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HomR.A;�/, we prove that CA is the class of all direct summands of leftA-modules cofiltered
by A-modules coinduced from R-modules from C , with the decreasing filtration indexed by
the natural numbers. A combined result, based on the assumption that countable products of
modules from F have finite F -resolution dimension bounded by k, involves cofiltrations
indexed by the ordinal!C k. The dual results also hold, provable by the same technique going
back to the author’s monograph on semi-infinite homological algebra (2010). In addition, we
discuss the n-cotilting and n-tilting cotorsion pairs, for which we obtain better results using a
suitable version of a classical Bongartz–Ringel lemma. As an illustration of the main results
of the paper, we consider certain cotorsion pairs related to the contraderived and coderived
categories of curved DG-modules.

Mathematics Subject Classification (2020) – Primary 16D10; Secondary 16S90, 16E30,
16E45, 16E35, 16T15.

Keywords – Cotorsion pairs, filtrations and cofiltrations, induced and coinduced modules,
resolution dimension, tilting and cotilting modules, curved DG-modules, coderived and
contraderived categories.

(*) Indirizzo dell’A.: Institute of Mathematics of the Czech Academy of Sciences, Žitná 25,
115 67 Praha 1, Czech Republic; and Laboratory of Algebra and Number Theory, Institute for
Information Transmission Problems, Moscow 127051, Russia; positselski@math.cas.cz

https://creativecommons.org/licenses/by/4.0/
mailto:positselski@math.cas.cz


L. Positselski 192

Contents

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2. Cofiltrations by coinduced modules . . . . . . . . . . . . . . . . . . . . . 202
3. Filtrations by induced modules . . . . . . . . . . . . . . . . . . . . . . . . 222
4. Illustration: Contraderived and coderived categories . . . . . . . . . . . . . 241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

0. Introduction

Cotorsion pairs (or in the older terminology, “cotorsion theories”), introduced
by Salce in [34], became a standard tool of the contemporary theory of rings and
modules [19]. The basic idea can be explained in a few words as follows.

Given an associative ring A and left A-modules L and M , the groups ExtnA.L;M/

can be computed either in terms of a projective resolution of L, or using an injective
coresolution of M . But what if we wish to use “partially injective” and “partially
projective” resolutions? We want to resolve L by modules that are only somewhat
projective, and coresolve M by modules that are only somewhat injective. Can we use
such resolutions in order to compute ExtnA.L;M/?

As one can see, the answer is positive, provided that the chosen classes of “partially
injective” and “partially projective” modules fit each other and one is willing to resolve
both L andM simultaneously. For example, one can choose a flat resolution F� for the
module L, and simultaneously choose a coresolution C � of the moduleM by so-called
cotorsion A-modules (in the sense of Enochs [17]). Then the total complex of the
bicomplex HomA.F�; C �/ computes Ext�A.L;M/.

Alternatively, let R � A be a subring. We want to resolve L by A-modules that are
projective as R-modules. What kind of coresolution of M do we need to use jointly
with such a resolution of L, in order to compute the Ext groups over A?

The definition of a (hereditary) cotorsion pair provides a general answer to such
questions. A pair of classes of left A-modules F and C � A-Mod is called a cotorsion
pair if Ext1A.F; C / D 0 for all F 2 F and C 2 C , and both the classes F and C are
maximal with respect to this property. A cotorsion pair .F ;C/ is said to be hereditary
if ExtnA.F; C / D 0 for all F 2 F , C 2 C , and n � 1.

In particular, returning to the example above, a left A-module C is said to be
(Enochs) cotorsion [17] if Ext1A.F;C /D 0 for all flat leftA-modules F , or equivalently,
ExtnA.F; C / D 0 for all flat F and n � 1.

More generally, one can consider projective objects, injective objects, and cotorsion
pairs in an abelian category A. In order to compute the groups Ext�A using projective
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or injective resolutions, one needs to have enough projectives or injectives, respectively.
What does it mean that there are “enough partially projective/injective objects” in a
cotorsion pair .F ;C/? The appropriate definition of this was suggested in [34], and it
is a strong and unobvious condition.

Given a cotorsion pair .F ;C/ in A-Mod, one says that there are enough projectives
in .F ;C/ if every left A-module L is a quotient module of a module F from F by a
submoduleC 0 D ker.F !L/ belonging to C . Similarly, one says that there are enough
injectives in .F ;C/ if every left A-module M is a submodule of a module C from
C with the quotient module F 0 D C=M belonging to F . The short exact sequences
0 ! C 0 ! F ! L ! 0 and 0 ! M ! C ! F 0 ! 0 are called approximation
sequences. A cotorsion pair .F ;C/ in A-Mod has enough projectives if and only if it
has enough injectives; these assertions are known as Salce lemmas [34]. A cotorsion
pair having enough projectives (equivalently, enough injectives) is said to be complete.
In other words, a cotorsion pair .F ;C/ is complete if approximation sequences with
respect to .F ;C/ exist for all left A-modules.

The assertion that the flat cotorsion pair .F ;C/, where F is the class of flat left
A-modules and C is the class of cotorsion left A-modules, is complete became known
as the flat cover conjecture. It was proved (in two different ways) in the paper [10].

The most powerful (and the most commonly used) approach to constructing complete
cotorsion pairs known today was developed by Eklof and Trlifaj [16]. The Eklof–Trlifaj
theorem claims that any cotorsion pair generated by a set of modules is complete. Here
a cotorsion pair .F ;C/ is said to be generated by a class of modules � � A-Mod if C is
the class of all leftA-modules C such that Ext1A.S;C /D 0 for all S 2 � . Subsequently
it was realized that the technique of the Eklof–Trlifaj construction is a particular case of
the so-called small object argument in the homotopy theory or model category theory.
In fact, a complete cotorsion pair can be thought of as a particular case of a weak
factorization system [20, 33].

On the dual side, it is known that any cotorsion pair cogenerated by a class of
pure-injective modules is complete [19, Theorem 6.19]. Further alternative approaches
to proving completeness of cotorsion pairs in some special cases are provided by the
Bongartz–Ringel lemma [12, Lemma 2.1], [32, Lemma 40], [19, Lemma 6.15 and
Proposition 6.44] and the Auslander–Buchweitz construction [3].

The aim of this paper is to offer another such alternative approach. It is an explicit
self-dual construction applicable in the particular case of cotorsion pairs lifted via the
functor of restriction of scalarsA-Mod!R-Mod with respect to a ring homomorphism
R! A. In the most typical situation, R would be a subring in A. Notice that the small
object argument is decidedly not self-dual. In fact, it is known to be consistent with
ZFCC GCH that the dual version of the Eklof–Trlifaj theorem is not true [15].



L. Positselski 194

Still, most of the complete cotorsion pairs constructed in this paper can be easily
obtained from the small object argument. The main advantage of our approach is
that it produces a quite explicit description of the second class in the cotorsion pair.
Sometimes this also follows from the Eklof–Trlifaj theorem; but in other cases it does
not. In the latter cases, our approach provides new knowledge.

In the work of the present author, other results somewhat resembling those of the
present paper were obtained in the paper [31], where descriptions of the right classes in
the so-called strongly flat cotorsion pairs, and sometimes also in the flat cotorsion pair,
were provided for categories of modules over commutative rings. The constructions of
approximation sequences in the present paper go back to the author’s monograph on
semi-infinite homological algebra [24].

Semi-infinite homological algebra, as interpreted in the book [24], is the study
of module categories over algebraic structures which have a mixture of algebra and
coalgebra variables in them. These include corings over rings (which means roughly
“coalgebras over algebras”) and semialgebras over coalgebras (“algebras over coalge-
bras”), as well as more complicated semialgebras over corings.

Relative situations appearing naturally in this context, that is a coring over a ring
or a semialgebra over a coalgebra, tend to be better behaved than a usual ring over a
subring. Nevertheless, techniques originally developed in the semi-infinite context can
be transferred to the realm of ring theory. That is what we do in this paper.

Section 1 is an overview of preliminary material. The main results of the paper
are presented in Section 2. In that section, for various cotorsion pairs .FA;CA/ in the
category of A-modules, we describe the right class CA as the class of all modules
cofiltered by modules of simpler nature. The latter means typically the A-modules
HomR.A; C / coinduced from certain R-modules C , using a ring homomorphism
R ! A. Here the class FA consists of all A-modules whose underlying R-module
belongs to the left class F of a cotorsion pair .F ;C/ in R-Mod (while the R-modules
C above range over the class C ). Moreover, we show that it suffices to consider rather
short cofiltrations (or, in another language, decreasing filtrations): depending on the
assumptions, these are either finite (co)filtrations, or cofiltrations indexed by the natural
numbers, or indexed by the ordinal ! C k, where k is a finite integer.

The dual results are discussed in Section 3. For various cotorsion pairs .F A;CA/ in
A-Mod, we describe the left class F A as the class of all modules filtered by modules of
simpler nature. The latter means typically theA-modulesA˝R F induced from certain
R-modules F , using a ring homomorphism R! A. Here the class CA consists of all
A-modules whose underlyingR-module belongs to the right class C of a cotorsion pair
.F ;C/ in R-Mod (while the R-modules F above range over the class F ). The results
of Section 3 are generally less surprising, from the point of view of the contemporary
module theory, than those of Section 2, in that a description of the left class in terms of
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filtrations is provided, for many cotorsion pairs, by the small object argument. Still, we
obtain some new information, in the sense that the filtrations which we construct are
rather short (either finite, or indexed by the natural numbers, or by the ordinal ! C k).

We also discuss the n-cotilting and n-tilting cotorsion pairs (see [19, Chapters 13–
15]), for which it turns out that the conventional techniques of the tilting theory allow to
obtain better results than our “semi-infinite” approach. In this connection we introduce
a generalized (n� 1) version of the classical (nD 1) Bongartz lemma [19, Lemma 6.15
and Proposition 6.44], or which is the same, an infinitely generated version of a lemma
of Ringel [32, Lemma 40], and use it to extend a recent result of Šaroch and Trlifaj [35,
Example 2.3] to n � 2. This material is presented in Sections 2.3 and 3.3.

As an illustration for the main results of the paper, we produce certain cotorsion pairs
in the abelian categories of curved DG-modules over some curved DG-rings. These are
hereditary, complete cotorsion pairs related to the contraderived and coderived abelian
model structures, as constructed in [8, Section 1.3]. The idea to consider these cotorsion
pairs was suggested to the author by J. Šťovíček. We obtain almost no new results
in this direction (some general theorems about filtrations and cofiltrations indexed
by countable ordinals are notable exceptions). However, our approach allows us to
obtain new proofs of the results of the memoir [25] concerning the contraderived and
coderived categories of CDG-modules [25, Theorems 3.6, 3.7 and 3.8], interpreting
these essentially as a particular case of our results on cotorsion pairs arising from ring
homomorphisms. This is the material of Section 4.

1. Preliminaries

All rings and algebras in this paper are presumed to be associative and unital. All
ring homomorphisms take the unit to the unit, and all modules are unital.

Let A be a ring. We denote by A-Mod the abelian category of left A-modules.
For any left A-module M , we denote by Add.M/ D AddA.M/ � A-Mod the class of
all direct summands of direct sums M .I / of copies of the A-module M , indexed by
arbitrary sets I . Similarly, we let Prod.M/ D ProdA.M/ � A-Mod denote the class of
all direct summands of products M I of copies of the A-module M .

For any A-module M , choose a projective resolution � � � ! P2 ! P1 ! P0 !

M ! 0 and an injective coresolution 0!M ! J 0 ! J 1 ! J 2 ! � � � . For every
i � 0, denote by �iM the cokernel of the morphism PiC1 ! Pi and by ��iM the
kernel of the morphism J i ! J iC1. So, in particular, �0M DM , and our notation
is consistent. The A-modules �iM are called the syzygy modules of the A-module M ,
while the A-modules ��iM are called the cosyzygy modules of M .
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To emphasize that M is viewed as a (left) A-module, we will sometimes use the
notation AM . If R! A is a ring homomorphism, then the underlying left R-module
of M will be sometimes denoted by RM .

Given a ring homomorphism R! A and a left R-module L, the left A-module
A ˝R L is said to be induced from the left R-module L, and the left A-module
HomR.A;L/ is said to be coinduced from the left R-module L.

1.1 – Ext1-orthogonal classes

We say that two left A-modules F and C are Ext1-orthogonal if Ext1A.F; C / D
0. Two classes of left A-modules F and C � A-Mod are called Ext1-orthogonal if
Ext1A.F; C / D 0 for all F 2 F and C 2 C .

Given a class of left A-modules F � A-Mod, we denote by F ?1 � A-Mod the
class of all leftA-modulesX such that Ext1A.F;X/D 0 for all F 2 F . Similarly, given
a class of left A-modules C � A-Mod, we denote by ?1C � A-Mod the class of all left
A-modules Y such that Ext1A.Y; C / D 0 for all C 2 C .

Clearly, the classes F ?1 and ?1C are closed under extensions and direct summands
in A-Mod. The class F ?1 contains all injective left A-modules, while the class ?1C

contains all projective left A-modules.
A pair of classes of leftA-modules .F ;C/ is said to be a cotorsion pair if C D F ?1

and F D ?1C . In other words, .F ;C/ is called a cotorsion pair if both F and C are
the maximal classes with the property of being Ext1-orthogonal to each other.

For any class of left A-modules � � A-Mod, the pair of classes F D ?1.�?1/ and
C D �?1 is a cotorsion pair in A-Mod. We will say that the cotorsion pair .F ;C/ is
generated by � . The class F is also said to be generated by � .

Dually, for any class of left A-modules T � A-Mod, the pair of classes F D ?1T

and C D .?1T /?1 is a cotorsion pair in A-Mod. We will say that the cotorsion pair
.F ;C/ is cogenerated by T . The class C is also said to be cogenerated by T .

The following variation of the above notation will be also useful. Given a class of
left A-modules F and an integer j � 0, we denote by F ?>j � A-Mod the class of
all left A-modules X such that ExtnA.F;X/ D 0 for all F 2 F and n > j . Similarly,
given a class of left A-modules C , we denote by ?>j C � A-Mod the class of all left
A-modules Y such that ExtnA.Y; C / D 0 for all C 2 C and n > j .

1.2 – Approximation sequences

Let F and C � A-Mod be two Ext1-orthogonal classes of left A-modules. We will
say that F and C admit approximation sequences if, for every left A-module M , there
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exist short exact sequences of left A-modules

0 �! C 0 �! F �!M �! 0;(1)
0 �!M �! C �! F 0 �! 0(2)

with F , F 0 2 F and C , C 0 2 C .
An approximation sequence (1) is called a special precover sequence, and the sur-

jective morphism F !M is called a special precover. An approximation sequence (2)
is called a special preenvelope sequence, and the injective morphismM ! C is called
a special preenvelope.

Lemma 1.1 (Salce [34]). Let .F ; C/ be an Ext1-orthogonal pair of classes of
modules, both of them closed under extensions in A-Mod. Assume that every left
A-module is a quotient module of a module from F and a submodule of a module
from C . Then a special precover sequence (1) exists for every left A-module M if and
only if a special preenvelope sequence (2) exists for every left A-module M .

Proof. Let us prove the “if”. LetM be a leftA-module, and letE 2 F be a module
for which there exists a surjective A-module morphism E !M . Let N be the kernel
of this morphism; so we have a short exact sequence 0! N ! E ! M ! 0. Let
0! N ! C ! F ! 0 be a special preenvelope sequence for the left A-module N ,
i.e., C 2 C and F 2 F . Denote by H the pushout (that is, in other words, the fibered
coproduct) of the pair of morphisms N ! E and N ! C . So H is the cokernel of
the diagonal morphism N ! E ˚ C . Then there are short exact sequences 0! E !

H ! F ! 0 and 0! C ! H ! M ! 0. Now the former sequence shows that
H 2 F , and the latter one is the desired special precover sequence for theA-moduleM .
The proof of the “only if” implication is dual.

Let .F ;C/ be a cotorsion pair in A-Mod. Then it is clear from Lemma 1.1 that
the pair .F ; C/ admits special precover sequences if and only if it admits special
preenvelope sequences. In this case, the cotorsion pair .F ;C/ is said to be complete.

Given a class of modules A � A-Mod, denote by A˚ � A-Mod the class of all
direct summands of modules from A.

Lemma 1.2. Let .F ;C/ be an Ext1-orthogonal pair of classes of left A-modules
admitting approximation sequences. Then .F ˚;C˚/ is a complete cotorsion pair in
A-Mod.

Proof. Since .F ;C/ is an Ext1-orthogonal pair of classes of modules admitting
approximation sequences, it follows immediately that the pair of classes F ˚ and C˚
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has the same properties. So it only remains to show that F ?1 � C˚ and ?1C � F ˚.
Indeed, let M be a left A-module belonging to F ?1 . By assumption, there exists a
short exact sequence of left A-modules 0! M ! C ! F 0 ! 0 with C 2 C and
F 0 2 F . Since Ext1A.F 0;M/ D 0, it follows that M is a direct summand of C .

1.3 – Filtrations and cofiltrations

We consider ordinal-indexed smooth increasing filtrations (called for brevity simply
“filtrations”) and ordinal-indexed smooth decreasing filtrations (called “cofiltrations”).
In the main results of this paper, we will mostly deal with (co)filtrations by rather small
ordinals, such as the ordinal of natural numbers !; but here we discuss the general
case.

Let ˛ be an ordinal andM be an A-module. An ˛-filtration onM is a collection of
submodules FiM �M indexed by the ordinals 0 � i � ˛ such that

• F0M D 0, F˛M DM , and FjM � FiM for all 0 � j � i � ˛;

• FiM D
S
j<i FjM for all limit ordinals i � ˛.

An A-module M with an ˛-filtration F is said to be filtered (or ˛-filtered) by the
A-modules FiC1M=FiM , 0 � i < ˛.

Given a class of A-modules � � A-Mod, an A-moduleM is said to be ˛-filtered by
� ifM admits an ˛-filtration F such that the successive quotient module FiC1M=FiM
is isomorphic to a module from � for every 0 � i < ˛. An A-module is said to be
filtered by � if it is ˛-filtered by � for some ordinal ˛.

The class of all A-modules filtered by � is denoted by Fil.�/ � A-Mod, and the
class of all A-modules ˛-filtered by � is denoted by Fil˛.�/ � Fil.�/. It is convenient
to assume that 0 2 � , guaranteeing that Fil˛.�/ � Filˇ .�/ whenever ˛ � ˇ.

Let ˛ and ˇ be two ordinals. We denote, as usually, by ˛ � ˇ D
F
ˇ ˛ the ordinal

product of ˛ and ˇ. This means the ordinal which is order isomorphic to the well-
ordered set of pairs ¹.i; j / j 0 � i < ˛; 0 � j < ˇº with the lexicographical order,
.i 0; j 0/ < .i 00; j 00/ if either j 0 < j 00, or j 0 D j 00 and i 0 < i 00.

Lemma 1.3. For any class of A-modules � � A-Mod, one has

(a) Filˇ .Fil˛.�// D Fil˛�ˇ .�/;

(b) Fil˛.�˚/ � Fil˛.�/˚.

The following result is known as the Eklof lemma.

