)°®-analytic vectors
VG (k)o-an € V. As we have remarked, this is stable under the Ggy-action and its dual
My = (Vg (k)°-an)}, is a finitely presented D (G (k)°, Go),-module. In this situation we
produce a coherent @;,  (A)-module

Loc] (M (Mp) = D}, (X) ®pukre), Mi
for any element (Y, k) € F.. We will denote the resulting family by
G
Locyo (M) = (£oc!, , Q)(M))y kyez -

On the other hand, let M be an arbitrary coadmissible Gy-equivariant arithmetic D(A)-
module on Fx. The transition morphisms ¥y’ y : T« My x» — My induce maps
H°(Y', My 1) = H°(Y, My i) on global sections. We let

FM) = lim  HOY, My ).
(Y,k)eT

The projective limit is taken in the sense of abelian groups. We have the following
theorem. Except for some technical details the proof follows word for word the reasoning
given in [20, Theorem 5.2.23].

THEOREM 6.6. Let us suppose that A € Hom(T, Gy,) is an algebraic character such
that A 4+ p € ta is a dominant and regular character of tq. The functors éﬁocfo and
' () induce quasi-inverse equivalences between the categories Cg, 5 (of coadmissible
D(Gy, L)) -modules) and Ggo/l.

Proor. Let us take M € Cg, 5 and M € Gg"l. As in the proof of [20, Theo-

rem 5.2.23] we will organize the proof in four steps.

Claim 1. We have iocf“ (M) e Ggol and iﬂocfo (M) is functorial in M.
Let us start by defining

@g : Locl) , (M (Mr) — (pg)s Loc] ,(W(M) (g € Go)

satisfying (i), (ii) and (iii) in the preceding definition. Let ¢, : My — M} denote
the map dual to the map Vg k)o-an = VG (k)o-an given by w — g 'w. By definition
@n o Pg = Ppg.Let U C Y.g be an open subset, P € D;g’k(k)(U) and m € My. We
define

Pgu(P @m) = Tgu(P) ® gg(m).
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Given that (pg )« is exact, we can choose a finite presentation of My as a D*"(G(k)®) -
module to conclude that we have a canonical isomorphism

(pe)x(Loch L D(M) = ((pg)x D} (1) DG kre), M
This means that the above definition extends to a map
¢ 0 DY (N ®panGrre), M = (pg)«(Loc], () (My)).

The family {¢, }¢ec, satisfies (i), (ii) and (iii) in (a). Let us verify condition (b). We
suppose thatY’, Y are Go-equivariant and that (Y', k) > (Y, k) with canonical morphism
7Y — Yover X. As m, is exact, we have an isomorphism

(Lol 1 () (My)) = (D, 1/ (1) @ pin(eoye), M-

(This is an argument already given in the text for the functor (pg)+). On the other hand,
we have that G (k)° € G(k)° and we have a map Yy’ y : My, — M} obtained as the
dual map of the natural inclusion Vg (k)o-an <> VG (k)o-an- Let U C Y be an open subset,
P e fr*@;/’k, (A)(U) and m € My,. We define

Yy y(P @m) = Wy y(P) & Yy y(m),

where W is the canonical injection JT*D;,j o) = D:;’ «(A). By using the preceding
isomorphism, we can conclude that this morphism extends naturally to a map

Yy y : Ta(Locl, 1 () (Myr)) — Locl)  (V)(My).
The cocycle condition (6.2) translates into the diagram

Dy y |y

(1.9« (p)w(Loc], (M) (M) 5 (pf)w(Loc], (W) (My))

(6.3) (mg)*ng ng

(r.g)x(Loch, | 1 (W) (Mr)) — s och | (D)(Mp).

We have used
(0«7 (L0ch, 1 (W) (M) = (m.8)+ (p))w(L0CT, 1 (1) (M),

By construction, the diagrams

(pH)*\I/ "y ~1/ Y

(pg)*ﬂ*gg/’k/(k) g—w> (p?)*'D;’k(l) Mk’ 1'/,(,‘ .Y, Mk

(6.4) (n.gmgT TgT l'“’g ) l"”g
Yy .y

pf A AN S DY My 225
(T DY, g () — L2255 DY (), v p
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are commutative; therefore, (6.3) is also a commutative diagram. As before, we have
used the relation

(m.8)«(pY )« D] 1 (2) = (p)umra DI, 1 (A).

The transitivity properties are clear. Let us see that the induced morphism ¥y y is
in fact an isomorphism. The morphism ¥y’ y corresponds under the isomorphism of
Lemma 6.2 to the linear extension

D(G(k)°, Go) ®p(G(k')°,Go) Mk» — My

of %g/,g via functoriality of éﬁoc; «(A). By Lemma 5.1 this linear extension is an
isomorphism and hence, so is ¥y’ y. We conclude that é(iocfo (M) € Cgok. Given a
morphism M — N in Cg, 1, we get, by definition, morphisms My — Ny for any
k € Z-o compatible with ¢, and 1;13/’13. By functoriality of éﬁoc;’ (A1), they give rise
to linear maps

Locl, , (1)(M) = Loc], , M)(N).

which are compatible with the maps ¢, and ¥y y.

