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G -equivariance of formal models of flag varieties

Andrés Sarrazola Alzate (*)

Abstract – Let G be a split connected reductive group scheme over the ring of integers o

of a finite extension LjQp and � 2 X.T / an algebraic character of a split maximal torus
T � G. Let us also consider the rigid analytic flag variety X rig of G and G D G.L/. In the
first part of this paper, we introduce a family of �-twisted differential operators on a formal
model Y of X rig. We compute their global sections and we prove coherence together with
several cohomological properties. In the second part, we define the category of coadmissible
G-equivariant arithmetic D.�/-modules over the family of formal models of the rigid flag
variety X rig. We show that if � is such that �C � is dominant and regular (� being the Weyl
character), then the preceding category is anti-equivalent to the category of admissible locally
analytic G-representations, with central character �. In particular, we generalize the main
results from a paper by Huyghe, Patel, Schmidt and Strauch (2019) for algebraic characters.

Mathematics Subject Classification (2020) – Primary 22E50; Secondary 14L30, 13N10,
32C38.

Keywords – Flag varieties, formal models, Beilinson–Bernstein correspondence, admissible
locally analytic representations, localization.

1. Introduction

Let LjQp be a finite extension and o its ring of integers. Throughout this work,
G will denote a split connected reductive group scheme over o. We will fix a Borel
subgroup B � G which contains a split maximal torus T � B of G. We will also
denote by X D G=B the smooth flag o-scheme associated to G and by X the smooth
formal scheme. In [20] the authors have introduced certain sheaves of differential
operators (with congruence level k 2 N) D�

Y;k
on a family of formal models Y of X rig,
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the rigid analytic flag variety. They study their cohomological properties and show
that Y is D�

Y;k
-affine. Moreover, it is proved in [20, Theorem 5.3.12] that the category

of admissible locally analytic representations with trivial infinitesimal character of
the L-analytic group G.L/ can be described in terms of G.L/-equivariant families
.MY;k/ of modules over D�

Y;k
on the projective system of all formal models Y of X rig.

Our motivation is to study the preceding equivalence (the localization theorem)
in the twisted situation. In this work we will treat the algebraic case, that is, we
will only consider characters of the Lie algebra t D Lie.T / arriving from characters
� 2 X.T / D Hom.T ;Gm/ via differentiation. In this situation � induces an invertible
sheaf L.�/ on X and we define D

�

X;k
.�/ as the sheaf of differential operators (with

congruence level k) acting on L.�/. We will follow the philosophy described in [20]
introducing sheaves of differential operators on each admissible blow-up of X. Let
pr W Y! X be an admissible blow-up, then for k � 0

D
�

Y;k
.�/ D pr�D�

X;k
.�/ D OY ˝pr�1OX

pr�1D�

X;k
.�/

is a sheaf of rings1 on Y. Let us denote by � the so-called Weyl character and let us
assume that �C � 2 t�Q D HomL.t˝o L;L/ is a dominant and regular character of
tQ D t˝o L. In this situation, we will show that the direct image functor pr� induces an
equivalence of categories between the category of coherent D�

Y;k
.�/-modules and the

category of coherent D�

X;k
.�/-modules. In addition, we have pr�D

�

Y;k
.�/ D D

�

X;k
.�/,

which implies that
H 0.Y;D

�

Y;k
.�// D H 0.X;D

�

X;k
.�//:

It is shown in [21] that H 0.X;D
�

X;k
.�// can be identified with the central redaction2

Dan.G.k/ı/� of Emerton’s analytic distribution algebra Dan.G.k/ı/ of the wide open
rigid-analytic k-th congruence group G.k/ı. Our first result is as follows.

Theorem 1. Let pr W Y! X be an admissible blow-up. Suppose � 2 Hom.T ;Gm/

is an algebraic character such that �C � 2 t�Q is a dominant and regular character
of tQ. Then H 0.Y; �/ induces an equivalence between the categories of coherent
D
�

Y;k
.�/-modules and finitely presented Dan.G.k/ı/�-modules.

As in the classical case, the inverse functor is determined by the localization functor

Loc�
Y;k
.�/.�/ D D

�

Y;k
.�/˝Dan.G.k/ı/� .�/:

(1) The technical condition k � 0 is clarified in Proposition 4.2. It is also explained in (1.1)
below.

(2) Via the classical Harish-Chandra isomorphism, the character � induces a central character
�� W Z.Lie.G/˝o L/! L which allows us to consider the central redaction.
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Let us now describe the most important tools in our localization theorem. On the
algebraic side, we will first assume that G0 D G.o/ and that D.G0; L/ is the algebra
of locally analytic distributions of the compact analytic group G0 (in the sense of
[34]). The key point will be to construct the structure of a weak Fréchet–Stein algebra
on D.G0; L/ (in the sense of [14, Definition 1.2.6]) that will allow us to localize the
coadmissible D.G0; L/-modules (relative to this weak Fréchet–Stein structure). In
fact, if Ccont.G0; L/G.k/ı-an is the vector space of locally analytic vectors of the space
of continuous L-valued functions and D.G.k/ı; G0/ D .Ccont.G0; L/G.k/ı-an/

0
b

is its
strong dual, then we have an isomorphism

D.G0; L/
'
�! lim
 �
k2N

D.G.k/ı; G0/;

which defines the structure of a weak Fréchet–Stein algebra and such that

D.G.k/ı; G0/ D
M

g2G0=Gk

Dan.G.k/ı/ıg :

Here Gk D G.k/.o/ is a normal subgroup of G0, the direct sum runs through a set of
representatives of the cosets of Gk in G0 and ıg is the Dirac distribution supported
in g. We will denote by CG0;� the category of coadmissible D.G0; L/-modules with
central character � (coadmissible D.G0; L/�-modules, where D.G0; L/� denotes the
central reduction).

Now, on the geometric side, we will consider a G0-equivariant admissible blow-up
pr W Y! X such that the invertible sheaf L.�/ is equipped with aG0-action that allows
us to define a leftG0-action Tg W D�

Y;k
.�/! .�g/�D

�

Y;k
.�/ on D

�

Y;k
.�/ (here g 2 G0

and �g W Y! Y is the morphism induced by G0-equivariance), in the sense that for
every g; h 2 G0 we have the cocycle condition Thg D .�g/�Th ı Tg . So, we will say
that a coherent D�

Y;k
.�/-module M is strongly G0-equivariant if there is a family

.'g/g2G0 of isomorphisms 'g WM! .�g/�M of sheaves of L-vector spaces, which
satisfies the following properties (conditions (�)):

• For every g; h 2 G0 we have .�g/�'h ı 'g D 'hg .

• If U � Y is an open subset, P 2 D
�

Y;k
.�/.U/ and m 2M.U/, then

'g.P �m/ D Tg.P / � 'g.m/:

• For any g 2 GkC1 the application 'g WM! .�g/�M is equal to the multiplication
by ıg 2 Dan.G.k/ı/�.3

(3) We identify here H0.Y;D�
Y;k
.�// with Dan.G.k/ı/� and we use Lemma 4.12 to give a

sense to this condition.
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A morphism between two strongly G0-equivariant modules .M; .'M
g /g2G0/ and

.N ; .'N
g /g2G0/ is aD�

Y;k
.�/-linear map WM!N such that'N

g ı D .�g/� ı'
M
g

for every g 2 G0. We denote by Coh.D�

Y;k
.�/; G0/ the category of strongly G0-

equivariant D�

Y;k
.�/-modules. We have the following result.

Theorem 2. Let � 2 Hom.T ;Gm/ be an algebraic character such that �C � 2 t�Q
is a dominant and regular character of tQ. The functors Loc�

Y;k
.�/ andH 0.Y; �/ induce

equivalences between the categories of finitely presentedD.G.k/ı;G0/-modules (with
central character �) and Coh.D�

Y;k
.�/;G0/.

Still on the geometric side, let us consider the set FX of couples .Y; k/ such that Y
is an admissible blow-up of X and k � kY, where

(1.1) kY D min
	

min
®
k 2 N j $k

2 	
¯

and 	 is an ideal subsheaf of OX, such that Y is isomorphic to the blow-up along V.	/.
This set carries a partial order. As is shown in [20] the group G0 acts on FX and this
action respects the congruence level. This means that for every couple .Y; k/ 2 FX

there is a couple .Y:g; kY:g/ 2 FX with an isomorphism �g W Y! Y:g and such that
kY D kY:g . We will say that a family M D .MY;k/.Y;k/2FX

of coherent D�

Y;k
.�/-

modules is a coadmissibleG0-equivariant D.�/-module on FX if for any g 2 G0, with
morphism �g W Y! Y:g, there is an isomorphism

' WMY:g;k ! .�g/�MY;k

that satisfies the conditions .�/ and such that, if .Y0; k0/ � .Y; k/ with � W Y0! Y, then
there is a transition morphism ��MY0;k0 !MY;k which satisfies obvious transitivity
conditions. Moreover, a morphism M! N between two such modules is a morphism
MY;k ! NY;k of D�

Y;k
.�/-modules which is compatible with the additional structures.

We will denote this category by C
G0
X;�

. For every M 2 C
G0
X;�

, we will consider the
projective limit

�.M/ D lim
 �

.Y;k/2FX

H 0.Y;MY;k/

in the sense of abelian groups.
Now, letM be a coadmissibleD.G0;L/�-module andV DM 0

b
its associated locally

analytic representation. The vector space of G.k/ı-analytic vectors VG.k/ı-an � V is
stable under the action of G0 and its dual Mk D .VG.k/ı-an/

0
b

is a finitely presented
D.G.k/ı; G0/-module. In this situation, Theorem 2 produces a coherent D�

Y;k
.�/-

module
Loc�

Y;k
.�/.Mk/ D D

�

Y;k
.�/˝Dan.G.k/ı/� Mk
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for each element .Y; k/ 2 FX. We will denote this family by

LocG0
�
.M/ D .Loc�

Y;k
.�/.Mk//.Y;k/2FX

:

Theorem 3. Let � 2 Hom.T ;Gm/ be an algebraic character such that �C � 2 t�Q
is a dominant and regular character of tQ. The functors LocG0

�
.�/ and �.�/ induce

equivalences of categories between the category CG0;� (of coadmissible D.G0; L/�-
modules) and the category CG0

X;�
.

Finally, the last part of this work is devoted to the study of coadmissible4D.G;L/�-
modules, where G WD G.L/. To do this, we will consider the Bruhat–Tits building
B of G (see [9, 10]). It is a simplicial complex equipped with a G-action. For any
special vertex v 2 B, the theory of Bruhat and Tits associates a reductive group Gv

whose generic fiber is canonically isomorphic to G �Spec.o/ Spec.L/. LetXv be the flag
scheme of Gv , andXv its formal completion along its special fiber. We consider the setF
composed of triples .Yv; k; v/ such that v is a special vertex, Yv ! Xv is an admissible
blow-up of Xv and k � kYv . According to Definition 7.2, F is partially ordered. In
addition, for each special vertex v 2 B, each element g 2 G induces an isomorphism
�vg W Xv ! Xvg , such that if .�vg/\ W OXvg ! .�vg/�OXv is the comorphism map and
� W Yv ! Xv is an admissible blow-up along V.	/, then the (admissible) blow-up
along V..�vg/�1.�vg/�	/ produces a scheme Yvg with an isomorphism �vg W Yv ! Yvg ,
such that kYv D kYvg and for every g; h 2 G we have �vg

h
ı �vg D �

v
gh

.
A coadmissible G-equivariant arithmetic D.�/-module on F consists of a family

.M.Yv ;k;v//.Yv ;k;v/2F of coherent D�

Yv ;k
.�/-modules satisfying the conditions .�/ plus

some compatibility properties (see Definition 7.4) that allow us to form the projective
limit

�.M/ D lim
 �

.Yv ;k;v/2F

H 0.Yv;M.Yv ;k;v//;

which, as we will show, has the structure of a coadmissible D.G;L/�-module. On the
other hand, given a coadmissibleD.G;L/�-moduleM , we consider its continuous dual
V DM 0

b
, which is a locally analytic representation ofG. Then letMv;k be the dual space

of the subspace VGv.k/ı-an � V of Gv.k/
ı-analytic vectors. For every .Yv; k; v/ 2 F,

we have a coherent D�

Yv ;k
.�/-module

Loc�
Yv ;k

.�/.Mv;k/ D D
�

Yv ;k
.�/˝Dan.Gv.k/ı/� Mv;k :

We denote this family by LocG� .M/. We will show the following result (Theorem 7.6).

(4) Here G0 is a (maximal) compact subgroup of G. This compactness property allows us to
define the structure of a weak Fréchet–Stein algebra.
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Theorem 4. Let � 2 Hom.T ;Gm/ be an algebraic character such that �C � 2
t�Q is a dominant and regular character of tQ. The functors LocG� .�/ and �.�/ give an
equivalence between the categories of coadmissible D.G;L/�-modules and coadmis-
sible G-equivariant arithmetic D.�/-modules.

The last task will be to study the projective limit

X1 D lim
 �

.Yv ;k;v/

Yv:

This is the Zariski–Riemann space associated to the rigid flag varietyX rig. We can also
form the projective limitD.�/ of the sheavesD�

Y;k
.�/which is a sheaf ofG-equivariant

differential operators on X1. Similarly, if .M.Yv ;k;v//.Yv ;k;v/2F is a coadmissible G-
equivariant arithmetic D.�/-module, then we can form the projective limit M1. The
data M.Yv ;k;v/2F M1 induces a faithful functor from the category of coadmissible
G-equivariant arithmetic D.�/-modules on F to the category of G-equivariant D.�/-
modules on X1 (Theorem 7.8). In fact, this is a fully faithful functor as we will briefly
explain in Remark 7.9.

We summarize the main results of this work with the following commutative diagram
of functors (cf. [30, Theorem 5.4.10]):´

Coadmissible
D.G;L/�-modules

µ ´
Coadmissible G-equivariant

arithmetic D.�/-modules

µ

´
Coadmissible

D.G0; L/�-modules

µ ´
Coadmissible G0-equivariant

arithmetic D.�/-modules

µ
LocG�
'

LocG0
�

'

Here the left-hand vertical arrow is the restriction functor coming from the homo-
morphism D.G0; L/� ! D.G;L/� and the right-hand vertical arrow is the forgetful
functor.

Notation 1.1. Throughout this work, $ will denote a uniformizer of o. Further-
more, if Y is an arbitrary noetherian scheme over o, then for every j 2 N we will
denote by Yj WD Y �Spec.o/ Spec.o=$jC1/ the reduction modulo $jC1, and by

Y D lim
�!
j

Yj

the formal completion ofY along the special fiber. Moreover, ifE is a sheaf of o-modules
on Y then its $ -completion

E WD lim
 �
j

E=$jC1E
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will be considered as a sheaf on Y. Finally, the base change of a sheaf of o-modules on Y
(resp. on Y) toLwill always be denoted by the subscript Q. For instance EQ D E˝o L.

2. Arithmetic definitions

2.1 – p-adic coefficients and divided powers

Let p be a prime number and let us fix a positive integer m. Throughout this work,
we will denote by Zp the ring of p-adic integers and by Z.p/ the localization of Z with
respect to the prime ideal .p/. Moreover, if k 2 N, we will write qk for the quotient
of the euclidean division of k by pm. Berthelot has introduced in [3] the following
coefficients for any two integers k; k0 with k � k0:´

k

k0

µ
D

qkŠ

q0
k
Šq00
k
Š
; k00 D k � k0:

In fact, we can generalize these coefficients for multi-indices k D .k1; : : : ; kN / 2 NN

by defining qkŠ D qk1 Š : : : qkN Š and´
k

k0

µ
D

qkŠ

qk0 Šqk00 Š
2 N and

*
k

k0

+
D

 
k

k0

!´
k

k0

µ�1
2 Zp:

Now, let A be a Z.p/ algebra. We say that a triple .I; J; / is an m-PD ideal of A, if 
defines a structure of divided powers on J (a PD-structure in the sense of [5]) and I
is endowed with a system of partial divided powers, meaning that for any integer k,
which decomposes as k D pmq C r (with r < pm), there exists an operation defined
for every x 2 I by

x¹kº D xrq.x
pm/:

Example 2.1. Let o be a discrete valuation ring of unequal characteristic .0;p/ and
uniformizing parameter $ . Let us write p D u$e , with u a unit of o and e a positive
integer (called the absolute ramification index of o). Let k 2 N. Then v.x/ WD xv=vŠ
defines a PD-structure on .$/k if and only if e � k.p � 1/ (see [5, Examples 3.2 (3)]).
In particular, we dispose of a PD-structure on .p/ � Z.p/. We let xŒk� D k.x/ and
we denote by ..p/; Œ �/ this PD-ideal. Moreover, if k � e � 1 and m � logp.k/, then
.$/k endowed with the preceding PD-structure defines an m-PD-structure on .$/
(see [3, Section 1.3, Examples (i)]).
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2.2 – Arithmetic differential operators

Let us suppose that o is endowed with the m-PD-structure .a; b; Œ �/ defined in
Example 2.1. Let X be a smooth o-scheme, and I � OX a quasi-coherent ideal. Let us
consider the sheaf of principal parties P.m/.I/ (see [3, Section 2.1]), which contains
an m-PD structure .xI; zI; Œ �/ and the sequence of ideals .xI¹nº/n2N defining the m-PD-
filtration [4, Section 1.1.3]. For every n 2 N, the algebra

PnX;.m/ D Pn.m/.I/=
xI¹nº

is quasi-coherent and can be considered as a sheaf on X . Moreover, the projections
p1; p2 W X �o X ! X induce two morphisms d1; d2 W OX ! Pn

X;.m/
endowing Pn

X;.m/

of a left and a right structure of OX -algebra, respectively.

Definition 2.2. Let m; n be positive integers. The sheaf of differential operators
of level m and order less than or equal to n on X is defined by

D
.m/
X;n D HomOX .P

n
X;.m/;OX /:

If n�n0, then [3, Proposition 1.4.1] gives us a canonical surjectionPn0
X;.m/

!Pn
X;.m/

which induces the injection D
.m/
X;n ,! D

.m/
X;n0 and the sheaf of differential operators of

level m is defined by
D
.m/
X D

[
n2N

D
.m/
X;n:

We remark for the reader that by definition D
.m/
X is endowed with a natural filtration

called the order filtration, and like the sheaves Pn
X;.m/

, the sheaves D.m/
X;n are endowed

with two natural structures of OX -modules.
Moreover, the sheaf D.m/

X acts on OX : if P 2 D
.m/
X;n, then this action is given by the

composition

OX
d1
�! PnX;.m/

P
�! OX :

Finally, let us give a local description of D.m/
X;n. LetU be a smooth open affine subset

of X endowed with a family of local coordinates x1; : : : ; xN . Let dx1; : : : ; dxN be
a basis of �X .U / and @x1 ; : : : ; @xN the dual basis of TX .U / (as usual, TX and �X
denote the tangent and cotangent sheaf on X , respectively). Let k 2 NN . Let us use
the notation

jkj D

NX
iD1

ki and @
Œki �
i D @xi =ki Š for every 1 � i � N:

Then, using the multi-index notation, we have @Œk� D
QN
iD1 @

Œki �
i and @hki D qkŠ@Œk�.
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In this case, the sheaf D.m/
X;n has the following description on U :

D
.m/
X;n.U / D

° X
jkj�n

ak@
hki
j ak 2 OX .U / and k 2 NN

±
:

2.3 – Symmetric algebra of finite level

In this subsection, we will focus on introducing the constructions in [19]. As before,
letX denote a smooth o-scheme and let us consider a locally freeOX -moduleL of finite
rank, the symmetric algebra SX .L/ associated to L, and the ideal I of homogeneous
elements of degree 1. If PSX .L/;.m/.I/ denotes them-divided power enveloping algebra
of .SX .L/; I/ (see [3, Proposition 1.4.1]), then we can consider the coherent sheaves
on X

�X;.m/.L/ D PSX .L/;.m/.I/ and �nX;.m/.L/ D �X;.m/.L/=
xI¹nC1º:

Those algebras are graded [19, Proposition 1.3.3] and if �1; : : : ; �N is a local basis
of L, we have

�nX;.m/.L/ D
M
jlj�n

OX�
¹lº:

As before �¹lº D
QN
iD1 �

¹li º
i and qi Š�

¹li º
i D �li . We define by duality

Sym.m/.L/ D
[
k2N

HomOX

�
�kX;.m/.L

_/;OX
�
;

By [19, Propositions 1.3.3 and 1.3.6] we know that Sym.m/.L/ D
L
n2N Sym.m/

n .L/

is a commutative graded algebra with noetherian sections over any open affine subset.
Moreover, locally over a basis �1; : : : ; �N of L we have the following description:

Sym.m/
n .L/ D

M
jljDn

OX�
hli; where

li Š

qi Š
�
hli i
i D �

li
i :

Remark 2.3. By [5, Proposition A.10] we have that Sym.0/.L/ is the symmetric
algebra of L, which justifies the terminology.

We end this subsection by mentioning the following results from [19]. Let I be the
kernel of the comorphism �] of the diagonal embedding � W X ! X �Spec.o/ X . In
[19, Proposition 1.3.7.3] Huyghe shows that the graded algebra associated to them-PD-
adic filtration of PX;.m/ is identified with the graded m-PD-algebra �X;.m/.I=I2/ D
�X;.m/.�

1
X /. More exactly, we dispose of a morphism of OX -algebras

SX .�X /! gr� PX;.m/;
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which extends, via the universal property [3, Proposition 1.4.1], to a canonical morphism

�nX;.m/.�
1
X /
'
�! gr�.PnX;.m//:

By definition, it induces a graded morphism

(2.1) Sym.m/.TX /! gr�D
.m/
X

which is in fact an isomorphism of OX -algebras.