Lemma 1.4. For any class of left A-modules � , one has Fil.�/?1 D �?1 .

Proof. This is [16, Lemma 1] or [19, Lemma 6.2].
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The next result is called the Eklof–Trlifaj theorem.

Theorem 1.5. Let � be a set (rather than a class) of leftA-modules, and let .F ;C/
be the cotorsion pair in A-Mod generated by � . Then

(a) .F ;C/ is a complete cotorsion pair;

(b) the class F can be described as F D Fil.� [ ¹Aº/˚, where A denotes the free left
A-module with one generator.

Proof. Part (a) is [16, Theorem 10] or [19, Theorem 6.11], and part (b) is [19,
Corollary 6.13 or 6.14]. Essentially, one proves by an explicit construction (a particular
case of the small object argument) that the pair of classes Fil.�/ and �?1 � A-Mod
admits special preenvelope sequences, and then by Lemma 1.1 it follows that the pair
of classes Fil.� [ ¹Aº/ and �?1 admits special precover sequences. The two classes
Fil.� [ ¹Aº/ and �?1 are Ext1-orthogonal by Lemma 1.4. By Lemma 1.2, one can
conclude that the two classes Fil.� [ ¹Aº/˚ and �?1 form a complete cotorsion pair.
By the definition, we have C D �?1 , and it follows that F D Fil.� [ ¹Aº/˚.

Let ˛ be an ordinal andN be a leftA-module. An ˛-cofiltration onN is a collection
of leftA-modulesGiN indexed by the ordinals 0� i � ˛ and leftA-module morphisms
GiN ! GjN defined for all 0 � j < i � ˛ such that

• the triangle diagramGiN !GjN !GkN is commutative for all triples of indices
0 � k < j < i � ˛;

• G0N D 0 and G˛N D N ;

• the induced map into the projective limit GiN ! lim
 �j<i

GjN is an isomorphism
for all limit ordinals i � ˛;

• the map GiC1N ! GiN is surjective for all 0 � i < ˛.

It follows from the above list of conditions that the map GiN ! GjN is surjective for
all 0 � j < i � ˛. An A-module N with an ˛-cofiltration G is said to be cofiltered
(or ˛-cofiltered) by the A-modules ker.GiC1N ! GiN/.

Given a class of A-modules T � A-Mod, an A-module N is said to be ˛-cofiltered
by T if N admits an ˛-cofiltration G such that the A-module ker.GiC1N ! GiN/

is isomorphic to an A-module from T for all 0 � i < ˛. An A-module is said to be
cofiltered by T if it is ˛-cofiltered by T for some ordinal ˛.

The class of all A-modules cofiltered by T is denoted by Cof.T / � A-Mod, and
the class of all A-modules ˛-cofiltered by T is denoted by Cof˛.T / � Cof.T /. It is
convenient to assume that 0 2 T , so that Cof˛.T / � Cofˇ .T / whenever ˛ � ˇ.

Lemma 1.6. For any class ofA-modules T �A-Mod and any two ordinals ˛ and ˇ,
one has
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(a) Cofˇ .Cof˛.T // D Cof˛�ˇ .T /;

(b) Cof˛.T ˚/ � Cof˛.T /˚.

Proof. Part (b) is obvious. The proof of part (a) is left to the reader.

The following assertion is known as the Lukas lemma or “the dual Eklof lemma”.

Lemma 1.7. For any class of left A-modules T , one has ?1Cof.T / D ?1T .

Proof. This is [16, Proposition 18] or [19, Lemma 6.37].

The dual version of the small object argument does not work in module categories,
because most modules are not cosmall. In fact, it is consistent with ZFC that the dual
version of Theorem 1.5 (a) is not true.

Specifically, let A D Z be the ring of integers, so A-Mod is the category of abelian
groups. Let T D ¹Zº be the set consisting of one infinite cyclic abelian group only; and
let Q denote the additive group of rational numbers. Let .W ;W?1/ be the cotorsion
pair in Z-Mod cogenerated by T ; the class W D ?1T is known as the class of all
Whitehead groups. According to [15, Theorem 0.4], it is consistent with ZFCC GCH
that the group Q has no W -precover. (See also the discussion in [35, Lemma 2.1 and
Example 2.2].)

1.4 – Homological formulas

Let R ! A be a homomorphism of associative rings. Then every left or right
A-module has an underlying R-module structure. In particular, A itself acquires the
structure of an R-R-bimodule.

Lemma 1.8. (a) Let L be a left R-module andD be a left A-module, and let n � 0
be an integer. Assume that TorRi .A; L/ D 0 for all 0 < i � n. Then there is a
natural isomorphism of abelian groups ExtiA.A˝R L;D/' ExtiR.L;D/ for every
0 � i � n.

(b) Let B be a left A-module and M be a left R-module, and let n � 0 be an integer.
Assume that ExtiR.A;M/D 0 for all 0 < i � n. Then there is a natural isomorphism
of abelian groups ExtiA.B;HomR.A;M// ' ExtiR.B;M/ for every 0 � i � n.

Proof. We will prove part (b); the proof of part (a) is similar. Notice that, for any
injective leftR-module I , the leftA-module HomR.A;I / is injective (because the func-
tor HomR.A;�/WR-Mod! A-Mod is right adjoint to the forgetful functor A-Mod!
R-Mod, which is exact). Let I � be an injective coresolution of the left R-module M .
Then the sequence of left A-modules 0! HomR.A;M/! HomR.A; I

0/! � � � !
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HomR.A; I
nC1/ is exact, since ExtiR.A;M/ D 0 for all 0 < i � n. Extending this

sequence to an injective coresolution HomR.A; I
0/ ! � � � ! HomR.A; I

nC1/ !

J nC2 ! J nC3 ! � � � of the left A-module HomR.A;M/ and computing the groups
ExtiA.B;HomR.A;M// in terms of this coresolution, we obtain the desired natural
isomorphisms.

1.5 – Resolution dimension

Let A be a ring and F � A-Mod be a class of left A-modules. We will say that the
class F is resolving if the following conditions hold:

(i) F is closed under extensions in A-Mod;

(ii) F is closed under the kernels of surjective morphisms in A-Mod;

(iii) every left A-module is a quotient module of a module from F .

Notice that, if F is closed under direct summands, then condition (iii) can be equiva-
lently rephrased by saying that all the projective left A-modules belong to F .

Let k � 0 be an integer. We say that a left A-module M has F -resolution dimen-
sion� k if there exists an exact sequence of leftA-modules 0! Fk ! Fk�1! � � � !

F1 ! F0 !M ! 0 with Fi 2 F for all 0 � i � k.
Dually, a class of modules C � A-Mod is said to be coresolving if the following

conditions hold:

(i*) C is closed under extensions in A-Mod;

(ii*) C is closed under the cokernels of injective morphisms in A-Mod;

(iii*) every left A-module is a submodule of a module from C .

If C is closed under direct summands, then condition (iii*) is equivalent to the condition
that all the injective left A-modules belong to C .

We say that a left A-module N has C -coresolution dimension � k if there exists an
exact sequence of left A-modules 0! N ! C 0 ! C 1 ! � � � ! C k�1 ! C k ! 0

with C i 2 C for all 0 � i � k.

Lemma 1.9. (a) Let F �A-Mod be a resolving class, and letM be a leftA-module
of F -resolution dimension� k. Let 0!Gk!Gk�1!� � �!G1!G0!M! 0

be an exact sequence of left A-modules. Assume that Gi 2 F for all 0 � i < k.
Then Gk 2 F .

(b) Let C � A-Mod be a coresolving class, and let N be a left A-module of C -coreso-
lution dimension � k. Let 0! N ! D0 ! D1 ! � � � ! Dk�1 ! Dk ! 0 be
an exact sequence of left A-modules. Assume that Di 2 C for all 0 � i < k. Then
Dk 2 C .
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Proof. This is [38, Proposition 2.3 (1)] or [27, Corollary A.5.2]. (The resolving
and coresolving classes are assumed to be closed under direct summands in [38], but
this assumption can be dropped.)

Lemma 1.10. (a) For any resolving class F � A-Mod and any integer l � 0, the
class F .l/ of all left A-modules of F -resolution dimension� l is resolving as well.

(b) For any coresolving class C � A-Mod and any integer l � 0, the class C.l/ of all
left A-modules of C -coresolution dimension � l is coresolving as well.

Proof. This is [38, Proposition 2.3 (2)] or [27, Lemma A.5.4].

Lemma 1.11. Let .F ;C/ be a cotorsion pair in A-Mod. Then the following condi-
tions are equivalent:

(1) the class F is resolving (i.e., F is closed under the kernels of surjective morphisms
in A-Mod);

(2) the class C is coresolving (i.e., C is closed under the cokernels of injective morphisms
in A-Mod);

(3) Ext2A.F; C / D 0 for all F 2 F and C 2 C ;

(4) ExtnA.F;C /D 0 for allF 2F ,C 2 C , and n� 1 (i.e., C DF ?>0 and F D ?>0C ).

Proof. This lemma is well known; see [18, Theorem 1.2.10] or [19, Lemma 5.24].
The argument is straightforward, based on the long exact sequences of Ext groups for a
short exact sequence of modules. One proves the equivalences (1), (3), (2) and
then deduces (4) from either (1) or (2).

A cotorsion pair .F ;C/ inA-Mod is said to be hereditary if it satisfies the equivalent
conditions of Lemma 1.11.

2. Cofiltrations by coinduced modules

2.1 – Posing the problem

Let R! A be a homomorphism of associative rings, and let F be a class of left
R-modules. Mostly we will assume F to be the left part of a cotorsion pair .F ;C/ in
R-Mod.

Denote by FA the class of all left A-modules whose underlying R-modules belong
to F . Does there exist a cotorsion pair .FA;CA/ in A-Mod?

Obviously, if the answer to this question is positive, then the class CA can be
recovered as CA D F

?1

A . But can one describe the class CA more explicitly?
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We start with the following easy lemma, which provides a necessary condition.

Lemma 2.1. Assume that FA is the left part of a cotorsion pair .FA;CA/ in A-Mod.
Then the left R-module A belongs to F .

Proof. For any cotorsion pair .FA;CA/ in A-Mod, all projective left A-modules
belong to FA. So, in the situation at hand, the underlying leftR-modules of all projective
left A-modules must belong to F .

The next lemma shows that this condition is also sufficient to get a cotorsion pair
.FA;CA/. Given a class of left R-modules T , we denote by HomR.A; T / the class of
all left A-modules of the form HomR.A; T / with T 2 T .

Lemma 2.2. Let .F ;C/ be a cotorsion pair in R-Mod cogenerated by a class of
left R-modules T . Assume that the left R-module A belongs to F . Then we have

(a) FA D
?1HomR.A;C/ D

?1HomR.A; T /;

(b) .FA;F ?1

A / is a cotorsion pair in A-Mod;

(c) Cof.HomR.A; T //
˚ � Cof.HomR.A;C//

˚ � F
?1

A .

Proof. Part (a): by assumptions, we have F D ?1T and Ext1R.A; T / D 0 for all
T 2 T . By Lemma 1.8 (b) (for n D 1), it follows that a left A-module F belongs to
?1HomR.A; T / if and only if the underlying left R-module of F belongs to ?1T . In
particular, this is applicable to T D C .

Part (b): in view of part (a), .FA;F ?1

A / is the cotorsion pair in A-Mod cogenerated
by the class HomR.A; T / or HomR.A;C/.

Part (c) follows from part (a) and Lemma 1.7.

So we have answered our first question, but we want to know more. Can one
guarantee that the cotorsion pair .FA;CA/ is complete?

Proposition 2.3. Let .F ;C/ be a (complete) cotorsion pair in R-Mod generated
by a set of left R-modules � , and let FA be the class of all left A-modules whose
underlying leftR-modules belong to F . Assume that the leftR-moduleA belongs to F .
Then there exists a complete cotorsion pair .FA;CA/ in A-Mod generated by a certain
set of left A-modules �A.

Proof. A class of left R-modules F is said to be deconstructible if there exists
a set of left R-modules � such that F D Fil.�/. Any class of modules of the form
F D Fil.�/˚ is deconstructible, that is, for any set � � R-Mod there exists a set
� 0 � R-Mod such that Fil.�/˚ D Fil.� 0/ � R-Mod [19, Lemma 7.12]. Furthermore,
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it follows from the Hill lemma [19, Theorem 7.10] that the class FA � A-Mod is
deconstructible for every deconstructible class F � R-Mod. So there exists a set of
left A-modules �A such that FA D Fil.�A/. In fact, if � is an uncountably infinite
regular cardinal such that the cardinalities of R and A are smaller than � and all the
modules in � are < �-presented, then one can use the set of (representatives of the
isomorphism classes of) all the < �-presented modules in FA in the role of �A. Finally,
if a deconstructible class FA D Fil.�A/ � A-Mod is closed under direct summands and
A 2 FA, then .FA;F ?1

A / is a complete cotorsion pair in A-Mod generated by the set
of left A-modules �A by Lemma 1.4 and Theorem 1.5.

After these observations, which follow from the general theory of cotorsion pairs in
module categories, essentially the only remaining question is the one about an explicit
description of the class CA D F

?1

A . In the rest of Section 2, our aim is to show that,
under certain assumptions, the inclusions in Lemma 2.2 (c) become equalities, that is,
most importantly, CA D Cof.HomR.A;C//

˚.
In fact, depending on specific assumptions, we will be able to prove that CA D

Cofˇ .HomR.A;C//
˚ for certain rather small ordinals ˇ. Our assumptions are going to

be rather restrictive; but we will not assume the cotorsion pair .F ;C/ to be generated
by a set (as in Proposition 2.3).

Concerning the second inclusion in Lemma 2.2 (c), all we can say is the following.

Lemma 2.4. Let T be a class of left R-modules such that A 2 ?1T , and let ˛ be
an ordinal. Then

(a) HomR.A;Cof˛.T // � Cof˛.HomR.A; T //;

(b) HomR.A;Cof˛.T /˚/ � Cof˛.HomR.A; T //
˚.

In particular, if C D Cof.T /˚, then Cof.HomR.A;C//
˚ D Cof.HomR.A; T //

˚.

Proof. Part (a) holds, because the functor HomR.A;�/WR-Mod! A-Mod pre-
serves inverse limits, as well as short exact sequences of modules belonging to ¹Aº?1 �

R-Mod. Part (b) follows immediately from (a).
The last assertion follows from (b) in view of Lemma 1.6. Indeed, we have

Cof.HomR.A;C//
˚
D Cof.HomR.A;Cof.T /˚//˚

� Cof.Cof.HomR.A; T //
˚/˚

D Cof.HomR.A; T //
˚:

For a class of examples of complete cotorsion pairs like in Proposition 2.3 arising
in connection with n-cotilting modules, see Lemma 2.13 and Proposition 2.14 below.
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2.2 – Finite filtrations by coinduced modules

LetR!A be a ring homomorphism. Suppose that we are given an Ext1-orthogonal
pair of classes of left R-modules F and C � R-Mod, and denote by FA � A-Mod the
class of all left A-modules whose underlying left R-modules belong to F .

For any leftR-moduleM , one can consider the leftA-module HomR.A;M/. Some-
times we also consider the underlying leftR-module of the leftA-module HomR.A;M/.
That is what we do when formulating the following condition, which will be a key
technical assumption in much of the rest of Section 2:

(��) For any left R-module F 2 F , the left R-module HomR.A; F / also belongs to F .

The specific assumption on which the results of this Section 2.2 are based is that
all left R-modules have finite F -resolution dimension.

Lemma 2.5. Assume that the Ext1-orthogonal pair of classes of left R-modules
.F ;C/ admits special precover sequences (1). Assume further that the leftR-moduleA
belongs to F , the condition (��) holds, and the class F is resolving in R-Mod. Let M
be a left R-module of F -resolution dimension � l . Then the F -resolution dimension
of the left R-module HomR.A;M/ also does not exceed l .

Proof. Let 0! C1 ! F0 !M ! 0 be a special precover sequence (1) for the
left R-module M ; so C1 2 C and F0 2 F . Consider a special precover sequence
0! C2 ! F1 ! C1 ! 0 for the left R-module C1, etc. Proceeding in this way, we
construct an exact sequence of left R-modules 0! Cl ! Fl�1 ! Fl�2 ! � � � !

F1! F0!M ! 0, in which Fi 2 F for all 0 � i � l � 1, Cl 2 C , and the image Ci
of the morphism Fi ! Fi�1 belongs to C for all 1 � i � l � 1. Since the F -resolution
dimension of M does not exceed l by assumption, by Lemma 1.9 (a) it follows that
Cl 2 F . Since A 2 F � ?1C , our exact sequence remains exact after applying the
functor HomR.A;�/. The resulting exact sequence is the desired resolution of length l
of the left R-module HomR.A;M/ by modules from F .

Proposition 2.6. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ;C/ admits approximation sequences (1)–(2). Assume that the left R-module
A belongs to F , and that the condition (��) holds. Assume further that the class F

is resolving in R-Mod and the F -resolution dimension of any left R-module does
not exceed a finite integer k � 0. Then the Ext1-orthogonal pair of classes of left
A-modules FA and CofkC1.HomR.A;C// admits approximation sequences as well.
Here the integer k C 1 is considered as a finite ordinal.

Proof. The pair of classes FA and Cof.HomR.A;C//�A-Mod is Ext1-orthogonal
by Lemma 2.2 (c). Let us show by explicit construction that the pair of classes FA and
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Cofk.HomR.A;C// admits special precover sequences. The construction below goes
back to [24, Lemma 1.1.3].

Let M be a left A-module. Then there is a natural (adjunction) morphism of left
A-modules �M WM ! HomR.A;M/ defined by the formula �M .m/.a/ D am 2M
for every m 2M and a 2 A. The map �M is always injective. Moreover, viewed as a
morphism of left R-modules, �M is a split monomorphism. Indeed, the evaluation-at-
unit map �M WHomR.A;M/!M taking a function f 2 HomR.A;M/ to its value
�M .f /D f .1/ 2M is a leftR-module morphism for which the composition �M ı �M
is the identity map, �M ı �M D idM .

Consider the underlying left R-module of M , and choose a special precover
sequence 0! C 0.M/! F.M/!M ! 0 in R-Mod with modules C 0.M/ 2 C and
F.M/ 2 F . Then we have Ext1R.A;C 0.M// D 0, so the morphism of left A-modules
HomR.A;F.M//! HomR.A;M/ coinduced from the surjective left R-module map
F.M/ ! M is surjective. Denote by Q.M/ the pullback (or in other words, the
fibered product) of the pair of left A-module morphisms M ! HomR.A;M/ and
HomR.A; F.M//! HomR.A;M/.

We have a commutative diagram of left A-module morphisms, in which the four
short sequences are exact:

(3) 0 0

0 // M

OO

// HomR.A;M/

OO

// HomR.A;M/=M // 0

0 // Q.M/

OO

// HomR.A; F.M//

OO

// HomR.A;M/=M // 0

HomR.A; C
0.M//

OO

HomR.A; C
0.M//

OO

0

OO

0

OO

Introduce the notation rdF N for the F -resolution dimension of a leftR-moduleN .
We will apply the same notation to A-modules, presuming that the F -resolution
dimension of the underlying R-module is taken.