Claim 2. T'(M) is an object in Cg, ;.
For k € N we choose (Y, k) € Fx and we put Ny := H(Y, My ). By (5.7),
Lemma 6.2 and the fact that M € Ggol we get linear isomorphisms

D(G(k)°, Go) ®p(Gk"°,Go) Nkv = Nk

for k' > k. This implies that the modules Ny form a (D(G (k)°, Go))ren-sequence
and the projective limit is a coadmissible module.

Claim 3. T o LocT*(M) ~ M.
If V := M;, then we have by definition compatible isomorphisms

HO(Y, £0c§* (M) y 1)) = H°(Y. Locl , (W (Mi)) = (Vo @ye-u))-

which imply that the coadmissible modules I" o éﬁocfo (M) and M have isomorphic
(D(G(k)°, Go))ren-sequences.

Claim 4. LocT® oT (M) ~ M.
Let N := I'(M) and V := N, the corresponding admissible representation. Let
N = éﬁocfo (N). According to Lemma 5.1

Ny = D(G(k)o, Go) ®D(G0,L) N
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produces a (D(G(k)°, Go))ren-sequence for the coadmissible module N which is
isomorphic to its constituting sequence (H°(Y, My k))(y,k)eF, from Claim 2. Now
let (Y, k) € Fx. We have the following isomorphisms:

Nyx = Lol L) (Ne) = Loc] (M (HO (Y, My ) =~ My .

By T -linearity the action maps (p;% 7K and (p;v 9K constructed in Claim 1, are the same.
Similarly if (Y, k’) > (Y, k) are Gy-equivariant, then the transition maps w‘M‘d’ﬂd and
Y™y coincide, by Wy y-linearity. Hence & ~ M in Gg?l.

This ends the proof of the theorem. u

6.1 — Coadmissible Gy-equivariant ‘D(L)-modules on the Zariski—-Riemann space

Let us recall that X, denotes the projective limit of all formal models of X" (the
rigid-analytic space associated by the GAGA functor to the flag variety X¢). The set
Fx of admissible formal blow-ups Y — X is ordered by setting Y’ > Y if the blow-up
morphism Y — X factors as Y/ LN Y — X, with 7 a blow-up morphism. The set Fy
is directed in the sense that any two elements have a common upper bound, and it is
cofinal in the set of all formal models. In particular,

oo = LiLnld.
Tx
The space X is also known as the Zariski—-Riemann space [6, Part II, Section 9.3]*. In
this subsection, we indicate how to realize coadmissible Gg-equivariant D(A)-modules
on Fy as sheaves on the Zariski—-Riemann space Xo,. We start with the following
proposition whose proof can be found in [20, Proposition 5.2.14].

ProPOSITION 6.7. Any formal model Y of X"¢ is dominated by one which is a
Go-equivariant admissible blow-up of X.

REMARK 6.8. As Fy is cofinal in the set of all formal models, the preceding
proposition tells us that the set of all Go-equivariant admissible blow-ups of X is also
cofinal in the set of all formal models of X. From now on, we will assume that if Y € Fx,
then Y is also Gy-equivariant, and we will denote by pjg 1Y — Y the morphism induced
by every g € Gy.

For every i € Fx we denote by spy : Xoo — ' the canonical projection map. Let
Y > Y with blow-up morphism 7’ : Y — Y and g € Gy. Let us consider the following

(1) In this reference, this space is denoted by (X), cf. [23, Section 3.2].
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commutative diagram coming from the Gy-equivariance of the family Fy:

X spy . lj P;;é . y
o0 4

’
g’ ____lgi____§ %’

This diagram allows us to define a continuous function

(6.5) Pg i Xoo = Xoo,  (ay)yery H> (Pg(a‘é))‘éé?x’

which defines a Gy-action on the space Xno.
Let U € Y be an open subset and let us take V := spg1 (U) C Xo- Using the relation
Spy = T o Spy,, we see that

spy (V) = spy (spy " (W) = spy (spy/ (x'~1 (W) = ="~ (W),

which implies that spy, (V') is an open subset of YJ'. Let §” z Y N Y be morphisms
over Y. The commutative diagram

Xoo 2 V = spy' (W)

lfpy/

y/

Spy

9’ >d2U
implies that
(6.6) 7" H(spy (V) = 7" (7" (spyn (V))) = spyr (V).
In this situation, the morphism Wy y/ @ 7w}/ D;,,, o A) — @;,’ k,()u) (defined in (5.5))
induces the ring homomorphism
Dl (A V) = xl/Dl, (A vy 2 pt v
H/’,k”( )(Sp'g”( )) = Ty H’/,k”( )(Spy/( )) — H/,k'( )(Spy/( ))
and we can form the projective limit as in [20, (5.2.25)]:

DA)(V) = lim D, ., (A)(spy (V).
Y'—Y

By definition, the open subsets of the form V = spg1 (W) form a basis for the topology
of Xoo and D(A) is a presheaf on this basis. The associated sheaf on X, to this presheaf
will also be denoted by D(1).
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Since (pg/)* ox)] =nl o (p?”)*, relation (6.6) and the commutativity of the first
diagram in (6.4) tell us that the following diagram is also commutative:

Fipyr ()

TLDY, 1 (V) (spy (V) DY, M) (spy (V)

7
y// y/
ng-SPE//(V) ng-SPy/(V)

v —1
spy/ ( )

(0 Vrr DY 1 (M) (spy (V) —2E—= (014D, 1 (W) (spy (V).