2.4 – Arithmetic distribution algebra of finite level

As in the introduction, let us consider a split connected reductive group scheme
G over o and m 2 N fixed. We give a description of the algebra of distributions of
level m introduced in [21]. Let I denote the kernel of the surjective morphism of
o-algebras "G W oŒG�! o, given by the identity element of G. We know that I=I 2 is
a free o D oŒG�=I -module of finite rank. Let t1; : : : ; tl 2 I such that modulo I 2 these
elements form a basis of I=I 2. The m-divided power enveloping algebra of .oŒG�; I /,
denoted by P.m/.G/, is a free o-module with the elements t ¹kº D t ¹k1º1 � � � t

¹kl º

l
as basis,

where
qi Št
¹ki º
i D t

ki
i for every ki D pmqi C ri and 0 � ri < pm:

These algebras are endowed with a decreasing filtration by ideals NI ¹nº (the m-PD
filtration), such that NI ¹nº D

L
jkj�n ot ¹kº. The quotients

P n.m/.G/ D P.m/.G/= NI
¹nC1º

are therefore o-modules generated by the elements t ¹kº with jkj � n (see [3, Proposi-
tion 1.5.3 (ii)]). Moreover, there exists an isomorphism of o-modules

P n.m/.G/ '
M
jkj�n

ot ¹kº

and for any two integers n, n0 such that n � n0 we have a canonical surjection �n0;n W
P n
0

.m/
.G/!P n

.m/
.G/. The module of distributions of levelm and order n isD.m/

n .G/D

Hom.P n
.m/
.G/; o/. The algebra of distributions of level m is

D.m/.G/ D lim
�!
n

D.m/
n .G/;

where the limit is formed with respect to the maps Homo.�
n0;n; o/. The multiplication

is defined as follows. By the universal property (see [3, Proposition 1.4.1]) there exists
a canonical map

ın;n
0

W P nCn
0

.m/
.G/! P n.m/.G/˝o P

n0

.m/.G/:
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If .u; v/ 2 D.m/
n .G/ �D.m/

n0 .G/, we define u:v as the composition

u:v W P nCn
0

.m/
.G/

ın;n
0

���! P n.m/.G/˝o P
n0

.m/.G/
u˝v
���! o:

Let us denote by g D Homo.I=I
2; o/ the Lie algebra of G. This is a free o-module

with basis �1; : : : ; �l defined as the dual basis of the elements t1; : : : ; tl . If for every
multi-index k 2Nl , jkj � n, we denote by �hki the dual of the element t ¹kº 2 P n

.m/
.G/,

then D.m/
n .G/ is a free o-module of finite rank with a basis given by the elements �hki

with jkj � n (see [21, Proposition 4.1.6]).

Remark 2.4. This remark exemplifies the local situation when X D Spec.A/ with
A being a Z.p/-algebra [19, Section 1.3.1].

Let A be an o-algebra and E a free A-module of finite rank with base .x1; : : : ; xN /.
Let .y1; : : : ;yN / be the dual base ofE_DHomA.E;A/. As in the preceding subsection,
let S.E_/ be the symmetric algebra and I.E_/ the augmentation ideal. Let �.m/.E_/
be the m-divided power enveloping algebra of .S.E_/; I.E_//. We put

�n.m/.E
_/ D �.m/.E

_/= NI ¹nC1º:

These are free A-modules with base y¹k1º1 : : : y
¹kN º
N with

P
ki � n (see [19, Rappels

1.1.2 (iii)]). Let ¹xhkiºjkj�n be the dual base of HomA.�n.m/.E
_/; A/. We define

Sym.m/.E/ D
[
n2N

HomA
�
�n.m/.E

_/; A
�
:

This is a free A-module with a base given by all the xhki. The canonical inclusion
Sym.m/.E/ � S.E/˝o L gives the relation

x
hki i
i D

ki Š

qi Š
xki :

Moreover, it also has an algebra structure defined as follows. By [19, Proposition 1.3.1]
there exists an application �n;n0 W �nCn

0

.m/
.E_/ ! �n

.m/
.E_/ ˝A �

n0

.m/
.E_/, which

allows us to define the product

u:v W �nCn
0

.m/
.E_/

�n;n0
���! �n.m/.E

_/˝A �
n0

.m/.E
_/

u˝v
���! A

with u 2 HomA.�n.m/.E
_/; A/ and v 2 HomA.�n

0

.m/
.E_/; A/. This map endows

Sym.m/.E/ with the structure of a graded noetherian o-algebra [19, Propositions 1.3.3
and 1.3.6].

We have the following important properties [21, Proposition 4.1.15].
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Proposition 2.5. (i) There exists a canonical isomorphism of graded o-algebras
gr�.D.m/.G// ' Sym.m/.g/.

(ii) The o-algebras gr�.D.m/.G// and D.m/.G/ are noetherian.

2.5 – Integral models

In this subsection, we will assume that X is a smooth o-scheme endowed with a
right G-action.

Definition 2.6. Let A be an L-algebra (resp. a sheaf of L-algebras). We say
that an o-subalgebra A0 (resp. a subsheaf of o-algebras) is an integral model of A if
A0 ˝o L D A.

Remark 2.7. Let us recall that throughout this paper g denotes the Lie algebra
of the split connected reductive group o-scheme G and U.g/ its universal enveloping
algebra. As we have remarked in the introduction, if gQ denotes the L-Lie algebra
of the algebraic group GQ D G �Spec.o/ Spec.L/ and U.gQ/ its universal enveloping
algebra, thenU.g/ is an integral model ofU.gQ/. Moreover, the algebra of distributions
of level m, introduced in the preceding subsection, is also an integral model of U.gQ/

(see [21, Section 4.1]). This fact will be especially important in this work.

Proposition 2.8. The right G-action induces a canonical homomorphism of
filtered o-algebras

ˆ.m/ W D.m/.G/! H 0.X;D
.m/
X /:

Proof. For the proof we refer the reader to the proof of [21, Proposition 4.4.1 (ii)].
Here, we will briefly discuss the construction of ˆ.m/. The central idea in the con-
struction is that if � W X �o G ! X denotes the G-action, then the comorphism
�\ W OX ! OX ˝o oŒG� induces a morphism

�.n/m W P
n
X;.m/ ! OX ˝o P

n
.m/.G/

for every n 2 N. Those applications are compatible when varying n. Let u 2D.m/
n .G/.

We define ˆ.m/.u/ by

ˆ.m/.u/ W PnX;.m/
�
.n/
m
��! OX ˝o P

n
.m/.G/

id˝u
���! OX :

Again, those applications are compatible when varying n and we get the morphism of
the proposition.
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Remarks 2.9. (i) If X is endowed with a left G-action, then it turns out that ˆ.m/

is an anti-homomorphism.
(ii) In [21, Theorem 4.4.8.3] Huyghe and Schmidt have shown that if X D G and

we consider the right (resp. left) regular action, then the morphism of the preceding
proposition is in fact a canonical filtered isomorphism (resp. an anti-isomorphism)
between D.m/.G/ and H 0.G;D.m/

G /G , the o-submodule of (left) G-invariant global
sections. This isomorphism induces a bĳection betweenD.m/

n .G/ andH 0.G;D.m/
G;n/

G ,
and it is compatible when varying m.

We will denote by

ˆ
.m/
X W OX ˝o D

.m/.G/! D
.m/
X

the morphism of sheaves (of o-modules) defined as follows: if U � X is an open subset
and f 2 OX .U /, u 2 D.m/.G/, then

ˆ
.m/
X;U .f ˝ u/ D f �ˆ

.m/.u/jU :

Let us define A.m/X D OX ˝o D
.m/.G/, and let us remark that we can endow this sheaf

with the skew ring multiplication coming from the action of D.m/.G/ on OX via the
morphism ˆ

.m/
X , that is,

(2.2) .f ˝ u/ � .g ˝ v/ D
�
f �ˆ

.m/
X .u/

�
g ˝ v C fg ˝ uv:

This multiplication defines over A.m/X the structure of a sheaf of associative o-algebras,
such that it becomes an integral model of the sheafUıDOXL ˝L U.gQ/. To see this, let
us recall how the multiplicative structure of the sheaf Uı is defined (cf. [29, Section 5.1]
or [27, Section 2]).

Differentiating the right action of GQ on XQ, we get a morphism of Lie algebras

� W gQ ! H 0.XQ;TXQ/:

This implies that gQ acts on OXQ by derivations and we can endow Uı with the skew
ring multiplication

(2.3) .f ˝ �/.g ˝ �/ D
�
f �.�/

�
g ˝ � C fg ˝ ��

for � 2 gQ, � 2 U.gQ/ and f; g 2 OXQ . With this product the sheaf Uı becomes a
sheaf of associative algebras [27, p. 11].

Remark 2.10. As in (2.2) we can define a morphism (called the operator-repre-
sentation) of sheaves of L-algebras

‰XL W OXQ ˝L U.gQ/! DXQ ; f ˝ � 7! f �.�/ .f 2 OXQ ; � 2 gQ/:



A. Sarrazola Alzate 14

We get the commutative diagram

D.m/.G/ H 0.X;D
.m/
X /

U.gL/ H 0.XQ;DXQ/:

ˆ.m/

‰XQ

Given thatD.m/.G/ is an integral model of the universal enveloping algebra U.gQ/,
then by (2.2) and (2.3) we can conclude thatA.m/X is also a sheaf of associative o-algebras
being a subsheaf of Uı.

Proposition 2.11 ([21, Corollary 4.4.6]). (i) The sheaf A.m/X is a locally free OX -
module.

(ii) There exists a unique structure overA.m/X of filteredOX -rings and there is a canonical
isomorphism of graded OX -algebras gr.A.m/X / D OX ˝o Sym.m/.g/.

(iii) The sheaf A.m/X (resp. gr.A.m/X /) is a coherent sheaf of OX -rings (resp. a coherent
sheaf of OX -algebras), with noetherian sections over open affine subsets of X .

3. Twisted arithmetic differential operators with congruence level

In this section, we will introduce congruence levels to the constructions given
in Sections 2.2, 2.4 and 2.5. This means, deformations of our (integral) differential
operators. This notion will be a fundamental tool to define differential operators on an
admissible blow-up of the flag o-scheme.

3.1 – Linearization of group actions

Let us start with the following definition from [17, Chapter II, Exercise 5.18] (cf.
[8, Definition 3.1.1]).

Definition 3.1. Let Y be an o-scheme. A (geometric) line bundle over Y is a
scheme L together with a morphism � W L! Y such that Y admits an open covering
.Ui /i2I satisfying the following two conditions:

(i) For any i 2 I there exists an isomorphism  i W �
�1.Ui /

'
�! A1Ui .

(ii) For any i; j 2 I and for any open affine subset V D Spec.AŒx�/ � Ui \ Ui the
automorphism �ij W  j ı  

�1
i jV W A

1
V ! A1V of A1V is given by a linear automor-

phism �
\
ij of AŒx�. This means, � \ij .a/ D a for any a 2 A, and � \ij .x/ D aijx for a

suitable aij 2 A.
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In the preceding definition, the scheme L is obtained by gluing the trivial line
bundles p1;i W Ui �A1o ! Ui via the linear transition functions .aij /. Thus, each fiber
Lx is a line, in the sense that it has a canonical structure of a 1-dimensional affine
space.

Definition 3.2. Given a line bundle � W L! Y and a morphism ' W Y 0! Y , the
pull-back '�.L/ is the fiber product L �Y Y 0 equipped with its projection to Y 0.

Now, let � W L! Y be a line bundle over Y , then a section of � over an open subset
U � Y is a morphism s W U ! L such that � ı s D idU . Moreover, the presheaf L
defined by

U � Y 7!
®
s W U ! L j s is a section over U

¯
is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf.

On the other hand, if E is a locally free sheaf of rank 1 on Y and we let

V.E/ D Spec
Y

�
SymOY

.E/
�

be the line bundle over Y associated to E (see [16, Definition 1.7.8]), then we have a
one-to-one correspondence between isomorphic classes of locally free sheaves of rank
1 on Y and isomorphic classes of (geometric) line bundles over Y (see [17, Chapter II,
Exercises 5.1 (a) and 5.18 (d)]):

(3.1)

8̂̂̂̂
<̂
ˆ̂̂:

Isomorphic classes of
locally free sheaves of rank 1 $ Isomorphic classes of line bundles;

E 7! V.E_/;
L 7!L:

Let � W L! Y be a line bundle over Y , let L be its sheaf of sections and ' W Y 0 ! Y

a morphism of schemes; an easy calculation shows that the sheaf of sections of the
pull-back line bundle '�.L/ D L �Y Y 0 ! Y 0 is equal to '�.L/.

Let us suppose now that Y is endowed with a right G-action ˛ W Y �Spec.o/ G! Y .
In particular, for every g 2 G.o/ we dispose of a translation morphism

�g W Y D Y �Spec.o/ Spec.o/
idY �g
����! Y �Spec.o/ G

˛
�! Y:

In the next lines we will study (geometric) line bundles which are endowed with a right
G-action.

Definition 3.3. Let � W L! Y be a line bundle. A G-linearization of L is a right
G-action ˇ W L �Spec.o/ G ! L satisfying the following two conditions:
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(i) The diagram

L �Spec.o/ G L

Y �Spec.o/ G Y

ˇ

��idG �

˛

is commutative.

(ii) The action on the fibers is o-linear.

Let g 2 G.o/ and let us suppose that ‰ W ˛�.L/! p�1 .L/ is a morphism of line
bundles over Y �Spec.o/ G. Let us consider the translation morphism

�g W Y D Y �Spec.o/ Spec.o/
idY �g
����! Y �Spec.o/ G

˛
�! Y:

We have the relations .idY � g/�˛�.L/D ��g.L/ and .idY � g/�p�1 .L/D L. So every
morphism of line bundles‰ W ˛�.L/! p�1 .L/ induces morphisms‰g W ��g.L/!L for
all g 2G.o/. The following reasoning can be found in [12, p. 104] or [8, Lemma 3.2.4].

Proposition 3.4. Let � W L! Y be a line bundle over Y endowed with a G-
linearization ˇ W L �Spec.o/ G ! L. Then there exists an isomorphism

‰ W ˛�.L/! p�1 .L/

of line bundles over L �Spec.o/ G, such that ‰gh D ‰g ı ��g.‰h/ for all g; h 2 G.o/.

Proof. By definition of linearization we have the commutative diagram

L �Spec.o/ G

˛�.L/ Y �Spec.o/ G

L Y:

��idG

ˇ

 

p2

p1 ˛

�

By the universal property there is a unique morphism of line bundles  W p�1 .L/!
˛�.L/, which is linear on the fibers since so is ˇ. Let g 2 G.o/. To see that  is an
isomorphism we can use the correspondence (3.1). In this case, if x 2 Y , g 2G.o/ and
 .x;g/ W Lx ! Lxg denotes the respective morphism between the stalks, then  .x;g/
is an isomorphism,  .xg;g�1/ being the inverse.
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Let g; h 2 G.o/. Applying .idX � g/� to  , we get the morphism  g W L! ��g.L/
and given that ˇ is a right action (�h ı �g D �gh), it fits into the commutative diagram

L ��g.L/

��g�
�
h
.L/ D ��

gh
.L/:

 g

 gh
��g. h/

Moreover, since  g W L ! ��g.L/ is an isomorphism for every g 2 G.o/, we can
consider the morphism ‰g D  

�1
g W �

�
g.L/! L which coincides with the fibers of

the morphism
‰ D  �1 W ˛�.L/! p�1 .L/:

By construction, these morphisms satisfy the cocycle condition of the proposition. This
means that for every g; h 2 G.o/, we have

‰gh D ‰g ı �
�
g.‰h/:

3.2 – Associated Rees rings and differential operators with congruence level

Throughout this subsection, X will denote a smooth scheme over o. As usual, we
will denote by D

.m/
X the sheaf of level m differential operators on X . As we have

remarked in Section 2.2, those sheaves come equipped with a filtration

OX � D
.m/
X;1 � � � � � D

.m/

X;d
� � � � � D

.m/
X ;

with D
.m/

X;d
the sheaf of level m differential operators of order less than or equal to d .

Now, let A be a sheaf of o-algebras endowed with a positive filtration .FdA/d2N

and such that o � F0A.5 The sheaf A gives rise to a subsheaf of graded rings R.A/ of
the polynomial algebra AŒt � over A. This is defined by

R.A/ D
M
i2N

FiA � t
i ;

its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves
of subgroups

Rd .A/ D

dM
iD0

FiA � t
i
� R.A/:

(5) This digression can be found before the proof of [20, Proposition 3.3.7].
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Specializing R.A/ in an element � 2 o, we get a subsheaf of filtered subrings A�
of A. More exactly, A� equals the image under the homomorphism of sheaves of rings
'� W R.A/! A, sending t 7! �, and it is equipped with the filtration induced by A.
Moreover, if the sheaf of graded rings gr.A/, associated to the filtration .FdA/d2N , is
flat over o, then

FdA� D

dX
iD0

�iFiA;

see [20, Claim 3.3.10.]. If  W A! B is a morphism of positive filtered o-algebras
(with o � F0A and o � F0B), then the commutative diagram

R.A/ R.B/

A B

ad t
d 7! .ad /t

d

'� '�

 

gives us a filtered morphism of rings  � W A� ! B�. This in particular implies that
for � 2 o fixed, the preceding process is functorial.

Remark 3.5. The previous digression is well known for rings. In this setting,
we have results completely analogues to the ones presented so far [26, Chapter 12,
Section 6]. We will use these results in Section 3.3.

Now, let k be a non-negative integer called a congruence level [23, Section 2.1].
By using the order filtration .D.m/

X /d2N of the sheaf D.m/
X , we can define the sheaf

of arithmetic differential operators of congruence level k, D.m;k/
X , as the subsheaf of

D
.m/
X given by the specialization of R.D.m/

X / in $k 2 o. This means

D
.m;k/
X D

X
d2N

$kdD
.m/

X;d
:

By (2.1) and [19, Proposition 1.3.4.2] we can also conclude that, if .D.m;k/

X;d
/d2N denotes

the order filtration induced by D
.m/
X , then

D
.m;k/

X;d
D

dX
iD0

$kiD
.m/
X;i :

In local coordinates we can describe the sheaf D.m;k/
X in the following way. Let U � X

be an open affine subset endowed with coordinates x1; : : : ; xN . Let dx1; : : : ; dxN be
a basis of �X .U / and @x1 ; : : : ; @xN the dual basis of TX .U /. By using the notation in
Section 2.2, one has the following description [23, Section 2.1]:

D
.m;k/
X .U / D

° <1X
v

$kjvjav@
hvi
j av 2 OX .U /

±
:
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3.3 – Arithmetic differential operators acting on a line bundle

Throughout this subsection, X D G=B will always denote the flag scheme. For
technical reasons (cf. Proposition 2.8) in this work we will always suppose that the
group G and the scheme X are endowed with the right regular G-action. This means
that for any o-algebra A and g0; g 2 G.A/ we have

g0 � g D g
�1g0 and g0B.A/ � g D g

�1g0B.A/:

Under this action, the canonical projection G ! X is clearly G-equivariant.
Finally, we recall for the reader that the sheaf D.m/

X is endowed with a left and a
right structure of a OX -module. These structures come from the canonical morphisms
of rings d1; d2 W OX ! Pn

X;.m/
, which are induced by the universal property and the

projections. By construction, these actions also endow the sheaf D.m;k/
X with a left and

a right structure of a OX -module.

Definition 3.6 (Dominant and regular characters). Let us consider the positive
system ƒC � ƒ � X.T / (X.T / D Hom.T ;Gm/ the group of algebraic characters)
associated to the Borel subgroup scheme B � G. The Weyl subgroupW D NG.T /=T

acts naturally on the space t�Q D HomL.tL;L/, and via differentiation d W X.T / ,! t�

we may view X.T / as a subgroup of t� in such a way that X�.T /˝o L D t�Q. Let
� D 1

2

P
˛2ƒC ˛ be the so-called Weyl vector. Let L̨ be a coroot of ˛ 2 ƒ viewed as

an element of tQ. An arbitrary weight � 2 t�Q is called dominant if �. L̨ / � 0 for all
˛ 2 ƒC. The weight � is called regular if its stabilizer under the W -action is trivial.

Definition 3.7 (Line bundles on the flag scheme). Let us suppose now that
X D G=B is again the smooth flag o-scheme. We dispose of a canonical isomorphism
T ' B=N (here N is the unipotent radical of B) which in particular implies that
every algebraic character � 2 Hom.T ;Gm/ induces a character of the Borel subgroup
� W B! Gm. Let us consider the locally free action of B on the trivial fiber bundle
G �A1o over G given by

b:.g; u/ D .gb�1; �.b/u/ .g 2 G; b 2 B; u 2 A1o/:

We denote by L.�/ D B n .G �A1o/ the quotient space obtained by this action.
Let � WG! X be the canonical projection. Since the map G �A1o! X , .g;u/ 7!

�.x/ is constant on B-orbits, it induces a morphism �� W L.�/! X . Moreover, given
that � is locally trivial (see [24, Part II, §1.10 (2)]), �� W L.�/! X defines a line
bundle over X (see [24, Part I, §5.16]). Furthermore, the right G-action on G �A1o
given by

.g0; u/ � g 7! .g�1g0; u/ .g 2 G; .g0; u/ 2 G �A1o/
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induces a right action on L.�/ for which L.�/ turns out to be a G-linearized line
bundle on X . By Proposition 3.4, the sheaf of sections L.�/ of the line bundle L.�/ is
a G-equivariant invertible sheaf.