Next we observe that, whenever 0 < rdF M <1, the F -resolution dimension
of the underlying left R-module of the left A-module Q.M/ is strictly smaller than
the F -resolution dimension of the underlying R-module of the A-module M , i.e.,
rdF Q.M/ < rdF .M/. Indeed, the short exact sequence of leftA-modules 0!M !

HomR.A;M/!HomR.A;M/=M ! 0 splits overR, or in other words, the underlying
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left R-module of HomR.A;M/=M can be presented as the kernel of the surjective
left R-module morphism �M WHomR.A;M/!M . By Lemmas 2.5 and 1.10 (a), we
have rdF HomR.A;M/=M � rdF M . Since HomR.A; F.M// 2 F , it follows from
the short exact sequence 0!Q.M/! HomR.A;F.M//! HomR.A;M/=M ! 0

that rdF Q.M/ < rdF .M ).
It remains to iterate our construction, producing a sequence of surjective morphisms

of left A-modules

M  � Q.M/ � Q.Q.M// � Q3.M/ � � � �  � Qk.M/:

Since rdF M � k by assumption, it follows from the above argument that we have
rdF Qk.M/ � 0, that is, Qk.M/ 2 FA.

The kernel of the surjective morphism Qk.M/!M is cofiltered by the kernels
of the surjective A-module morphisms Q.M/ ! M; Q2.M/ ! Q.M/; : : : ;

Qk.M/ ! Qk�1.M/. These kernels are the left A-modules HomR.A; C
0.M//;

HomR.A; C
0.Q.M///;HomR.A; C

0.Q2.M///; : : : ;HomR.A; C
0.Qk�1.M///. We

have constructed the desired special precover sequence for the pair of classes FA and
Cofk.HomR.A;C//.

Finally, any left R-module N is a submodule of an R-module C.N/ 2 C , since a
special preenvelope sequence with respect to .F ;C/ exists for N by assumption. If N
is a leftA-module, then the map �N provides an embedding ofN into the leftA-module
HomR.A;N /, which is a submodule of the leftA-module HomR.A;C.N //. ThusN is
anA-submodule of HomR.A;C.N //. Following the proof of (the “only if” implication
in) Lemma 1.1, we conclude that the pair of classes FA and CofkC1.HomR.A;C//

admits special preenvelope sequences.

Theorem 2.7. Let .F ; C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module A belongs to F , and that the condition (��) holds.
Assume further that the F -resolution dimension of any left R-module does not exceed
a finite integer k � 0. Then the pair of classes FA and CA D CofkC1.HomR.A;C//

˚

is a hereditary complete cotorsion pair in A-Mod.

Proof. The class FA is closed under direct summands and the kernels of surjective
morphisms, since the class F is. Thus the assertion of the theorem follows from
Proposition 2.6 in view of Lemma 1.2.

Corollary 2.8. For any associative ring homomorphism R ! A and any
hereditary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of
Theorem 2.7, one has F

?1

A D CofkC1.HomR.A;C//
˚.

In particular, it follows that Cof.HomR.A;C//
˚ D CofkC1.HomR.A;C//

˚.
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Proof. The first assertion is a part of Theorem 2.7. The second assertion follows
from the first one together with Lemma 2.2 (c).

Remark 2.9. The condition (��) appears to be rather restrictive. In fact, the con-
struction of Proposition 2.6 originates from the theory of comodules over corings, as
in [24, Lemma 1.1.3], where the natural analogue of this condition feels much less
restrictive, particularly when F is simply the class of all projective left R-modules.
So one can say that the ring A in this Section 2.2 really “wants” to be a coring C
over the ring R, and the left A-modules “want” to be left C -comodules. Then the
coinduction functor, which was HomR.A;�/ in the condition (��), takes the form of
the tensor product functor C ˝R �. This one is much more likely to take projective
left R-modules to projective left R-modules (it suffices that C be a projective left
R-module). To make a ring A behave rather like a coring, one can assume it to be
“small” relative to R in some sense. The following example is inspired by the analogy
with corings and comodules.

Example 2.10. Let F D R-Modproj be the class of all projective left R-modules.
Then C D R-Mod is the class of all left R-modules, and FA D A-ModR-proj is the class
of all left A-modules whose underlying R-modules are projective. In the terminology
of [9, Sections 4.1 and 4.3] and [26, Section 5], the leftA-modules from the related class
CA D F

?1

A would be called weakly injective relative to R or weakly A=R-injective.
For F D R-Modproj, the necessary condition of Lemma 2.1 means that A must be a

projective leftR-module. Assume thatA is a finitely generated projective leftR-module;
then the functor HomR.A;�/ preserves infinite direct sums. Assume further that the
leftR-module HomR.A;R/ is projective. Then it follows that the functor HomR.A;�/

preserves the class F of all projective left R-modules. Thus the condition (��) is
satisfied.

The results of Section 2.2 tell us that, whenever the left homological dimen-
sion of the ring R is a finite number k and the assumptions in the previous para-
graph hold, the Ext1-orthogonal pair of classes of left A-modules A-ModR-proj and
CofkC1.HomR.A;R-Mod// admits approximation sequences. Consequently, the pair
of classes FA D A-ModR-proj and CA D CofkC1.HomR.A;R-Mod//˚ is a hereditary
complete cotorsion pair in A-Mod. In particular, we have

.A-ModR-proj/
?1 D CofkC1.HomR.A;R-Mod//˚;

and therefore Cof.HomR.A;R-Mod//˚DCofkC1.HomR.A;R-Mod//˚. So the weakly
A=R-injective left A-modules are precisely the direct summands of the A-modules
admitting a finite .k C 1/-step filtration by A-modules coinduced from left R-modules.

The reader can find a discussion of the related results for corings and comodules
(of which this example is a particular case) in [29, Lemma 3.11 (a)].
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For a class of examples to Theorem 2.7 arising in connection with n-cotilting
modules, see Example 2.15 (1) below. For a class of examples to the same theorem
arising from curved DG-rings, see Proposition 4.4.

One problem with the condition (��) is that it mentions the underived HomR.A;F /.
The groups ExtiR.A; F / with i > 0 are lurking around, but they are ignored in the
formulation of the condition. Yet there is no reason to expect these Ext groups to vanish
for all modules F 2 F .

Thus it may be useful to generalize (��) by restricting it to a subclass of the class
F consisting of modules for which the functor HomR.A;�/ is better behaved. One
can do so by considering the following condition:

(e��) There exists a coresolving class D � R-Mod such that C � D , the underlying left
R-modules of all the left A-modules from CA D F

?1

A belong to D , and the left
R-module HomR.A; F / belongs to F for every left R-module F 2 F \D .

Taking D D R-Mod, one recovers (��) as a particular case of (e��).
Theorem 2.11. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.

Assume that the left R-module A belongs to F , and that the condition (e��) holds.
Assume further that the F -resolution dimension of any left R-module does not exceed
a finite integer k � 0. Then the class CA D F

?1

A � A-Mod can be described as
CA D CofkC1.HomR.A;C//

˚.
In particular, we have Cof.HomR.A;C//

˚ D CofkC1.HomR.A;C//
˚.

Proof. We are following the proof of Corollary 2.8 step by step and observing that
the assumptions of the present theorem are sufficient for the validity of the argument.
Essentially, the point is that the key constructions are performed within the class
D � R-Mod and the class of all left A-modules whose underlying left R-modules
belong to D .

The inclusion Cof.HomR.A; C//
˚ � CA holds by Lemma 2.2 (c). Given a left

A-module N 2 CA, we will show that N 2 CofkC1.HomR.A;C//
˚.

Arguing as in the last paragraph of the proof of Proposition 2.6, the left R-module
N is a submodule of an R-module C.N/ 2 C , and therefore the left A-module N is a
A-submodule of the left A-module HomR.A; C.N //. Denote the quotient A-module
byM D HomR.A;C.N //=N . By (e��), we have RN 2D and HomR.A;C.N // 2D ,
hence the underlying left R-module of M also belongs to D .

Now we construct the diagram (3) for the left A-moduleM . In the special precover
sequence 0! C 0.M/! F.M/!M ! 0, we have C 0.M/ 2 C �D and RM 2D ,
hence F.M/ 2 D . According to (e��), it follows that HomR.A; F.M// 2 F . Also
by (e��), we have HomR.A;C

0.M// 2 HomR.A;C/ �D , so it follows from the short
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exact sequence 0! HomR.A;C
0.M//! Q.M/!M ! 0 that the underlying left

R-module of the left A-module Q.M/ belongs to D .
Iterating the construction and following the proof of Proposition 2.6, we obtain

a surjective morphism of left A-modules Qk.M/ ! M with Qk.M/ 2 FA and
the kernel belonging to Cofk.HomR.A; C//. Following the proof of (the “only if”
implication in) Lemma 1.1, we produce an injective A-module morphism from N

into an A-module belonging to CofkC1.HomR.A;C// with the cokernel isomorphic
to Qk.M/. As Ext1A.Qk.M/; N / D 0 by assumption, we can finally conclude that
N 2 CofkC1.HomR.A;C//

˚.

For a class of examples to Theorem 2.11 arising in connection with n-cotilting
modules, see Example 2.15 (2).

2.3 – Cotilting cotorsion pairs and dual Bongartz–Ringel lemma

In this section we digress to discuss an important class of examples in which a
suitable version of the Bongartz–Ringel lemma [12, Lemma 2.1], [32, Lemma 40],
[19, Proposition 6.44] leads to a better result than the techniques of Section 2.2.

Let U be a left R-module and n � 0 be an integer. The R-module U is said to be
n-cotilting [1, Section 2], [19, Definition 15.1] if the following three conditions hold:

(C1) the injective dimension of the left R-module U does not exceed n;

(C2) ExtiR.U � ; U / D 0 for all integers i > 0 and all cardinals �;

(C3) there exists an exact sequence of left R-modules 0! Un! Un�1! � � � ! U1!

U0 ! J ! 0, where J is an injective cogenerator of R-Mod and Ui 2 ProdR.U /
for all 0 � i � n.

The n-cotilting class induced by U in R-Mod is the class of left R-modules

F D ?>0U D
®
F 2 R-Mod j ExtiR.F; U / D 08i > 0

¯
:

The cotorsion pair .F ; C/ with C D F ?1 � R-Mod is hereditary and complete
[1, Proposition 3.3]; it is called the n-cotilting cotorsion pair induced by U in R-Mod.

Proposition 2.12. Let R! A be a homomorphism of associative rings and U be
an n-cotilting left R-module. Assume that the underlying left R-module of A belongs
to F , that is, RA 2 F . Then

(a) the left A-module HomR.A; U / satisfies the conditions (C1) and (C3);

(b) the left A-module HomR.A; U / satisfies (C2) if and only if its underlying left
R-module belongs to F .
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Proof. Part (a): by assumption, we have ExtiR.A; U / D 0 for all i > 0. Hence
applying the functor HomR.A;�/ to an injective resolution 0! U ! J 0 ! � � � !

J n! 0 of the leftR-moduleU produces an injective resolution 0! HomR.A;U /!

HomR.A; J
0/! � � � ! HomR.A; J

n/! 0 of the left A-module HomR.A;U /. Sim-
ilarly, applying the functor HomR.A;�/ to an exact sequence in (C3) produces an
exact sequence of left A-modules 0 ! HomR.A; Un/ ! � � � ! HomR.A; U0/ !

HomR.A; J /! 0, in which HomR.A; Ui / 2 ProdA.HomR.A; U // for all 0 � i � n
and HomR.A; J / is an injective cogenerator of A-Mod.

Part (b): put U 0 D HomR.A; U /. By Lemma 1.8 (b), we have ExtiA.U 0� ; U 0/ '
ExtiR.U 0� ; U / for all i � 0, since ExtiR.A; U / D 0 for i > 0. It follows that the left
A-moduleU 0 is n-cotilting if and only if the leftR-moduleU 0� belongs to F �R-Mod
for every cardinal �. Since the n-cotilting class F is closed under infinite products in
R-Mod [19, Proposition 15.5 (a)], it suffices that RU 0 2 F .

Lemma 2.13. Let R! A be a homomorphism of associative rings and U be an
n-cotilting left R-module. Let .F ; C/ be the n-cotilting cotorsion pair induced by
U in R-Mod. Assume that the underlying left R-module of A belongs to F , that is,
RA 2 F . Assume further that the left A-module HomR.A; U / is n-cotilting. Then the
n-cotilting cotorsion pair induced by HomR.A;U / in A-Mod has the form .FA;CA/ in
our notation. In other words, the n-cotilting class induced by HomR.A; U / in A-Mod
consists precisely of all the left A-modules whose underlying left R-modules belong to
the n-cotilting class F induced by U in R-Mod.

Proof. For any left A-module F we have ExtiA.F;HomR.A;U // ' ExtiR.F; U /
for all i � 0 by Lemma 1.8 (b), since ExtiR.A; U / D 0 for all i > 0.

Proposition 2.14. LetR be a commutative ring andA be an associativeR-algebra.
Let U be an n-cotiltingR-module and .F ;C/ be the n-cotilting cotorsion pair induced
by U in R-Mod. Assume that the underlying R-module of A belongs to F . Then the
left A-module HomR.A; U / is n-cotilting.

Proof. According to Proposition 2.12, it suffices to show that the R-module U 0 D
HomR.A; U / belongs to F . The following argument was suggested to the author by
S. Bazzoni. By [5, Lemma 3.2] or [19, Proposition 15.5 (a)], the cotilting class F can be
described as the class of all R-modules admitting a coresolution by products of copies
of U . Let � � � ! P2 ! P1 ! P0 ! A! 0 be a free resolution of the R-module A.
Then 0!HomR.A;U /!HomR.P0;U /!HomR.P1;U /!HomR.P2;U /! � � �

is a coresolution of the R-module HomR.A; U / by products of copies of U . Thus
RU
0 2 F , as desired.
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A discussion of the particular case of the above proposition and lemma in which
the ring R is Noetherian and A D Rm is the localization of R at the maximal ideal
m � R can be found in [39, Lemma 2.1].

Examples 2.15. Let A be an associative algebra over a commutative ring R, and
let U be an n-cotilting R-module. Let .F ;C/ be the n-cotilting cotorsion pair induced
by U in R-Mod. Assume that the R-module A belongs to F . Then HomR.A;U / is an
n-cotilting left A-module by Proposition 2.14, and the induced n-cotilting cotorsion
pair in A-Mod has the form .FA;CA/ in our notation by Lemma 2.13.

(1) In the following particular cases Theorem 2.7 is applicable. Assume that either
A is a projective R-module, or n � 2. Then the condition (��) holds.

Indeed, when A is a projective R-module, it suffices to observe that F is closed
under infinite products. When n � 2, consider an R-module F 2 F . Choose a pro-
jective presentation P1 ! P0 ! A! 0 for the R-module A. Then we have a left
exact sequence of R-modules 0! HomR.A;F /! HomR.P0; F /! HomR.P1; F /

with HomR.Pi ; F / 2 F for i D 0, 1. Denoting by L the cokernel of the morphism
HomR.P0; F /! HomR.P1; F /, we have

ExtiR.HomR.A; F /; U / D ExtiC2R .L; U / D 0

for all i > 0, as desired.
Finally, the F -resolution dimension of any R-module does not exceed n (since the

injective dimension of the R-module U is � n). According to Corollary 2.8, we can
conclude that F

?1

A D CA D CofnC1.HomR.A;C//
˚.

(2) This is a generalization of (1) that can be obtained using Theorem 2.11. We
are assuming that A is an associative R-algebra, U is an n-cotilting R-module, and
RA 2 F . Assume further that ExtiR.A;HomR.A;U // D 0 for all i > 0. (In particular,
this holds whenever A is a flat R-module, as the R-module U is pure-injective by [19,
Theorem 15.7].) Then we claim that (e��) is satisfied.

Let D D A? � R-Mod be the class of allR-modulesD such that ExtiR.A;D/D 0
for all i > 0. Then we have C �D , since RA 2 F . Furthermore, all the leftA-modules
in CA have finite resolutions by direct summands of products of copies of HomR.A;U /

[19, Proposition 15.5 (b)]; hence ExtiR.A; C / D 0 for all C 2 CA and i > 0.
In order to check the condition (e��), it remains to show that HomR.A; F / 2 F

for any R-module F 2 F \D . For this purpose, let us choose a projective resolu-
tion � � � ! P2 ! P1 ! P0 ! A! 0 for the R-module A. Then we have an exact
sequence of R-modules 0! HomR.A; F /! HomR.P0; F /! HomR.P1; F /!

HomR.P2; F /! � � � with HomR.Pi ; F / 2 F for all i � 0. Denoting by L the image



Self-dual construction of cotorsion pairs in relative context 213

of the morphism HomR.Pn�1; F /! HomR.Pn; F /, we have

ExtiR.HomR.A; F /; U / D ExtiCnR .L; U / D 0

for all i > 0, as desired.
By Theorem 2.11, we can infer that F

?1

A D CA D CofnC1.HomR.A;C//
˚.

Now we will explain how a stronger and more general version of the results of
Examples 2.15 can be obtained with an approach based on a suitable version of the
Bongartz–Ringel lemma, in the spirit of [35, Example 2.3].

Theorem 2.16 (Dual Bongartz–Ringel lemma). Let A be an associative ring,
n � 0 be an integer, and T D ¹S0; S1; : : : ; Snº be a collection of nC 1 leftA-modules.
Assume that S0 is an injective cogenerator of A-Mod and Ext1A.S�j ; Si / D 0 for all
0 � i � j � n and all cardinals �. Let .F ;C/ D .?1T ; .?1T /?1/ be the cotorsion
pair cogenerated by the set T in A-Mod. Then

(a) .F ;C/ is a complete cotorsion pair;

(b) the class C � A-Mod can be described as the class of all direct summands of
.nC 1/-cofiltered left A-modulesD with a cofiltrationD D GnC1D � GnD �
� � �� G1D � G0D D 0 such that ker.GiC1D ! GiD/ 2 Prod.Si / for every
0 � i � n. In particular, we have C D CofnC1.

Sn
iD0 Prod.Si //˚.

Proof. This is an n � 1 generalization of the classical dual Bongartz lemma [19,
Proposition 6.44], which corresponds to the case n D 1. At the same time, this is an
infinitely generated dual version of a result of Ringel, who considered the n � 1 case
for finitely generated modules over Artinian algebras [32, Lemma 40].

Denote by D the class of all left A-modules admitting an .nC 1/-cofiltration G
with the successive quotient modules as described in part (b). Then it is clear that
one has Ext1A.F;D/ D 0 for all F 2 F and D 2 D . Moreover, Ext1A.F; C / D 0 for
all F 2 F and C 2 Cof.

Sn
iD0 Prod.Si //˚. In order to prove the theorem, it remains

to show that the pair of classes F and D � A-Mod admits approximation sequences
(cf. Lemma 1.2).