We have used the relations
DI, e () (pyr (V) = 7l DY, 0 (W) (spy (V).
DY e Q)0 ) spyr (V) = (02wl DYy 0 (W) (sPy (V).
Let us identify
DA)(V)
= {P = (Pys)rin € [TD) Aoy (VD) | Wy (Pyr i) = Py}
Fx

and let us consider the sequence

g.P = (T2, o Py e rin € [ D oM () ) spyr (V).
Ix

Using the commutativity of the preceding diagram, we see that
H// _ 15/
Yooy oz ) Tgspy o (P er)) = Ty oo ) (Yspyr ) (Pyr i)
= T;,spy/(V)(P'é',k/)‘
Therefore, for g € Gg, the morphisms Tgy assemble to a Gy-action
Ty : DO) > (o) D).

This action is on the left, in the sense that if g,h € Gy, then (pg)sTphoTg = The. Let
us suppose now that M = (My ;) € C .- We have the transition maps

W\a//,%/ : ”;/My”,k” — M‘é’,k’v
which are linear relative to the morphism (5.5). As before, we have the map

p‘d’(

My jer (spyr (V) = 70/ My jor (spy (V) ——— Moy ks (spy (V).
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which allows us to define M, as the sheaf on X, associated to the presheaf

Moo(V) = 1lim My i (spy (V).
Y-y

By definition, we have the commutative diagram

WSpy/(V)

”;,MH”,k”(Sp‘j’(V)) > MH’,k’ (Spy/(V))

l{_’” 13/
Pe.spy (V) Paspy (V)

' Yoo ozl () ’
(o )urt Mg o (spys (V) —25— (03" ) My s (5py, (V).

Identifying
Moo(V)

= {m = (my’,k’)(‘d’,k’) [ 1_[ MB/,k’(Spy’(V)) | Wy//’y/(my//,ku) = mlj’,k’}v
Fx

we see as before that if

gm = (903,5;)3//(V)(m*d”,k”))(y”,k”) S HMH/',k”((pz )_lspy//(V)),
Fx

then the preceding commutative diagram implies that
wSpy/(pg](V)) (‘P;,spy,,(v) (myr ) = ‘ﬂg,sp%,(v)(stpy/(V)(m‘é”,k”))
— Y9
= ‘Pg,spy,(v)(my/,k’)-
Therefore, we get a family (¢g)gec, of isomorphisms

(6.7 ¥g * Moo = (pg)xMoo

of sheaves of L-vector spaces. By Definition 6.5, if g, 1 € Gy, then ¢ = (pg) @1 © @g.
Furthermore, under the preceding identifications, if P = (Py/ x/) € D(A)(V) and
m = (l’}’ly/’k/) S MOO(V), then P.m = (Py/,k/.my/,k/)(y/,k/)egx. Therefore,
e (Pam) = (93, vy Py jor iy k) e
_ Y Y
= (Tgapy ) Py k)P o ) M970)) (ke
=Te,v(P).@g,v(m).

In particular, M, is a Go-equivariant D(A)-module on the topological Go-space Xoo.
Let us see that the formation of M« is functorial. Let y : M — N be a morphism
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in Ggox. We have the following commutative diagram:

M
M S IATENGY
T Yk _— Y’ k!

lﬂf,!(yy//.k//) lyy’,k’
iy

ﬂ*Ny//,k// _— :/Vy/’k/.
Letm = (my k) (yk)egr € Moo(V) and
S = (y‘j”,k”(mlé”,k”))(‘é”,k”)effx c 1_[ Ny//,k//(spy//(V)).
(97 ,k")eTx

Commutativity in the preceding diagram implies that

w:gy,,(y)(Sy",k”) = w;';;,,(y) (Vspyr (v) My 7))
= Vsp\é/(V)(‘/fsﬁ},(V)(mH”,k”))
= Yopy ) My k1) = Sy k-
Therefore, s € Noo(V') and y induces a morphism Yo : Moo — Noo.This shows that

the preceding construction is functorial. The next proposition is the twisted analogue
of [20, Proposition 5.2.29]. We follow their proof word by word.

ProrosiTion 6.9. Let A € Hom(T, G,,) be an algebraic character which induces,
via derivation, a dominant and regular character A + p of ta. The functor M ~»> Mo
from the category Gg?x to Go-equivariant D(A)-modules is a faithful functor.