Definition 3.8. Let � 2 Hom.T ;Gm/ be an algebraic character. For every con-
gruence level k 2 N, we define the sheaf of level m arithmetic differential operators
acting on the line bundle L.�/ by

D
.m;k/
X .�/ D L.�/˝OX D

.m;k/
X ˝OX L.�/_:

The multiplicative structure of the sheaf D.m;k/
X .�/ is defined as follows. Let us

consider ˛_; ˇ_ 2 L.�/_, P;Q 2 D
.m;k/
X and ˛; ˇ 2 L.�/, then

(3.2) ˛ ˝ P ˝ ˛_ � ˇ ˝Q˝ ˇ_ D ˛ ˝ P h˛_; ˇiQ˝ ˇ_:

Moreover, the action of D.m;k/
X .�/ on L.�/ is given by

.t ˝ P ˝ t_/ � s D .P � ht_; si/t .s; t 2 L.�/; t_ 2 L.�/_/:

Remark 3.9. Given that the locally free OX -modules of rank one L.�/_ and L.�/

are in particular flat, the sheaf D.m;k/
X .�/ is filtered by the order of twisted differential

operators. That is, the subsheaf D.m;k/

X;d
of D.m;k/

X of differential operators of order less
than d induces a subsheaf of twisted differential operators of order less than d by

(3.3) D
.m;k/

X;d
.�/ D L.�/˝OX D

.m;k/

X;d
˝OX L.�/_:

Given that the tensor product preserves inductive limits, we obtain

D
.m;k/
X .�/ D lim

�!
d

D
.m;k/

X;d
.�/:

Moreover, the exact sequence

0! D
.m;k/

X;d�1
! D

.m;k/

X;d
! D

.m;k/

X;d
=D

.m;k/

X;d�1
! 0

and the relation (3.3) give us the isomorphisms

gr.D.m;k/
X .�// ' L.�/˝OX gr.D.m;k/

X /˝OX L.�/_ ' gr.D.m;k/
X /:

The second isomorphism is defined by ˛ ˝ P ˝ ˛_ 7! ˛_.˛/P . This is well defined
because gr.D.m;k/

X / is in particular a commutative ring.

Proposition 3.10. There exists a canonical isomorphism of graded sheaves of
algebras

gr�.D
.m;k/
X .�//

'
�! Sym.m/.$kTX /:
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Proof. By (2.1) and the fact that D.m;k/
X and $kTX are locally free sheaves (and

therefore free $ -torsion) we have the short exact sequence

0! D
.m;k/

X;d�1
! D

.m;k/

X;d
! Sym.m/

d
.$kTX /! 0;

which gives us the isomorphisms

Sym.m/.$kTX / ' gr�.D
.m;k/
X / ' gr�.D

.m;k/
X .�//:

In the next proposition we will use the notation introduced in Sections 2.1 and 2.2.

Proposition 3.11. There exists a covering S of X by affine open subsets such that
over every open subset U 2 S the rings D.m;k/

U .�/ and D
.m;k/
U are isomorphic.

Proof. Let us start by considering an affine open subsetU �X endowed with local
coordinates x1; : : : ; xM . For every v 2 NM and f 2 OX .U / we have the following
relation [3, Proposition 2.2.4 (iv)]:

@hvif D
X

v0Cv00Dv

´
v

v0

µ
@hv
0i.f /@hv

00i
2 D

.m;0/
U D D

.m/
U :

Now, let us take an affine covering S of X such that every U 2 S is endowed with
local coordinates, and assume that there exists a local section ˛ 2 L.�/.U / such that
L.�/jU D ˛OU and L.�/_jU D ˛

_OU , where ˛_ denotes the dual element associated
to ˛. Let us show that

(3.4) D
.m;k/
U .�/ D

M
v

$kjvjOU � .˛ ˝ @
hvi
˝ ˛_/:

To do that, it is enough to show that for every v 2 NM and f; g 2 OU the section
˛ ˝$kjvjf @hvi ˝ g˛_ belongs to the right side of (3.4). In fact, from the first part of
the proof we have

˛ ˝$kjvjf @hvi ˝ g˛_ D ˛ ˝$kjvjf @hvig ˝ ˛_

D

X
v0Cv00Dv

$kjvjf

´
v

v0

µ
@hv
0i.g/˛ ˝ @hv

00i
˝ ˛_

and we get the relation (3.4). Let us consider the map � W D.m;k/
U .�/! D

.m;k/
U defined

by
�.$kjvjf ˛ ˝ @hvi ˝ ˛_/ D $kjvjf @hvi

and let us see that � is a homomorphism of rings (the multiplication on the left is given
by (3.2)). By (3.4), the elements in D

.m;k/
U .�/ are linear combinations of the terms
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$kjvjf ˛˝ @hvi˝ ˛_; therefore, it is enough to show that � preserves the multiplicative
structure over the elements of this form. So, let us take v; u 2 N and f; g 2 OU . On
the one hand

�.$kjvjf ˛ ˝ @hvi ˝ ˛_ �$kjujg˛ ˝ @hui ˝ ˛_/

D �.$kjvjf ˛ ˝ @hvi$kjujg@hui ˝ ˛_/

D

X
v0Cv00Dv

$kjvjf

´
v

v0

µ
@hv
0i.$kjujg/@hv

00i@hui;

and on the other hand

�.$kjvjf ˛ ˝ @hvi ˝ ˛_/ � �.$kjujg˛ ˝ @hui ˝ ˛_/

D $kjvjf @hvi �$kjujg@hui

D

X
v0Cv00Dv

$kjvjf

´
v

v0

µ
@hv
0i.$kjujg/@hv

00i@hui:

Both equations show that � is a ring homomorphism.
Finally, an analogous reasoning shows that the morphism ��1 WD.m;k/

U !D
.m;k/
U .�/

defined by
��1.$kjvjf @hvi/ D $kjvjf ˛ ˝ @hvi ˝ ˛_

is also a homomorphism of rings and � ı ��1 D ��1 ı � D id.

Definition 3.12 (Congruence subgroups and wide open congruence subgroups).
Let us denote by Fq D o=.$/ the residue field of o, and let us consider the generic
fiber of G,

GQ D G �Spec.o/ Spec.L/;

and the special fiber
GFq D G �Spec.o/ Spec.Fq/:

For every k 2 N, there exists a smooth model G.k/ of G such that Lie.G.k//D$kg.
In fact, we take G.0/DG and we construct G.1/ as the dilatation of the trivial subgroup
of GFq in G (see [7, Section 3.2]). This is a flat o-scheme which is an integral model
of GQ (see [35, Proposition 1.1]). In general, we let G.k C 1/ be the dilatation of the
trivial subgroup of G.k/Fq in G.k/, in such a way that for every k 2 N we dispose of
a canonical morphism G.k C 1/! G.k/.

Let us describe the distribution algebraD.m/.G.k// of the congruence group G.k/

(see [20, Section 3.3]). Let us take a triangular decomposition g D n˚ t˚ n and let
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us consider the basis .fi /, .hj / and .el/ of the o-Lie algebra n, t and n, respectively.
Then D.m/.G.k// equals the o-subalgebra of U.g/˝o L generated as an o-module
by the elements

(3.5) qvŠ$
kjvj

f v

vŠ
qv0 Š$

kjv0j

 
h

v0

!
qv00 Š$

kjv00j e
v00

v00Š
:

An element of the preceding form has orderd D jvj C jv0j C jv00j. Therefore, the o-spam
of elements of order at most d defines an o-submodule D.m/

d
.G.k// � D.m/.G.k//.

In this way D.m/.G.k// becomes a filtered o-algebra, such that by (3.5) and the well-
known Poincaré–Birkhoff–Witt theorem we have

D.m/.G.k//˝o L D U.g/˝o L:

The preceding discussion also tells us that

D.m/.G.0//$k D D
.m/.G.k//:

Finally, let us introduce a family of certain rigid-analytic “wide-open” groups G.k/ı,
which will be important in our work. To do this, let us first consider the formal completion
G.k/ of the group scheme G.k/ along its special fiber, which is a formal scheme of
topological finite type over Spf.o/. Now, we consider the completion bG.k/ı of G.k/ı

along its unit section Spf.o/! G.k/, and we denote by G.k/ı its associated rigid-
analytic space [2, (0.2.6)], which is a rigid-analytic group.

We recall for the reader that in Section 2.5 we have introduced the sheaves

A
.m;k/
X D OX ˝o D

.m/.G.k//;

which carries a structure of filtered OX -rings, such that

gr.A.m;k/X / D OX ˝o Sym.m/.$kg/:

Proposition 3.13. There exists a canonical surjective homomorphism of sheaves
of filtered o-algebras

ˆ
.m;k/
X W A

.m;k/
X ! D

.m;k/
X .�/:

Proof. Let us start by showing the existence of such a morphism. By [21, Corollary
4.5.2], there exists a morphism of sheaves of filtered o-algebras

(3.6) A
.m;0/
X ! D

.m;0/
X .�/:

Let us first show that after specializing in $k the Rees ring associated to the twisted
order filtration of D.m;0/

X .�/, we get D.m;k/
X .�/. To do that, we consider D.m;0/

X filtered
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by the order of differential operators and we define the homomorphisms of OX -modules

(3.7) L.�/˝OX R.D
.m;0/
X /˝OX L.�/_ R.D

.m;0/
X .�//;

�

��1

by
�
�
˛ ˝

X
i

Pi t
i
˝ ˛_

�
D

X
i

.˛ ˝ Pi ˝ ˛
_/t i

with ord.Pi / D i for every i in the sum, and the obvious definition for ��1 such that
� ı ��1 D ��1 ı � D id. This shows that (3.7) is an isomorphism of OX -modules and
an easy calculation shows that (3.7) is in fact an isomorphism of rings.

Let us denote by

�1 W R.D
.m;0/
X .�//! D

.m;k/
X .�/ and �2 W R.D

.m;0/
X /! D

.m;k/
X

the morphisms sending t 7! $k , and let us consider the diagrams

L.�/˝OX R.D
.m;0/
X /˝OX L.�/_ R.D

.m;0/
X .�//

D
.m;k/
X .�/:

idL.�/˝�2˝idL.�/_

�

��1

�1

It is straightforward to check that both diagrams are commutative and we can conclude
that

.D
.m;0/
X0

.�//$k D im.�1/ D im.idL.�/ ˝ �2 ˝ idL.�/_/

D L.�/˝OX im.�2/˝OX L.�/_ D D
.m;k/
X .�/:

On the other hand, taking the natural filtration of A.m;0/X , we have

R.A
.m;0/
X / D OX ˝o R.D

.m/.G.0///:

Therefore, .A.m;0/X /$k D A
.m;k/
X . The above two calculations tell us that passing to the

Rees rings in the map (3.6) and specializing in$k , we get the desired homomorphism
of filtered sheaves of o-algebras

(3.8) ˆ
.m;k/
X W A

.m;k/
X ! D

.m;k/
X .�/:

Let us finally show that this morphism is surjective. To do that, let us recall that the
right G-action on X induces a canonical application

(3.9) OX ˝o $
kg! $kTX ;
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which is surjective by [28, Section 1.6]. Given that gr.A.m;k/X /DOX ˝o Sym.m/.$kg/,
we can conclude from Proposition 3.10 that ˆ.m;k/X is surjective.

Proposition 3.11 and the same reasoning as in [23, Proposition 2.2.2 (iii)] imply the
following meaningful result.6

Proposition 3.14. The sheaf D.m;k/
X .�/ is a sheaf of OX -rings with noetherian

sections over all open affine subsets of X .

3.4 – Finiteness properties

Notation 3.15. To soft the notation in the arguments that we will realize throughout
this subsection, from now on we will denote by D

.m;k/

X;�
the sheaf D.m;k/

X .�/ introduced
in Definition 3.8 (see [32, Proposition 3.5.18]).

Throughout this subsection, � 2 X.T / will denote an algebraic character. By abuse
of notation, we will denote again by � the character d� 2 Homo-mod.t; o/ induced
via differentiation. We will show one important property about the p-torsion of the
cohomology groups of coherentD.m;k/

X;�
-modules, when the character �C � is dominant

and regular. We will follow the arguments in [28].
Let Y be a projective scheme. There exists a very ample sheaf O.1/ on Y (see

[17, Chapter II, Remark 5.16.1]). Therefore, for any arbitrary OY -module E we can
consider the twist

E.r/ D E˝OX O.r/;

where r 2 Z means the r-th tensor product of O.1/ with itself. We recall that there
exists r0 2 Z, depending of O.1/, such that for every k 2 Z>0 and for every s � r0,
H k.Y;O.s// D 0 (see [17, Chapter II, Theorem 5.2 (b)]).

Let us start the results of this subsection with the following proposition which states
three important properties of coherent A.m;k/Y -modules (see [21, Proposition A.2.6.1]).
This is a key result for our work. Let E be a coherent A.m;k/Y -module.

Proposition 3.16. (i) H 0.X;A
.m;k/
Y / D D.m/.G.k// is a noetherian o-algebra.

(ii) There exists a surjection .A.m;k/Y .�r//˚a! E! 0 on A.m;k/Y -modules for suitable
r 2 Z and a 2 N.

(iii) For any k � 0 the group H k.X;E/ is a finitely generated D.m/.G.k//-module.

(6) Of course, this is also an immediately consequence of Proposition 3.13 and [19, Proposi-
tion 1.3.6].
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Inspired by Proposition 3.13, we will first focus on coherent A.m;k/Y -modules. The
next two results will play an important role when we consider formal completions.

Lemma 3.17. For every coherent A.m;k/Y -module E, there exists r D r.E/ 2 Z such
that H k.X;E.s// D 0 for every s � r .

Proof. Let us fix r0 2 Z such that H k.Y;O.s// D 0 for every k > 0 and s � r0.
We have

H k.Y;A
.m;k/
Y .s// D H k.Y;O.s//˝o D

.m/.G.k// D 0:

The rest of the proof follows the inductive argument given in [28, Proposition 2.2.1].

Let us suppose now that X D G=B is the smooth flag o-scheme of G. From
Proposition 3.13 and Lemma 3.17 we have the following result.

Lemma 3.18. For every coherent D.m;k/

X;�
-module E, there exist r D r.E/ 2 Z, a

natural number a 2 N and an epimorphism of D.m;k/

X;�
-modules

.D
.m;k/

X;�
.�r//˚a ! E! 0:

Proposition 3.19. Suppose that �C � 2 t�Q is a dominant and regular character
(cf. Definition 3.6).

(i) Let r 2 Z be fixed. For every positive integer k 2 Z>0, the cohomology group
H k.X;D

.m;k/

X;�
.r// has bounded p-torsion.

(ii) For every coherentD.m;k/

X;�
-moduleE, the cohomology groupH k.X;E/ has bounded

p-torsion for all k > 0.

Proof. To show (i) we remark that by construction D
.m;k/

X;�;Q D D� is the usual
sheaf of twisted differential operators on the flag variety XL (see [24, Part I, §5.17]).
As D.m;k/

X;�;Q.r/ is a coherent D�-module, the classical Beilinson–Bernstein theorem
(see [1, p. 2]) allows us to conclude that

H k.X;D
.m;k/

X;�
.r//˝o L D 0

for every positive integer k 2 Z>0. This in particular implies that the sheaf D.m;k/

X;�
.r/

has p-torsion cohomology groups H k.X;D
.m;k/

X;�
.r//, for every k > 0 and r 2 Z. By

Proposition 3.13, we know thatD.m;k/

X;�
.r/ is in particular a coherentA.m;k/X -module and

hence, by the third part of Proposition 3.16 we get that for every k � 0 the cohomology
groups H k.X;D

.m/

X;�
.r// are finitely generated D.m/.G.k//-modules. Consequently,

they are of finite p-torsion for every integer 0 < k � dim.X/ and r 2 Z.
By Lemma 3.18 we can use the same reasoning as in [28, Corollary 2.2.4] to show

(ii).
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3.5 – Passing to formal completions

We recall for the reader that throughout this work

X D lim
�!
j2N

Xj ; Xj D X �Spec.o/ Spec.o=$jC1/

denotes the formal completion of X along its special fiber.

Definition 3.20. We will denote by

bD.m;k/

X;�
D lim
 �
j2N

D
.m;k/

X;�
=$jC1D

.m;k/

X;�

the $-adic completion of D.m;k/

X;�
and we consider it as a sheaf on X. Following the

notation given at the beginning of this work, the sheaf bD.m;k/

X;�;Q will denote our sheaf
of level m twisted differential operators with congruence level k on the formal flag
scheme X.

Proposition 3.21. (i) There exists a basis B of the topology of X, consisting of
open affine subsets, such that for every U 2 B the ring bD.m;k/

X;�
.U/ is two-sided

noetherian.

(ii) The sheaf of rings bD.m;k/

X;�;Q is coherent.

Proof. To show (i) we can take an open affine subsetU 2 S and consider its formal
completion U along the special fiber. We have

H 0.U;bD.m;k/

X;�
/ '7H 0.U;D

.m;k/

X;�
/ '7H 0.U;D

.m;k/
X / ' H 0.U;bD.m;k/

X /:

The first and third isomorphisms are given by [15, (0I , 3.2.6)] and the second one
arises from Proposition 3.11. By [23, Proposition 2.2.2 (v)]H 0.U;bD.m;k/

X / is two-sided
noetherian. Therefore, we can take B as the set of affine open subsets of X contained
in the $ -adic completion of an affine open subset U 2 S. This proves (i).

By [3, Proposition 3.3.4] we can conclude that (ii) is an immediately consequence
of (i) because by [3, (3.4.0.1)]

H 0.U;bD.m;k/

X;�;Q/ D H
0.U;bD.m;k/

X;�
/˝o L:

From now on, we will always assume that�C � 2 t�Q denotes a dominant and regular
character, which is induced by an algebraic character � 2 X.T /. Our next objective is
to prove an analogue of Proposition 3.19 for coherent bD.m;k/

X;�;Q-modules and to conclude
that H 0.X; �/ is an exact functor over the category of coherent bD.m;k/

X;�;Q-modules.
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Proposition 3.22. LetE be a coherentD.m;k/

X;�
-module andbE its$ -adic completion,

which we consider as a sheaf on X.

(i) For all k � 0 one has H k.X;bE/ D lim
 �j

H k.X;E=$jE/.

(ii) For all k > 0 one has H k.X;bE/ D H k.X;E/.

(iii) The global sections satisfy H 0.X;bE/ D lim
 �j

H 0.X;E/=$jH 0.X;E/.

Proof. Let Et denote the torsion subpresheaf of E. AsX is a noetherian space and
D
.m;k/

X;�
has noetherian ring sections over open affine subsets of X (Proposition 3.14),

we can conclude that Et is in fact a coherent D.m;k/

X;�
-module. This is generated by a

coherent OX -module which is annihilated by a power $c of $ , and so is Et . The
quotient G WD E=Et is again a coherent D.m;k/

X;�
-module; therefore, we can assume, after

possibly replacing c by a larger number, that

$cEt D 0 and $cH k.X;E/ D $cH k.X;G/ D 0 for all k > 0.

From here on the proof of the proposition follows the same reasoning given in [19,
Proposition 3.2].

The next proposition is a natural consequence of Lemmas 3.17 and 3.18. The proof
is exactly the same as that of [20, Proposition 4.2.2].7

Proposition 3.23. Let E be a coherent bD.m;k/

X;�
-module.

(i) There exists r2 D r2.E/ 2 Z such that for all r � r2 there are a 2 Z and an
epimorphism of bD.m;k/

X;�
-modules

.bD.m;k/

X;�
.�r//˚a ! E ! 0:

(ii) There exists r3 D r3.E/ 2 Z such that for all r � r3 one hasH k.X;E/ D 0 for all
k > 0.

The same inductive argument exhibited in [19, Proposition 3.4 (i)] shows the fol-
lowing result.

Corollary 3.24. Let E be a coherent bD.m;k/

X;�
-module. There exists c D c.E/ 2 N

such that for all k > 0 the cohomology group H k.X;E/ is annihilated by $c .

(7) We skip the proof here, but the reader can take a look at [31, Proposition 4.1.2] where we
have treated the case k D 0. The proof for k 2 Z>0 is exactly the same.
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Now, we want to extend part (i) of the preceding proposition to the sheaves bD.m;k/

X;�;Q.
To do that, we need to show that the category of coherent bD.m;k/

X;�;Q-modules admits
integral models (Definition 2.6).

Let Coh.bD.m;k/

X;�
/ be the category of coherent bD.m;k/

X;�
-modules. Let Coh.bD.m;k/

X;�
/Q

be the category of coherent bD.m;k/

X;�
-modules up to isogeny, whose class of objects is

the same as that of Coh.bD.m;k/

X;�
/. For any two objects M and N in Coh.bD.m;k/

X;�
/Q, one

has
HomCoh.bD.m;k/

X;�
/Q.M;N/ D HomCoh.bD.m;k/

X;�
/.M;N/˝o L:

Proposition 3.25. The functorM 7!M˝o L induces an equivalence of categories
between Coh.bD.m;k/

X;�
/Q and Coh.bD.m;k/

X;�;Q/.

Proof. By definition, the sheaf bD.m;k/

X;�;Q satisfies [3, Conditions 3.4.1] and therefore
[3, Proposition 3.4.5] allows us to conclude the proposition.

The proof of the next theorem follows exactly the same lines as that of [20, Theo-
rem 4.2.8].

Theorem 3.26. Let E be a coherent bD.m;k/

X;�;Q-module.

(i) There is r.E/2Z such that for every r � r.E/ there exist a 2N and an epimorphism
of bD.m;k/

X;�;Q-modules
.bD.m;k/

X;�;Q.�r//
˚a
! E ! 0:

(ii) For all i > 0 one has H i .X;E/ D 0.