Let us first show that the pair of classes F and D admits special precover sequences.
Let M be a left A-module; put G1F DM . Denote by I1 the underlying set (or any
generating subset) of the abelian group Ext1A.M;S1/. Then we have a canonical element
in the abelian group Ext1A.M;S1/I1 D Ext1A.M;S

I1

1 /. LetG2F denote the middle term
of the related short exact sequence of left A-modules 0! S

I1

1 ! G2F ! G1F D

M ! 0. Notice that Ext1A.G2F; S1/ D 0 by construction (in view of the assumption
that Ext1A.S

I1

1 ; S1/ D 0).
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Denote by I2 the underlying set (or any generating subset) of the abelian group
Ext1A.G2F; S2/. Then, once again, we have a canonical element in the abelian group
Ext1A.G2F; S2/I2 D Ext1A.G2F; S

I2

2 /. Let G3F denote the middle term of the related
short exact sequence of left A-modules 0! S

I2

2 ! G3F ! G2F ! 0. Notice that
Ext1A.G3F; S1/ D 0 since Ext1A.G2F; S1/ D 0 D Ext1A.S

I2

2 ; S1/, and by construction
Ext1A.G3F; S2/ D 0 since Ext1A.S

I2

2 ; S2/ D 0.
Proceeding in this way until all the modules S1; : : : ;Sn have been taken into account,

we construct a sequence of sets I1; I2; : : : ; In and a leftA-moduleF with an .nC 1/-step
cofiltration F D GnC1F � GnF � � � �� G2F � G1F DM � G0F D 0 such
that ker.GiC1F !GiF /' S

Ii

i for 1� i � n. Furthermore, we have Ext1A.GjF;Si /D
0 for all 0� i < j � nC 1, so in particular Ext1A.F;Si /D 0 for all 0� i � n. Denoting
by D0 the kernel of the surjective morphism F D GnC1F ! G1F DM , we obtain
the desired special precover sequence 0! D0 ! F ! M ! 0 with D0 2 D and
F 2 F . Here the left A-moduleD0 is endowed with a cofiltrationG as in part (b), with
the additional property that G1D0 D 0.

To produce a special preenvelope sequence 0! N !D! F 0! 0 (withD 2D

and F 0 2 F ) for a left A-module N , it now remains to choose a set I0 such that N is a
submodule in SI0

0 and use the construction from the proof of (the “only if” implication
in) Lemma 1.1.

Remark 2.17. For any n-cotilting R-module U , the induced n-cotilting cotorsion
pair .F ;C/ is obviously cogenerated by the cosyzygy modulesU;��1U; : : : ;��nC1U
of the R-module U . So the first naïve idea of an application of Theorem 2.16 to the
cotilting cotorsion pairs would be to consider the sequence of cosyzygy modules
Sn D U; Sn�1 D �

�1U; : : : ; S1 D �
�nC1U .

In fact, one has Ext1R.UX ;��iU/'ExtiC1R .UX ;U /D 0 for all i � 0 and all setsX .
However, it may well happen that Ext1R.��1U;��1U/ ¤ 0. Let 0! U ! J 0 !

��1U ! 0 be a short exact sequence of R-modules with an injective R-module J 0;
then one has Ext1R.��1U;��1U/ ' Ext2R.��1U;U / ' Ext2R.J 0; U /, and there is
no apparent reason for this Ext group to vanish.

The relevant counterexample was constructed by D’Este [14]. One starts with the
observation that, for any finite-dimensional algebra A over a field k such that A has
finite homological dimension n, the free A-module A is n-cotilting. Furthermore, for
any field k, there is an acyclic quiver algebra A of homological dimension 2, with
4 vertices, 4 edges, and 2 relations, such that Ext1A.��1A;��1A/¤ 0 (for the minimal
cosyzygy module ��1A of the free A-module A) [14, Theorem 5].

Therefore, the dual Bongartz–Ringel lemma is not applicable to the sequence of
cosyzygy modules ��jU of an n-cotilting R-module U (generally speaking), and the
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naïve idea does not work. That is why an approach based on the next lemma is needed
instead.

On the other hand, for any n-cotilting module U over a commutative Noetherian
ring R, one can choose an injective coresolution of U in such a way that the related
sequence of cosyzygy modules U;��1U; : : : ;��nC1U;��nU D J would satisfy the
assumptions of Theorem 2.16 (see [2, Corollary 3.17]).

Lemma 2.18. Let R be an associative ring and U be an n-cotilting left R-module.
Then, for every 0 � j � n, there exists an .n � j /-cotilting left R-module Uj such
that the class Fj D

?>jU is the cotilting class induced by Uj in R-Mod.
In particular, one can (and we will) take U0 D U , while J D Un is an injective

cogenerator of R-Mod.

Proof. The proof of this, classical by now, result is based on [5, Lemma 3.4].
One can combine the assertions of [6, Theorem 4.2] and [37, Theorem 13] with
[1, Theorem 4.2]. Alternatively, see [19, Proposition 15.13].

Lemma 2.19. In the notation of Lemma 2.18, the n-cotilting class F D ?>0U can
be described as

F D ?1¹U0; U1; : : : ; Unº D
®
F 2 R-Mod j Ext1R.F; Uj / D 080 � j � n

¯
:

Proof. For any i , j � 0 we have ?>iUj D
?>iCjU , since a left R-module F

belongs to ?>iUj if and only if the left R-module �iF belongs to ?>0Uj , which
means that �iF belongs to ?>jU , which holds if and only if F belongs to ?>iCjU .
In particular, it follows that ?>1Uj D

?>j C1U D ?>0UjC1.
Now ?1UnDR-Mod and ?1Un�1D

?>0Un�1D
?>1Un�2. Proceeding by decreas-

ing induction in 0 � j � n, one proves that ?1¹Uj ; UjC1; : : : ; Unº D
?>0Uj , since

?1Uj \
?1¹UjC1; UjC2; : : : ; Unº D

?1Uj \
?>0UjC1 D

?1Uj \
?>1Uj D

?>0Uj .
This completes the proof.

The next theorem is a generalization of [35, Example 2.3] (which corresponds to
the case of n D 1).

Theorem 2.20. LetR be an associative ring andU be an n-cotilting leftR-module.
Let .F ;C/ be the n-cotilting cotorsion pair induced by U in R-Mod. Then the class C

can be described as the class of all direct summands of .nC 1/-cofiltered leftR-modules
D with a cofiltrationD D GnC1D � GnD � � � �� G1D � G0D D 0 such that,
in the notation of Lemma 2.18, G1D 2 Prod.J /, ker.GiC1D ! GiD/ 2 Prod.Un�i /
for every 0 � i � n, and ker.GnC1D ! GnD/ 2 Prod.U /.
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Proof. By Lemma 2.19, the n-cotilting cotorsion pair .F ;C/ is cogenerated by
the set of nC 1 modules S0 D J; S1 D Un�1; S2 D Un�2; : : : ; Sn D U . Furthermore,
one has ExtmR.U �i ; Uj / D 0 for all integers 0 � i � j � n, m > 0 and all cardinals �,
since U �i 2

?>0Ui �
?>0Uj . Thus Theorem 2.16 (b) is applicable.

The result of the following corollary generalizes those of Examples 2.15.

Corollary 2.21. Let R! A be a homomorphism of associative rings and U
be an n-cotilting left R-module. Let .F ;C/ be the n-cotilting cotorsion pair induced
by U in R-Mod. Assume that the underlying left R-module of A belongs to F , that is,
RA 2 F . Assume further that the left A-module HomR.A; Uj / is .n � j /-cotilting
for every 0 � j � n. (In particular, by Proposition 2.14, this holds whenever R is
commutative and A is an R-algebra.) Let .FA;CA/ be the n-cotilting cotorsion pair
induced byU 0DHomR.A;U / inA-Mod. Then we have CAD CofnC1.HomR.A;C//

˚.

Proof. Put U 0j D HomR.A; Uj / 2 A-Mod for all 0 � j � n. Then the class
?>0U 0j � A-Mod consists of all the left A-modules whose underlying left R-modules
belong to the class ?>0Uj � R-Mod, in view of Lemma 1.8 (b) (since RA 2 F � Fj ).
Similarly, the class?>jU 0�A-Mod consists of all the leftA-modules whose underlying
leftR-modules belong to the class ?>jU �R-Mod. Hence ?>0U 0j D

?>jU 0 �A-Mod.
Notice further that Uj 2 C for all 0 � j � n, as F � Fj D

?>0Uj �
?1Uj . Now

the assertion of the corollary follows from Theorem 2.20 applied to the ring A and the
cotilting A-modules U 0 D U 00; U

0
1; : : : ; U

0
n.

2.4 – Decreasing filtrations by coinduced modules

Let R! A be a homomorphism of associative rings, and let .F ;C/ be an Ext1-
orthogonal pair of classes of left R-modules. Instead of assuming finiteness of the
F -resolution dimension, we now assume that the class F is closed under countable
products in R-Mod.

As usually, we denote by! the first infinite ordinal, that is the ordinal of nonnegative
integers. The “cofiltrations” appearing in the next proposition are the usual complete,
separated infinite decreasing filtrations indexed by the natural numbers.

Proposition 2.22. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ; C/ admits approximation sequences (1)–(2). Assume that the underlying
left R-module of A belongs to F , and that the condition (��) holds. Assume further
that the class F is closed under the kernels of surjective morphisms and countable
products in R-Mod. Then the Ext1-orthogonal pair of classes of left A-modules FA

and Cof!.HomR.A;C// admits approximation sequences as well.
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Proof. The pair of classes FA and Cof.HomR.A;C//�A-Mod is Ext1-orthogonal
by Lemma 2.2 (c). The explicit construction below, showing that the pair of classes FA

and Cof!.HomR.A;C// admits special precover sequences, plays a key role. It goes
back to [24, semicontramodule-related assertions in Lemma 3.3.3].

Let M be a left A-module. We proceed with the construction from the proof of
Proposition 2.6; but instead of a finite number of k iterations, we perform ! iterations
now. So we produce a sequence of surjective morphisms of left A-modules

(4) M  � Q.M/ � Q.Q.M// � � � �  � Qn.M/ � � � � ;

where n ranges over the nonnegative integers. Clearly, the kernel of the surjective
left A-module morphism lim

 �n2!
Qn.M/!M is !-cofiltered by the left A-modules

HomR.A; C
0.Qn.M///, n 2 !, which belong to HomR.A;C/ by construction. Now

the claim is that the left A-module lim
 �n2!

Qn.M/ belongs to FA.
Recall that the injective A-module morphism �M WM ! HomR.A;M/ admits a

natural R-linear retraction �M WHomR.A;M/!M . Looking on the diagram (3), one
can easily see that the surjective map Q.M/!M factorizes naturally as Q.M/!

HomR.A;F.M//!M . HereQ.M/!HomR.A;F.M// is anA-module morphism,
but HomR.A;F.M//!M is only anR-module morphism (between leftA-modules).
Thus the sequence of surjective morphisms of left A-modules (4) is mutually cofinal
with a sequence of left R-module morphisms

HomR.A; F.M// � HomR.A; F.Q.M/// � � � �(5)
 � HomR.A; F.Q

n.M/// � � � � :

The left R-modules F.Qn.M//, n � 0, belong to F by construction. Accord-
ing to (��), it follows that the underlying left R-modules of the left A-modules
HomR.A; F.Q

n.M/// belong to F , too. The derived projective limits of mutually
cofinal projective systems agree, hence

lim
 �

1

n2!
HomR.A; F.Q

n.M/// ' lim
 �

1

n2!
Qn.M/ D 0;

as the maps QnC1.M/! Qn.M/ are surjective. Therefore, we have a short exact
sequence of left R-modules

0 �! lim
 �n2!

HomR.A; F.Q
n.M///(6)

�!

Y
n2!

HomR.A; F.Q
n.M/// �!

Y
n2!

HomR.A; F.Q
n.M/// �! 0:

Since the class F � R-Mod is closed under countable products and the kernels of
surjective morphisms by assumption, it follows immediately that the left R-module
lim
 �n2!

HomR.A; F.Q
n.M/// belongs to F .
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Furthermore, the underived projective limits of mutually cofinal projective systems
also agree; so we have an isomorphism of left R-modules

lim
 �n2!

Qn.M/ ' lim
 �n2!

HomR.A; F.Q
n.M///:

Since lim
 �n2!

HomR.A;F.Q
n.M/// 2 F , we can conclude that lim

 �n2!
Qn.M/ 2 FA,

as desired. This finishes the construction of the special precover sequences for the pair
of classes of left A-modules FA and Cof!.HomR.A;C//.

At last, the special preenvelope sequences for the pair of classes FA and
Cof!.HomR.A;C// � A-Mod are produced from the special precover sequences in
the same way as in the last paragraph of the proof of Proposition 2.6.

Theorem 2.23. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module A belongs to F , and that the condition (��) holds.
Assume further that the class F is closed under countable products inR-Mod. Then the
pair of classes FA and CA D Cof!.HomR.A;C//

˚ is a hereditary complete cotorsion
pair in A-Mod.

Proof. Follows from Proposition 2.22 in view of Lemma 1.2 (cf. the proof of
Theorem 2.7).

Corollary 2.24. For any associative ring homomorphism R ! A and any
hereditary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of
Theorem 2.23, one has F

?1

A D Cof!.HomR.A;C//
˚.

In particular, it follows that Cof.HomR.A;C//
˚ D Cof!.HomR.A;C//

˚.

Proof. This is a corollary of Theorem 2.23 and Lemma 2.2 (c) (cf. the proof of
Corollary 2.8).

Remark 2.25. As mentioned in Remark 2.9, the condition (��) appears to be rather
restrictive. In fact, the construction of Proposition 2.22 originates from the theory of
semicontramodules over semialgebras, as in [24, Lemma 3.3.3], where the natural
analogue of this condition feels much less restrictive, particularly when F is simply the
class of all projective objects. So one can say that the ring R in this Section 2.4 really
“wants” to be a coalgebra C (say, over a field k), and accordingly the ring A becomes a
semialgebra S over C . The left R-modules “want” to be left C -contramodules, and
the left A-modules “want” to be left S -semicontramodules.

Then the coinduction functor, which was HomR.A;�/ in the condition (��), takes
the form of the functor CohomC .S;�/. This one is much more likely to take projec-
tive left C -contramodules to projective left C -contramodules. In fact, all projective
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C -contramodules are direct summands of the free contramodules Homk.C; V /, where
V ranges over k-vector spaces; and one has CohomC .S;Homk.C;V //'Homk.S;V /.
This is a projective left C -contramodule for any V whenever the right C -comodule S
is injective. Besides, the class of all projective contramodules over a coalgebra over a
field is always closed under infinite products; so the specific assumption of Section 2.4
is satisfied in the contramodule context, too.

To make a ring R behave rather like a coalgebra, one can assume it to be “small” in
some sense. The following examples are inspired by the analogy with semialgebras
and semicontramodules.

Examples 2.26. Let F D R-Modproj be the class of all projective left R-modules;
then C D R-Mod is the class of all left R-modules (cf. Example 2.10).

(1) Assume that the ring R is left perfect and right coherent (e.g., it suffices that
R be right Artinian). Then the class of all projective left R-modules is closed under
infinite products [4, 13]; so the specific assumption of Section 2.4 is satisfied.

Furthermore, all flat left R-modules are projective, and all left R-modules have
projective covers [4]. Let J � R be the Jacobson radical; then the correspondence
P 7!P=JP is a bĳection between the isomorphism classes of projective leftR-modules
and arbitrary R=J -modules. The quotient ring R=J is classically semisimple, so it is
isomorphic to a finite product of simple Artinian rings R1; : : : ; Rm. Denote by Ji � R
the kernel of the surjective map R! Ri , 1 � i � m. Then, choosing � to be a large
enough cardinal, one can make the (semisimple) Ri -module R�=Ji .R�/ arbitrarily
large. Therefore, all the projective left R-modules are direct summands of products of
copies of the free left R-module R.

Assume further that the left R-module HomR.A;R/ is projective. Then it follows
that the functor HomR.A;�/ preserves the class F of all projective left R-modules.
Thus the condition (��) is satisfied.

(2) Assume that R is a finite-dimensional algebra over a field k and R! A is a
morphism of k-algebras. This is a particular case of (1), so the above discussion is
applicable. Furthermore, we have HomR.A; R/ ' HomR.A; R

��/ ' .R� ˝R A/
�,

where V 7! V � denotes the passage to the dual k-vector space.
The functorN 7! N � takes injective rightR-modules to projective left R-modules.

Thus the condition (��) holds whenever the underlying right R-module of the right
A-module R� ˝R A is injective.

(3) Assume that R is a quasi-Frobenius ring, i.e., the classes of injective and
projective left R-modules coincide (and the same holds for right R-modules). All such
rings R are left and right Artinian, so the discussion in (1) is applicable.
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Furthermore, whenever R is quasi-Frobenius, the condition (��) can be rephrased
by saying that the functor HomR.A;�/ takes injective left R-modules to injective left
R-modules. This holds whenever A is a projective right R-module.

The results of Section 2.4 tell us that, whenever the left R-module A is projective
and any one of the above sets of conditions (1)–(3) is satisfied, the Ext1-orthogonal
pair of classes of left A-modules A-ModR-proj and Cof!.HomR.A; R-Mod// admits
approximation sequences. Consequently, the pair of classes FA D A-ModR-proj and
CA D Cof!.HomR.A;R-Mod//˚ is a hereditary complete cotorsion pair in A-Mod. In
particular, we have

.A-ModR-proj/
?1 D Cof!.HomR.A;R-Mod//˚;

and therefore Cof.HomR.A;R-Mod//˚ D Cof!.HomR.A;R-Mod//˚. So the weakly
A=R-injective left A-modules are precisely the direct summands of the A-modules
admitting a complete, separated !-indexed decreasing filtration by A-modules co-
induced from left R-modules.

The next theorem is a generalization of Corollary 2.24 in which the condition (��)
is replaced by the condition (e��).

Theorem 2.27. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module A belongs to F , and that the condition (e��) holds.
Assume further that the class F is closed under countable products in R-Mod. Then
the class CA D F

?1

A � A-Mod can be described as CA D Cof!.HomR.A;C//
˚.

In particular, we have Cof.HomR.A;C//
˚ D Cof!.HomR.A;C//

˚.

Proof. Similar to the proof of Theorem 2.11, where all the essential details have
been already worked out. One follows the proof of Corollary 2.24 step by step and
observes that the assumptions of the present theorem are sufficient for the validity of
the argument.

2.5 – Combined result on coinduced modules

In this section we combine the constructions of Propositions 2.6 and 2.22 in order
to obtain a more general result under relaxed assumptions. Specifically, we assume that
all the countable products of modules from F have finite F -resolution dimensions.

Proposition 2.28. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ;C/ admits approximation sequences (1)–(2). Assume that the left R-module
A belongs to F , and that the condition (��) holds. Assume further that the class F
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is resolving in R-Mod and the F -resolution dimension of any countable product of
modules from F does not exceed a finite integer k � 0. Then the Ext1-orthogonal
pair of classes of left A-modules FA and Cof!Ck.HomR.A;C// admits approximation
sequences as well. Here ! C k is the k-th successor ordinal of !.

Proof. As in previous proofs, we start with an explicit construction of special
precover sequences for the pair of classes FA and Cof!Ck.HomR.A;C// � A-Mod.

Let M be a left A-module. Proceeding as in the proof of Proposition 2.22, we
construct the!-indexed projective system of surjective morphisms of leftA-modules (4).
The underlying leftR-module of the leftA-module lim

 �n2!
Qn.M/ is isomorphic to the

projective limit of the projective system of left R-modules (5), and it can be described
as the leftmost term of the short exact sequence (6).