Proor. We start the proof by remarking that spy (Xoo) = Y for every Y € Fx. By
Remark 6.8, the global sections of M, are equal to

H®(Xoo, Moo) = 1im  HO(Y, My ) = T (M).
(Y,k)eF

Now, let f,h : M — N be two morphisms in (‘Zg")L such that foo = heo. By Theorem 6.6,
itis enough to verify I'( f) = I"(h) which is clear since H® (X0, foo) = H®(Xoo, hoo).
n

Let (¢) o denote the previous functor. Then we denote by éﬁocgo" (A) the composition
of the functor éﬁocfo with (¢)0, i.€.,

Go
Locoo (A . .
{Coadmissible D(Gy, L),-modules} —()> {Gy-equivariant D(A)-modules}.

Since :ﬁocf‘) is an equivalence of categories, the preceding proposition implies that
éCocoGoo (A) is a faithful functor.
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7. G-equivariant modules

Throughout this section, we will use the notation G = G(L) and denote by B
the semi-simple Bruhat-Tits building of the p-adic group G (see [9, 10]). This is a
simplicial complex endowed with a natural right G-action.

The purpose of this section is to extend the above results from Gy-equivariant
objects to objects equivariant for the whole group G.

We start by fixing some notation.'> To each special vertex v € B the Bruhat-Tits
theory associates a connected reductive group o-scheme G,, whose generic fiber
(Gy) := Gy Xgpec(o) Spec(L) is canonically isomorphic to Gg. We denote by X, the
smooth flag scheme of G, whose generic fiber (X, )q is canonically isomorphic to the
flag variety Xq. We will distinguish the next constructions by adding the corresponding
vertex to them. For instance, we will write Y, for an (algebraic) admissible blow-up of
the smooth model X, G, o for the group of points G, (o) and G, ;. for the group of
points G, (k)(0). We will use the same conventions if we deal with formal completions.
For instance, Y, will always denote an admissible formal blow-up of X,. We point out
to the reader that the morphism Y,, — X, will make part of the blow-up Y,. Moreover,
even if for another special vertex v’ # v the formal o-scheme Y, is also a blow-up of
the smooth formal model X/, we will only consider it as a blow-up of X;. We will
denote by F, := Jx, the set of all admissible formal blow-ups Y, — X, of X,,, and by
F, = Fy, the respective directed system of Definition 6.1. By the preceding accord,
the sets F, and F, are disjoint if v # v’. Let

3f=|_|5f,,,
v

where v runs over all special vertices of B. We recall for the reader that X, is equal to
the projective limit of all formal models of X,

ReEmMaRrk 7.1. The set J is partially ordered in the following way: Y, > Y, if the
projection Spy,, Xoo = Yo factors through the projection spy, : Xoo — Yy so that
we have the commutative diagram

Xoo
SPYv
Av/ \
Iéu’ ” yv

(15) This is exactly as in [20, (5.3.1)].
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DEeriNiTION 7.2. Define & = | |, ), where v runs over all the special vertices of B.
This set is partially ordered as follows. We say that (Y7, k") = (Yy, k) if Y» = Y, and
Lie(Gy (k') C Lie(Gy(k)) (or equivalent w*’ Lie(G,) C @w* Lie(G,)) as lattices
in gg.

For any special vertex v € B, any element g € G induces an isomorphism
P; Xy > Xyg.

The isomorphism induced by pg on the generic fibers (Xy)Q =~ X@ = (Xv.g)@ coin-
cides with right translation by g on Xq:

idXL xg aQ
pg 1 XQ = XQ Xspec(L) Spec(L) ——— X Xspee(r) Spec(Gg) — X,

where we have used G(L) = Gq(L). Moreover, py induces a morphism Xy — Xy g,
which we denote again by pg, and which coincides with the right translation on X,
if g € Gy,0 (of course in this case vg = v). Let (pZ,)u : Ox,e = (pg)xOx, be the
comorphism of pg. If 7 : Y, — X, is an admissible blow-up of an ideal J C Ox,,
then blowing-up ((,og)”)_l ((pg)+J) produces a formal scheme Y,g (cf. Lemma 6.3),
together with an isomorphism pg : Jy — Yuvg. As in Lemma 6.3 we have ky, = ky,,.
For any g, h € G and any admissible formal blow-up Y,, — X,,, we have

ng ° Pg = P;h 29y = Yugh-

This gives a right G-action on the family F and on the projective limit X .. Finally, if
Yv > Y, with morphism 7 : Y» — Y, and g € G, then Y,rg > Y, and we have the
relation py o = g o p}g’/ (here mg : Yirg = Yug). Now, over every special vertex
v € B the algebraic character A induces an invertible sheaf £, (A1) on X,, such that for
every g € G there exists an isomorphism

LZI : ng(k) g (pg)*ﬁv(k),
satisfying the cocycle condition
(7.1) Lyt® = (p")aLp o LY (h,g € G).