Proof. By the preceding proposition, there exists a coherent bD.m;k/

X;�
-module F

such that F ˝o L ' E . Therefore, applying Proposition 3.23 to F gives (i). Moreover,
as X is a noetherian space, Corollary 3.24 allows us to conclude that

H i .X;E/ D H i .X;F /˝o L D 0

for every k > 0 (see [3, (3.4.0.1)]).

3.6 – The arithmetic Beilinson–Bernstein theorem with congruence level

3.6.1. Calculation of global sections. Inspired by the arguments exhibited in [22], in
this subsection we calculate the global sections of the sheaf bD.m;k/

X;�;Q.
Let us identify the universal enveloping algebra U.tQ/ of the Cartan subalgebra tQ

with the symmetric algebra S.tQ/, and let Z.gQ/ denote the center of the universal
enveloping algebraU.gQ/ of gQ. The classical Harish-Chandra isomorphismZ.gQ/'
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S.tQ/
W (the subalgebra of Weyl invariants) [11, Theorem 7.4.5] allows us to define

for every linear form � 2 t�Q a central character [11, §7.4.6]

��C� W Z.gQ/! L;

which induces the central reduction U.gQ/� D U.gQ/ ˝Z.gQ/;��C� L. If we put
Ker.��C�/o D D.m/.G.k// \ Ker.��C�/, we can consider the central redaction

D.m/.G.k//� D D
.m/.G.k//=D.m/.G.k//Ker.��C�/o

and its $-adic completion bD.m/.G.k//�. It is clear that D.m/.G.k//� is an integral
model of U.gQ/�. We denote by D�.G.k//� the limit of the inductive system

bD.m/.G.k//� ˝o L! bD.mC1/.G.k//� ˝o L:

Theorem 3.27. The morphism ˆ
.m;k/

�
W D.m/.G.k//! H 0.X;D

.m;k/

X;�
/, defined

by taking global sections in Proposition 3.13, induces an isomorphism of L-algebras

bD.m/.G.k//� ˝o L
'
�! H 0.X;bD.m;k/

X;�;Q/:

Proof. The key in the proof is the commutative diagram

D.m/.G.k// H 0.X;D
.m;k/

X;�
/

U.gQ/ H 0.XQ;D�/:

ˆ
.m;k/

�

ˆ�

Here ˆ� is the morphism in [18, (11.2.2)].8 By the classical Beilinson–Bernstein
theorem [1] and the preceding commutative diagram, we have that ˆ.m;k/

�
factors

through the morphism

ˆ
.m;k/

�
W D.m/.G.k//� ! H 0.X;D

.m;k/

X;�
/;

which becomes an isomorphism after tensoring with L. By [22, Lemma 3.3] we have
that ˆ.m/

�
gives rise to an isomorphism

bD.m/.G.k//� ˝o L
'
�!

7H 0.X;D
.m;k/

X;�
/˝o L:

Proposition 3.22 together with the fact that X is in particular a noetherian topological
space end the proof of the theorem.

(8) We recall that L.�/ is a G-equivariant line bundle, which implies the existence of this
morphism [18, Section 11.1].
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3.6.2. The localization functor. In this subsection, we will introduce the localiza-
tion functor. Let E be a finitely generated bD.m/.G.k//� ˝o L-module. We define
Loc.m;k/

X;�
.E/ as the associated sheaf to the presheaf on X defined by

U � X 7! bD.m;k/

X;�;Q.U/˝bD.m/.G.k//�˝oL E:

Then Loc.m;k/
X;�

is a functor from the category of finitely generated bD.m/.G.k//�˝o L-
modules to the category of coherent bD.m;k/

X;�;Q-modules.

3.6.3. The arithmetic Beilinson–Bernstein theorem. We are finally ready to prove one
of the principal results of this work. To start with, we will enunciate the following
proposition whose proof can be founded in [31, Proposition 4.4.1].

Proposition 3.28. Let E be a coherent bD.m;k/

X;�;Q-module. Then E is generated by
its global sections as bD.m/

X;�;Q-module. Furthermore, every coherent bD.m;k/

X;�;Q-module
admits a resolution by finite free bD.m;k/

X;�;Q-modules.

Theorem 3.29. Let us suppose that � 2 X.T / is an algebraic character such that
�C � 2 t�Q is a dominant and regular character of tQ. The functors Loc.m;k/

X;�
and

H 0.X; �/ are quasi-inverse equivalences of categories between the abelian categories
of finitely generated bD.m/.G.k//� ˝o L-modules and coherent bD.m/

X;�;Q-modules.

Proof. The proof of [19, Proposition 5.2.1] carries over word by word.

3.7 – The sheaves D�

X;k
.�/

In this subsection, we will study the problem of passing to the inductive limit when
m varies, this means

D
�

X;k
.�/ D

�
lim
�!
m2N

bD.m;k/

X;�

�
˝o L; D�.G.k//� D

�
lim
�!
m2N

bD.m/.G.k//�
�
˝o L:

As in Section 3.6.2 let us consider the following localization functor Loc�
X;k
.�/

from the category of finitely presented D�.G.k//�-modules to the category of coher-
ent D�

X;k
.�/. Let E be a finitely presented D�.G.k//�-module, then Loc�

X;k
.�/.E/

denotes the associated sheaf to the presheaf on X defined by

U � X 7! D
�

X;k
.�/˝D�.G.k//� E:

As before, it is clear that Loc�
X;k
.�/ is a functor from the category of finitely presented

D�.G.k//�-modules to the category of coherent D�

X;k
.�/-modules.
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Definition 3.30 (Analytic distribution algebra). The wide-open rigid analytic
groups, defined in Definition 3.12, play an important role in the work developed by
Emerton in [13], to treat locally analytic representations of p-adic groups. The analytic
distribution algebra of G.k/ı is defined to be the continuous dual space of the space
of rigid-analytic functions on G.k/ı. That is,

Dan.G.k/ı/ D
�
OG.k/ı.G.k/

ı/
�0
b
D Homcont

L

�
OG.k/ı.G.k/

ı/; L
�
b
;

which is a topological L-algebra of compact type.

In [21, Proposition 5.2.1] Huyghe and Schmidt have shown that

D�.G.k// ' Dan.G.k/ı/:

As X is a noetherian space, Theorem 3.27 and the preceding relation tell us that

H 0.X;D
�

X;k
.�// D Dan.G.k/ı/�(3.10)

D Dan.G.k/ı/=Dan.G.k/ı/.Ker.��C�//:

We will concentrate our efforts to prove the following Beilinson–Bernstein theorem for
the sheaves D�

X;k
.�/.

Theorem 3.31. Let � 2 X.T / be an algebraic character, such that �C � 2 t�Q
is dominant and regular. The functors Loc�

X;k
.�/ and H 0.X; �/ are quasi-inverse

equivalences of categories between the abelian categories of finitely presented (left)
D�.G.k//�-modules and coherent D�

X;k
.�/-modules.

Let us start by recalling the following proposition [3, Proposition 3.6.1].

Proposition 3.32. LetY be a topological space, and ¹Diºi2J be a filtered inductive
system of coherent sheaves of rings on Y , such that for any i � j the morphisms
Di ! Dj are flat. Then the sheaf D� D lim

�!i2J
Di is a coherent sheaf of rings.

Proposition 3.33. The sheaf of rings D�

X;k
.�/ is coherent.

Proof. The previous proposition tells us that we only need to show that the transition
morphisms bD.m;k/

X;�;Q!
bD.mC1;k/

X;�;Q are flat. As this is a local property we can take U 2 S
(see the notation in Proposition 3.11) and verify this property over the formal completion
U. In this case, the argument used in the proof of the first part of Proposition 3.21 gives
us the following commutative diagram:
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bD.m;k/

X;�;Q.U/
bD.mC1;k/

X;�;Q .U/

bD.m;k/
X;Q .U/ bD.mC1;k/

X;Q .U/:

' '

The flatness theorem [23, Proposition 2.2.11 (iii)] states that the lower morphism is flat
and so is the morphism on the top.

Lemma 3.34. For every coherent D�

X;k
.�/-module E there existm � 0, a coherentbD.m;k/

X;�;Q-module Em and an isomorphism of D�

X;k
.�/-modules

� W D
�

X;k
.�/˝bD.m;k/

X;�;Q
Em

'
�! E:

Moreover, if .m0;Em0 ; � 0/ is another such triple, then there exist l � max¹m;m0º and
an isomorphism of bD.l;k/

X;�;Q-modules

�l W bD.l;k/

X;�;Q ˝bD.m;k/X;�;Q
Em

'
�! bD.l;k/

X;�;Q ˝bD.m0;k/
X;�;Q

Em0

such that � 0 ı .idD�
X;k

.�/ ˝ �l/ D � .

Proof. This is [3, Proposition 3.6.2 (ii)]. We remark that X is quasi-compact and
separated, and the sheaf bD.m;k/

X;�;Q satisfies the conditions in [3, §3.4.1].

Proposition 3.35. Let E be a coherent D�

X;k
.�/-module.

(i) There exists an integer r.E/ such that for all r � r.E/ there are a 2 N and an
epimorphism of D�

X;k
.�/-modules

.D
�

X;k
.�/.�r//˚a ! E ! 0:

(ii) For all i > 0 one has H i .X;E/ D 0.

The proof is exactly as the one of [20, Theorem 4.2.8].

Proof. Let E be a coherent D�

X;k
.�/-coherent module. The preceding proposition

tells us that there exist m 2 N, a coherent bD.m;k/

X;�;Q-module Em and an isomorphism of
D
�

X;k
.�/-modules

� W D
�

X;k
.�/˝bD.m;k/

X;�;Q
Em

'
�! E:

Now we use Proposition 3.26 for Em and we get the desired surjection in (i) after
tensoring with D

�

X;k
.�/. To show (ii) we may use the fact that, as X is a noetherian
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topological space, cohomology commutes with direct limits. Therefore, given thatbD.l;k/

X;�;Q ˝bD.m;k/X;�;Q
Em is a coherent D.l;k/

X;�;Q-module for every l � m, we have

H i .X;E/ D lim
�!
l�m

H i
�
X;bD.l;k/

X;�;Q ˝bD.m;k/X;�;Q
Em
�
D 0

for every i > 0.

Proposition 3.36. Let E be a coherent D�

X;k
.�/-module. Then E is generated

by its global sections as D�

X;k
.�/-module. Moreover, E has a resolution by finite free

D
�

X;k
.�/-modules and H 0.X;E/ is a D�.G.k//� ˝o L-module of finite presentation.

The proof is exactly as the one of [19, Theorem 5.1].

Proof. Theorem 3.34 gives us a coherent bD.m;k/

X;�;Q-module Em such that

E ' D
�

X;k
.�/˝bD.m;k/

X;�;Q
Em:

Moreover, Em has a resolution by finite free bD.m;k/

X;�;Q-modules (Proposition 3.28). Both
results clearly imply the first and the second part of the proposition. The final part is
therefore a consequence of the first part and the acyclicity of the functor H 0.X; �/.

Proof of Theorem 3.31. All in all, we can follow the arguments of [28, Corol-
lary 2.3.7]. We start by taking

.D�.G.k//� ˝o L/
˚a
! .D�.G.k//� ˝o L/

˚b
! E ! 0;

a finitely presented D�.G.k//� ˝o L-module. By localizing and applying the global
sections functor, we obtain a commutative diagram

.D�.G.k//� ˝o L/
˚a .D�.G.k//� ˝o L/

˚b E

.D�.G.k//� ˝o L/
˚a .D�.G.k//� ˝o L/

˚b H 0.X;Loc�
X;k
.�/.E//;

which tells us that E ! H 0.X;Loc�
X;k
.�/.E// is an isomorphism. The reader can

follow the same arguments to show that if E is a coherent D�

X;k
.�/-module, then

the canonical morphism D
�

X;k
.�/˝D�.G.k//�˝oL H

0.X;E/! E is an isomorphism.
The second assertion follows because any equivalence between abelian categories is
exact.
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4. Twisted differential operators on formal models of flag varieties

Throughout this section, X D G=B will denote the smooth flag o-scheme and
� 2 X.T / D Hom.T ;Gm/ will always denote an algebraic character. As before, we
will denote by L.�/ the (algebraic) line bundle onX induced by � (Section 3.1). In this
section, we will generalize the construction given by Huyghe–Patel–Strauch–Schmidt in
[20] by introducing sheaves of twisted differential operators on an admissible blow-up
of the smooth formal flag o-scheme X. The reader will figure out that some reasoning
is inspired by the results in [20].

4.1 – Differential operators on admissible blow-ups

We start with the following definition.

Definition 4.1. Let I � OX be a coherent ideal sheaf. We say that a blow-up
pr W Y ! X along the closed subset V.I/ is admissible if there is k 2 N such that
$kOX � I.

Let us fix an open ideal I � OX and an admissible blow-up pr W Y ! X along V.I/.
We point out to the reader that I is not uniquely determined by the space Y . In the
sequel we will use the notation

kY WD min
I

min
®
k 2 N j $k

2 I
¯
;

where the first minimum runs over all open ideal sheaves I such that the blow-up along
V.I/ is isomorphic to Y .

Now, as I is an open ideal sheaf, the blow-up induces a canonical isomorphism
YQ ' XQ between the generic fibers. Moreover, as $ is invertible on XQ, we have

D
.m;k/
X jXQ D DX jXQ D DXQ ;

the usual sheaf of (algebraic) differential operators on XQ. Therefore

pr�1.D.m;k/
X /jYQ D DYQ :

In particular, OYQ has the natural structure of a (left) pr�1.D.m;k/
X /jYQ-module. The

idea is to find those congruence levels k 2 N such that the preceding structure extends
to a module structure on OY over pr�1.D.m;k/

X /. Let us denote

D
.m;k/
Y D pr�.D.m;k/

X / D OY ˝pr�1OX pr�1D.m;k/
X :

The problem to find those congruence levels was studied in [20, 23]. In fact, we have
the following result (see [20, Corollary 2.1.18]).
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Proposition 4.2. Let k � kY . The sheaf D.m;k/
Y is a sheaf of rings on Y . Moreover,

it is locally free over OY .

Explicitly, if @1; @2 are both local sections of pr�1.D.m;k/
X /, and if f1; f2 are local

sections of OY , then

.f1 ˝ @1/ � .f2 ˝ @2/ D f1@1.f2/˝ @2 C f1f2 ˝ @1@2:

We have all the ingredients that allow us to construct the desired sheaves over Y , that
is, to extend the sheaves of rings defined in the preceding section to an admissible
blow-up Y of X . Let k � kY be fixed. Let us first recall that taking arbitrary sections
P;Q 2 D

.m;k/
X , s; t 2 L.�/ and s_; t_ 2 L.�/_ (the last two are not necessarily the

duals of s and t ) over an arbitrary open subset U � X , the multiplicative structure of
the sheaf D.m;k/

X;�
is defined by (cf. (3.2))

s ˝ P ˝ s_ � t ˝Q˝ t_ D s ˝ P hs_; tiQ˝ t_:

Now, if pr W Y ! X denotes the projection, we put

D
.m;k/
Y .�/ D pr�.D.m;k/

X;�
/ D pr�L.�/˝OY pr�D.m;k/

X ˝OY pr�L.�/_:

Proposition 4.2 allows us to endow the sheaf of OY -modules D.m;k/
Y .�/ with a multi-

plicative structure for every k � kY . On local sections we have

s ˝ P ˝ s_ � t ˝Q˝ t_ D s ˝ P hs_; tiQ˝ t_;

where s; t 2 pr�L.�/, s_; t_ 2 pr�L.�/_ and P;Q 2 D
.m;k/
Y are local sections.

Let Y be the completion of Y along its special fiber YFq D Y �Spec.o/ Spec.o=$/.

Notation 4.3. In this work we will only consider formal blow-ups Y arising from
the formal completion along the special fiber of an admissible blow-up Y ! X (see
[20, Proposition 2.2.9]). Under this assumption we will identify kY D kY.

Definition 4.4. Let pr W Y ! X be an admissible blow-up of the flag variety X
and let k � kY . The sheaves

bD.m;k/
Y;Q .�/ D

�
lim
 �
i2N

D
.m;k/
Y .�/=$ iC1D

.m;k/
Y .�/

�
˝o L;

D
�

Y;k
.�/ D lim

�!
m2N

bD.m;k/
Y;Q .�/:

are called sheaves of �-twisted arithmetic differential operators on Y.
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Proposition 4.5. (i) The sheaves D.m;k/
Y .�/ are filtered by the order of twisted

differential operators and there is a canonical isomorphism of graded sheaves of
algebras

gr.D.m;k/
Y .�// ' Sym.m/.$kpr�TX /;

where k � kY .

(ii) There is a basis for the topology of Y , consisting of affine open subsets, such that
for any open subset U 2 Y in this basis, the ring D

.m;k/
Y .�/.U / is noetherian. In

particular, the sheaf of rings D.m;k/
Y .�/ is coherent.

(iii) The sheaf bD.m;k/
Y;Q .�/ is coherent.

Proof. By (2.1), we have an exact sequence of OX -modules

0! D
.m;k/

X;d�1
! D

.m;k/

X;d
! Sym.m/

d
.$kTX /! 0:

Taking the tensor product withL.�/ andL.�/_ on the left and on the right, respectively,
and applying pr�, we obtain the exact sequence (since Sym.m/

d
.$kTX / is a locally free

OX -module of finite rank)

0! D
.m;k/

Y;d�1
.�/! D

.m;k/

Y;d
.�/

! pr�L.�/˝OY Sym.m/

d
.$kpr�TX /˝OY pr�L.�/_ ! 0;

which implies (i) because

pr�L.�/˝OY Sym.m/.$kpr�TX /˝OY pr�L.�/_ ' Sym.m/.$kpr�TX /

by commutativity of the symmetric algebra.
Let U � X be an affine open subset endowed with local coordinates x1; : : : ; xM

and such that L.�/jU D sOU for some s 2 L.�/.U /. Then, by Lemma 3.11 we have
the following local description for D.m;k/

Y .�/ on V D pr�1.U /:

D
.m;k/
Y .�/.V / D

° <1X
v

$kjvjav@
hvi
j v D .v1; : : : ; vM / 2 NM ; av 2 OY .V /

±
:

By (i), the graded algebra gr�.D
.m;k/
Y .�/.V // is isomorphic to Sym.m/.$kpr�TX .V //

which is known to be noetherian [19, Proposition 1.3.6]. Therefore, taking as a basis
the set of affine open subsets of Y that are contained in some pr�1.U /, we get (ii).

As D.m;k/
Y .�/ is OY -quasi-coherent and has, by (ii) and [23, Proposition 2.2.2 (iii)],

noetherian sections over the affine open subsets of Y , it is certainly a sheaf of coherent
rings by [3, Proposition 3.1.3]. Finally, by definition, we see that bD.m;k/

Y .�/ satisfies the
conditions (a) and (b) of [3, (3.3.3)] and hence [3, Proposition 3.3.4] gives us (iii).
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Let us briefly study the problem of passing to the inductive limit when m varies.
Let U � X be such that D.m;k/

X .�/jU ' D
.m;k/
X jU and let us take an affine open

subset V � Y such that V � pr�1.U /. We have the commutative diagram

V Y

U X;

iV

pr pr

iU

which implies that D.m;k/
Y .�/jV ' D

.m;k/
Y jV , as sheaves of rings. In particular, if V

denotes the formal p-adic completion of V along the special fiber VFq , we have the
commutative diagram (cf. Proposition 3.33)

(4.1)

bD.m;k/
Y;Q .�/.V/ bD.mC1;k/

Y;Q .�/.V/

bD.m;k/
Y;Q .V/ bD.mC1;k/

Y;Q .V/:

' '

Given that the morphism of sheaves bD.m;k/
Y;Q ! bD.mC1;k/

Y;Q is left and right flat [23,
Proposition 2.2.11 (iii)], the preceding diagram allows us to conclude that the morphismbD.m;k/

Y;Q .�/! bD.mC1;k/
Y;Q .�/ is also left and right flat. By Proposition 3.32 we have the

following result.

Proposition 4.6. The sheaf of rings D�

Y;k
.�/ is coherent.

As we will explain later, there exists a canonical epimorphism of sheaves of filtered
o-algebras9

A
.m;k/
Y D OY ˝o D

.m/.G.k//! D
.m;k/
Y .�/;

which allows us to conclude the following proposition exactly as we have done in the
proof of Proposition 3.28 (cf. [20, Proposition 4.3.1]).

Proposition 4.7. Let � 2 Hom.T ;Gm/ be an algebraic character such that �C
� 2 t�Q is a dominant and regular character of tQ.

(i) Let E be a coherent bD.m;k/
Y;Q .�/-module. Then E is generated by its global sections

as bD.m;k/
Y;Q .�/-module. Furthermore, E has a resolution by finite free bD.m;k/

Y;Q .�/-
modules.

(ii) Let E be a coherent D�

Y;k
.�/-module. Then E is generated by its global sections as

D
�

Y;k
.�/-module. Furthermore, E has a resolution by finite free D�

Y;k
.�/-modules.