The left R-modules HomR.A; F.Q
n.M/// belong to F by (��), so the left R-

module
Q
n2! HomR.A; F.Q

n.M/// has F -resolution dimension � k in our present
assumptions. By Lemma 1.10 (a), it follows that the F -resolution dimension of (the
underlying leftR-module of the leftA-module)N D lim

 �n2!
Qn.M/ does not exceed k.

Now we apply the construction from the proof of Proposition 2.6 to the left
A-module N , producing the sequence of surjective morphisms of left A-modules

N  � Q.N/ � Q.Q.N// � � � �  � Qk.N /:

Following the argument in the proof of Proposition 2.6, we have Qk.N / 2 FA, since
rdF N � k. Finally, the kernel of the composition of surjective morphisms

Qk.N / �! N D lim
 �n2!

Qn.M/ �!M

is an extension of the kernels of the two composed morphisms Qk.N /! N and
lim
 �n2!

Qn.M/!M . The former kernel belongs to Cofk.HomR.A;C// and the latter
one to Cof!.HomR.A;C//; thus the kernel of the morphismQk.N /!M belongs to
Cof!Ck.HomR.A;C//.

We have produced the desired special precover sequences. Having these at our
disposal, the special preenvelope sequences are constructed in the same way as in the
proofs of Propositions 2.6 and 2.22.

Theorem 2.29. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module A belongs to F , and that the condition (��) holds.
Assume further that the F -resolution dimension of any countable product of modules
from F in R-Mod does not exceed a finite integer k � 0. Then the pair of classes FA

and CA D Cof!Ck.HomR.A;C//
˚ is a hereditary complete cotorsion pair in A-Mod.

Proof. Follows from Proposition 2.28 in view of Lemma 1.2.
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Corollary 2.30. For any associative ring homomorphism R ! A and any
hereditary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of
Theorem 2.29, one has F

?1

A D Cof!Ck.HomR.A;C//
˚.

In particular, it follows that Cof.HomR.A;C//
˚ D Cof!Ck.HomR.A;C//

˚.

Proof. This is a corollary of Theorem 2.29 and Lemma 2.2 (c).

For a class of examples to Theorem 2.29 arising from curved DG-rings, see Propo-
sition 4.5 below.

The final theorem of this section is a generalization of Corollary 2.30 in which the
condition (��) is replaced by the condition (e��).

Theorem 2.31. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the leftR-moduleA belongs to F , and that the condition (e��) holds. Assume
further that the F -resolution dimension of any countable product of modules from F

in R-Mod does not exceed a finite integer k � 0. Then the class CA D F
?1

A � A-Mod
can be described as CA D Cof!Ck.HomR.A;C//

˚.
In particular, we have Cof.HomR.A;C//

˚ D Cof!Ck.HomR.A;C//
˚.

Proof. One follows the proof of Corollary 2.30 step by step and observes that the
assumptions of the present theorem are sufficient for the validity of the argument. Almost
all the essential details have been worked out already in the proof of Theorem 2.11,
and only one observation remains to be made.

Let M be a left A-module whose underlying left R-module belongs to D . Then
the underlying left R-module of the left A-module lim

 �n2!
Qn.M/ also belongs

to D , because the kernel of the surjective A-module morphism lim
 �n2!

Qn.M/!M

belongs to Cof!.HomR.A; C// � CA and the class D � R-Mod is closed under
extensions.

3. Filtrations by induced modules

The setting in this section is dual to that in Section 2, and the main results are
also dual. But the ambient context of the general theory of cotorsion pairs in module
categories, based on the small object argument etc., is not self-dual. So we discuss the
situation in detail, making both the similarities and the differences visible.

3.1 – Posing the problem

Let R! A be a homomorphism of associative rings, and let C be a class of left
R-modules. Mostly we will assume C to be the right part of a cotorsion pair .F ;C/ in
R-Mod.
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Denote by CA the class of all left A-modules whose underlying R-modules belong
to C . Does there exist a cotorsion pair .F A;CA/ in A-Mod?

Obviously, if the answer to this question is positive, then the class F A can be
recovered as F A D ?1CA. But can one describe the class F A more explicitly?

We start with an easy lemma providing a necessary condition. Here, for any ring S
and right S-module E, we denote by EC the left S-module EC D HomZ.E;Q=Z/

(which is called the character module of E). The S-module EC is always cotorsion
in the sense of Enochs [17]; in fact, it is even pure-injective [19, Chapter 2]. The left
S-module EC is injective whenever E is a flat right S-module. In particular, the left
S -module SC is injective; in fact, it is an injective cogenerator of S -Mod.

Lemma 3.1. Assume that CA is the right part of a cotorsion pair .F A;CA/ in
A-Mod. Then the left R-module AC belongs to C .

Consequently, one has TorR1 .A; F / D 0 for any left R-module F 2 ?1C .

Proof. For any cotorsion pair .F A;CA/ in A-Mod, all injective left A-modules
belong to CA. So, in the situation at hand, the underlying leftR-modules of all injective
left A-modules must belong to C . This proves the first assertion.

The second assertion follows from the natural isomorphism of abelian groups
TorR1 .A; F /C ' Ext1R.F;AC/ D 0.

The next lemma shows that this condition is also sufficient to get a cotorsion pair
.F A;CA/. Given a class of left R-modules � , we denote by A˝R � the class of all
left A-modules of the form A˝R S with S 2 � .

Lemma 3.2. Let .F ;C/ be a cotorsion pair in R-Mod generated by a class of left
R-modules � . Assume that the left R-module AC belongs to C . Then we have

(a) CA D .A˝R F /?1 D .A˝R �/?1;

(b) .?1CA;CA/ is a cotorsion pair in A-Mod;

(c) Fil.A˝R �/˚ � Fil.A˝R F /˚ � ?1CA.

Proof. Part (a): by assumptions, we have C D �?1 and Ext1R.S; AC/ D 0 for all
S 2 � , hence TorR1 .A; S/ D 0. By Lemma 1.8 (a) (for n D 1), it follows that a left
A-module C belongs to .A˝R �/?1 if and only if the underlying left R-module of C
belongs to �?1 . In particular, this is applicable to � D F .

Part (b): in view of part (a), .?1CA;CA/ is the cotorsion pair in A-Mod generated
by the class A˝R � or A˝R F .

Part (c) follows from part (a) and Lemma 1.4.
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So we have answered our first question, but we want to know more. Can one
guarantee that the cotorsion pair .F A;CA/ is complete?

Proposition 3.3. Let .F ;C/ be a (complete) cotorsion pair in R-Mod generated
by a set of left R-modules � , and let CA be the class of all left A-modules whose
underlying left R-modules belong to C . Assume that the left R-module AC belongs
to C . Then there is a complete cotorsion pair .F A;CA/ in A-Mod generated by the set
of left A-modules �A D A˝R � . Moreover, one has F A D Fil.�A [ ¹Aº/˚.

Proof. By Lemma 3.2 (a)–(b), the desired cotorsion pair .F A;CA/ is generated
by the set �A. Hence both assertions follow from Theorem 1.5.

These observations, based on the general theory of cotorsion pairs in module
categories, essentially answer all the questions above. We have a complete cotorsion
pair .F A;CA/, and we also have a description of the class F A. Still we would like to
improve upon these answers a little bit.

In the rest of Section 3, our aim is to show that, under certain specific assumptions,
the class F A can be described as F A D Filˇ .A˝R F /˚ for rather small ordinals ˇ.
Besides, even though our assumptions are going to be rather restrictive, we will not
assume the cotorsion pair .F ;C/ to be generated by a set.

For a class of examples of cotorsion pairs like in Proposition 3.3 arising in connection
with n-tilting modules, see Lemma 3.12 and Proposition 3.13 below.

3.2 – Finite filtrations by induced modules

LetR!A be a ring homomorphism. Suppose that we are given an Ext1-orthogonal
pair of classes of left R-modules F and C � R-Mod, and denote by CA � A-Mod the
class of all left A-modules whose underlying left R-modules belong to C .

For any leftR-moduleM , one can consider the leftA-moduleA˝RM . Sometimes
we will also consider the underlying left R-module of the left A-module A˝R M .
That is what we do when formulating the following condition, which will be a key
technical assumption in much of the rest of Section 3:

(�) For any left R-module C 2 C , the left R-module A˝R C also belongs to C .

The specific assumption on which the results of this Section 3.2 are based is that
all left R-modules have finite C -coresolution dimension.

Lemma 3.4. Assume that the Ext1-orthogonal pair of classes of left R-modules
.F ;C/ admits special preenvelope sequences (2). Assume further the left R-module
AC belongs to C , the condition (�) holds, and the class C is coresolving in R-Mod.
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Let M be a left R-module of C -coresolution dimension � l . Then the C -coresolution
dimension of the R-module A˝RM also does not exceed l .

Proof. This is the dual version of Lemma 2.5. Let 0! M ! C 0 ! F 1 ! 0

be a special preenvelope sequence (2) for the left R-module M ; so C 0 2 C and
F 1 2 F . Consider a special preenvelope sequence 0! F 1 ! C 1 ! F 2 ! 0 for
the left R-module F 1, etc. Proceeding in this way, we construct an exact sequence of
left R-modules 0!M ! C 0 ! C 1 ! � � � ! C l�2 ! C l�1 ! F l ! 0, in which
C i 2 C for all 0 � i � l � 1, F l 2 F , and the image F i of the morphism C i�1! C i

belongs to F for all 1 � i � l � 1. Since the C -coresolution dimension ofM does not
exceed l by assumption, by Lemma 1.9 (b) it follows thatF l 2C . Since TorR1 .A;F /D 0
for all F 2 F (see Lemma 3.1), our sequence remains exact after applying the functor
A˝R �. The resulting exact sequence is the desired coresolution of length l of the
left R-module A˝R M by modules from C .

Proposition 3.5. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ;C/ admits approximation sequences (1)–(2). Assume that the left R-module
AC belongs to C , and that the condition (�) holds. Assume further that the class C is
coresolving in R-Mod and the C-coresolution dimension of any left R-module does
not exceed a finite integer k � 0. Then the Ext1-orthogonal pair of classes of left
A-modules FilkC1.A˝R F / and CA admits approximation sequences as well. Here
the integer k C 1 is considered as a finite ordinal.

Proof. The pair of classes Fil.A˝R F / and CA � A-Mod is Ext1-orthogonal by
Lemma 3.2 (c). Let us show by explicit construction that the pair of classes Filk.A˝RF /

and CA admits special preenvelope sequences. The construction below goes back
to [24, Lemma 3.1.3 (b)].

Let N be a left A-module. Then there is a natural (adjunction) morphism of left
A-modules �N WA˝R N ! N defined by the formula �N .a ˝ n/ D an for every
a 2 A and n 2 N . The map �N is always surjective. Moreover, viewed as a morphism
of left R-modules, �N is a split epimorphism. Indeed, the map "N WN ! A˝R N

taking every element n 2N to the element ".n/D 1˝ n 2 A˝R N is a leftR-module
morphism for which the composition �N ı "N is the identity map, �N ı "N D idN .

Consider the underlying left R-module of N , and choose a special preenvelope
sequence 0!N ! C.N/! F 0.N /! 0 inR-Mod withC.N/ 2 C and F 0.N / 2 F .
Then we have TorR1 .A; F 0.N // D 0 (see Lemma 3.1), so the morphism of left A-mod-
ules A˝R N ! A˝R C.N/ induced from the injective left R-module map N !
C.N/ is injective. Denote by W.N/ the pushout (or in other words, the fibered
coproduct) of the pair of left A-module morphisms A˝R N ! N and A˝R N !
A˝R C.N/.
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We have a commutative diagram of left A-module morphisms, in which the four
short sequences are exact:

(7) 0

��

0

��

0 // ker.�N / // A˝R N
�N //

��

N //

��

0

0 // ker.�N / // A˝R C.N/ //

��

W.N/ //

��

0

A˝R F
0.N /

��

A˝R F
0.N /

��

0 0

Introduce the notation cdC M for the C-coresolution dimension of a left R-mod-
ule M . We will apply the same notation to left A-modules, presuming that the
C -coresolution dimension of the underlying R-module is taken.

Next we observe that, whenever 0 < cdC N < 1, the C-coresolution dimen-
sion of the underlying left R-module of the left A-module W.N/ is strictly smaller
than the C-coresolution dimension of the underlying R-module of the A-module N ,
i.e., cdC W.N/ < cdC .N /. Indeed, the short exact sequence of left A-modules 0!
ker.�N / ! A ˝R N ! N ! 0 splits over R, or in other words, the underlying
left R-module of ker.�N / can be presented as the cokernel of the injective left
R-module morphism "N WN ! A ˝R N . By Lemmas 3.4 and 1.10 (b), we have
cdC ker.�N /� cdC N . SinceA˝R C.N/ 2C , it follows from the short exact sequence
0! ker.�N /! A˝R C.N/! W.N/! 0 that cdC W.N/ < cdC N .

It remains to iterate our construction, producing a sequence of injective morphisms
of left A-modules

N �! W.N/ �! W.W.N// �! W 3.N / �! � � � �! W k.N /:

Since cdC .N / � k by assumption, it follows from the above argument that
cdC W

k.N / � 0, that is, W k.N / 2 C .
Clearly, the cokernel of the injective morphism N ! W k.N / is filtered by the

cokernels of the injective A-module morphisms N ! W.N/;W.N/! W 2.N /; : : : ;

W k�1.N /!W k.N /. These are the leftA-modulesA˝R F 0.N /;A˝R F 0.W.N //;
A ˝R F

0.W 2.N //; : : : ; A ˝R F
0.W k�1.N //. We have constructed the desired

special preenvelope sequence for the pair of classes Filk.A˝R F / and CA.
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Finally, any left R-module M is a quotient module of an R-module F.M/ 2 F ,
since a special precover sequence with respect to .F ;C/ exists for M by assumption.
If M is a left A-module, then the map �M presents M as a quotient module of the left
A-module A˝R M , which is a quotient module of the left A-module A˝R F.M/.
Thus M is a quotient A-module of A ˝R F.M/. Following the proof of (the “if”
implication in) Lemma 1.1, we conclude that the pair of classes FilkC1.A˝R F / and
CA admits special precover sequences.

Theorem 3.6. Let .F ; C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (�) holds.
Assume further that the C -coresolution dimension of any leftR-module does not exceed
a finite integer k � 0. Then the pair of classes F A D FilkC1.A˝R F /˚ and CA is a
hereditary complete cotorsion pair in A-Mod.

Proof. The class CA is closed under direct summands and the cokernels of injective
morphisms, since the class C is. Thus the assertion of the theorem follows from
Proposition 3.5 in view of Lemma 1.2.

Corollary 3.7. For any associative ring homomorphism R! A and any hered-
itary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of Theo-
rem 3.6, one has ?1CA D FilkC1.A˝R F /˚.

In particular, it follows that Fil.A˝R F /˚ D FilkC1.A˝R F /˚.

Proof. The first assertion is a part of Theorem 3.6. The second assertion follows
from the first one together with Lemma 3.2 (c).

Remark 3.8. The condition (�) appears to be rather restrictive. In fact, the con-
struction of Proposition 3.5 originates from the theory of contramodules over corings,
as in [24, Lemma 3.1.3 (b)], where the natural analogue of this condition feels much
less restrictive, particularly when C is simply the class of all injective left R-modules.
So one can say that the ringA in this Section 3.2 really “wants” to be a coring C overR,
and the left A-modules “want” to be left C -contramodules. Then the induction functor,
which was the tensor product A˝R � in the condition (�), takes the form of the Hom
functor HomR.C;�/. This one is much more likely to take injective left R-modules to
injective left R-modules (it suffices that C be a flat right R-module). To make a ring A
behave rather like a coring, one can assume it to be “small” relative to R in some sense.
The following example is inspired by the analogy with corings and contramodules.

Example 3.9. Let C D R-Modinj be the class of all injective left R-modules. Then
F D R-Mod is the class of all left R-modules, and CA D A-ModR-inj is the class of
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all left A-modules whose underlying R-modules are injective. In the terminology of
[9, Sections 4.1 and 4.3] and [26, Section 5], the left A-modules from the related class
F A D ?1CA would be called weakly projective relative toR or weaklyA=R-projective.

For C D R-Modinj, the necessary condition of Lemma 3.1 says that AC must be
an injective left R-module; equivalently, this means that A is a flat right R-module.
Assume that A is a finitely generated projective right R-module; then the functor
A ˝R � preserves infinite products. Assume further that there exists an injective
cogenerator I of the category of leftR-modules such that the leftR-module A˝R I is
injective. Under the above assumption, this is equivalent to the condition that the right
R-module HomRop.A; R/ is flat. Then it follows that the functor A˝R � preserves
the class C of all injective left R-modules. Thus the condition (�) is satisfied.

The results of Section 3.2 tell us that, whenever the left homological dimension
of the ring R is a finite number k and the assumptions in the previous paragraph
hold, the Ext1-orthogonal pair of classes of left A-modules FilkC1.A ˝R R-Mod/
and A-ModR-inj admits approximation sequences. Consequently, the pair of classes
F AD FilkC1.A˝R R-Mod/˚ and CADA-ModR-inj is a hereditary complete cotorsion
pair in A-Mod. In particular, we have

?1A-ModR-inj D FilkC1.A˝R R-Mod/˚

and Fil.A˝R R-Mod/˚ D FilkC1.A˝R R-Mod/˚. So the weaklyA=R-projective left
A-modules are precisely the direct summands of the A-modules admitting a finite
.k C 1/-step filtration by A-modules induced from left R-modules.

The reader can find a discussion of the related results for corings and contramodules
(of which this example is a particular case) in [29, Lemma 3.11 (b)].

For a class of examples to Theorem 3.6 arising in connection with n-tilting modules,
see Example 3.14 (1) below. For a class of examples to the same theorem arising from
curved DG-rings, see Proposition 4.13.

One problem with the condition (�) is that it mentions the underived tensor product
A˝R C . The groups TorRi .A; C / with i > 0 are a potential source of problems, but
they are ignored in the formulation of the condition. Yet there is no reason to expect
these Tor groups to vanish for all modules C 2 C .

Therefore, one may want to restrict (�) to some subclass of the class C , consisting of
modules for which the functorA˝R � is better behaved. One can do so by considering
the following condition:

(z�) There exists a resolving class G � R-Mod such that F � G , the underlying left
R-modules of all the left A-modules from F A D ?1CA belong to G , and the left
R-module A˝R C belongs to C for every left R-module C 2 C \ G .

Taking G D R-Mod, one recovers (�) as a particular case of (z�).
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Theorem 3.10. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (z�) holds.
Assume further that the C -coresolution dimension of any leftR-module does not exceed
a finite integer k � 0. Then the class F A D ?1CA � A-Mod can be described as
F A D FilkC1.A˝R F /˚.

In particular, we have Fil.A˝R F /˚ D FilkC1.A˝R F /˚.

Proof. We are following the proof of Corollary 3.7 step by step and observing that
the assumptions of the present theorem are sufficient for the validity of the argument.
Essentially, the point is that the key constructions are performed within the class
G � R-Mod and the class of all left A-modules whose underlying left R-modules
belong to G .