As usual, for every special vertex v € B, we will denote by £, (1) the p-adic completion
of the sheaf £, (A), which is considered as an invertible sheaf on X,. Let (Y,k) € F
with blow-up morphism pr : Y, — X,. At the level of differential operators, we will
denote by D:;v, (1) the sheaf of arithmetic differential operators on Y, acting on the



G-equivariance of formal models of flag varieties 67

line bundle £, (4).® We have the following important properties. Let g € G. As in
(4.9) the isomorphism (7.1) induces a left action

Lt
T):D

Do) = (p;)*D;v,k(/\), P LUP(LY)™

Now, we identify the global sections H°(Y,, SD; ok (L)) with D*(Gy (k)°) . and obtain
the group homomorphism

Goir1 = H' (Y. D}, L))", g 6.

where G, x+1 = G, (k)°(L) denotes the group of L-rational points (or o-points of
Gy (k + 1)). The proof of the following proposition is in much the same way as the
proof of [20, Proposition 5.3.2].

ProposITION 7.3. Suppose (Yo, k") = (Yy. k) for pairs (Y, k'), (Yy, k) € F with
morphism 1w : Yy — Y. There exists a canonical morphism of sheaves of rings

Wy, .y, DY () = DY (),
which is G-equivariant in the sense that for every g € G we have'
Ty oWy, v = (0g)x Py, y, o (1)« Ty

Proor. Letus denote by pr’ : Y,» — Xy and pr : Y, — X, the blow-up morphisms,
and let us put pr = pr o 7. We have the following commutative diagram:

gv/ # yv
lpr’&: lpf
Xy Xy.
Letus fix m € N. Asin [20, Proposition 5.3.6] we show first the existence of a canonical
morphism of sheaves of o-algebras
(1.2) DY (1) > B DY (1),

Here Y, Yy, Xy and X, denote the o-scheme of finite type whose completions are Y,,
Y, Xy and X, respectively. The morphisms between these schemes will be denoted

(1) By abuse of notation, we denote again by £, (1) the invertible sheaf pr* &£, (1) on Y,,.
() In order to simplify the notation we will avoid the indices. For instance, we will write W

for the morphisms Wy , y, and Wy, y,,.
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by the same letters, for instance pr : Y, — X,. We recall for the reader that the sheaf
Dg",’k )(/\) is filtered by locally free sheaves of finite rank

DY) = prLu(B) oy, DY) oy, pr* Ly ()Y
* k7
= pr’ @;{”Z“ ().

Therefore, by the projection formula [17, Part II, Exercise 5.1 (d)] and given that
pr;OYU, = Ox,, (cf. [20, Lemma 3.2.3 (iii)]) we have for every d € N

N N
prl.(DY R (1) = prl, (Oy, ®oy,, pr* DY) (1)
= prl(Or,) ®oy,, Dy (1) = D5 ().

which implies that
N &
pri (DY (1)) = DY ()

because the direct image commutes with inductive limits on a noetherian space. By
Proposition 3.13 and the preceding relation we have a canonical map of filtered o-
algebras

DGy (k') = HO(Xy. DYF) (M) = HO(Yyr, DY (1)),

in particular we get a morphism of sheaves of filtered o-algebras (this is exactly as we
have done in (3.8)):

(73) YK L AYK) = 0y, @0 D™ (Gy (k) — DY ().
Applying Sym (s) o w* pr'*(s) to the surjection (3.9), we obtain a surjection
Oy, ®o Sym™ (Lie(Gy (k') — Sym™ (w* pr* Ty, ).

which equals the associated graded morphism of (7.3) by Proposition 4.5. Hence
@g,':’k ) is surjective. On the other hand, if we apply pr* to the surjection

o7 A = 0y, ® DGy (k) - DY (1),
we obtain the surjection
Oy, ®s D™ (Gy(k)) — pr*DY P (1.

Recall that (Y7, k") > (Y,, k) implies, in particular, that Lie(G, (k")) C Lie(G,(k))
and thus @w* Lie(G,/) C w* Lie(G,). By (3.5), the preceding inclusion gives rise to
an injective ring homomorphism D" (G, (k")) < D (G,(k)). Let us see that the
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composition

Oy, ®o D™ (G (k) = Oy, ® D™ (Gy(k)) — PEDL* (1)
factors through Dgf:/’k /)(/\);

Oy, ®s D (Gy (k') — FFDYP ()

l ///%

@“” K )(x)

Since by Lemma 3.11 all those sheaves are w-torsion free, this can be checked after
tensoring with L in which case we have that Dgf";k/)(/\) ®o L ~ pr* D)((mv’k) (M) ®y L
is the (push-forward of the) sheaf of algebraic ‘twisted differential operators on the
generic fiber of Y, (cf. the discussion given at the beginning of Section 4.1). We thus
get the canonical morphism of sheaves (7.2). Passing to completions, we get a canonical
morphism

®(mk)(k) ~*D(m k)()t)

Taking the inductive limit over all m and inverting @ gives a canonical morphism

DY () = BEDL L ().