(9) We construct this morphism in (7.3). The arguments given there are independent and we
will not introduce a circular argument.
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4.2 – An invariance theorem for admissible blow-ups

Let pr W Y! X be an admissible blow-up along a closed subset V.	/ defined by
an open ideal sheaf 	 � OX. Using Notation 4.3, we can suppose that Y is obtained as
the formal completion of an admissible blow-up10 Y ! X along a closed subset V.I/
defined by an open ideal sheaf I � OX , such that 	 is the formal$ -adic completion of
I. Let us denote by Yi WD Y �Spec.o/ Spec.o=$ iC1/ the redaction module $ iC1 and
by i W Yi ! Y the canonical closed embedding. In [23] the authors have studied the
cohomological properties of the sheaves

bD.m;k/
Y;Q D lim

 �
i2N

�i D
.m;k/
Y ˝o L and D

�

Y;k
D lim
�!
m2N

bD.m;k/
Y;Q :

Let us consider the commutative diagram

Yi Xi

Y X:

pri

i i

pr

Here pri W Yi ! Xi denotes the redaction modulo $ iC1 of the morphism pr. We put

L.�/_ D lim
 �
i

�i pr�L.�/_ and L.�/ D lim
 �
i

�i pr�L.�/:

By using the preceding commutative diagram, we have

�i D
.m;k/
Y .�/ D �i

�
pr�L.�/˝OY D

.m;k/
Y ˝OY pr�L.�/_

�
D �i .pr�L.�//˝OYi

�i D
.m;k/
Y ˝OYi

�i .pr�L.�/_/:

Taking the projective limit and tensoring with L, we get the following description of
the sheaves bD.m;k/

Y;Q .�/:

bD.m;k/
Y;Q .�/ D L.�/

Q
˝OY;Q

bD.m;k/
Y;Q ˝OY;Q L.�/_

Q
:

Taking the inductive limit, we get the characterization

D
�

Y;k
.�/ D L.�/

Q
˝OY;Q D

�

Y;k
˝OY;Q L.�/_

Q
:

(10) By abuse of notation we will denote again by pr W Y ! X the canonical morphism of
this algebraic blow-up.
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As in the preceding subsection, the sheaf L.�/
Q

is endowed with the following (left)
D
�

Y;k
.�/-action:

.t ˝ P ˝ t_/ � s D .P � ht_; si/t .s; t 2 L.�/
Q

and t_ 2 L.�/_
Q
/:

We end this first discussion by remarking that the relation pr�i ı 
�
i D 

�
i ı pr�, coming

from the preceding commutative diagram, implies that

D
�

Y;k
.�/ D pr�D�

X;k
.�/:

Let us suppose that � W Y 0 ! Y is a morphism of admissible blow-ups. By abuse
of notation, we will denote by � W Y0 ! Y also the respective morphism obtained
by functoriality by completing along the special fiber. This is a morphism of formal
admissible blow-ups in the sense of [6, Part II, Section 8.2, Definition 3]. We have
commutative diagrams

Y 0 Y

X:

pr0

�

pr resp.
Y0 Y

X:

pr0

�

pr

Let k � max¹kY 0 ; kY º. Let us write

D
.m;k/
X;i .�/ D D

.m;k/
X .�/=$ iC1D

.m;k/
X .�/;

considered as a sheaf over Xi . Let �i W Y 0i ! Yi denote the redactions module $ iC1.
The preceding commutative diagram implies that

(4.2) D
.m;k/
Y 0;i .�/ D .pr0i /

�D
.m;k/
Xi

.�/ D ��i D
.m;k/
Yi

.�/:

In this way, the sheaf D
.m;k/
Y 0;i .�/ can be endowed with the structure of a right

��1i D
.m;k/
Yi

.�/-module. Passing to the projective limit, the sheaf bD.m;k/
Y0

.�/ is a sheaf
of right ��1bD.m;k/

Y .�/-modules. So, passing to the inductive limit over m, we can
conclude that D�

Y0;k
.�/ is a right ��1D�

Y;k
.�/-module. For a D�

Y;k
.�/-module E , we

define
� ŠE D D

�

Y0;k
.�/˝��1D�

Y;k
.�/ �

�1E;

with analogous definitions for bD.m;k/
Y;Q .�/.

Theorem 4.8. Let � W Y 0! Y be a morphism over X of admissible blow-ups. Let
k � max¹kY 0 ; kY º.

(i) If E is a coherent D�

Y0;k
.�/-module, then Rj��E D 0 for every j > 0. Moreover,

��D
�

Y0;k
.�/ D D

�

Y;k
.�/;
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so �� induces an exact functor between coherent modules over D
�

Y0;k
.�/ and

D
�

Y;k
.�/, respectively.

(ii) The formation� Š is an exact functor from the category of coherentD�

Y;k
.�/-modules

to the category of coherent D�

Y0;k
.�/-modules.

(iii) The functors �� and � Š are quasi-inverse equivalences between the categories of
coherent D�

Y0;k
.�/-modules and coherent D�

Y;k
.�/-modules.

We remark for the reader that this theorem has an equivalent version for the sheavesbD.m;k/
Y;Q .�/ and bD.m;k/

Y0;Q .�/.

Proof. Let us first assume that E D D
�

Y0;k
.�/. Let us consider the covering B

of X, defined in Proposition 3.21 and let us take U 2 B. We put V0 D pr0�1.U/ and
V D pr�1.U/. By assumption V0 D ��1.V/ in such a way that

Rj��.D
�

Y0;k
.�//jV D R

j��.D
�

Y0;k
.�/jV0/ D R

j��.D
�

Y0;k
jV0/ D R

j��.D
�

Y0;k
/jV:

Now we can use [23, Theorem 2.3.8 (i)] to conclude that Rj��D�

Y0;k
.�/ D 0 for every

j > 0. Furthermore, by (4.2) there exists a canonical map

D
�

Y;k
.�/! ��D

�

Y0;k
.�/;

which is an isomorphism by the preceding reasoning and [23, Theorem 2.3.8 (i)].
To handle with the second part let us define the assertion aj for every j � 1 as

follows:

Rl��E D 0 for any coherent D�

Y0;k
.�/-module E and for all l � j .

The assertion aj is true for j D dim.Y/C 1. Let us suppose that ajC1 is true and let
us take a coherent D�

Y0;k
.�/-module E . By Proposition 4.7 there exist b 2 N and a

short exact sequence of coherent D�

Y0;k
.�/-modules

0! F ! .D
�

Y0;k
.�//˚b ! E ! 0:

Since Rj��D�

Y0;k
.�/ D 0 for every j > 0, the long exact sequence for �� gives us

Rj��E ' R
jC1��F ;

which is 0 by induction hypothesis. This ends the proof of (i).
Let us show (ii) for the sheaves D

�

Y;k
.�/. The proof for the sheaves bD.m;k/

Y;Q .�/

follows the same argument. Given that

� ŠD
�

Y;k
.�/ D D

�

Y0;k
.�/;

and since the tensor product is right exact, we can conclude that � Š preserves coherence.
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Now, let M be a coherent D�

Y;k
.�/-module. We have a morphism ��1M! � ŠM

sending m 7! 1˝m. This map induces the morphism M! ���
ŠM. To show that

this is an isomorphism is a local question on Y. If V � Y is the formal completion of
an affine open subset V � pr�1.U /, and U � X is an affine open subset such that
D
.m;k/
X .�/jU ' D

.m;k/
X jU (Lemma 3.11), then by (4.1) and [23, Corollary 2.2.15] we

can conclude that the previous map is in fact an isomorphism over V. Finally, if F is a
coherent D�

Y0;k
.�/-module, then we have the map � Š��F ! F , sending P ˝m 7!

Pm. To see that this is an isomorphism, we can use the preceding reasoning.

Let us recall that if � 2 Hom.T ;Gm/ is an algebraic character such that �C � 2 t�Q
is a dominant and regular character of tQ, then by (3.10) we have

H 0.X;D
�

X;k
.�// D Dan.G.k/ı/� D Dan.G.k/ı/=Dan.G.k/ı/.Ker��C�/:

Theorem 4.8 has the following corollary.

Corollary 4.9. Let� 2Hom.T ;Gm/ be an algebraic character such that�C � 2
t�Q is a dominant and regular character of tQ. In the situation of Theorem 4.8 one has

H 0.Y;D
�

Y;k
.�// D H 0.X;D

�

X;k
.�// D D�.G.k//� D H

0.Y0;D
�

Y0;k
.�//:

Theorem 4.10. Let pr W Y ! X be an admissible blow-up. Let us suppose that
� 2 Hom.T ;Gm/ is an algebraic character such that �C � 2 t�Q is a dominant and
regular character of tQ.

(i) For any coherent D�

Y;k
.�/-module E and for all q > 0 one has H q.Y;E/ D 0.

(ii) The functor H 0.Y; �/ is an equivalence between the category of coherent D�

Y;k
.�/-

modules and the category of finitely presented D�.G.k//�-modules.

The same statement holds for coherent modules over bD.m;k/
Y;Q .�/.

Proof. The first part of the theorem follows fromH 0.Y; �/DH 0.X; �/ ı ��. Now
we only have to apply Theorems 4.8 and 3.31.

Let us consider the category Modfp.D
�.G.k//�/ of finitely presentedD�.G.k//�-

modules, and the category Modcoh.D
�

X;k
.�// of coherent D�

X;k
.�/-modules (with

analogous notation on Y). We denote by Loc�
Y;k
.�/ the exact functor defined by the

composition

Modfp.D
�.G.k//�/

Loc�
X;k

.�/

�������! Modcoh.D
�

X;k
.�//

�Š

�! Modcoh.D
�

Y;k
.�//:

Fixing a finitely presented D�.G.k//�-module E, we see that

� Š.Loc�
X;k
.�/.E// D D

�

Y;k
.�/˝��1D�

X;k
.�/ �

�1D
�

X;k
.�/˝D�.G.k//� E

D D
�

Y;k
.�/˝D�.G.k//� E:
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Now, to show that
H 0

�
Y; � Š.Loc�

X;k
.�/.E//

�
D E;

we can take a resolution

.D�.G.k//�/
˚b
! .D�.G.k//�/

˚a
! E ! 0;

to get the diagram

.D�.G.k//�/
˚b .D�.G.k//�/

˚a E

.D�.G.k//�/
˚b .D�.G.k//�/

˚a H 0.Y;D
�

Y;k
.�/˝D�.G.k//� E/;

where the sequence on the top is clearly exact. By definition Loc�
Y;k
.�/.�/ is an exact

functor and by (i) the global section functorH 0.Y; �/ is also exact. This shows that the
sequence at the bottom is also exact and we end the proof of the theorem.

In the sequel we will denote byG0 the compact locallyL-analytic groupG0 WDG.o/.

4.3 – Group action on blow-ups

Let G be the $-completion of G, along its special fiber GFp D G �Spec.o/

Spec.o=$/. Let us denote by ˛ W X �Spf.o/ G ! X the induced right G-action on
the formal flag o-scheme X (cf. Section 3.3). For every g 2 G.o/ D G0 we have an
automorphism �g of X given by

�g W X D X �Spf.o/ Spf.o/
idX�g
����! X �Spf.o/ G

˛
�! X:

As G acts on the right, we have the relation

(4.3) .�g/�.�
\

h
/ ı �\g D �

\

hg
.g; h 2 G0/:

Here �\g W OX ! .�g/�OX denotes the comorphism of �g .
Let H � G0 be an open subgroup. We say that an open ideal sheaf 	 � OX is

H -stable if for all g 2 H the comorphism �
\
g maps 	 � OX into .�g/�	 � .�g/�OX.

In this case �\g induces a morphism of sheaves of graded ringsM
d2N

	d ! .�g/�

�M
d2N

	d
�

on X. This morphism induces an automorphism of the blow-up Y D Proj.
L
d2N 	d /,

let us say �g by abuse of notation, and the action ofH on X lifts to a right action ofH
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on Y, in the sense that for every g; h 2 H the relation (4.3) is verified. We have the
commutative diagram

(4.4)
Y Y

X X:

�g

pr pr

�g

Definition 4.11. LetH � G0 be an open subgroup and pr W Y! X an admissible
blow-up defined by an open ideal subsheaf 	 � OX. We say that Y is H -equivariant if
	 is H -stable.

We will need the following result in the next sections. The reader can find its proof
in [20, Lemma 5.2.3].

Lemma 4.12. Let pr W Y! X be an admissible blow-up, and let us assume that
k � kY D kY. Then Y is Gk D G.k/.o/-equivariant and the induced action of every
g 2 GkC1 on the special fiber of Y is the identity. Therefore, GkC1 acts trivially on
the underlying topological space of Y.

As noted, for every g 2 G.o/ D G.o/ D G0 there exists an isomorphism

�g W X
idX�g
����! X �Spec.o/ G

˛
�! X;

which induces an OX-linear isomorphismˆg WL.�/! .�g/�.L.�// (Proposition 3.4)
verifying the cocycle condition

(4.5) ˆhg D .�g/�.ˆh/ ıˆg .g; h 2 G.o//:

In particular, we have an induced G0-action on the sheaf D�

X;k
.�/:

(4.6) Tg W D
�

X;k
.�/! .�g/�D

�

X;k
.�/; P 7! ˆg ı P ı .ˆg/

�1:

Locally, if U � X and P 2 D
�

X;k
.�/.U/, then the cocycle condition (4.5) tells that the

diagram

(4.7)

L.�/.U:.hg/�1/ D L.�/.U:g�1h�1/ L.�/.U:g�1h�1/

L.�/.U:g�1/ L.U:g�1/

L.�/.U/ L.�/.U/

Tgh;U.P /

ˆ�1
h;U:g�1

D.�g/�ˆ
�1
h;U

ˆ�1g;U

ˆ
h;U:g�1

D.�g/�ˆh;U

P

ˆg;U
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is commutative and we get the relation

Thg D .�g/�Th ı Tg .g; h 2 G0/:

Let us suppose thatH �G0 is an open subgroup and that pr W Y!X is anH -equivariant
admissible blow-up. Using the commutative diagram (4.4), we get

pr�.�g/�L.�/ D .�g/�pr�L.�/ D .�g/�L.�/

(notation given at the beginning of the preceding subsection). Pulling back the isomor-
phism .�g/

�L.�/! L.�/, via .pr/�, we get by adjointness the map

Lg W L.�/
'
�! .�g/�L.�/;

which satisfies, by functoriality, the cocycle condition

(4.8) Lhg D .�g/�Lh ı Lg .g; h 2 H/:

As in (4.6) we can define (from now on we will work on admissible blow-ups of Y so
we will use the same notation)

(4.9) Tg W D
�

Y;k
.�/! .�g/�D

�

Y;k
.�/; P ! Lg ı P ı L

�1
g :

Exactly as we have done in (4.7) we can conclude that

Thg D .�g/�Th ı Tg ;

for every g; h 2 H .

5. Localization of locally analytic representations

We recall for the reader that G0 denotes the compact locally L-analytic group
G0 D G.o/. In this section, we will show how to localize admissible locally analytic
representations of G0. We will denote by Can.G0; L/ the space of L-valued locally
L-analytic functions on G0 and by D.G0; L/ its strong dual (the space of locally
analytic distributions in the sense of [34, Section 11]). This space contains a set of delta
distributions ¹ıgºg2G0 defined by ıg.f / D f .g/, if f 2 Can.G0; L/, in such a way
that the map g 7! ıg is an injective group homomorphism from G0 into D.G0; L/�.
We also recall that given thatG0 is compact, this space carries the structure of a nuclear
Fréchet–Stein algebra [34, Theorem 24.1]. For our work it will be enough to define
a weak Fréchet–Stein structure (in the sense of [14, Definition 1.2.8]) on the algebra
D.G0; L/.
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We finally recall that in Definition 3.30 we have introduced Emerton’s distribution
algebra as the continuous dual space of the space of rigid-analytic functions on G.k/ı:

Dan.G.k/ı/ D Homcont
L

�
OG.k/ı.G.k/

ı/; L
�
:

5.1 – Coadmissible modules

Let us start by recalling that G0 acts on the space Ccts.G0; L/, of continuous L-
valued functions, by the formula

.g � f /.x/ WD f .g�1x/ .g; x 2 G0; f 2 Ccts.G0; L//:

Moreover, given an admissible locally analytic representation V ofG0 (see [34, first def-
inition of Lecture VI]) then, by definition, its strong dualM WD .V /0

b
is a coadmissible

module11 over D.G0; L/.
Given a continuous representation W of G0, we can consider the subspace WG.k/ı

� W of G.k/ı-analytic vectors [14, Definition 3.4.1]. In particular, the G0-action on
Ccts.G0; L/, defined at the beginning of this subsection, allows us to consider the
subspace Ccts.G0; L/G.k/ı-an and we have a canonical isomorphism of topological
L-vector spaces

(5.1) lim
�!
k

Ccts.G0; L/G.k/ı-an
'
�! Can.G0; L/:

As in [14, Proposition 5.3.1], for each k 2 Z>0 we denote the strong dual of the space
of G.k/ı-analytic vectors of Ccts.G0; L/ by

D.G.k/ı; G0/ D .C
cts.G0; L/G.k/ı-an/

0
b:

The ring structure onDan.G.k/ı/ extends naturally to a ring structure onD.G.k/ı;G0/,
such that

(5.2) D.G.k/ı; G0/ D
M

g2G0=Gk

Dan.G.k/ı/ıg :

Dualizing the isomorphism (5.1) yields an isomorphism of topological L-algebras

(5.3) D.G0; L/
'
�! lim
 �

k2Z>0

D.G.k/ı; G0/:

(11) We recall for the reader that the category of coadmissible D.G0; L/-modules is a full
abelian subcategory of the category ofD.G0; L/-modules and the “strong dual” functor induces
an anti-equivalence of categories to the category of admissible locally analytic representations
[34, Theorem 20.1].
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This is the weak Fréchet–Stein structure on the locally analytic distribution algebra
D.G0; L/ (see [14, Proposition 5.3.1]).

Let V be an admissible locally analytic representation and M WD V 0
b
. By [14,

Lemma 6.1.6] the subspace VG.k/ı-an � V is a nuclear Fréchet space; therefore, its
strong dual Mk WD .VG.k/ı-an/

0
b

is a space of compact type and a finitely generated
topologicalD.G.k/ı;G0/-module (see [14, Lemma 6.1.13]). By [14, Theorem 6.1.20]
the module M is a coadmissible D.G0; L/-module relative to the weak Fréchet–Stein
structure of D.G0; L/ defined in the previous paragraph.

We have the following result from [20, Lemma 5.1.7].

Lemma 5.1. (i) The D.G.k/ı; G0/-module Mk is finitely generated.

(ii) There are natural isomorphisms

D.G.k � 1/ı; G0/˝D.G.k/ı;G0/Mk

'
�!Mk�1:

(iii) The natural map D.G.k � 1/ı; G0/˝D.G0;L/M !Mk is bĳective.

Now, let � 2 Hom.T ;Gm/ be an algebraic character such that �C � 2 t�Q is a
dominant and regular character of tQ. Let us recall that we have identifications

Dan.G.k/ı/� D D
�.G.k//� D lim

�!
m2N

.bD.m/.G.k//�/˝o L:

The preceding relation and the fact that the ring structure of Dan.G.k/ı/ extends
naturally to a ring structure on D.G.k/ı; G0/ allow us to consider the ring

D.G.k/ı; G0/� D D.G.k/
ı; G0/=Ker.��C�/D.G.k/ı; G0/:

From now on, we will denote byCG0 the full subcategory of Mod.D.G0;L// consisting
of coadmissible modules, with respect to the preceding weak Fréchet–Stein structure
on D.G0; L/.

Definition 5.2. We define the category CG0;� of coadmissibleD.G0;L/-modules
with central character � 2 Hom.T ;Gm/ by

CG0;� WD Mod
�
D.G0; L/=Ker.��/D.G0; L/

�
\ CG0 :

We point out that the preceding definition is completely legal because the center
Z.gQ/ of the universal enveloping algebra U.gQ/ lies in the center of D.G0; L/ (see
[32, Proposition 3.7]). We also recall that the group Gk WD G.k/.o/ is contained in
Dan.G.k/ı/ as a set of Dirac distributions. For each g 2 Gk we will write ıg for the
image of the Dirac distribution supported at g in

H 0.Y;D
�

Y;k
.�// D Dan.G.k/ı/�:

Inspired by [20, Definition 5.2.7] we have the following definition.
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Definition 5.3. LetH � G0 be an open subgroup and Y anH -equivariant admis-
sible blow-up of X. Let us suppose that k � kY (notation as in Notation 4.3). A
strongly H -equivariant D�

Y;k
.�/-module is a D�

Y;k
.�/-module M together with a fam-

ily .'g/g2H of isomorphisms

'g WM! .�g/�M

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g; h 2 H one has .�g/�.'h/ ı 'g D 'hg .

(ii) For all open subsets U � Y, all P 2 D
�

Y;k
.�/.U/, and all m 2 M.U/ one has

'g.P �m/ D Tg.P / � 'g.m/.

(iii) For all g 2H \GkC1 the map 'g WM! .�g/�M DM is equal to multiplication
by ıg 2 H 0.Y;D

�

Y;k
.�//.12

A morphism between two stronglyH -equivariant D�

Y;k
.�/-modules .M;.'M

g /g2H/

and .N ; .'N
g /g2H / is a D�

Y;k
.�/ linear morphism WM!N such that for all g 2H

'N
g ı  D .�g/�. / ı '

M
g :

We denote the category of strongly H -equivariant coherent D�

Y;k
.�/-modules by

Coh.D�

Y;k
.�/;G0/.

Remark 5.4. Let M 2 Coh.D�

Y;k
.�/;G0/. In what follows we will use the notation

gmD 'g;U.m/ 2M.U:g�1/, for U � Y an open subset, g 2 G0 andm 2M.U/. This
notation is inspired by property (ii) of the previous definition. In fact, if g; h 2 G0,
then by (ii) we have h.gm/ D .hg/m.

Theorem 5.5. Let�2Hom.T ;Gm/ be an algebraic character such that�C � 2 t�Q
is a dominant and regular character of tQ. Let pr W Y ! X be a G0-equivariant
admissible blow-up, and let k � kY. The functors Loc�

Y;k
.�/ and H 0.Y; �/ induce

quasi-inverse equivalences between the category of finitely presented D.G.k/ı; G0/�-
modules and Coh.D�

Y;k
.�/;G0/.

Before starting the proof, we recall that the functor Loc�
Y;k
.�/ has been defined in

the proof of Theorem 4.10. An explicit expression is given in (5.4) below.