The inclusion Fil.A˝R F /˚ � F A holds by Lemma 3.2 (c). Given a leftA-module
M 2 F A, we will show that M 2 FilkC1.A˝R F /˚.

Arguing as in the last paragraph of the proof of Proposition 3.5, the left R-module
M is a quotient module of an R-module F.M/ 2 F , and therefore the left A-module
M is a quotient A-module of the left A-module A˝R F.M/. Denote by N the kernel
of the surjective A-module morphism A˝R F.M/!M . By (z�), we have RM 2 G

and A˝R F.M/ 2 G , hence the underlying left R-module of N also belongs to G .
Now we construct the diagram (7) for the leftA-moduleN . In the special preenvelope

sequence 0! N ! C.N/! F 0.N /! 0, we have F 0.N / 2 F � G and RN 2 G ,
hence C.N/ 2 G . According to (z�), it follows that A ˝R C.N/ 2 C . Also by (z�),
we have A˝R F 0.M/ 2 A˝R F � G , so it follows from the short exact sequence
0! N ! W.N/! A˝R F

0.N /! 0 that the underlying left R-module of the left
A-module W.N/ belongs to G .

Iterating the construction and following the proof of Proposition 3.5, we obtain
an injective morphism of left A-modules N ! W k.N / with W k.N / 2 CA and
the cokernel belonging to Filk.A˝R F /. Following the proof of (the “if” implica-
tion in) Lemma 1.1, we produce a surjective A-module morphism onto M from an
A-module belonging to FilkC1.A˝R F / with the kernel isomorphic to W k.N /. As
Ext1A.M;W k.N // D 0 by assumption, we conclude thatM 2 FilkC1.A˝R F /˚.

For a class of examples to Theorem 3.10 arising in connection with n-tilting modules,
see Example 3.14 (2).

3.3 – Tilting cotorsion pairs and Bongartz–Ringel lemma

In this section we discuss an important class of examples in which a suitable version
of the Bongartz–Ringel lemma [12, Lemma 2.1], [32, Lemma 40], [19, Lemma 6.15]
leads to a better result than the techniques of Section 3.2.
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Let T be a left R-module and n � 0 be an integer. The R-module T is said to be
n-tilting [1, Section 2], [19, Definition 13.1] if the following three conditions hold:

(T1) the projective dimension of the left R-module T does not exceed n;

(T2) ExtiR.T; T .�// D 0 for all integers i > 0 and all cardinals �;

(T3) there exists an exact sequence of left R-modules 0! R! T 0 ! T 1 ! � � � !

T n�1 ! T n ! 0 with T i 2 AddR.T / for all 0 � i � n.

The n-tilting class induced by T in R-Mod is the class of left R-modules

C D T ?>0 D
®
C 2 R-Mod j ExtiR.T; C / D 08i > 0

¯
:

The cotorsion pair .F ;C/ with F D ?1C � R-Mod is hereditary and complete by
Theorem 1.5 (see [1, Theorem 3.1] for details); it is called the n-tilting cotorsion pair
induced by T in R-Mod.

Proposition 3.11. Let R! A be a homomorphism of associative rings and T
be an n-tilting left R-module. Assume that the underlying left R-module of AC D
HomZ.A;Q=Z/ belongs to C , that is, in other words, TorRi .A; T / D 0 for all i > 0.
Then

(a) the left A-module A˝R T satisfies the conditions (T1) and (T3);

(b) the left A-module A˝R T satisfies (T2) if and only if its underlying left R-module
belongs to C .

Proof. Part (a): applying the functor A ˝R � to a projective resolution 0 !
Pn ! � � � ! P0 ! T ! 0 of the left R-module T produces a projective resolution
0! A˝R Pn ! � � � ! A˝R P0 ! A˝R T ! 0 of the left A-module A˝R T .
Similarly, applying the functor A˝R � to an exact sequence in (T3) produces an exact
sequence of left A-modules 0! A! A˝R T

0 ! � � � ! A˝R T
n ! 0, in which

A˝R T
i 2 AddA.A˝R T / for all 0 � i � n.

Part (b): put T 0 D A˝R T . We have ExtiA.T 0; T 0.�//' ExtiR.T;T 0.�// for all i � 0
by Lemma 1.8 (a), since TorRi .A; T / D 0 for i > 0. It follows that the left A-module
T 0 is n-tilting if and only if the left R-module T 0.�/ belongs to C � R-Mod for every
cardinal �. Since the n-tilting class C is closed under infinite direct sums in R-Mod
[19, Proposition 13.13 (b)], it suffices that RT 0 2 C .

Lemma 3.12. Let R ! A be a homomorphism of associative rings and T be
an n-tilting left R-module. Let .F ; C/ be the n-tilting cotorsion pair induced by
T in R-Mod. Assume that the underlying left R-module of AC belongs to C , that is,
RA
C 2 C . Assume further that the leftA-moduleA˝R T is n-tilting. Then the n-tilting

cotorsion pair induced by A˝R T in A-Mod has the form .F A;CA/ in our notation.
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In other words, the n-tilting class induced by A˝R T in A-Mod consists precisely of
all the left A-modules whose underlying left R-modules belong to the n-tilting class C

induced by T in R-Mod.

Proof. Indeed, for any leftA-moduleC we have ExtiA.A˝R T;C /' ExtiR.T;C /
for all i � 0 by Lemma 1.8 (a), since TorRi .A; T / D 0 for all i > 0.

Proposition 3.13. LetR be a commutative ring andA be an associativeR-algebra.
Let T be an n-tilting R-module and .F ;C/ be the n-tilting cotorsion pair induced by
T in R-Mod. Assume that the underlying R-module of AC belongs to C . Then the left
A-module A˝R T is n-tilting.

Proof. According to Proposition 3.11, it suffices to show that the R-module T 0 D
A ˝R T belongs to C . We use the dual argument to the one in Proposition 2.14.
By [5, Lemma 3.2] or [19, Proposition 13.13 (b)], the tilting class C can be described
as the class of all R-modules admitting a resolution by direct sums of copies of T .
Let � � � ! P2 ! P1 ! P0 ! A! 0 be a free resolution of the R-module A. Then
� � � ! P2 ˝R T ! P1 ˝R T ! P0 ˝R T ! A ˝R T ! 0 is a resolution of the
R-module A˝R T by direct sums of copies of T . Thus RT 0 2 C , as desired.

A discussion of the particular case of the above proposition and lemma in which A
is a flat commutative R-algebra can be found in [21, Proposition 2.3 and Lemma 2.4].

Examples 3.14. Let A be an associative algebra over a commutative ring R, and
let T be an n-tiltingR-module. Let .F ;C/ be the n-tilting cotorsion pair induced by T
in R-Mod. Assume that the R-module AC belongs to C . Then A˝R T is an n-tilting
left A-module by Proposition 3.13, and the induced n-tilting cotorsion pair in A-Mod
has the form .F A;CA/ in our notation by Lemma 3.12.

(1) In the following particular cases Theorem 3.6 is applicable. Assume that either
A is a flat R-module, or n � 2. Then the condition (�) holds.

Indeed, when A is a flat R-module, it suffices to observe that the n-tilting class C is
closed under direct limits [19, Corollary 13.42]. When n � 2, consider an R-module
C 2 C . Choose a projective presentationP1!P0!A! 0 for theR-moduleA. Then
we have a right exact sequence ofR-modules P1˝R C ! P0˝R C ! A˝R C ! 0

withPi ˝R C 2C for i D 0, 1. Denoting byK the kernel of the morphismP1˝R C !
P0 ˝R C , we have ExtiR.T; A˝R C/ D ExtiC2R .T;K/ D 0 for all i > 0, as desired.

Finally, the C-coresolution dimension of any R-module does not exceed n (since
the projective dimension of the R-module T is � n). According to Corollary 3.7, we
have ?1CA D F A D FilnC1.A˝R F /˚.
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(2) This is a generalization of (1) that can be obtained using Theorem 3.10. We are
assuming thatA is an associativeR-algebra, T is an n-tiltingR-module, and RAC 2 C .
Assume further that TorRi .A; A˝R T / D 0 for all i > 0. Then we claim that (z�) is
satisfied.

Let G be the class of all R-modules G such that TorRi .A; G/ D 0 for all i > 0.
Then we have F � G , since RAC 2 C . Furthermore, all the left A-modules in F A

have finite coresolutions by direct summands of direct sums of copies of A˝R T
[19, Proposition 13.13 (a)]; hence TorRi .A; F / D 0 for all F 2 F A and i > 0.

In order to check the condition (z�), it remains to show that A˝R C 2 C for any
R-moduleC 2 C \ G . Indeed, let us choose a projective resolution � � � ! P2! P1!

P0 ! A! 0 for the R-module A. Then we have an exact sequence of R-modules
� � � ! P2 ˝R C ! P1 ˝R C ! P0 ˝R C ! A˝R C ! 0 with Pi ˝R C 2 C for
all i � 0. Denoting by K the image of the morphism Pn ˝R C ! Pn�1 ˝R C , we
have ExtiR.T; A˝R C/ D ExtiCnR .T;K/ D 0 for all i > 0, as desired.

By Theorem 3.10, we can infer that ?1CA D F A D FilnC1.A˝R F /˚.

Now we will explain how a stronger and more general version of the results of
Examples 3.14 can be obtained with an approach based on a suitable version of the
Bongartz–Ringel lemma.

Theorem 3.15 (Bongartz–Ringel lemma). Let A be an associative ring, n � 0 be
an integer, and � D ¹S0; S1; : : : ; Snº be a collection of nC 1 left A-modules. Assume
that S0 is a projective generator ofA-Mod and Ext1A.Si ;S

.�/
j /D 0 for all 0� i � j � n

and all cardinals �. Let .F ;C/ D .?1.�?1/; �?1/ be the (complete) cotorsion pair
generated by the set � in A-Mod. Then the class F � A-Mod can be described as
the class of all direct summands of .nC 1/-filtered left A-modules G with a filtration
0 D F0G � F1G � � � � � FnG � FnC1G D G such that FiC1G=FiG 2 Add.Si / for
every 0 � i � n.

In particular, we have F D FilnC1.
Sn
iD0 Add.Si //˚.

Proof. This is an n � 1 generalization of the classical Bongartz lemma [19,
Lemma 6.15], which corresponds to the case n D 1. At the same time, this is an
infinitely generated version of Ringel’s [32, Lemma 40]. The argument is dual to the
proof of Theorem 2.16.

Remark 3.16. For any n-tilting R-module T , the induced n-tilting cotorsion pair
.F ; C/ is obviously generated by the syzygy modules T; �1T; : : : ; �n�1T of the
R-module T . However, the sequence of syzygy modules Sn D T; Sn�1 D �1T; : : : ;
S1 D �

n�1T does not satisfy the assumptions of Theorem 3.15 (generally speaking),
as one can see from a straightforward k-vector space dualization of the counterexample
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of D’Este [14, Theorem 5] mentioned in Remark 2.17. Hence the need for a more
sophisticated approach based on the next lemma.

Lemma 3.17. Let R be an associative ring and T be an n-tilting left R-module.
Then, for every 0 � j � n, there exists an .n � j /-tilting left R-module Tj such that
the class Cj D T

?>j is the tilting class induced by Tj in R-Mod.
In particular, one can (and we will) take T0 D T , while P D Tn is a projective

generator of R-Mod.

Proof. This is [7, Lemma 3.5] or [19, Remark 15.14].

Lemma 3.18. In the notation of Lemma 3.17, the n-tilting class C D T ?>0 can be
described as

C D ¹T0; T1; : : : ; Tnº
?1 D

®
C 2 R-Mod j Ext1R.Tj ; C / D 080 � j � n

¯
:

Proof. Dual to the proof of Lemma 2.19.

Theorem 3.19. Let R be an associative ring and T be an n-tilting left R-module.
Let .F ;C/ be the n-tilting cotorsion pair induced by T inR-Mod. Then the class F can
be described as the class of all direct summands of .nC 1/-filtered left R-modules G
with a filtration 0DF0G �F1G � � � � �FnG �FnC1GDG such that, in the notation
of Lemma 3.17, F1G 2 Add.P /, FiC1G=FiG 2 Add.Tn�i / for every 0 � i � n, and
FnC1G=FnG 2 Add.T /.

Proof. By Lemma 3.18, the n-tilting cotorsion pair .F ;C/ is generated by the set
of nC 1modules S0 D P;S1 D Tn�1; S2 D Tn�2; : : : ; Sn D T . Furthermore, one has
ExtmR.Tj ; T

.�/
i / D 0 for all integers 0 � i � j � n and m > 0 and all cardinals �,

since T .�/i 2 T
?>0

i � T
?>0

j . Thus Theorem 3.15 is applicable.

The result of the following corollary generalizes those of Examples 3.14.

Corollary 3.20. Let R ! A be a homomorphism of associative rings and T
be an n-tilting left R-module. Let .F ;C/ be the n-tilting cotorsion pair induced by
T in R-Mod. Assume that the underlying left R-module of AC belongs to C , that is,
TorRi .A; T / D 0 for all i > 0. Assume further that the left A-module A ˝R Tj is
.n � j /-tilting for every 0 � j � n. (In particular, by Proposition 3.13, this holds
whenever R is commutative and A is an R-algebra.) Let .F A;CA/ be the n-tilting
cotorsion pair induced by T 0 D A˝R T in A-Mod. Then F A D FilnC1.A˝R F /˚.

Proof. Follows easily from Theorem 3.19 and Lemma 1.8 (a) (cf. the proof of the
dual assertion in Corollary 2.21).
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3.4 – Increasing filtrations by induced modules

Let R! A be a homomorphism of associative rings, and let .F ;C/ be an Ext1-
orthogonal pair of classes of left R-modules. Instead of assuming finiteness of the
C -coresolution dimension, we now assume that the class C is closed under countable
direct sums in R-Mod.

As above, we denote by ! the ordinal of nonnegative integers. The “filtrations”
appearing in the next proposition are the usual exhaustive infinite increasing filtrations
indexed by the natural numbers.

Proposition 3.21. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ;C/ admits approximation sequences (1)–(2). Assume that the left R-module
AC belongs to C , and that the condition (�) holds. Assume further that the class C is
closed under the cokernels of injective morphisms and countable direct sums inR-Mod.
Then the Ext1-orthogonal pair of classes of left A-modules Fil!.A˝R F / and CA

admits approximation sequences as well.

Proof. The pair of classes Fil.A ˝R F / and CA � A-Mod is Ext1-orthogonal
by Lemma 3.2 (c). The explicit construction below, showing that the pair of classes
Fil!.A˝R F / and CA � A-Mod admits special preenvelope sequences, plays a key
role. It goes back to [24, Lemma 1.3.3].

Let N be a left A-module. We proceed with the construction from the proof of
Proposition 3.5, but instead of a finite number of k iterations, we perform ! iterations
now. So we produce a sequence of injective morphisms of left A-modules

(8) N �! W.N/ �! W.W.N// �! � � � �! W m.N / �! � � � ;

where m ranges over the nonnegative integers. Clearly, the cokernel of the injective
left A-module morphism N ! lim

�!m2!
W m.N / is !-filtered by the left A-modules

A˝R F
0.W m.N //,m 2 !, which belong to A˝R F by construction. Now the claim

is that the left A-module lim
�!m2!

W m.N / belongs to CA.
Recall that the surjective A-module morphism �N WA˝R N ! N admits a natural

R-linear section "N WN ! A˝R N . Looking on the diagram (7), one can see that the
injective map N ! W.N/ factorizes as N ! A˝R C.N/! W.N/. Here A˝R
C.N/!W.N/ is anA-module morphism, butN !A˝R C.N/ is only anR-module
morphism (between A-modules). Thus the sequence of injective morphisms of left
A-modules (8) is mutually cofinal with a sequence of left R-module morphisms

(9) A˝R C.N/ �! A˝R C.W.N// �! � � � �! A˝R C.W
m.N // �! � � � :
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We have a short exact sequence of left R-modules

0 �!
M
m2!

A˝R C.W
m.N // �!

M
m2!

A˝R C.W
m.N //(10)

�! lim
�!m2!

A˝R C.W
m.N // �! 0:

The leftR-modulesC.W m.N //,m� 0, belong to C by construction. According to (�),
it follows that the underlying left R-modules of the left A-modules A˝R C.W m.N //

belong to C , too. Since the class C � R-Mod is closed under countable direct sums and
the cokernels of injective morphisms by assumption, it follows that the left R-module
lim
�!m2!

A˝R C.W
m.N // belongs to C .

The inductive limits of mutually cofinal inductive systems agree, so we have an
isomorphism of left R-modules

lim
�!m2!

W m.N / ' lim
�!m2!

A˝R C.W
m.N //:

Since lim
�!m2!

A˝R C.W
m.N // 2 C , we can conclude that lim

�!m2!
W m.N / 2 CA,

as desired. This finishes the construction of the special preenvelope sequences for the
pair of classes of left A-modules Fil!.A˝R F / and CA.

At last, the special precover sequences for the pair of classes Fil!.A˝R F / and
CA � A-Mod are produced from the special preenvelope sequences in the same way
as in the last paragraph of the proof of Proposition 3.5.

Theorem 3.22. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (�) holds.
Assume further that the class C is closed under countable direct sums in R-Mod. Then
the pair of classes F A D Fil!.A˝R F /˚ and CA is a hereditary complete cotorsion
pair in A-Mod.

Proof. Follows from Proposition 3.21 in view of Lemma 1.2 (cf. the proof of
Theorem 3.6).

Corollary 3.23. For any associative ring homomorphism R ! A and any
hereditary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of
Theorem 3.22, one has ?1CA D Fil!.A˝R F /˚.

In particular, it follows that Fil.A˝R F /˚ D Fil!.A˝R F /˚.

Proof. This is a corollary of Theorem 3.22 and Lemma 3.2 (c) (cf. the proof of
Corollary 3.7).

Remark 3.24. As mentioned in Remark 3.8, the condition (�) appears to be rather
restrictive. In fact, the construction of Proposition 3.21 originates from the theory of
semimodules over semialgebras, as in [24, Lemma 1.3.3], where the natural analogue of



L. Positselski 236

this condition feels much less restrictive, particularly when C is simply the class of all
injective objects. So one can say that the ring R in this Section 3.4 really “wants” to be
a coalgebra C (say, over a field k), and accordingly the ring A becomes a semialgebra
S over C . The left R-modules “want” to be left C -comodules, and the left A-modules
“want” to be left S -semimodules.

Then the induction functor, which was A˝R � in the condition (�), takes the form
of the cotensor product functor S �C �. This one is much more likely to take injective
left C -comodules to injective left C -comodules (it suffices that S be an injective left
C -comodule). Besides, the class of all injective comodules over a coalgebra over a field
is always closed under infinite direct sums; so the specific assumption of Section 3.4 is
satisfied in the comodule context, too.

To make a ring R behave rather like a coalgebra, one can assume it to be “small” in
some sense. The following examples are suggested by the analogy with semialgebras
and semimodules.

Examples 3.25. Let C D R-Modinj be the class of all injective left R-modules;
then F D R-Mod is the class of all left R-modules (cf. Example 3.9).