Now, let us consider the formal scheme Y, as a blow-up of X, via pr. Then 7 becomes
a morphism of formal schemes over X, and we consider pr*DT k()k) as the sheaf
of arithmetic differential operators with congruence level k deﬁned on Y,/ via pr*.
Using the invariance theorem (Theorem 4.8), we get (pr*DJr k()t)) = ; - Then
applying 7. to the morphism D o (A) = pr* ; k(/\) glves the morphism

. i i
R m@,gv/,k,()u) -~ D}

of the statement. As in [20, Proposition 5.3.8], making use of the maps <I>§f:’k), the
assertion about the G-equivariance is reduced to the functorial properties of the rings

D (Gy (k). .

DEeriniTION 7.4. A coadmissible G-equivariant arithmetic D(A)-module on F
consists of a family M = (My, x)(y,.k)es of coherent ®J‘;u, « (A)-modules with the
following properties:

(a) For any special vertex v € B and g € G with isomorphism pg : Jy — Yug, there
exists an isomorphism

90; P My, —> (P;)*My,k

of sheaves of L-vector spaces, satisfying the following conditions:
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(i) Forall 1, g € G one has (pgh)*¢;l’ o (pgh = go;;g.lg

(ii) For all open subsets U C Yyg, all P € i);gvg,k(k)(U), and all m € My, , x(U)
one has g o ((P.m) = Ty y((P).¢g 1 (m).

(iii) For all g € Gg41,y the map @g @ My k — (pg)x My = My is equal to the
multiplication by 8 € H%(Y,, D;v,k (1)).

(b) For any two pairs (Y4, k") > (Yy, k) in F with morphism 7 : Y,» — Y, there exists

a transition morphism ¥y , y, @ wx My , — My, linear relative to the canonical

morphism W : D;U“ o) = @;v, «(A) (in the preceding proposition) such that

(74) (pg o W‘dv/g,‘dug = (Pg)*wyv/,‘éu ° (”g)*‘Pg

for any g € G (where we have used the relation (og )« © w4« = (7.8)x © (,o;i/)*). If
v/ =wv,and (Y,.k) = (Yy,k) in F,, and if Y, Y, are G, o-equivariant, then we
require additionally that the morphism induced by ¥y 4 (cf. (5.7)),

o .t
W%,yv : D‘(élj,k(/\) ®7T*’D:;;}.k/(/l)an.k+l ”*M%,k’ - Mldvgk’

is an isomorphism of D;v x(A)-modules. As in Theorem 6.6, the morphisms
Uy, Yy - My, ki — My,  are required to satisfy the transitive condition

wyv/,‘du o n*(‘/f‘dv//,‘dv/) = an,yw

whenever (4,7, k") = (Yv, k') = (Y, k) in I. Moreover, Yy, y, = idy,, ;-

A morphism M — N between two coadmissible G-equivariant arithmetic D(A)-
modules consists in a family of morphisms My x — Ny i of D;  (A)-modules, which
respect the extra conditions imposed in (a) and (b). We denote the resulting category
by Gg A

We recall for the reader that D(Gy, L) is a Fréchet—Stein algebra [34, Theo-
rem 24.1]. Moreover, a D(G, L)-module is called coadmissible if it is coadmissible as
a D(H, L)-module for every compact open subgroup H C G (cf. the first definition in
[33, Section 6]). Given that for any two compact open subgroups H € H’ C G the alge-
bra D(H’, L) is finitely generated free and hence coadmissible as a D(H, L)-module,
it follows from [33, Lemma 3.8] that the preceding condition needs to be tested only
for a single compact open subgroup H C G. This motivates the following definition
where we will consider the weak Fréchet—Stein structure of D(Gy, L) defined in (5.3).

(1) Here we use that the action of G on B is on the right, thus (pgh)* o(pp)x = (ng)*.
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DErINITION 7.5. We say that M is a coadmissible D(G, L)-module if M is coad-
missible as a D(Gy, L)-module.

Let us construct now the bridge to the category of coadmissible D (G, L);-modules.
Let M be such a coadmissible D(G, L);-module and let V = M 1; We fix a special
vertex v € B. Let Vg, (k)o-an be the subspace of G, (k)°-analytic vectors and let M,
be its continuous dual.” For any (Y,, k) € F we have a coherent D:;U,k (A)-module

Loc] (M) (Myg) =D (X) @pu(e,t0°), Mok
and we can consider the family
Loc§ (M) = (Loc], L (M)(My 1))y, ez
On the other hand, given an object M € Gg 1> We may consider the projective limit
- T 0
T(M) = lim HOY, My)
(Y,k)ex

with respect to the transition maps ¥y’ y. Here the projective limit is taken in the sense
of abelian groups and over the cofinal family of pairs (Y, k) € F with G, ¢-equivariant
Y, cf. Remark 6.8.