(12) This condition makes sense because the elementsg 2GkC1 act trivially on the underlying
topological space of Y, cf. Lemma 4.12.
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Proof. If M 2 Coh.D�

Y;k
.�/; G0/, then in particular M is a coherent D�

Y;k
.�/-

module. Since by Corollary 4.9 and Theorem 4.10 we have that H 0.Y;M/ is a finitely
presented Dan.G.k/ı/�-module, we can conclude by (5.2) that H 0.Y;M/ is a finitely
presented D.G.k/ı; G0/�-module.

On the other hand, let us suppose that M is a finitely presented D.G.k/ı; G0/�-
module. By (5.2) we can consider

(5.4) M D Loc�
Y;k
.�/.M/ D D

�

Y;k
.�/˝Dan.G.k/ı/� M:

For every g 2 G0 we want to define an isomorphism of sheaves of L-vector spaces

'g WM! .�g/�M

satisfying the conditions (i), (ii) and (iii) of Definition 5.3. As we have remarked, the
Dirac distributions induce an injective morphism from G0 to the group of units of
D.G0; L/. Since by (5.3) M is in particular a G0-module, we have an isomorphism

M! ..�g/�D
�

Y;k
.�//˝Dan.G.k/ı/� M:

On local sections it is defined by 'g;U.P ˝ m/ D Tg;U.P /˝ gm. Here Tg is the
isomorphism defined in (4.9).

One has an isomorphism

.�g/�.M/
'
�! ..�g/�D

�

Y;k
.�//˝Dan.G.k/ı/� M:

Indeed, .�g/� is exact and so choosing a finite presentation of M as Dan.G.k/ı/�-
module reduces to the case M D Dan.G.k/ı/� which is trivially true. This implies
that the preceding isomorphism extends to an isomorphism

'g WM! .�g/�M:

Let g; h 2 G0, U � Y an open subset, P;Q 2 D
�

Y;k
.�/.U/ and m 2M . Then

'h;U:g�1.'g;U/.P ˝m/ D Th;U:g�1.Tg;U.P //˝ hgm

D Thg;U.P /˝ .hg/m

D 'hg;U.P ˝m/;

and the family of isomorphisms .'g/g2G0 verifies condition (i). Now, by definition
Tg;U.PQ/ D Tg;U.P /Tg;U.Q/ and thus

'g;U.PQ˝m/ D Tg;U.P /'g;U.Q˝m/;
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which gives (ii). Finally, given that the delta distributions ıg forg in the normal subgroup
GkC1 ofG0 are contained inDan.G.k/ı/, we haveg:P DTg.P /D ıgPıg�1 , therefore

'g;U.P ˝m/ D g:P ˝ g:m D ıgPıg�1ıg ˝m D ıgP ˝m;

and condition (iii) follows.

Remark 5.6. If � 2 Hom.T ;Gm/ denotes the trivial character, then D
�

X;k
.�/ D

D
�

X;k
is the sheaf of arithmetic differential operators introduced in [20]. Moreover,

by construction, if pr W Y! X denotes an H -equivariant admissible blow-up, then
D
�

Y;k
.�/ D D

�

Y;k
and for every g 2 H the isomorphism Tg equals the isomorphism

Ad.g/ defined in [20, (5.2.6)].

Now, let us take a morphism � W Y0 ! Y of G0-equivariant admissible blow-ups of
X (whose lifted actions we denote by �Y0 and �Y), and let us suppose that k � kY and
k0 � max¹k0Y; kº. By Theorem 4.8 we have an injective morphism of sheaves

(5.5) ‰ W ��D
�

Y0;k0
.�/ D D

�

Y;k0
.�/ ,! D

�

Y;k
.�/:

Moreover, this inclusion is G0-equivariant in the sense that if g 2 G0, then we have

T Y
g ı‰ D .�

Y
g /�.‰/ ı ��.T

Y0

g /:

Now, let us consider MY0 2Coh.D�

Y0;k0
.�/;G0/ and MY 2Coh.D�

Y;k
.�/;G0/ together

with a morphism  W ��MY0 !MY linear relative to ‰ and which is G0-equivariant,
i.e. satisfying

'MY
g ı  D .�Yg /� ı ��.'

MY0

g /

for all g 2 G0. Using ‰, we obtain a morphism of D�

Y;k
.�/-modules

D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0 !MY:

Let us denote by K the submodule of D�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0 locally generated
by all the elements of the form Pıh ˝ m � P ˝ .h � m/, where h 2 GkC1, m is a
local section of ��MY0 and P is a local section of D�

Y;k
.�/. As in [20, p. 35] we will

consider the quotient

(5.6) D
�

Y;k
.�/˝��D�Y0;k0 .�/;GkC1

��MY0 WD D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0=K:

Let us see that this module lies in Coh.D�

Y;k
.�/;G0/. To do that let us first show that

.�g/�D
�

Y;k
.�/˝.�g/���D�Y0;k0 .�/

.�g/���MY0

' .�g/�
�
D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0
�
:
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As MY0 is a coherent D�

Y0;k0
.�/-module, by Proposition 3.36 and Theorem 4.8 we can

find a finite presentation of MY0 ,

.D
�

Y0;k0
.�//˚a ! .D

�

Y0;k0
.�//˚b !MY0 ! 0;

which induces, by exactness of .�g/� and �� (Theorem 4.8.), the exact sequence

..�g/�D
�

Y;k0
.�//˚a ! ..�g/�D

�

Y;k0
.�//˚b ! .�g/���MY0 ! 0:

Tensoring the previous exact sequence with .�g/�D�

Y;k
.�/ over .�g/���D�

Y0;k0
.�/ and

using the relation ��D�

Y0;k0
.�/ D D

�

Y;k0
.�/, we see that the canonical map

.�g/�
�
D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0
�

! .�g/�D
�

Y;k
.�/˝.�g/���D�Y0;k0 .�/

.�g/���MY0

is an isomorphism. We dispose of a diagonal action

'g W D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0 ! .�g/�
�
D
�

Y;k
.�/˝��D�Y0;k0 .�/

��MY0
�

defined on simple tensor products by

g � .P ˝m/ D g � P ˝ g �m;

for g 2 G0, and P and m local sections of D�

Y;k
.�/ and ��MY0 , respectively (in order

to soft the notation we use the accord introduced in Remark 5.4). Now to see that (5.6)
is a strongly G0-equivariant D�

Y;k
.�/-module, we only need to check that the diagonal

action fixes the submodule K , i.e., 'g.K/ �K . We have

g � .P ıh ˝m � P ˝ h �m/

D g � .P ıh/˝ g �m � g � P ˝ g � .h �m/

D .g � P /.g � ıh/˝ g �m � g � P ˝ .ghg
�1/ � .g �m/

D .g � P /ıghg�1 ˝ g �m � g � P ˝ .ghg
�1/ � .g �m/:

As GkC1 is a normal subgroup, we can conclude that ghg�1 2 GkC1 and G0 fixes K .
Moreover, since the target of the preceding morphism is strongly G0-equivariant, this
factors through the quotient and we thus obtain a morphism of D�

Y;k
.�/-modules

(5.7)  W D
�

Y;k
.�/˝��D�Y0;k0 .�/;GkC1

��MY0 !MY:

By construction  2 Coh.D�

Y;k
.�/;G0/.
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6. Admissible blow-ups and formal models

The following discussion is given in [20, (3.1.1) and (5.2.10)]. Let us start by
considering the generic fiberXQ WD X �Spec.o/ Spec.L/ of the flag schemeX (the flag
variety). For the rest of this work X rig will denote the rigid-analytic space associated
via the GAGA functor to XQ (see [6, Part I, Section 5.4, Definition and Proposition 3]).
Any admissible formal o-scheme Y (in the sense of [6, Part II, Section 7.4, Definitions 1
and 4]) whose associated rigid-analytic space is isomorphic to X rig will be called a
formal model of X rig. For any two formal models Y1 and Y2 there exist a formal model
Y0 and admissible formal blow-up morphisms Y0 ! Y1 and Y0 ! Y2 (see [6, Part II,
Section 8.2, Remark 10]).

Now, let us denote by FX the set of admissible formal blow-ups Y! X. This set
is ordered by Y0 � Y if the blow-up morphism Y0 ! X factors as the composition of
a morphism Y0 ! Y and the blow-up morphism Y! X. In this case, the morphism
Y0 ! Y is unique (see [6, Part II, Section 8.2, Proposition 9]) and it is itself a blow-
up morphism (see [25, Section 8.1.3, Proposition 1.12 (d) and Theorem 1.24]). By
[6, Part II, Section 8.2, Remark 10] the set FX is directed and it is cofinal in the set
of all formal models. Furthermore, any formal model Y of X rig is dominated by one
which is a G0-equivariant admissible blow-up of X (see [20, Proposition 5.2.14]). In
particular, if X1 denotes the projective limit of all formal models of X rig, then

X1 D lim
 �
FX

Y:

We will be interested in the following directed subset of FX.

Definition 6.1. We denote by FX the set of pairs .Y; k/, where Y 2 FX and k 2N

satisfies k � kY. This set is ordered by .Y0; k0/ � .Y; k/ if and only if Y � Y and k0 � k.

We will need the following auxiliary result.

Lemma 6.2. Let Y0, Y 2 FX be G0-equivariant admissible blow-ups. Suppose
.Y0; k0/ � .Y; k/ with canonical morphism � W Y0! Y over X and letM be a coherent
D.G.k0/ı; G0/�-module with

M D Loc�
Y0;k0

.�/.M/ 2 Coh.D�

Y0;k0
.�/;G0/:

Then there exists a canonical isomorphism in Coh.D�

Y;k
.�/;G0/ given by

D
�

Y;k
.�/˝��D�Y0;k0 .�/;GkC1

��M
'
�! Loc�

Y;k
.�/
�
D.G.k/ı; G0/˝D.G.k0/ı;G0/M

�
:
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Proof. The proof follows word for word the reasoning given in [20, Lemma 5.2.12]
when � 2 Hom.T ;Gm/ is equal to the trivial character. Let † be a system of rep-
resentatives in GkC1 for the cosets in GkC1=Gk0C1. By (5.2) we have a canonical
map

Dan.G.k/ı/� ! D.G.k/ı; G0/�;

which is compatible with variation in k. Now, let us take aD.G.k0/ı;G0/�-moduleM
and let us consider the free Dan.G.k/ı/�-module

Dan.G.k/ı/M�†� D

M
.m;h/2M�†

Dan.G.k/ı/�em;h;

whose formation is functorial in M and it comes with a linear map

fM W D
an.G.k/ı/M�†� ! Dan.G.k/ı/� ˝Dan.G.k0/ı/� M;

�m;hem;h 7! .�m;hıh/˝m � �m;h ˝ .ıh:m/;

which fits into an exact sequence

Dan.G.k/ı/M�†�

fM
��! Dan.G.k/ı/� ˝Dan.G.k0/ı/� M

� D.G.k/ı; G0/� ˝D.G.k0/ı;G0/� M

if M is a finitely presented D.G.k0/ı; G0/�-module; see Claim 1 in the proof of
[20, Lemma 5.2.12].

Now, let M be a finitely presented Dan.G.k0/ı/�-module and

M D Loc�
Y0;k0

.�/.M/:

Then the natural morphism

(6.1) Loc�
Y;k
.�/
�
Dan.G.k/ı/� ˝Dan.G.k0/ı/� M

�
! D

�

Y;k
.�/˝��D�Y0;k0 .�/

��M

is bĳective. In fact, by Theorem 4.8 we know that the functor �� is exact on coherent
D
�

Y0;k0
.�/-modules, so taking a finite presentation of M , we reduce to the case M D

Dan.G.k0/ı/� which is clear.
Finally, let M be a finitely presented D.G.k0/ı; G0/�-module. Let m1; : : : ; ma be

generators for M as a Dan.G.k0/ı/�-module. We have a sequence of Dan.G.k/ı/�-
modules M

.i;h/

Dan.G.k/ı/�emi ;h
fa
�! Dan.G.k/ı/� ˝Dan.G.k0/ı/� M

� D.G.k/ı; G0/� ˝D.G.k0/ı;G0/� M;
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where fa denotes the restriction of the morphism fM to the free submodule of
Dan.G.k/ı/M�†

�
generated by finitely many vectors emi ;h, with 1 � i � a and h 2 †.

Since im.fa/ D im.fM /, the sequence is exact. Since it consists of finitely presented
Dan.G.k/ı/�-modules, we can apply the localization functor Loc�

Y;k
.�/ to it. Given

that

Loc�
Y;k
.�/
�M
.i;h/

Dan.G.k/ı/�emi ;h
�

D D
�

Y;k
.�/˝Dan.G.k/ı/�

M
.i;h/

Dan.G.k/ı/�emi ;h D D
�

Y;k
.�/˚aj†j;

the morphism in (6.1) gives us the exact sequence

D
�

Y;k
.�/˚aj†j ! D

�

Y;k
.�/˝��DY0;k0 .�/

��M! Loc�
Y;k
.�/.Mk;�/! 0;

emi ;h ˝ P 7! .P ıh ˝mi � P ˝ ıhm/;

where M D Loc�
Y0;k0

.�/.M/ and Mk;� D D.G.k/ı; G0/� ˝D.G.k0/ı;G0/� M . The
cokernel of the first map in this sequence equals by definition

D
�

Y;k
.�/˝��D�Y0;k0 .�/;GkC1

��M;

and we get the desired isomorphism.

Now, let 	 be an open ideal sheaf on X, and let g 2 G0. Then

J WD .�\g/
�1..�g/�.	//

is again an open ideal sheaf on X. Let Y be the blow-up of 	 and Y:g the blow-up
of J, with canonical morphism prg W Y:g ! X. We have the following result from
[20, Lemma 5.2.16].

Lemma 6.3. There exists a morphism �g W Y! Y:g such that the diagram

Y Y:g

X X

�g

pr prg
�g

is commutative. Moreover, we have kY:g D kY and for any two elements g; h 2 G0, we
have a canonical isomorphism .Y:g/:h ' Y:.gh/, such that the composition morphism
Y! Y:g! .Y:g/:h ' Y:.gh/ is equal to �gh. This gives a right action of the group
G0 on the family FX.
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Let pr W Y! X be an admissible blow-up and let us denote by L.�/ the invertible
sheaf on Y induced by pulling back the invertible sheaf on X induced by the character
�. This is L.�/D pr�L.�/. Furthermore, for g 2 G0 if �g W Y! Y:g is the morphism
given by the previous lemma and prg W Y:g ! X is the blow-up morphism, then we
will denote

Lg.�/ D pr�gL.�/:

The notation being fixed, we advise the reader that, in order to simplify the notation,
we will avoid underlining these sheaves in the rest of this work if the context is clear
and there is not risk to any confusion.

Let us recall that in Section 4.3 we have built for any g 2 G0 an OX-linear iso-
morphism ˆg W L.�/ ! .�g/�L.�/, where �g D ˛ ı .idX � g/ is the translation
morphism and ˛ the right G-action on X. By pulling back this morphism and using
the commutative diagram in the previous lemma (��g ı pr�g D pr� ı ��g ), we have an
OY-linear isomorphism .�g/

�pr�gL.�/! pr�L.�/. By adjointness and following the
accord established in the previous paragraph, we get an OY:g -linear morphism

Lg W Lg.�/! .�g/�L.�/:

By construction Lg satisfies the cocycle condition (4.8). This means that for every
g; h 2 G0 we have

Lhg D Lhg.�/
Lg
��! .�g/�Lh.�/

.�g/�Lh
�����! .�hg/�L.�/:

In particular, Lg is an isomorphism for every g 2 G0.
Exactly as we have done in (4.9), and given that by construction D

�

Y;k
.�/ acts on

L.�/ (resp. D�

Y:g;k
.�/ acts on Lg.�/), we can build an isomorphism

Tg W D
�

Y:g;k
.�/! .�g/�D

�

Y;k
.�/; P 7! Lg ı P ı L

�1
g ;

satisfying the cocycle condition

Thg D .�g/�Th ı Tg .g; h 2 G0/:

From the previous lemma we get [20, Corollary 5.2.18]:

Corollary 6.4. Let us suppose that .Y0; k0/ � .Y; k/ for Y; Y0 2 FX and let
� W Y0! Y be the unique morphism over X. Let g 2G0. Then .Y0:g; k0/� .Y:g; k/ and
if we denote by �:g W Y0:g! Y:g the unique morphism over X, we have a commutative
diagram

Y0 Y0:g

Y Y:g:

�g

� �:g

�g
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Based on [20, Definition 5.2.19] we introduce the following definition.

Definition 6.5. A coadmissible G0-equivariant D.�/-module on FX consists of
a family M WD .MY;k/.Y;k/ of coherent D�

Y;k
.�/-modules MY;k for all .Y; k/ 2 FX,

with the following properties:

(a) For any g 2 G0 with morphism �g W Y! Y:g, there exists an isomorphism

'g WMY:g;k ! .�g/�MY;k

of sheaves of L-vector spaces, satisfying the following properties:

(i) For all g; h 2 G0 one has .�g/�.'h/ ı 'g D 'hg .

(ii) For all open subsets U � Y:g, all P 2 D
�

Y:g;k
.�/.U/, and all m 2MY:g;k.U/

one has 'g.P �m/ D Tg;U.P / � 'g;U.m/.

(iii) For all g 2GkC1 the map 'g WMY:g;k DMY;k! .�g/�MY;k DMY;k is equal
to multiplication by ıg 2 H 0.Y;D

�

Y;k
.�//.13

(b) Suppose Y;Y0 2 FX are both G0-equivariant, and assume further that .Y0; k0/ �
.Y; k/, and that � W Y0! Y is the unique morphism over X. We require the existence
of a transition morphism Y0;Y W ��MY0;k0 !MY;k , linear relative to the canonical
morphism ‰ W ��D

�

Y0;k0
.�/! D

�

Y;k
.�/. By using the commutative diagram in the

preceding corollary, we require

(6.2) 'g ı  Y0:g;Y:g D .�g/�. Y0;Y/ ı .�:g/�.'g/:

The morphism induced by  Y0;Y,

 Y0;Y W D
�

Y;k
.�/˝��D�Y0;k0 .�/;GkC1

��MY0 !MY;

is required to be an isomorphism of D�

Y;k
.�/-modules. Additionally, the morphisms

 Y0;Y are required to satisfy the transitivity rule

 Y0;Y ı ��. Y00;Y0/ D  Y00;Y

for .Y00; k00/ � .Y0; k0/ � .Y; k/ in FX. Moreover,  Y;Y D idMY;k
.

A morphism M!N between such modules consists of morphisms MY;k!NY;k

of D�

Y;k
.�/-modules, which is compatible with the extra structures imposed in (a)

and (b). We denote the resulting category by C
G0
X;�

.

(13) As is remarked in [20, Definition 5.2.19 (iii)], if g 2 GkC1, then Y:g D Y and g acts
trivially on the underlying topological space jYj.
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Let us build now the bridge to the category CG0;� of coadmissible D.G0; L/�-
modules. Given such a module M , we have its associated admissible locally analytic
G0-representation V WD M 0

b
together with its subspace of G.k/ı-analytic vectors

VG.k/ı-an � V . As we have remarked, this is stable under the G0-action and its dual
Mk D .VG.k/ı-an/

0
b

is a finitely presentedD.G.k/ı;G0/�-module. In this situation we
produce a coherent D�

Y;k
.�/-module

Loc�
Y;k
.�/.Mk/ D D

�

Y;k
.�/˝Dan.G.k/ı/� Mk

for any element .Y; k/ 2 FX. We will denote the resulting family by

LocG0
�
.M/ D .Loc�

Y;k
.�/.Mk//.Y;k/2FX

:

On the other hand, let M be an arbitrary coadmissibleG0-equivariant arithmetic D.�/-
module on FX. The transition morphisms  Y0;Y W ��MY0;k0 !MY;k induce maps
H 0.Y0;MY0;k0/! H 0.Y;MY;k/ on global sections. We let

�.M/ D lim
 �

.Y;k/2FX

H 0.Y;MY;k/:

The projective limit is taken in the sense of abelian groups. We have the following
theorem. Except for some technical details the proof follows word for word the reasoning
given in [20, Theorem 5.2.23].

Theorem 6.6. Let us suppose that � 2Hom.T ;Gm/ is an algebraic character such
that �C � 2 t�Q is a dominant and regular character of tQ. The functors LocG0

�
and

�.�/ induce quasi-inverse equivalences between the categories CG0;� (of coadmissible
D.G0; L/�-modules) and C

G0
X;�

.

Proof. Let us take M 2 CG0;� and M 2 C
G0
X;�

. As in the proof of [20, Theo-
rem 5.2.23] we will organize the proof in four steps.

Claim 1. We have LocG0
�
.M/ 2 C

G0
X;�

and LocG0
�
.M/ is functorial in M .