(1) Assume that the ring R is left Noetherian. Then the class of all injective left
R-modules is closed under infinite direct sums; so the specific assumption of Section 3.4
is satisfied.

Let I be an injective left R-module containing every indecomposable injective left
R-module as a direct summand. Assume further that the left R-module A˝R I is
injective. Then it follows that the functor A˝R � preserves the class of all injective
left R-modules. Thus the condition (�) is satisfied.

(2) Assume that R is a finite-dimensional algebra over a field k. This is a particular
case of (1). Furthermore, the injective left R-module I D R� D Homk.R; k/ has the
property that every injective left R-module is a direct summand of a direct sum of
copies ofR�. Therefore, the condition (�) holds whenever the underlying leftR-module
of the left A-module A˝R R� is injective.

(3) Assume that R is a quasi-Frobenius ring. This is also a particular case of (1)
(cf. Example 2.26 (3)). In this case, the condition (�) can be rephrased by saying that
the functor A˝R � takes projective left R-modules to projective left R-modules. This
holds whenever A is a projective left R-module.

Remark 3.26. The above examples shed some light on the condition (�), but they
provide no new information from the point of view of the comparison between the
results of Section 3.4 and those known from the general theory of cotorsion pairs in
module categories. In fact, taking C to be the class of all injective left R-modules and
assuming that the ring R is left Noetherian, one can drop the condition (�) altogether,
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as the following version of Proposition 3.21, and consequently also of Theorem 3.22
and Corollary 3.23, is readily provable using the small object argument.

Proposition 3.27. Let C be the class of all injective left R-modules. Assume that
the ring R is left Noetherian and the left R-module AC is injective (equivalently, the
right R-module A is flat). Then the Ext1-orthogonal pair of classes of left A-modules
Fil!.A˝R R-Mod/ and CA D A-ModR-inj admits approximation sequences.

Consequently, the pair of classes F AD Fil!.A˝R R-Mod/˚ and CA is a hereditary
complete cotorsion pair in A-Mod. In particular, we have ?1A-ModR-inj D Fil!.A˝R
R-Mod/˚ and Fil.A˝R R-Mod/˚ D Fil!.A˝R R-Mod/˚.

Proof. This is a particular case of Proposition 3.30 below.

In other words, in the assumptions of Proposition 3.27, the weakly A=R-projective
left A-modules are precisely the direct summands of the A-modules admitting an
!-indexed increasing filtration by A-modules induced from left R-modules.

Let us formulate a generalization of Proposition 3.27 to coherent rings. For this
purpose, we need some definitions. Let R be an associative ring. A left R-module J is
called fp-injective [36] if Ext1R.S; J /D 0 for all finitely presented leftR-modules S . A
left R-module Q is said to be fp-projective [22] if Ext1R.Q; J / D 0 for all fp-injective
leftR-modules J ; equivalently, this means thatQ is a direct summand of anR-module
filtered by finitely presented R-modules. The fp-projective modules are called “direct
summands of fp-filtered modules” in [19, Definition 8.4]. The classes of fp-projective
and fp-injective R-modules form a complete cotorsion pair in R-Mod [19, Theo-
rem 8.6 (b)]; over a left coherent ring R, this cotorsion pair is hereditary. The class of
all fp-injective left R-modules is closed under direct sums [36, Corollary 2.4]; over a
left coherent ring R, it is also closed under direct limits [36, Theorem 3.2]. We refer
to [26, Section 1] for some further discussion.

Proposition 3.28. Let F be the class of all fp-projective left R-modules and C be
the class of all fp-injective left R-modules. Assume that the ring R is left coherent and
the left R-module AC is fp-injective (equivalently, the right R-module A is flat). Then
the Ext1-orthogonal pair of classes of left A-modules Fil!.A˝R F / and CA admits
approximation sequences.

Consequently, the pair of classes F A D Fil!.A ˝R F /˚ and CA is a heredi-
tary complete cotorsion pair in A-Mod. In particular, ?1CA D Fil!.A˝R F /˚ and
Fil.A˝R F /˚ D Fil!.A˝R F /˚.

Proof. This is also a particular case of Proposition 3.30. Let us only explain why
the right R-module A is flat whenever the left R-module AC is fp-injective. This can
be shown by observing that any fp-injective pure-injective module is injective (by [19,
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Lemma 8.5]), but the simplest argument is that, given a rightR-moduleG such that the
leftR-moduleGC is fp-injective, the isomorphism TorR1 .G;S/C ' Ext1R.S;GC/D 0
implies TorR1 .S;G/ D 0 for all finitely presented left R-modules S .

Example 3.29. This example is an n D1 version of Example 3.14 (1). Let A be
an associative algebra over a commutative ring R such that A is a flat R-module, and
let .F ;C/ be a hereditary cotorsion pair in R-Mod generated by a set � of strongly
finitely presented R-modules (i.e., every module S 2 � admits a resolution by finitely
generated projective R-modules). Then the class C is closed under direct limits (and in
particular, direct sums) in R-Mod, so the condition (�) holds for the reason explained
in Example 3.14 (1), and Theorem 3.22 is applicable. According to Corollary 3.23, we
can conclude that ?1CA D F A D Fil!.A˝R F /˚.

Using the small object argument, one can get rid of the assumption of commutativity
of the ring R in this result, and relax the other conditions as follows.

Proposition 3.30. Let R! A be a homomorphism of associative rings, and let
.F ;C/ be a cotorsion pair in R-Mod generated by a set � of left R-modules such
that an exact sequence of left R-modules P2 ! P1 ! P0 ! S ! 0 with finitely
generated projectiveR-modules P2, P1, P0 exists for every S 2 � . Assume that the left
R-moduleAC belongs to C . Then the Ext1-orthogonal pair of classes of leftA-modules
Fil!.A˝R F / and CA admits approximation sequences.

Consequently, the pair of classes F A D Fil!.A˝R F /˚ and CA is a complete
cotorsion pair inA-Mod. In particular,?1CAD Fil!.A˝R F /˚ and Fil.A˝R F /˚D

Fil!.A˝R F /˚.

Proof. The proof is a simple version of the small object argument [16, Theorem 2],
[19, Theorem 6.11]. The claim that !-filtrations by induced modules are sufficient
follows from Lemma 1.8 (a) and the fact that the functor Ext1R.S;�/ preserves direct
limits for any left R-module S satisfying the assumption of the proposition. So, in
fact, all the A-modules from F A are direct summands of A-modules !-filtered by left
A-modules induced from direct sums of copies of left R-modules from � . We leave
the details to the reader.

The next theorem is a generalization of Corollary 3.23 in which the condition (�) is
replaced by the condition (z�).

Theorem 3.31. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (z�) holds.
Assume further that the class C is closed under countable direct sums in R-Mod. Then
the class F A D ?1CA � A-Mod can be described as F A D Fil!.A˝R F /˚.

In particular, we have Fil.A˝R F /˚ D Fil!.A˝R F /˚.
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Proof. Similar to the proof of Theorem 3.10, which contains all the essential
details. One follows the proof of Corollary 3.23 step by step and observes that the
assumptions of the present theorem are sufficient for the validity of the argument.

3.5 – Combined result on induced modules

In this section we combine the results of Propositions 3.5 and 3.21 in order to obtain
a more general result under relaxed assumptions. Specifically, we assume that all the
countable direct sums of modules from C have finite C -coresolution dimensions.

Proposition 3.32. Assume that the Ext1-orthogonal pair of classes of left R-mod-
ules .F ;C/ admits approximation sequences (1)–(2). Assume that the left R-module
AC belongs to C , and that the condition (�) holds. Assume further that the class C is
coresolving inR-Mod and the C -coresolution dimension of any countable direct sum of
modules from C does not exceed a finite integer k � 0. Then the Ext1-orthogonal pair
of classes of leftA-modules Fil!Ck.A˝R F / and CA admits approximation sequences
as well. Here ! C k is the k-th successor ordinal of !.

Proof. As in previous proofs, we start with an explicit construction of special
preenvelope sequences for the pair of classes Fil!Ck.A˝R F / and CA � A-Mod.

Let N be a left A-module. Proceeding as in the proof of Proposition 3.21, we
construct the !-indexed inductive system of injective morphisms of left A-modules (8).
The underlying left R-module of the left A-module lim

�!m2!
W m.N / is isomorphic to

the inductive limit of the inductive system of leftR-modules (9), and it can be described
as the rightmost term of the short exact sequence (10).

The left R-modules A˝R C.W m.N // belong to C by (�), so the left R-moduleL
m2! A˝R C.W

m.N // has C-coresolution dimension � k in our present assump-
tions. By Lemma 1.10 (b), it follows that the C -coresolution dimension of (the underly-
ing left R-module of the left A-module) M D lim

�!m2!
W m.N / does not exceed k.

Now we apply the construction from the proof of Proposition 3.5 to the leftA-module
M , producing the sequence of injective morphisms of left A-modules

M �! W.M/ �! W.W.M// �! � � � �! W k.M/:

Following the argument in the proof of Proposition 3.5, we have W k.M/ 2 CA, since
cdC M � k. Finally, the cokernel of the composition of injective morphisms

N �! lim
�!m2!

W m.N / DM �! W k.M/

is an extension of the cokernels of the two morphisms N ! lim
�!m2!

W m.N / and
M ! W k.M/. The former cokernel belongs to Fil!.A ˝R F / and the latter one
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to Filk.A ˝R F /; thus the cokernel of the morphism N ! W k.M/ belongs to
Fil!Ck.A˝R F /.

We have produced the desired special preenvelope sequences. Using these, the
special precover sequences are constructed in the same way as in the proofs of Proposi-
tions 3.5 and 3.21.

Theorem 3.33. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (�) holds.
Assume further that the C-coresolution dimension of any countable direct sum of
modules from C in R-Mod does not exceed a finite integer k � 0. Then the pair of
classes F A D Fil!Ck.A˝R F /˚ and CA is a hereditary complete cotorsion pair in
A-Mod.

Proof. Follows from Proposition 3.32 in view of Lemma 1.2.

Corollary 3.34. For any associative ring homomorphism R ! A and any
hereditary complete cotorsion pair .F ;C/ in R-Mod satisfying the assumptions of
Theorem 3.33, one has ?1CA D Fil!Ck.A˝R F /˚.

In particular, it follows that Fil.A˝R F /˚ D Fil!Ck.A˝R F /˚.

Proof. This is a corollary of Theorem 3.33 and Lemma 3.2 (c).

For a class of examples to Theorem 3.33 arising from curved DG-rings, see Propo-
sition 4.16 below.

The final theorem of this section is a generalization of Corollary 3.34 in which the
condition (�) is replaced by the condition (z�).

Theorem 3.35. Let .F ;C/ be a hereditary complete cotorsion pair in R-Mod.
Assume that the left R-module AC belongs to C , and that the condition (z�) holds.
Assume further that the C-coresolution dimension of any countable direct sum of
modules from C in R-Mod does not exceed a finite integer k � 0. Then the class
F A D ?1CA � A-Mod can be described as F A D Fil!Ck.A˝R F /˚.

In particular, we have Fil.A˝R F /˚ D Fil!Ck.A˝R F /˚.

Proof. One follows the proof of Corollary 3.34 step by step and observes that
the assumptions of the present theorem are sufficient for the validity of the argument.
Almost all the essential details have been presented already in the proof of Theorem 3.10,
and only one observation remains to be made.

Let N be a left A-module whose underlying left R-module belongs to G . Then
the underlying left R-module of the left A-module lim

�!m2!
W m.N / also belongs
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to G , because the cokernel of the injectiveA-module morphismN ! lim
�!m2!

W m.N /

belongs to Fil!.A ˝R F / � F A and the class G � R-Mod is closed under
extensions.

4. Illustration: Contraderived and coderived categories

The heading above starts with the word “illustration” rather than “application”,
because there are few new results in this section (Theorems 4.7 and 4.17 being notable
exceptions). Still we demonstrate some classes of examples where Theorems 2.7, 2.29,
3.6, and 3.33 are applicable, leading to nontrivial conclusions, even if previously known
to be provable with different methods.

4.1 – Curved DG-rings and modules

A curved DG-ring (CDG-ring) R D .R; d; h/ is a graded ring R D
L
n2Z R

n

endowed with an odd derivation d WR ! R of degree 1 and a curvature element
h 2 R2. These words mean that, for every n 2 Z, an abelian group homomorphism
dnWR

n ! RnC1 is specified such that the equation d.rs/ D d.r/s C .�1/jrjrd.s/

holds for all r 2 Rjrj and s 2 Rjsj, jr j; jsj 2 Z. In addition, the following two equations
need to be satisfied:

(i) d.d.r// D hr � rh for all r 2 R;

(ii) d.h/ D 0.

The element h 2 R2 is called the curvature element. A curved DG-ring with h D 0 is
the same thing as a usual DG-ring (differential graded ring) .R; d/.

A left CDG-module M D .M; dM / over a CDG-ring .R; d; h/ is a graded left
R-moduleM D

L
n2ZM

n endowed with an odd derivation dM WM !M compatible
with the derivation d on R. These words mean that, for every n 2 Z, an abelian group
homomorphism dM;nWM

n ! M nC1 is specified such that the equation dM .rm/ D
d.r/mC .�1/jrjrdM .m/ holds for all r 2Rjrj andm2M jmj. In addition, the following
equation needs to be satisfied:

(iii) dM .dM .m// D hm for all m 2M .

Notice that CDG-rings and CDG-modules are not complexes, due to the presence of
a nontrivial right-hand side in the equations (i) and (iii). Nevertheless, for any two left
CDG-modulesL andM over .R;d;h/, the complex of morphisms HomR.L;M/ is well-
defined. This is a complex of abelian groups whose degree i component Homi

R.L;M/ is
the group of all homomorphisms of graded leftR-modulesL!MŒi�, where Œi � denotes
the usual cohomological grading shift MŒi�n DM iCn. There is a sign rule involved
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in the definition of the left R-module structure on MŒi�. We refer to [25, Sections 1.1
and 3.1] for the details.

One can assign a graded ringA to a CDG-ring .R;d; h/ by adjoining a new element
ı 2 A1 to the graded ring R and imposing the relations ır � .�1/jrjrı D d.r/ for
all r 2 Rjrj and ı2 D h. The elements of the grading components An are the formal
expressions r C ıs with r 2 Rn and s 2 Rn�1, with the multiplication of such formal
expressions defined in the obvious way using the above relations. With an appropriate
definition of morphisms of CDG-rings and a natural structure (the differential @D @=@ı)
on the graded ring A, the correspondence between CDG-rings .R; d; h/ and acyclic
DG-rings .A; @/ becomes an equivalence of categories (see [30, Section 4.2], where
the notation is B D R and yB D A).

We denote the abelian categories of graded left modules over the graded rings
R and A by R-Modgr and A-Modgr, respectively. As usually in module theory, all the
results above in this paper can be extended easily from the categories of modules to the
categories of graded modules. The abelian category R-Modcdg of left CDG-modules
over .R; d; h/, with homogeneous morphisms of degree 0 commuting with the action
of R and the differentials on the CDG-modules, is equivalent to the abelian category
of graded A-modules A-Modgr. The group of morphisms L!M in this category is
isomorphic to the kernel of the differential Hom0

R.L;M/! Hom1
R.L;M/.

Notice that the graded ring A is a finitely generated projective graded left and right
R-module. In fact, it is a free graded leftR-module with two generators 1 and ı, and it is
also a free graded rightR-module with the same two generators. The functorsA˝R �W
R-Modgr

!A-Modgr
DR-Modcdg and HomR.A;�/WR-Modgr

!A-Modgr
DR-Modcdg

are described in [25, proof of Theorem 3.6], where they are denoted byGC D A˝R �
and G� D HomR.A;�/. The two functors only differ by a shift of grading: for every
graded left R-module S , there is a natural isomorphism of graded left A-modules
G�.S/ D GC.S/Œ1�.

It is an easy but important observation that all the CDG-modules in the essential
image of the functor GC, or equivalently, G� are contractible. In other words, all of
them represent zero objects in the homotopy category of CDG-modules Hot.R-Modcdg/

(cf. [25, Section 3.2]). The natural action of the differential @ D @=@ı in GC.S/ and
G�.S/, induced by the action of @ in A, provides a contracting homotopy.

The homotopy category of left CDG-modules Hot.R-Modcdg/ is defined by the rule
HomHot.R-Modcdg/.L;M/ D H 0.HomR.L;M//; so Hot.R-Modcdg/ is the degree-zero
cohomology category of the DG-category of left CDG-modules over .R; d; h/, with
the complexes of morphisms HomR.L;M/ between CDG-modules L and M . The
homotopy category Hot.R-Modcdg/ is a triangulated category with infinite direct sums
and products [25, Sections 1.2 and 3.1].
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4.2 – Contraderived category

A left CDG-module P over .R; d; h/ is said to be graded projective if the graded
left R-module P is projective in R-Modgr. We denote the full subcategory of graded
projective CDG-modules by R-Modcdg

proj D A-Modgr
R-proj � A-Modgr

D R-Modcdg and
the corresponding full subcategory in the homotopy category by Hot.R-Modcdg

proj/ �

Hot.R-Modcdg/.
A left CDG-module X over .R; d; h/ is said to be contraacyclic in the sense of

Becker [8] if the complex HomR.P; X/ is acyclic for all graded projective CDG-
modules P 2 R-Modcdg

proj, or equivalently, HomHot.R-Modcdg/.P; X/ D 0 for all P 2
Hot.R-Modcdg

proj/. We denote the full subcategory of contraacyclic CDG-modules by
R-Modcdg;ctr

acycl � R-Modcdg and the corresponding full subcategory in the homotopy cate-
gory by Hot.R-Modcdg;ctr

acycl /�Hot.R-Modcdg/. Clearly, Hot.R-Modcdg;ctr
acycl / is a triangulated

subcategory closed under infinite products in Hot.R-Modcdg/.

Theorem 4.1. Let .R; d; h/ be a CDG-ring and A D RŒı� be the corresponding
graded ring. Then

(a) the pair of classes of objects R-Modcdg
proj and R-Modcdg;ctr

acycl is a hereditary complete
cotorsion pair in the abelian category R-Modcdg

D A-Modgr;

(b) the composition of the fully faithful triangulated inclusion functor Hot.R-Modcdg
proj/!

Hot.R-Modcdg/ and the triangulated Verdier quotient functor Hot.R-Modcdg/!

Hot.R-Modcdg/=Hot.R-Modcdg;ctr
acycl / is a triangulated equivalence Hot.R-Modcdg

proj/ '

Hot.R-Modcdg/=Hot.R-Modcdg;ctr
acycl /.

Proof. This is [8, Propositions 1.3.6 (1) and 1.3.8 (1)]. Parts (a) and (b) are two
closely related assertions; in fact, (b) follows from (a). We skip the details.

The quotient category Dctr.R-Modcdg/DHot.R-Modcdg/=Hot.R-Modcdg;ctr
acycl / is called

the contraderived category of left CDG-modules over .R; d; h/ in the sense of Becker.
It has to be distinguished from the contraderived category in the sense of the books and
papers [24–26,30] (see [28, Example 2.6 (3)] for a discussion). It is an open question
whether the two definitions of a contraderived category are equivalent for an arbitrary
CDG-ring. In this section we explain how one can show that they are, in fact, equivalent
under certain assumptions.