THEOREM 7.6. Let us suppose that A € Hom(T, G,,) is an algebraic character
such that A + p € ta is a dominant and regular character of tq (and therefore, a
dominant and regular character on every special vertex of B). The functors l’ocf (*)
and T'(e) induce quasi-inverse equivalences between the category of coadmissible
D(G, L)) -modules and Cg,”

Proor. The proof (which is similar to the one of [20, Theorem 5.3.12]) is an
extension of the proof of Theorem 6.6, taking into account the additional G-action. Let
M be a coadmissible D(G, L)j-module and let M € Gg’ 5~ The proof of the theorem
follows the following steps.

Claim 1. One has iocf (M) e (:"Z 5 and iocf (*) is functorial.
Letg € G, v € B aspecial vertex and pg : Yy — Yyg the respective isomorphism.
For conditions (a) for éﬁocf (M) we need the maps

g5+ £0cT (M)y, & = Loc  (A)(Muyg ) = (p})x LocF (M)y, 4

(1) Here we use the fact that (Gy)z = Gp.
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satisfying the properties (i), (ii) and (iii). Let @g : Myg r — M, i denote the dual

map t0 Vg, (k)o-an = VGue (k)o-ans W H> g "

P e D;vg k(A)(u)’ m & Mvg,k- We define

w.20 Let U C Yye be an open subset and

(7.5) e (P ®@m) =T (P)® @g(m).

Exactly as we have done in Theorem 6.6, the family (¢ ) satisfies the requirements (i), (ii)
and (iii). Let us verify now condition (b). Given (Y, k) = (Yy, k) in &F, we have
Gy (k')° € Gy (k)° in G'¢ and we denote by Jyv/,yv : My jr — M, i the map dual
to the natural inclusion Vg, (x)o-an S VG, (k")°-an- Let U S Y/ be an open subset and
P e n*D;U,’k/(A)(U), m € M, ;. We then define?!

YUy, y, (P @m) =Wy y (P)® Jyv,,y,,(m),

where Wy , y, : ”*ﬂ;z]/,k/ A) — @;v,k (A) is the canonical morphism given by the
preceding proposition. This definition extends to a map

. G G
Vy,y, s Locy (M)y,, kr — Locg (M)y, k,

which satisfies all the required conditions. The functoriality of :Eocf (¢) can be verified
exactly as we have done for the functor éﬁocfo ().

Claim 2. T'(M) is a coadmissible D(G, L) -module.

We already know that I'(M) is a coadmissible D(Gy,o, L),-module for any v
(Theorem 6.6). So it suffices to exhibit a compatible G-action on ['(M). Let g € G.
The isomorphisms ¢g : My, x — (pg)+My k induce isomorphisms at the level of
global sections (which we denote again by ¢ to soft the notation):

gﬂg : Ho(yvg,kv M‘évg,k) - Ho(yv’ ’My,k)‘
Let us identify

(M)

_ . 0

= Lin H (%vg,kﬂju‘évg,k)
(Yvg.k)ET, 4

0
= {(m‘dug,k)(yvg,k) € 1_[ H (va,k»f/"{yvg,k) | W%g,yvg(m%g,k) = myvg,k}’

gvg

(20) Here we use Gyg (k)° = g7 Gy (k)°g in G".
(®") We avoid the subscript U in order to soft the notation.
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where, by abuse of notation, we have denoted by ¥y, e Yug the morphism obtained by
taking global sections on Yy, oy : (n.g)*DT, ,(A) —> Y (A).For g € G and
vgrdvg Yog sk Yog.k

m = (My,, k) (Yye.k)es,, € T(M),

we define
gm = (0p My, k)W) € [ [ HOGo: My, 1),
Ty
gmey, kyeg, = Pg My, k).
We want to see that
gmeTM) = lim  HO(Yy, My, i)
(Yv.k)eT,

and that this assignment defines a left G-action on I'(M). Taking global sections on
(7.4), we get the relation @z o Yy, e Yoe = YYl.y, © @g»> Which implies that

Yy, y, (8Mmy, 1) = Yyy y, (9g (My; 1))
= w; (wy%gayvg (m%;)g,k/))

= g (Mmy,, k) = gMy, k-
We obtain an isomorphism

(M) = lim HO(Yug, My, &) = lim HO(Yy, My, &) = T (M),
F T

Jog Ly

According to (i) in (a) we have the sequence

v . g0 e o %h 10
Ohg + H®Gong, My, k) — HOYon, My, 1) — HO (Y, My, 1),

which tells us that 2.(g.m) = (hg).mforh, g € G andm € I"(M). This gives a G-action
on I' (M) which, by construction, is compatible with its various D (G o, L)-module
structures.

Claim 3. T o Loc§ (M) ~ M.

By Theorem 6.6 we know that this holds as a coadmissible D(Gy, L);-module, so
we need to identify the G-action on both sides. Let v be a special vertex. According to
(7.5), the action

G 1 ~ - G
I'o&ocy (M) ~ L%nMvg,k — L%nMv,k ~ T odocy (M)



A. Sarrazola Alzate 74

ofanelementg € GonTl o l’ocf (M) is induced by g : Myg x — M, k. By dualizing

V= Vorwe-am = | Vo, w0
keN keN

we obtain the identification

M ~1limM ~limM, .
o T

Therefore, we get back the original action of g on M.