Let us start by defining

'g W Loc�
Y:g;k

.�/.Mk/! .�g/�Loc�
Y;k
.�/.Mk/ .g 2 G0/

satisfying (i), (ii) and (iii) in the preceding definition. Let z'g W Mk ! Mk denote
the map dual to the map VG.k/ı-an ! VG.k/ı-an given by w 7! g�1w. By definition
z'h ı z'g D z'hg . Let U � Y:g be an open subset, P 2 D

�

Y:g;k
.�/.U/ and m 2Mk . We

define
'g;U.P ˝m/ D Tg;U.P /˝ z'g.m/:
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Given that .�g/� is exact, we can choose a finite presentation ofMk as a Dan.G.k/ı/�-
module to conclude that we have a canonical isomorphism

.�g/�.Loc�
Y;k
.�/.Mk//

'
�! ..�g/�D

�

Y;k
.�//˝Dan.G.k/ı/� Mk :

This means that the above definition extends to a map

'g W D
�

Y:g;k
.�/˝Dan.G.k/ı/� Mk ! .�g/�.Loc�

Y;k
.�/.Mk//:

The family ¹'gºg2G0 satisfies (i), (ii) and (iii) in (a). Let us verify condition (b). We
suppose that Y0, Y areG0-equivariant and that .Y0; k/� .Y; k/with canonical morphism
� W Y0 ! Y over X. As �� is exact, we have an isomorphism

��.Loc�
Y0;k0

.�/.Mk0//
'
�! ��.D

�

Y0;k0
.�//˝Dan.G.k/ı/� Mk0 :

(This is an argument already given in the text for the functor .�g/�). On the other hand,
we have that G.k0/ı � G.k/ı and we have a map z Y0;Y WMk0 !Mk obtained as the
dual map of the natural inclusion VG.k/ı-an ,! VG.k0/ı-an. Let U � Y be an open subset,
P 2 ��D

�

Y0;k0
.�/.U/ and m 2Mk0 . We define

 Y0;Y.P ˝m/ D ‰Y0;Y.P /˝ z Y0;Y.m/;

where ‰ is the canonical injection ��D�

Y0;k0
.�/ ,! D

�

Y;k
.�/. By using the preceding

isomorphism, we can conclude that this morphism extends naturally to a map

 Y0;Y W ��.Loc�
Y0;k0

.�/.Mk0//! Loc�
Y;k
.�/.Mk/:

The cocycle condition (6.2) translates into the diagram

(6.3)

.�:g/�.�
Y
g /�.Loc�

Y0;k0
.�/.Mk0// .�Yg /�.Loc�

Y;k
.�/.Mk//

.�:g/�.Loc�
Y0:g;k0

.�/.Mk0// Loc�
Y:g;k

.�/.Mk/:

.�Yg /� Y0;Y

 Y0;Y

.�:g/�'g 'g

We have used

.�Yg /���.Loc�
Y0;k0

.�/.Mk0// D .�:g/�.�
Y
g /�.Loc�

Y0;k0
.�/.Mk0//:

By construction, the diagrams

(6.4)

.�Yg /���D
�

Y0;k0
.�/ .�Yg /�D

�

Y;k
.�/

.�g/�D
�

Y0:g;k0
.�/ D

�

Y:g;k
.�/;

.�Yg /�‰Y0;Y

.�:g/�Tg

‰Y0:g;Y:g

Tg

Mk0 Mk

Mk0 Mk

z Y0;Y

z'g z'g
z Y0;Y
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are commutative; therefore, (6.3) is also a commutative diagram. As before, we have
used the relation

.�:g/�.�
Y0

g /�D
�

Y0;k0
.�/ D .�Yg /���D

�

Y0;k0
.�/:

The transitivity properties are clear. Let us see that the induced morphism  Y0;Y is
in fact an isomorphism. The morphism  Y0;Y corresponds under the isomorphism of
Lemma 6.2 to the linear extension

D.G.k/ı; G0/˝D.G.k0/ı;G0/Mk0 !Mk

of z Y0;Y via functoriality of Loc�
Y;k
.�/. By Lemma 5.1 this linear extension is an

isomorphism and hence, so is  Y0;Y. We conclude that LocG0
�
.M/ 2 C

G0
X;�

. Given a
morphism M ! N in CG0;�, we get, by definition, morphisms Mk ! Nk for any
k 2 Z>0 compatible with z'g and z Y0;Y. By functoriality of Loc�

Y;k
.�/, they give rise

to linear maps
Loc�

Y;k
.�/.Mk/! Loc�

Y;k
.�/.Nk/;

which are compatible with the maps 'g and  Y0;Y.

Claim 2. �.M/ is an object in CG0;�.
For k 2 N we choose .Y; k/ 2 FX and we put Nk WD H 0.Y;M.Y;k//. By (5.7),

Lemma 6.2 and the fact that M 2 C
G0
X;�

we get linear isomorphisms

D.G.k/ı; G0/˝D.G.k0/ı;G0/ Nk0 ! Nk

for k0 � k. This implies that the modules Nk form a .D.G.k/ı; G0//k2N-sequence
and the projective limit is a coadmissible module.

Claim 3. � ıLocG0
�
.M/ 'M .

If V WDM 0
b
, then we have by definition compatible isomorphisms

H 0.Y;LocG0
�
.M/.Y;k// D H

0.Y;Loc�
Y;k
.�/.Mk// D .VG.k/ı-an/

0
b;

which imply that the coadmissible modules � ıLocG0
�
.M/ and M have isomorphic

.D.G.k/ı; G0//k2N-sequences.

Claim 4. LocG0
�
ı�.M/ 'M.

Let N WD �.M/ and V WD N 0
b

the corresponding admissible representation. Let
N WD LocG0

�
.N /. According to Lemma 5.1

Nk D D.G.k/
ı; G0/˝D.G0;L/ N
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produces a .D.G.k/ı; G0//k2N-sequence for the coadmissible module N which is
isomorphic to its constituting sequence .H 0.Y;MY;k//.Y;k/2FX

from Claim 2. Now
let .Y; k/ 2 FX. We have the following isomorphisms:

NY;k D Loc�
Y;k
.�/.Nk/ ' Loc�

Y;k
.�/.H 0.Y;MY;k// 'MY;k :

By Tg -linearity the action maps 'MY;k
g and 'NY;k

g , constructed in Claim 1, are the same.
Similarly if .Y0; k0/ � .Y; k/ are G0-equivariant, then the transition maps  MY0;Y and
 NY0;Y coincide, by ‰Y0;Y-linearity. Hence N 'M in C

G0
X;�

.
This ends the proof of the theorem.

6.1 – Coadmissible G0-equivariant D.�/-modules on the Zariski–Riemann space

Let us recall that X1 denotes the projective limit of all formal models of X rig (the
rigid-analytic space associated by the GAGA functor to the flag variety XQ). The set
FX of admissible formal blow-ups Y! X is ordered by setting Y0 � Y if the blow-up
morphism Y0 ! X factors as Y0

�
�! Y! X, with � a blow-up morphism. The set FX

is directed in the sense that any two elements have a common upper bound, and it is
cofinal in the set of all formal models. In particular,

X1 D lim
 �
FX

Y:

The space X1 is also known as the Zariski–Riemann space [6, Part II, Section 9.3]14. In
this subsection, we indicate how to realize coadmissibleG0-equivariant D.�/-modules
on FX as sheaves on the Zariski–Riemann space X1. We start with the following
proposition whose proof can be found in [20, Proposition 5.2.14].

Proposition 6.7. Any formal model Y of X rig is dominated by one which is a
G0-equivariant admissible blow-up of X.

Remark 6.8. As FX is cofinal in the set of all formal models, the preceding
proposition tells us that the set of all G0-equivariant admissible blow-ups of X is also
cofinal in the set of all formal models of X. From now on, we will assume that if Y 2 FX,
then Y is alsoG0-equivariant, and we will denote by �Yg W Y! Y the morphism induced
by every g 2 G0.

For every Y 2 FX we denote by spY W X1 ! Y the canonical projection map. Let
Y0 � Y with blow-up morphism � 0 W Y0! Y and g 2 G0. Let us consider the following

(14) In this reference, this space is denoted by hXi, cf. [23, Section 3.2].
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commutative diagram coming from the G0-equivariance of the family FX:

X1 Y Y

Y0 Y0:

spY

spY0

�Yg

�Y
0

g

� 0 � 0

This diagram allows us to define a continuous function

(6.5) �g W X1 ! X1; .aY/Y2FX
7! .�Yg .aY//Y2FX

;

which defines a G0-action on the space X1.
LetU� Y be an open subset and let us take V WD sp�1Y .U/�X1. Using the relation

spY D � ı spY0 , we see that

spY0.V / D spY0.sp
�1
Y .U// D spY0.sp

�1
Y0 .�

0�1.U/// D � 0�1.U/;

which implies that spY0.V / is an open subset of Y0. Let Y00
� 00

��! Y0
� 0

�! Y be morphisms
over Y. The commutative diagram

X1 � V D sp�1Y .U/

Y0

Y00 Y � U

spY00 spY

spY0

� 0
� 00

implies that

(6.6) � 00�1.spY0.V // D �
00�1.� 00.spY00.V /// D spY00.V /:

In this situation, the morphism ‰Y00;Y0 W �
00
�D

�

Y00;k00
.�/! D

�

Y0;k0
.�/ (defined in (5.5))

induces the ring homomorphism

D
�

Y00;k00
.�/.spY00.V // D �

00
�D

�

Y00;k00
.�/.spY0.V //

‰Y00;Y0

�����! D
�

Y0;k0
.�/.spY0.V //

and we can form the projective limit as in [20, (5.2.25)]:

D.�/.V / D lim
 �

Y0!Y

D
�

Y0;k0
.�/.spY0.V //:

By definition, the open subsets of the form V D sp�1Y .U/ form a basis for the topology
ofX1 andD.�/ is a presheaf on this basis. The associated sheaf onX1 to this presheaf
will also be denoted by D.�/.
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Since .�Y0g /� ı � 00� D � 00� ı .�Y
00

g /�, relation (6.6) and the commutativity of the first
diagram in (6.4) tell us that the following diagram is also commutative:

� 00�D
�

Y00;k00
.�/.spY0.V // D

�

Y0;k0
.�/.spY0.V //

.�Y
0

g /��
00
�D

�

Y00;k00
.�/.spY0.V // .�Y

0

g /�D
�

Y0;k0
.�/.spY0.V //:

‰spY0 .V /

TY00

g;spY00 .V /
TY0

g;spY0 .V /

‰
spY0 .�

�1
g .V //

We have used the relations

D
�

Y00;k00
.�/.spY00.V // D �

00
�D

�

Y00;k00
.�/.spY0.V //;

D
�

Y00;k00
.�/..�Y

00

g /
�1.spY00.V /// D .�

Y0

g /��
00
�D

�

Y00;k00
.�/.spY0.V //:

Let us identify

D.�/.V /

D

°
P D .PY0;k0/.Y0;k0/ 2

Y
FX

D
�

Y0;k0
.�/.spY0.V // j ‰Y00;Y0.PY00;k00/ D PY0;k0

±
and let us consider the sequence

g:P D .T Y00

g;spY00 .V /
.PY00;k00//.Y00;k00/ 2

Y
FX

D
�

Y00;k00
.�/..�Y

00

g /
�1spY00.V //:

Using the commutativity of the preceding diagram, we see that

‰spY0 .�
�1
g .V //.T

Y00

g;spY00 .V /
.PY00;k00// D T

Y0

g;spY0 .V /
.‰spY0 .V /.PY00;k00//

D T Y0

g;spY0 .V /
.PY0;k0/:

Therefore, for g 2 G0, the morphisms T Y
g assemble to a G0-action

Tg W D.�/
'
�! .�g/�D.�/:

This action is on the left, in the sense that if g; h 2 G0, then .�g/�Th ı Tg D Thg . Let
us suppose now that M D .MY;k/ 2 C

G0
X;�

. We have the transition maps

 Y00;Y0 W �
00
�MY00;k00 !MY0;k0 ;

which are linear relative to the morphism (5.5). As before, we have the map

MY00;k00.spY00.V // D �
00
�MY00;k00.spY0.V //

 spY0 .V /
������!MY0;k0.spY0.V //;
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which allows us to define M1 as the sheaf on X1 associated to the presheaf

M1.V / D lim
 �

Y0!Y

MY0;k0.spY0.V //:

By definition, we have the commutative diagram

� 00�MY00;k00.spY0.V // MY0;k0.spY0.V //

.�Y
0

g /��
00
�MY00;k00.spY0.V // .�Y

0

g /�MY0;k0.spY0.V //:

 spY0 .V /

'Y
00

g;spY00 .V /
'Y
0

g;spY0 .V /

 
spY0 .�

�1
g .V //

Identifying

M1.V /

D

°
m D .mY0;k0/.Y0;k0/ 2

Y
FX

MY0;k0.spY0.V // j  Y00;Y0.mY00;k00/ D mY0;k0

±
;

we see as before that if

g:m D .'Y00

g;spY00 .V /
.mY00;k00//.Y00;k00/ 2

Y
FX

MY00;k00..�
Y00

g /
�1spY00.V //;

then the preceding commutative diagram implies that

 spY0 .�
�1
g .V //.'

Y00

g;spY00 .V /
.mY00;k00// D '

Y0

g;spY0 .V /
. spY0 .V /.mY00;k00//

D 'Y0

g;spY0 .V /
.mY0;k0/:

Therefore, we get a family .'g/g2G0 of isomorphisms

(6.7) 'g WM1 ! .�g/�M1

of sheaves ofL-vector spaces. By Definition 6.5, if g;h 2G0, then 'hg D .�g/�'h ı 'g .
Furthermore, under the preceding identifications, if P D .PY0;k0/ 2 D.�/.V / and
m D .mY0;k0/ 2M1.V /, then P:m D .PY0;k0 :mY0;k0/.Y0;k0/2FX

. Therefore,

'g;V .P:m/ D .'
Y0

g;spY0 .V /
.PY0;k0 :mY0;k0//.Y0;k0/2FX

D
�
T Y0

g;spY0 .V /
.PY0;k0/:'

Y0

g;spY0 .V /
.mY0;k0/

�
.Y0;k0/2FX

D Tg;V .P /:'g;V .m/:

In particular, M1 is a G0-equivariant D.�/-module on the topological G0-space X1.
Let us see that the formation of M1 is functorial. Let  WM ! N be a morphism
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in C
G0
X;�

. We have the following commutative diagram:

� 00�MY00;k00 MY0;k0

��NY00;k00 NY0;k0 :

 M
Y00;Y0

� 00� .Y00;k00 / Y0;k0

 N
Y00;Y0

Let m D .mY;k/.Y;k/2FX
2M1.V / and

s WD .Y00;k00.mY00;k00//.Y00;k00/2FX
2

Y
.Y00;k00/2FX

NY00;k00.spY00.V //:

Commutativity in the preceding diagram implies that

 N
spY00 .V /

.sY00;k00/ D  
N
spY00 .V /

.spY00 .V /.mY00;k00//

D spY0 .V /. 
M
spY0 .V /

.mY00;k00//

D spY0 .V /.mY0;k0/ D sY0;k0 :

Therefore, s 2 N1.V / and  induces a morphism 1 WM1 ! N1.This shows that
the preceding construction is functorial. The next proposition is the twisted analogue
of [20, Proposition 5.2.29]. We follow their proof word by word.

Proposition 6.9. Let � 2 Hom.T ;Gm/ be an algebraic character which induces,
via derivation, a dominant and regular character �C � of t�Q. The functor M M1

from the category CG0
X;�

to G0-equivariant D.�/-modules is a faithful functor.

Proof. We start the proof by remarking that spY.X1/ D Y for every Y 2 FX. By
Remark 6.8, the global sections of M1 are equal to

H 0.X1;M1/ D lim
 �

.Y;k/2FX

H 0.Y;MY;k/ D �.M/:

Now, let f;h WM!N be two morphisms inCG0
X;�

such that f1D h1. By Theorem 6.6,
it is enough to verify�.f /D �.h/which is clear sinceH 0.X1; f1/DH

0.X1; h1/.

Let .�/1 denote the previous functor. Then we denote by LocG01 .�/ the composition
of the functor LocG0

�
with .�/1, i.e.,

¹Coadmissible D.G0; L/�-modulesº
LocG01 .�/
������! ¹G0-equivariant D.�/-modulesº:

Since LocG0
�

is an equivalence of categories, the preceding proposition implies that
LocG01 .�/ is a faithful functor.
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7. G -equivariant modules

Throughout this section, we will use the notation G D G.L/ and denote by B

the semi-simple Bruhat–Tits building of the p-adic group G (see [9, 10]). This is a
simplicial complex endowed with a natural right G-action.

The purpose of this section is to extend the above results from G0-equivariant
objects to objects equivariant for the whole group G.

We start by fixing some notation.15 To each special vertex v 2 B the Bruhat–Tits
theory associates a connected reductive group o-scheme Gv, whose generic fiber
.Gv/Q WDGv �Spec.o/ Spec.L/ is canonically isomorphic to GQ. We denote byXv the
smooth flag scheme of Gv whose generic fiber .Xv/Q is canonically isomorphic to the
flag varietyXQ. We will distinguish the next constructions by adding the corresponding
vertex to them. For instance, we will write Yv for an (algebraic) admissible blow-up of
the smooth model Xv, Gv;0 for the group of points Gv.o/ and Gv;k for the group of
points Gv.k/.o/. We will use the same conventions if we deal with formal completions.
For instance, Yv will always denote an admissible formal blow-up of Xv . We point out
to the reader that the morphism Yv ! Xv will make part of the blow-up Yv . Moreover,
even if for another special vertex v0 ¤ v the formal o-scheme Yv is also a blow-up of
the smooth formal model Xv0 , we will only consider it as a blow-up of Xv. We will
denote by Fv WD FXv the set of all admissible formal blow-ups Yv ! Xv of Xv , and by
Fv D FXv

the respective directed system of Definition 6.1. By the preceding accord,
the sets Fv and Fv0 are disjoint if v ¤ v0. Let

F D
G
v

Fv;

where v runs over all special vertices of B. We recall for the reader that X1 is equal to
the projective limit of all formal models of X rig.

Remark 7.1. The set F is partially ordered in the following way: Yv0 � Yv if the
projection spYv0 W X1 ! Yv0 factors through the projection spYv W X1 ! Yv so that
we have the commutative diagram

X1

Yv0 Yv:

spYv
spYv0

(15) This is exactly as in [20, (5.3.1)].
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Definition 7.2. Define FD
F
v Fv , where v runs over all the special vertices of B.

This set is partially ordered as follows. We say that .Yv0 ; k0/ � .Yv; k/ if Yv0 � Yv and
Lie.Gv0.k

0// � Lie.Gv.k// (or equivalent $k0 Lie.Gv0/ � $
k Lie.Gv/) as lattices

in gQ.

For any special vertex v 2 B, any element g 2 G induces an isomorphism

�vg W Xv ! Xv:g :

The isomorphism induced by �vg on the generic fibers .Xv/Q ' XQ ' .Xv:g/Q coin-
cides with right translation by g on XQ:

�g W XQ D XQ �Spec.L/ Spec.L/
idXL�g
�����! XQ �Spec.L/ Spec.GQ/

˛Q
��! XQ;

where we have used G.L/ D GQ.L/. Moreover, �vg induces a morphism Xv ! Xv:g ,
which we denote again by �vg , and which coincides with the right translation on Xv

if g 2 Gv;0 (of course in this case vg D v). Let .�vg/\ W OXvg ! .�vg/�OXv be the
comorphism of �vg . If � W Yv ! Xv is an admissible blow-up of an ideal I � OXv ,
then blowing-up ..�vg/\/�1..�vg/�I/ produces a formal scheme Yvg (cf. Lemma 6.3),
together with an isomorphism �vg W Yv ! Yvg . As in Lemma 6.3 we have kYv D kYvg .
For any g; h 2 G and any admissible formal blow-up Yv ! Xv , we have

�
vg

h
ı �vg D �

v
gh W Yv ! Yvgh:

This gives a right G-action on the family F and on the projective limit X1. Finally, if
Yv0 � Yv with morphism � W Yv0 ! Yv and g 2 G, then Yv0g � Yvg , and we have the
relation �vg ı � D �g ı �v

0

g (here �g W Yv0g ! Yvg ). Now, over every special vertex
v 2 B the algebraic character � induces an invertible sheaf Lv.�/ on Xv , such that for
every g 2 G there exists an isomorphism

Lvg W Lvg.�/! .�vg/�Lv.�/;

satisfying the cocycle condition

(7.1) L
vhg

hg
D .�vhg /�L

v
h ı L

vh
g .h; g 2 G/:

As usual, for every special vertex v 2B, we will denote by Lv.�/ thep-adic completion
of the sheaf Lv.�/, which is considered as an invertible sheaf on Xv . Let .Yv; k/ 2 F

with blow-up morphism pr W Yv ! Xv. At the level of differential operators, we will
denote by D

�

Yv ;k
.�/ the sheaf of arithmetic differential operators on Yv acting on the
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line bundle Lv.�/.16 We have the following important properties. Let g 2 G. As in
(4.9) the isomorphism (7.1) induces a left action

T vg W D
�

Yvg;k
.�/

'
�! .�vg/�D

�

Yv ;k
.�/; P 7! LvgP.L

v
g/
�1:

Now, we identify the global sectionsH 0.Yv;D
�

Yv ;k
.�//withDan.Gv.k/

ı/� and obtain
the group homomorphism

Gv;kC1 ! H 0.Yv;D
�

Yv ;k
.�//�; g 7! ıg ;

where Gv;kC1 D Gv.k/
ı.L/ denotes the group of L-rational points (or o-points of

Gv.k C 1/). The proof of the following proposition is in much the same way as the
proof of [20, Proposition 5.3.2].

Proposition 7.3. Suppose .Yv0 ; k0/ � .Yv; k/ for pairs .Yv0 ; k0/; .Yv; k/ 2 F with
morphism � W Yv0 ! Yv . There exists a canonical morphism of sheaves of rings

‰Yv0 ;Yv
W ��D

�

Yv0 ;k
0.�/! D

�

Yv ;k
.�/;

which is G-equivariant in the sense that for every g 2 G we have17

T vg ı‰Yv0g;Yvg
D .�vg/�‰Yv0 ;Yv

ı .�g/�T
v0

g :

Proof. Let us denote by pr0 W Yv0! Xv0 and pr W Yv! Xv the blow-up morphisms,
and let us put epr D pr ı � . We have the following commutative diagram:

Yv0 Yv

Xv0 Xv:

pr0
epr

pr

�

Let us fixm 2N. As in [20, Proposition 5.3.6] we show first the existence of a canonical
morphism of sheaves of o-algebras

(7.2) D
.m;k/
Yv0

.�/! epr�D.m;k/
Xv

.�/:

Here Yv0 , Yv ,Xv0 andXv denote the o-scheme of finite type whose completions are Yv0 ,
Yv , Xv0 and Xv , respectively. The morphisms between these schemes will be denoted

(16) By abuse of notation, we denote again by Lv.�/ the invertible sheaf pr�Lv.�/ on Yv .
(17) In order to simplify the notation we will avoid the indices. For instance, we will write ‰

for the morphisms ‰Yv0 ;Yv and ‰Yv0g;Yvg .
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by the same letters, for instance pr W Yv ! Xv . We recall for the reader that the sheaf
D
.m;k0/
Yv0

.�/ is filtered by locally free sheaves of finite rank

D
.m;k0/

Yv0 ;d
.�/ D pr0�Lv0.�/˝OYv0

pr0�D.m;k0/

Xv0 ;d
˝OYv0

pr0�Lv0.�/_

D pr0�.D.m;k0/

Xv0 ;d
.�//:

Therefore, by the projection formula [17, Part II, Exercise 5.1 (d)] and given that
pr0�OYv0 D OXv0 (cf. [20, Lemma 3.2.3 (iii)]) we have for every d 2 N

pr0�.D
.m;k0/

Yv0 ;d
.�// D pr0�

�
OYv0 ˝OYv0

pr0�D.m;k0/

Xv0 ;d
.�/
�

D pr0�.OYv0 /˝OXv0
D
.m;k0/

Xv0 ;d
.�/ D D

.m;k0/

Xv0 ;d
.�/;

which implies that
pr0�.D

.m;k0/
Yv0

.�// D D
.m;k0/
Xv0

.�/

because the direct image commutes with inductive limits on a noetherian space. By
Proposition 3.13 and the preceding relation we have a canonical map of filtered o-
algebras

D.m/.Gv0.k
0//! H 0.Xv0 ;D

.m;k0/
Xv0

.�// D H 0.Yv0 ;D
.m;k0/
Yv0

.�//;

in particular we get a morphism of sheaves of filtered o-algebras (this is exactly as we
have done in (3.8)):

(7.3) ˆ
.m;k0/
Yv0

W A
.m;k0/
Yv0

D OYv0 ˝o D
.m/.Gv0.k

0//! D
.m;k0/
Yv0

.�/:

Applying Sym.m/.�/ ı$k0pr0�.�/ to the surjection (3.9), we obtain a surjection

OYv0 ˝o Sym.m/.Lie.Gv0.k
0///! Sym.m/.$k0pr0�TXv0 /;

which equals the associated graded morphism of (7.3) by Proposition 4.5. Hence
ˆ
.m;k0/
Yv0

is surjective. On the other hand, if we apply epr� to the surjection

ˆ
.m;k/
Xv

W A
.m;k/
Xv

D OXv ˝o D
.m/.Gv.k//! D

.m;k/
Xv

.�/;

we obtain the surjection

OYv0 ˝o D
.m/.Gv.k//! epr�D.m;k/

Xv
.�/:

Recall that .Yv0 ; k0/ � .Yv; k/ implies, in particular, that Lie.Gv0.k
0// � Lie.Gv.k//

and thus $k0 Lie.Gv0/ � $
k Lie.Gv/. By (3.5), the preceding inclusion gives rise to

an injective ring homomorphism D.m/.Gv0.k
0// ,! D.m/.Gv.k//. Let us see that the
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composition

OYv0 ˝o D
.m/.Gv0.k

0// ,! OYv0 ˝o D
.m/.Gv.k//� epr�D.m;k/

Xv
.�/

factors through D
.m;k0/
Yv0

.�/:

OYv0 ˝o D
.m/.Gv0.k

0// epr�D.m;k/
Xv

.�/

D
.m;k0/
Yv0

.�/:

Since by Lemma 3.11 all those sheaves are $-torsion free, this can be checked after
tensoring with L in which case we have that D.m;k0/

Yv0
.�/˝o L ' epr�D.m;k/

Xv
.�/˝o L

is the (push-forward of the) sheaf of algebraic twisted differential operators on the
generic fiber of Yv0 (cf. the discussion given at the beginning of Section 4.1). We thus
get the canonical morphism of sheaves (7.2). Passing to completions, we get a canonical
morphism bD.m;k0/

Yv0
.�/! epr�bD.m;k/

Xv
.�/:

Taking the inductive limit over all m and inverting $ gives a canonical morphism

D
�

Yv0 ;k
0.�/! epr�D�

Xv ;k
.�/:

Now, let us consider the formal scheme Yv0 as a blow-up of Xv via epr. Then � becomes
a morphism of formal schemes over Xv and we consider epr�D�

Xv ;k
.�/ as the sheaf

of arithmetic differential operators with congruence level k defined on Yv0 via epr�.
Using the invariance theorem (Theorem 4.8), we get ��.epr�D�

Xv ;k
.�//DD

�

Yv ;k
. Then

applying �� to the morphism D
�
Yv0 ;x

0.�/! epr�D�

Xv ;k
.�/ gives the morphism

‰ W ��D
�

Yv0 ;k
0.�/! D

�

Yv ;k

of the statement. As in [20, Proposition 5.3.8], making use of the maps ˆ.m;k/Yv
, the

assertion about the G-equivariance is reduced to the functorial properties of the rings
D.m/.Gv.k//.

Definition 7.4. A coadmissible G-equivariant arithmetic D.�/-module on F

consists of a family M D .MYv ;k/.Yv ;k/2F of coherent D�

Yv ;k
.�/-modules with the

following properties:

(a) For any special vertex v 2 B and g 2 G with isomorphism �vg W Yv ! Yvg , there
exists an isomorphism

'vg WMYvg;k ! .�vg/�MY;k

of sheaves of L-vector spaces, satisfying the following conditions:
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(i) For all h; g 2 G one has .�vhg /�'vh ı '
vh
g D '

v
hg

.18

(ii) For all open subsets U � Yvg , all P 2 D
�

Yvg;k
.�/.U/, and all m 2MYvg;k.U/

one has 'vg;U.P:m/ D T
v
g;U.P /:'

v
g;U.m/.

(iii) For all g 2 GkC1;v the map 'vg WMY;k ! .�vg/�MY;k DMY;k is equal to the
multiplication by ıg 2 H 0.Yv;D

�

Yv ;k
.�//.

(b) For any two pairs .Yv0 ; k0/ � .Yv; k/ in F with morphism � W Yv0 ! Yv there exists
a transition morphism  Yv0 ;Yv

W ��MYv0
!MYv , linear relative to the canonical

morphism ‰ W ��D
�

Yv0 ;k
0.�/! D

�

Yv ;k
.�/ (in the preceding proposition) such that

(7.4) 'vg ı  Yv0g;Yvg
D .�vg/� Yv0 ;Yv

ı .�:g/�'
v0

g

for any g 2 G (where we have used the relation .�vg/� ı �� D .�:g/� ı .�v
0

g /�). If
v0 D v, and .Y0v; k0/ � .Yv; k/ in Fv, and if Y0v, Yv are Gv;0-equivariant, then we
require additionally that the morphism induced by  Y0v ;Yv

(cf. (5.7)),

 Y0v ;Yv
W D

�

Yv ;k
.�/˝��D�

Y0v;k
0 .�/;Gv;kC1

��MY0v ;k
0 !MYv ;k;

is an isomorphism of D
�

Yv ;k
.�/-modules. As in Theorem 6.6, the morphisms

 Yv0 ;Yv
W ��MYv0 ;k

0 !MYv ;k are required to satisfy the transitive condition

 Yv0 ;Yv
ı ��. Yv00 ;Yv0

/ D  Yv00 ;Yv
;

whenever .Yv00 ; k00/ � .Yv0 ; k0/ � .Yv; k/ in F. Moreover,  Yv ;Yv D idMYv;k
.

A morphism M ! N between two coadmissible G-equivariant arithmetic D.�/-
modules consists in a family of morphisms MY;k ! NY;k of D�

Y;k
.�/-modules, which

respect the extra conditions imposed in (a) and (b). We denote the resulting category
by CF

G;�
.

We recall for the reader that D.G0; L/ is a Fréchet–Stein algebra [34, Theo-
rem 24.1]. Moreover, a D.G;L/-module is called coadmissible if it is coadmissible as
aD.H;L/-module for every compact open subgroupH � G (cf. the first definition in
[33, Section 6]). Given that for any two compact open subgroupsH �H 0 �G the alge-
bra D.H 0; L/ is finitely generated free and hence coadmissible as a D.H;L/-module,
it follows from [33, Lemma 3.8] that the preceding condition needs to be tested only
for a single compact open subgroup H � G. This motivates the following definition
where we will consider the weak Fréchet–Stein structure of D.G0; L/ defined in (5.3).

(18) Here we use that the action of G on B is on the right, thus .�vhg /� ı .�
v
h
/� D .�

v
hg
/�.
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Definition 7.5. We say that M is a coadmissible D.G;L/-module if M is coad-
missible as a D.G0; L/-module.

Let us construct now the bridge to the category of coadmissibleD.G;L/�-modules.
Let M be such a coadmissible D.G;L/�-module and let V DM 0

b
. We fix a special

vertex v 2 B. Let VGv.k/ı-an be the subspace of Gv.k/
ı-analytic vectors and let Mv;k

be its continuous dual.19 For any .Yv; k/ 2 F we have a coherent D�

Yv ;k
.�/-module

Loc�
Yv ;k

.�/.Mv;k/ D D
�

Yv ;k
.�/˝Dan.Gv.k/ı/� Mv;k

and we can consider the family

LocG� .M/ D .Loc�
Yv ;k

.�/.Mv;k//.Yv ;k/2F:

On the other hand, given an object M 2 CF
G;�

, we may consider the projective limit

�.M/ D lim
 �

.Y;k/2F

H 0.Y;MY;k/

with respect to the transition maps  Y0;Y. Here the projective limit is taken in the sense
of abelian groups and over the cofinal family of pairs .Yv; k/ 2 F withGv;0-equivariant
Yv , cf. Remark 6.8.

Theorem 7.6. Let us suppose that � 2 Hom.T ;Gm/ is an algebraic character
such that �C � 2 t�Q is a dominant and regular character of tQ (and therefore, a
dominant and regular character on every special vertex of B). The functors LocG� .�/
and �.�/ induce quasi-inverse equivalences between the category of coadmissible
D.G;L/�-modules and CF

G;�
.

Proof. The proof (which is similar to the one of [20, Theorem 5.3.12]) is an
extension of the proof of Theorem 6.6, taking into account the additionalG-action. Let
M be a coadmissible D.G;L/�-module and let M 2 CF

G;�
. The proof of the theorem

follows the following steps.

Claim 1. One has LocG� .M/ 2 CF
G;�

and LocG� .�/ is functorial.
Let g 2 G, v 2 B a special vertex and �vg W Yv ! Yvg the respective isomorphism.

For conditions (a) for LocG� .M/ we need the maps

'g W LocG� .M/Yvg;k D Loc�
Yvg;k

.�/.Mvg;k/! .�vg/�LocG� .M/Yv ;k

(19) Here we use the fact that .Gv/L D GL.
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satisfying the properties (i), (ii) and (iii). Let z'vg W Mvg;k ! Mv;k denote the dual
map to VGv.k/ı-an ! VGvg.k/ı-an; w 7! g�1w.20 Let U � Yvg be an open subset and
P 2 D

�

Yvg;k
.�/.U/, m 2Mvg;k . We define

(7.5) 'vg;U.P ˝m/ D T
v
g;U.P /˝ z'

v
g.m/:

Exactly as we have done in Theorem 6.6, the family .'vg/ satisfies the requirements (i), (ii)
and (iii). Let us verify now condition (b). Given .Yv0 ; k0/ � .Yv; k/ in F, we have
Gv0.k

0/ı � Gv.k/
ı in Grig and we denote by z Yv0 ;Yv

WMv0;k0 !Mv;k the map dual
to the natural inclusion VGv.k/ı-an � VGv0 .k

0/ı-an. Let U � Yv0 be an open subset and
P 2 ��D

�

Yv0 ;k
0.�/.U/, m 2Mv0;k0 . We then define21

 Yv0 ;Yv
.P ˝m/ D ‰Yv0 ;Yv

.P /˝ z Yv0 ;Yv
.m/;

where ‰Yv0 ;Yv
W ��D

�

Yv0 ;k
0.�/! D

�

Yv ;k
.�/ is the canonical morphism given by the

preceding proposition. This definition extends to a map

 Yv0 ;Yv
W ��LocG� .M/Yv0 ;k0 ! LocG� .M/Yv ;k;

which satisfies all the required conditions. The functoriality of LocG� .�/ can be verified
exactly as we have done for the functor LocG0

�
.�/.

Claim 2. �.M/ is a coadmissible D.G;L/�-module.
We already know that �.M/ is a coadmissible D.Gv;0; L/�-module for any v

(Theorem 6.6). So it suffices to exhibit a compatible G-action on �.M/. Let g 2 G.
The isomorphisms 'vg WMYvg;k ! .�vg/�MY;k induce isomorphisms at the level of
global sections (which we denote again by 'vg to soft the notation):

'vg W H
0.Yvg;k;MYvg;k/! H 0.Yv;MY;k/:

Let us identify

�.M/

D lim
 �

.Yvg;k/2Fvg

H 0.Yvg;k;MYvg;k/

D

°
.mYvg;k/.Yvg;k/ 2

Y
Fvg

H 0.Yvg;k;MYvg;k/ j  Y0vg;Yvg
.mY0vg;k

/ D mYvg;k

±
;

(20) Here we use Gvg.k/ı D g�1Gv.k/ıg in Grig.
(21) We avoid the subscript U in order to soft the notation.
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where, by abuse of notation, we have denoted by  Y0vg;Yvg
the morphism obtained by

taking global sections on  Y0vg;Yvg
W .�:g/�D

�

Y0vg;k
0.�/! D

�

Yvg;k
.�/. For g 2 G and

m WD .mYvg;k/.Yvg;k/2Fvg 2 �.M/;

we define

g:m D .'vg.mYvg;k//.Yvg;k/ 2
Y
Fv

H 0.Yv;MYv ;k/;

g:m.Yv ;k/2Fv D '
v
g.mYvg;k/:

We want to see that

g:m 2 �.M/ D lim
 �

.Yv ;k/2Fv

H 0.Yv;MYv ;k/

and that this assignment defines a left G-action on �.M/. Taking global sections on
(7.4), we get the relation 'vg ı  Y0vg;Yvg

D  Y0v ;Yv
ı 'vg , which implies that

 Y0v ;Yv
.g:mY0v ;k

0/ D  Y0v ;Yv
.'vg.mY0vg;k

0//

D 'vg. Y0vg;Yvg
.mY0vg;k

0//

D 'vg.mYvg;k/ D g:mYv ;k :

We obtain an isomorphism

�.M/ D lim
 �
Fvg

H 0.Yvg ;MYvg;k/
g
�! lim
 �
Fv

H 0.Yv;MYv ;k/ D �.M/:

According to (i) in (a) we have the sequence

'vhg W H
0.Yvhg ;MYvhg;k/

'vhg
��! H 0.Yvh;MYvh;k/

'v
h
�! H 0.Yv;MYv ;k/;

which tells us that h:.g:m/D .hg/:m for h;g 2G andm2�.M/. This gives aG-action
on �.M/ which, by construction, is compatible with its various D.Gv;0; L/-module
structures.

Claim 3. � ıLocG� .M/ 'M .
By Theorem 6.6 we know that this holds as a coadmissible D.G0; L/�-module, so

we need to identify the G-action on both sides. Let v be a special vertex. According to
(7.5), the action

� ıLocG� .M/ ' lim
 �
k

Mvg;k ! lim
 �
v

Mv;k ' � ıLocG� .M/
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of an element g 2G on� ıLocG� .M/ is induced by z'vg WMvg;k!Mv;k . By dualizing

V D
[
k2N

VGvg.k/ı-an D
[
k2N

VGv.k/ı-an;

we obtain the identification

M ' lim
 �
k

Mvg;k ' lim
 �
k

Mv;k :

Therefore, we get back the original action of g on M .

Claim 4. LocG� ı�.M/ 'M.
We know that

LocG� .�.M//Yv ;k DMYv ;k

as D�

Yv ;k
.�/-modules for any .Yv; k/ 2 F, cf. Theorem 6.6. It remains to verify that

these isomorphisms are compatible with the maps 'vg and  Yv0 ;Yv
on both sides. To

do that, let us see that the maps 'vg on the left-hand side are induced by the maps of
the right-hand side. Given

'vg WMYv ;k ! .�vg/�MYv ;k;

the corresponding map

'vg W LocG� .�.M//Yvg;k ! .�vg/�.LocG� .�.M//Yv ;k/

equals the map

D
�

Yvg;k
.�/˝Dan.Gvg.k/ı/� Mvg;k ! .�vg/�.D

�

Yv ;k
.�/˝Dan.Gv.k/ı/� Mv;k/;

whereMvg;k DH
0.Yvg ;MYvg;k/ andMv;k DH

0.Yv;MYv ;k/. Locally, the preceding
morphism is given by T vg;Ygv ˝H

0.Yvg ; '
v
g/, cf. (7.5). Let U � Yv be an open subset,

P 2 D
�

Yv ;k
.�/.U/ and m 2Mv;k D H

0.Yvg ;MYvg;k/. The isomorphisms

LocG� .�.M//Yv ;k 'MYv ;k

are induced (locally) byP ˝m 7!P:.mjU/. Condition (ii) tells us that these morphisms
interchange the maps 'vg , as desired. The compatibility with the transition maps Yv0 ;Yv

for two models .Yv0 ; k0/ � .Yv; k/ in F follows the arguments given in Theorem 6.6,
by using the fact that the morphisms  Yv0 ;Yv

are compatible with the canonical map
‰ W ��D

�

Yv0 ;k
0.�/! D

�

Yv ;k
.

This ends the proof of the theorem.
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As in the case of the group G0, we now indicate how objects from CF
G;�

can be
realized as G-equivariant sheaves on the G-space X1. The following discussion is an
adaptation of the discussion given in [30, (5.4.3) and Proposition 5.4.5] to our case.

Proposition 7.7. The G0-equivariant structure of the sheaf D.�/ extends to a
G-equivariant structure.

Proof. Let g 2 G and let v; v0 2 B be special vertices. Let us suppose that
.Yv0 ; k

0/� .Yv; k/ inF. The isomorphism �v0g W Yv0! Yv0g induces a ring isomorphism

T v
0

g W D
�

Yv0g;k
0.�/! .�v

0

g /�D
�

Yv0 ;k
0.�/:

On the other hand, and exactly as we have done in (6.5), the commutative diagram

X1 Yv Yvg

Yv0 Yv0g

spYv

spYv0

�vg

�v
0

g

� �:g

defines a continuous function

�g W X1 ! X1; .av/ 7! .�vg.av//;

which satisfies
spYv0g ı �g D �

v0

g ı spYv0 :

In particular, if V � X1 is the open subset V WD sp�1Yv .U/with U � Yv an open subset,
then

.�v
0

g /
�1.spYv0g .V // D spYv0 .�

�1
g .V //

and so the map T v0g induces the morphism

(7.6) D
�

Yv0g;k
0.�/.spYv0g .V //! D

�

Yv0 ;k
0.�/.spYv0 .�

�1
g .V ///:

Moreover, if .Yv00 ; k00/ � .Yv0 ; k0/ � .Yv; k/ in F, and as before V D sp�1Yv .U/ � X1

with U � Yv an open subset, then the commutative diagram

D
�

Yv00g;k
00.�/.spYv00g .V // D

�

Yv00 ;k
00.�/.spYv00 .�

�1
g .V ///:

D
�

Yv0g;k
0.�/.spYv0g .V // D

�

Yv0 ;k
0.�/.spYv0 .�

�1
g .V ///:
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implies that if we identify

D.�/.V / D lim
 �

.Yvg;k/2Fvg

D
�

Yvg;k
.�/.spYvg .V //

and we take projective limits in (7.6), then we get a ring homomorphism

Tg;V W D.�/.V /! .�g/�D.�/.V /;

which implies that the sheaf D.�/ is G-equivariant. Furthermore, by construction, this
G-equivariant structure extends the G0-structure defined in Section 6.1.

Finally, let us recall the faithful functor

M M1

from coadmissible G0-equivariant arithmetic D.�/-modules on FX to G0-equivariant
D.�/-modules on X1. If M comes from a coadmissible G-equivariant D.�/-module
on F, then M1 is in fact G-equivariant (as in (6.7), this can be proved by using the
family of L-linear isomorphisms .'vg/g2G). As in Proposition 6.9, Theorem 7.6 gives
us the following result.

Theorem 7.8. Let us suppose that � 2Hom.T ;Gm/ is an algebraic character such
that �C � 2 t�Q is a dominant and regular character of tQ. The functor M M1

from the category CF
G;�

to G-equivariant D.�/-modules on X1 is a faithful functor.

Remark 7.9. We end this work by remarking to the reader that the functors in
Proposition 6.9 and Theorem 7.8 become fully faithful functors if we required that
the objects in the target category carry a structure of locally convex topological D.�/-
modules (cf. [20, Propositions 5.2.31 and 5.3.16]). In fact, following [20, (5.2.30)], we
can see that D.�/ carries a natural structure of a sheaf of locally convex topological
L-algebras and, more generally, if M 2 C

G0
X;�

(resp. M 2 CF
G;�

), then M1 becomes
a G0-equivariant (resp. G-equivariant) sheaf of locally convex topological L-vector
spaces, endowed with the structure of a topological D.�/-module.
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