Claim 4. £oc§ ol (M) ~ M.
We know that
Loc (T(M)y, k = My, &

as ®;v, x (A)-modules for any (Yy, k) € F, cf. Theorem 6.6. It remains to verify that
these isomorphisms are compatible with the maps ¢¢ and ¥y, y, on both sides. To
do that, let us see that the maps ¢, on the left-hand side are induced by the maps of
the right-hand side. Given

Pg + My, k = (pg)xMy, k,
the corresponding map
¢y @ LocF (D(M)y, ke = (0)+(Loc (T(M))y, k)
equals the map
DY ) @G0, Mugk = (02)(D])  (A) @pine, ), Muk),

where My g = H(Yvg, My, k) and My = H(Yy, My, i) Locally, the preceding
morphism is given by Tg”’ygv ® HO(‘évg, goé‘i), cf. (7.5). Let U € Y, be an open subset,
P e (D;v’k()t)(U) andm € My = H®(Yy,, My, k). The isomorphisms

Loc§ (T(M))y, k = My, &

are induced (locally) by P ® m +— P.(m|y). Condition (ii) tells us that these morphisms
interchange the maps ¢y, as desired. The compatibility with the transition maps Yy, y,,
for two models (Y, k") = (Yy. k) in F follows the arguments given in Theorem 6.6,

by using the fact that the morphisms ¥y , y, are compatible with the canonical map

v nw;v,,k,(x) - @ijk.

This ends the proof of the theorem. ]
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As in the case of the group G, we now indicate how objects from (?g 5, can be
realized as G-equivariant sheaves on the G-space X . The following discussion is an
adaptation of the discussion given in [30, (5.4.3) and Proposition 5.4.5] to our case.

ProrosiTioN 7.7. The Gy-equivariant structure of the sheaf D(A) extends to a
G-equivariant structure.

Proor. Let g € G and let v, v’ € B be special vertices. Let us suppose that
Yuv, k') = (Yy, k) in F. The isomorphism pz/ : Yv — Yurg induces aring isomorphism

Ty D), ) = (pp)eD] ().
On the other hand, and exactly as we have done in (6.5), the commutative diagram

SPyYy N

—>yvg

defines a continuous function
gt Xoo = Xoo,  (av) = (P;(av))’

which satisfies
7

SPy,,, ©Pg = Py ©SPy,,-

In particular, if V' C X is the open subset V' := spgi (W) with U € Y, an open subset,
then

(0y) ™ (spy,,, (V) = spy,, (P " (V)

and so the map T”’ induces the morphism
(7.6) 9 okt D spy,, (V) — D} 6Py, (og (V).

Moreover, if (Yo7, k") > (Yo, k') = (Yu. k) in F, and as before V = spgi (W) € Xoo
with U C Y, an open subset, then the commutative diagram

DY,k Mspy,, (V) — DY, (R)(spy,, (o7 (V).

| l

y o kr B spy,, (V) —— D} y,, kA Gpy,, (01 (V).
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implies that if we identify

DMV = tim  Df (Wspy,, (V)
(Yog,k) Eiug

and we take projective limits in (7.6), then we get a ring homomorphism
Tey : DAYV) = (pg)xDA)(V),

which implies that the sheaf D(A) is G-equivariant. Furthermore, by construction, this
G-equivariant structure extends the Go-structure defined in Section 6.1. ]

Finally, let us recall the faithful functor
M > Moo

from coadmissible Gg-equivariant arithmetic D(A)-modules on F to Gy-equivariant
D(A)-modules on Xo. If M comes from a coadmissible G-equivariant D(A)-module
on JF, then M is in fact G-equivariant (as in (6.7), this can be proved by using the
family of L-linear isomorphisms (¢g4)geg). As in Proposition 6.9, Theorem 7.6 gives
us the following result.

THEOREM 7.8. Let us suppose that A € Hom('T, G,) is an algebraic character such
that A + p € ra is a dominant and regular character of tg. The functor M ~> Moo
from the category Gg 5, to G-equivariant D(A)-modules on X is a faithful functor.

REmARK 7.9. We end this work by remarking to the reader that the functors in
Proposition 6.9 and Theorem 7.8 become fully faithful functors if we required that
the objects in the target category carry a structure of locally convex topological D(A)-
modules (cf. [20, Propositions 5.2.31 and 5.3.16]). In fact, following [20, (5.2.30)], we
can see that D(A) carries a natural structure of a sheaf of locally convex topological
L-algebras and, more generally, if M € Gg?k (resp. M € (i’g, 5)> then Moo becomes
a Gy-equivariant (resp. G-equivariant) sheaf of locally convex topological L-vector
spaces, endowed with the structure of a topological D(A)-module.
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