To any pair of morphisms with zero composition K ! L and L ! M in the
category R-Modcdg

D A-Modgr, one can assign its totalization Tot.K ! L! M/,
which is an object of the same category. The construction of the CDG-module
Tot.K ! L! M/ is a generalization of the construction of the total complex of
a bicomplex with three rows; it can be interpreted as a twisted direct sum or an iterated
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cone in the DG-category of CDG-modules. We refer to [25, Section 1.2] for a discussion.
Specifically, we are interested in totalizations of short exact sequences in the abelian
category R-Modcdg

D A-Modgr.

Proposition 4.2. Let .R; d; h/ be a CDG-ring. Then the totalization of any short
exact sequence of left CDG-modules over .R; d; h/ belongs to R-Modcdg;ctr

acycl . Hence
the minimal full triangulated subcategory of the homotopy category Hot.R-Modcdg/

containing the totalizations of short exact sequences of CDG-modules and closed under
products is a subcategory in Hot.R-Modcdg;ctr

acycl /.

Proof. This is the result of [25, Theorem 3.5 (b)].

We start with a rather general lemma concerning applicability of the results of
Section 2 to our injective morphism of graded rings R! A.

Lemma 4.3. Let .R; d; h/ be a CDG-ring and A D RŒı� be the corresponding
graded ring. Then the (graded version of) condition (��) from Section 2.2 holds for
any cotorsion pair .F ; C/ in R-Modgr that is invariant under the degree shift Œ1�.
In other words, the underlying graded left R-module of the left CDG-module
G�.F / D HomR.A; F / belongs to F for any graded left R-module F 2 F .

Proof. The R-R-bimodule A=R is isomorphic to RŒ�1� (with appropriate sign
rules). Hence for any graded left R-module F there is a short exact sequence of graded
left R-modules 0! F Œ1�! G�.F /! F ! 0. Now F 2 F and F Œ1� 2 F imply
G�.F / 2 F , since the class F is closed under extensions in R-Modgr.

We will apply the results of Sections 2.2 and 2.5 to the following (trivial) cotorsion
pair .F ;C/ in the category of graded left R-modules R-Modgr. Take F D R-Modgr

proj
to be the class of all projective graded left R-modules and C D R-Modgr to be the
class of all graded left R-modules (as in Examples 2.10 and 2.26). In the spirit of the
notation in Section 2, we denote by G�.R-Modgr/ D HomR.A;R-Modgr/ the class of
all left CDG-modules over .R; d; h/ of the form G�.S/ with S 2 R-Modgr.

Proposition 4.4. Let .R; d; h/ be a CDG-ring. Assume that the abelian category
of graded left R-modules R-Modgr has finite homological dimension k. Then one has
R-Modcdg;ctr

acycl D CofkC1.G�.R-Modgr//˚ � R-Modcdg.

Proof. In the notation of Section 2, we have FADA-Modgr
R-projDR-Modcdg

proj. Hence,
by Theorem 4.1 (a), CA D R-Modcdg;ctr

acycl . The assumptions of Theorem 2.7 hold in view
of Lemma 4.3, and it remains to apply Corollary 2.8.
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The following condition from [25, Section 3.8] ensures applicability of Theo-
rem 2.29:

(��) Any countable product of projective graded left R-modules, viewed as a graded
left R-module, has finite projective dimension not exceeding a fixed integer k.

Proposition 4.5. Let .R; d; h/ be a CDG-ring. Assume that the graded ring R
satisfies the condition (��). Then one has R-Modcdg;ctr

acycl D Cof!Ck.G�.R-Modgr//˚ �

R-Modcdg.

Proof. Similar to Proposition 4.4. The condition (��) holds by Lemma 4.3, and the
desired assertion is obtained by comparing Theorem 4.1 (a) with Corollary 2.30.

Lemma 4.6. Let .R; d; h/ be a CDG-ring. Let T be a class of objects in R-Modcdg

and k be a finite integer. Then any object from CofkC1.T / � R-Modcdg, viewed as
an object of the homotopy category Hot.R-Modcdg/, belongs to the minimal full trian-
gulated subcategory of Hot.R-Modcdg/ containing the CDG-modules from T and the
totalizations of short exact sequences in R-Modcdg.

Proof. It suffices to observe that, for any short exact sequence 0! K ! L!

M ! 0 in R-Modcdg, the object L belongs to the minimal triangulated subcategory of
Hot.R-Modcdg/ containing K, M , and Tot.K ! L!M/.

Theorem 4.7. Let T be a class of objects inR-Modcdg and ˛ be a countable ordinal.
Then any object from Cof˛.T / � R-Modcdg, viewed as an object of the homotopy
category Hot.R-Modcdg/, belongs to the minimal full triangulated subcategory of
Hot.R-Modcdg/ containing the CDG-modules from T and the totalizations of short
exact sequences in R-Modcdg, and closed under countable products.

Proof. Denote by X � Hot.R-Modcdg/ the minimal triangulated subcategory con-
taining the CDG-modules from T and the totalizations of short exact sequences
in R-Modcdg, and closed under countable products. Let us first consider the case
˛ D !. Let M D G!M � � � �� GnM � � � �� G2M � G1M � G0M D 0,
G!M D lim

 �n2!
GnM , be an !-cofiltration of a left CDG-module M over .R; d; h/

by CDG-modules from T (or even from X). Then we have a short exact sequence

(11) 0 �!M �!
Y
n2!

GnM �!
Y
n2!

GnM �! 0

in the abelian category of CDG-modulesR-Modcdg
DA-Modgr. By Lemma 4.6, we have

GnM 2 X for all the integers n � 0. Hence
Q
n2! GnM 2 X. Since the totalization

of the short exact sequence (11) also belongs to X, it follows that M 2 X.
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In the general case of a countable ordinal ˛, we proceed by transfinite induction
in ˛. Let M D G˛M � � � �� G1M � G0M D 0 be a CDG-module ˛-cofiltered
by CDG-modules from T . We need to show thatM 2X. The case ˛ D 0 is obvious. If
˛ D ˇC 1 is a successor ordinal, then we have a short exact sequence of CDG-modules
0! T !M ! GˇM ! 0 with T 2 T . By the induction assumption, GˇM 2 X.
Since Tot.T !M ! GˇM/ 2 X, it follows that M 2 X.

In the case of a countable limit ordinal ˛, choose an increasing sequence of ordinals
.ˇn/n2! with 0 D ˇ0 < ˇ1 < ˇ2 < � � � < ˛ and ˛ D limn!! ˇn. Then there exist
ordinals .n > 0/n2! such that ˇnC1 D ˇn C n for every n 2 !. It follows that
n � ˇnC1 < ˛. Define an !-cofiltration G0 on the CDG-module M by the rule
G0nM D Gˇn

M . Then the kernel Kn of the surjective morphism of CDG-modules
G0nC1M ! G0nM is n-cofiltered by T for every n 2 !. By the induction assumption,
we have Kn 2 X for every n 2 !. According to the above argument for the case of an
!-cofiltration, it follows that M 2 X.

Corollary 4.8. Let .R; d; h/ be a CDG-ring. Assume that the abelian cat-
egory of graded left R-modules R-Modgr has finite homological dimension. Then
Hot.R-Modcdg;ctr

acycl / is the minimal thick subcategory in Hot.R-Modcdg/ containing the
totalizations of short exact sequences of CDG-modules.

Proof. This is essentially “the contraderived half” of [25, Theorem 3.6]. Here is a
proof based on the techniques developed in this paper. Let X0 � Hot.R-Modcdg/ be
the minimal thick subcategory containing the totalizations of short exact sequences of
CDG-modules. Then X0 � Hot.R-Modcdg;ctr

acycl / by Proposition 4.2 (this assertion does
not depend on any assumptions on the ring R).

The (nontrivial) inclusion Hot.R-Modcdg;ctr
acycl / � X0 holds by Proposition 4.4 and

Lemma 4.6. Here we use the observation, mentioned in Section 4.1, that the CDG-
module G�.S/ is contractible for every graded R-module S .

Corollary 4.9. Let .R; d; h/ be a CDG-ring. Assume that the graded ring R
satisfies the condition (��). Then Hot.R-Modcdg;ctr

acycl / is the minimal full triangulated
subcategory in Hot.R-Modcdg/ containing the totalizations of short exact sequences of
CDG-modules over .R; d; h/ and closed under countable products.

Proof. This is essentially [25, Theorem 3.8]. Here is a proof based on the results
of this paper. Let X � Hot.R-Modcdg/ be the minimal thick subcategory containing
the totalizations of short exact sequences of CDG-modules and closed under countable
products. Then X � Hot.R-Modcdg;ctr

acycl / by Proposition 4.2 (this assertion does not
depend on any assumptions on the ring R).
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The (nontrivial) inclusion Hot.R-Modcdg;ctr
acycl / � X holds by Proposition 4.5 and

Theorem 4.7. The observation that the CDG-module G�.S/ is contractible for every
graded R-module S is important here.

Finally, notice that any full triangulated subcategory having countable products is a
thick subcategory by Rickard’s criterion [23, Criterion 1.3] and the Bökstedt–Neeman
theorem [11, Proposition 3.2 or Remark 3.3].

The contraderived category of left CDG-modules over .R; d; h/ in the sense of the
books and papers [24–26,28, 30] is defined as the quotient category of the homotopy
category Hot.R-Modcdg/ by its minimal triangulated subcategory containing the total-
izations of short exact sequences of CDG-modules and closed under infinite products.
Thus Corollary 4.9 can be rephrased by saying that, under the condition (��), the con-
traderived category in the sense of Becker coincides with the contraderived category
in the sense of [24–26,28, 30].

4.3 – Coderived category

A left CDG-module J over .R; d; h/ is said to be graded injective if the graded left
R-module J is injective inR-Modgr. We denote the full subcategory of graded injective
CDG-modules byR-Modcdg

inj DA-Modgr
R-inj �A-Modgr

DR-Modcdg and the correspond-
ing full subcategory in the homotopy category by Hot.R-Modcdg

inj / � Hot.R-Modcdg/.
A left CDG-moduleX over .R;d;h/ is said to be coacyclic in the sense of Becker [8]

if the complex HomR.X; J / is acyclic for all graded injective CDG-modules J 2
R-Modcdg

inj , or equivalently, HomHot.R-Modcdg/.X; J / D 0 for all J 2 Hot.R-Modcdg
inj /. We

denote the full subcategory of coacyclic CDG-modules by R-Modcdg;co
acycl � R-Modcdg

and the corresponding full subcategory in the homotopy category by Hot.R-Modcdg;co
acycl /

� Hot.R-Modcdg/. Clearly, Hot.R-Modcdg;co
acycl / is a triangulated subcategory closed under

infinite direct sums in Hot.R-Modcdg/.

Theorem 4.10. Let .R; d; h/ be a CDG-ring and A D RŒı� be the corresponding
graded ring. Then

(a) the pair of classes of objects R-Modcdg;co
acycl and R-Modcdg

inj is a hereditary complete
cotorsion pair in the abelian category R-Modcdg

D A-Modgr;

(b) the composition of the fully faithful triangulated inclusion functor Hot.R-Modcdg
inj /

! Hot.R-Modcdg/ and the triangulated Verdier quotient functor Hot.R-Modcdg/!

Hot.R-Modcdg/=Hot.R-Modcdg;co
acycl / is a triangulated equivalence Hot.R-Modcdg

inj / '

Hot.R-Modcdg/=Hot.R-Modcdg;co
acycl /.

Proof. This is [8, Propositions 1.3.6 (2) and 1.3.8 (2)]. Parts (a) and (b) are closely
related; in fact, (b) follows from (a). We omit the details.
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The quotient category Dco.R-Modcdg/D Hot.R-Modcdg/=Hot.R-Modcdg;co
acycl / is called

the coderived category of left CDG-modules over .R; d; h/ in the sense of Becker. It
needs to be distinguished from the coderived category in the sense of the books and
papers [24–26,30] (see [28, Example 2.5 (3)] for a discussion). It is an open question
whether the two definitions of a coderived category are equivalent for an arbitrary
CDG-ring. In this section we explain how one can show that they are, in fact, equivalent
under certain assumptions.

Proposition 4.11. Let .R; d; h/ be a CDG-ring. Then the totalization of any short
exact sequence of left CDG-modules over .R; d; h/ belongs to R-Modcdg;co

acycl . Hence
the minimal full triangulated subcategory of the homotopy category Hot.R-Modcdg/

containing the totalizations of short exact sequences of CDG-modules and closed under
direct sums is a subcategory in Hot.R-Modcdg;co

acycl /.

Proof. This is the result of [25, Theorem 3.5 (a)].

The following lemma is a rather general assertion concerning applicability of the
results of Section 3 to our morphism of graded rings R! A.

Lemma 4.12. Let .R; d; h/ be a CDG-ring and A D RŒı� be the corresponding
graded ring. Then the (graded version of) condition (�) from Section 3.2 holds for
any cotorsion pair .F ; C/ in R-Modgr that is invariant under the degree shift Œ1�.
In other words, the underlying graded left R-module of the left CDG-module
GC.C / D A˝R C belongs to C for any graded left R-module C 2 C .

Proof. Similar to Lemma 4.3. For any graded left R-module C there is a short
exact sequence of graded left R-modules 0! C ! GC.C /! C Œ�1�! 0. Now
C 2 C and C Œ�1� 2 C implyGC.C / 2 C , since the class C is closed under extensions
in R-Modgr.

We will apply the results of Sections 3.2 and 3.5 to the following (trivial) cotorsion
pair .F ;C/ in the category of graded left R-modules R-Modgr. Take C D R-Modgr

inj to
be the class of all injective graded left R-modules and F D R-Modgr to be the class
of all graded left R-modules (as in Examples 3.9 and 3.25). Following the notation
of Sections 3 and 4.2, we denote by GC.R-Modgr/ D A˝R R-Modgr the class of all
CDG-modules over .R; d; h/ of the form GC.S/ with S 2 R-Modgr.

Proposition 4.13. Let .R; d; h/ be a CDG-ring. Assume that the abelian category
of graded left R-modules R-Modgr has finite homological dimension k. Then one has
R-Modcdg;co

acycl D FilkC1.GC.R-Modgr//˚ � R-Modcdg.
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Proof. In the notation of Section 3, we have CADA-Modgr
R-injDR-Modcdg

inj . Hence,
by Theorem 4.10 (a), F A D R-Modcdg;co

acycl . The assumptions of Theorem 3.6 hold in
view of Lemma 4.12, and it remains to apply Corollary 3.7.

Corollary 4.14. For any CDG-ring .R; d; h/ such that the abelian category of
graded left R-modules has finite homological dimension, the classes of contraacyc-
lic and coacyclic left CDG-modules in the sense of Becker over .R; d; h/ coincide,
R-Modcdg;ctr

acycl D R-Modcdg;co
acycl .

Proof. This is our version of [25, Theorem 3.6 (a)]. It is provable by comparing the
results of Propositions 4.4 and 4.13. We have G�.R-Modgr/ D GC.R-Modgr/, since
G� D GCŒ1�; and, obviously, CofkC1.T / D FilkC1.T / for any class T � A-Modgr

and any finite integer k.

Corollary 4.15. Let .R; d; h/ be a CDG-ring. Assume that the abelian cat-
egory of graded left R-modules R-Modgr has finite homological dimension. Then
Hot.R-Modcdg;co

acycl / is the minimal thick subcategory in Hot.R-Modcdg/ containing the
totalizations of short exact sequences of CDG-modules.

Proof. This is “the coderived half” of [25, Theorem 3.6]. It can be deduced, e.g.,
by comparing the results of Corollaries 4.8 and 4.14.

The following condition from [25, Section 3.7] ensures applicability of Theo-
rem 3.33:

(�) Any countable direct sum of injective graded left R-modules, viewed as a graded
left R-module, has finite injective dimension not exceeding a fixed integer k.

Proposition 4.16. Let .R; d; h/ be a CDG-ring. Assume that the graded ring R
satisfies the condition (�). Then one has R-Modcdg;co

acycl D Fil!Ck.GC.R-Modgr//˚ �

R-Modcdg.

Proof. Similar to Proposition 4.13. The condition (�) holds by Lemma 4.12. The
desired assertion is obtained by comparing Theorem 4.10 (a) with Corollary 3.34.

Theorem 4.17. Let T be a class of objects in R-Modcdg and ˛ be a countable
ordinal. Then any object from Fil˛.T /�R-Modcdg, viewed as an object of the homotopy
category Hot.R-Modcdg/, belongs to the minimal full triangulated subcategory of
Hot.R-Modcdg/ containing the CDG-modules from T and the totalizations of short
exact sequences in R-Modcdg, and closed under countable direct sums.
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Proof. This is the dual version of Theorem 4.7. Denote by X � Hot.R-Modcdg/

the minimal triangulated subcategory containing the CDG-modules from T and the
totalizations of short exact sequences in R-Modcdg, and closed under countable direct
sums. Let us consider the case ˛ D !. Let 0 D F0M � F1M � F2M � � � �FnM �
� � � � F!M DM , F!M D

S
n2! FnM , be an !-filtration of a left CDG-module M

over .R; d; h/ by CDG-modules from X. Then we have a short exact sequence

(12) 0 �!
M
n2!

FnM �!
M
n2!

FnM �!M �! 0

in the abelian category of CDG-modules R-Modcdg
D A-Modgr. By Lemma 4.6, which

is applicable because FilkC1.X/D CofkC1.X/, we have FnM 2X for all the integers
n � 0. Hence

L
n2! FnM 2X. Since the totalization of the short exact sequence (12)

also belongs to X, it follows that M 2 X. The argument for an arbitrary countable
ordinal ˛ is similar to that in Theorem 4.7.

Corollary 4.18. Let .R; d; h/ be a CDG-ring. Assume that the graded ring
R satisfies the condition (�). Then Hot.R-Modcdg;co

acycl / is the minimal full triangulated
subcategory in Hot.R-Modcdg/ containing the totalizations of short exact sequences of
CDG-modules over .R; d; h/ and closed under countable direct sums.

Proof. This is essentially [25, Theorem 3.7]. Here is a proof based on the results
of this paper. Let X � Hot.R-Modcdg/ be the minimal thick subcategory containing
the totalizations of short exact sequences of CDG-modules and closed under countable
direct sums. Then X � Hot.R-Modcdg;co

acycl / by Proposition 4.11 (this assertion does not
depend on any assumptions on the ring R).

The (nontrivial) inclusion Hot.R-Modcdg;co
acycl / � X holds by Proposition 4.16 and

Theorem 4.17. The observation that the CDG-module GC.S/ is contractible for every
graded R-module S needs to be used here.

Finally, any full triangulated subcategory having countable direct sums is a thick
subcategory by Rickard’s criterion [23, Criterion 1.3] and the Bökstedt–Neeman
theorem [11, Proposition 3.2 or Remark 3.3].

The coderived category of left CDG-modules over .R;d;h/ in the sense of the books
and papers [24–26,28,30] is defined as the quotient category of the homotopy category
Hot.R-Modcdg/ by its minimal triangulated subcategory containing the totalizations of
short exact sequences of CDG-modules and closed under infinite direct sums. Thus
Corollary 4.18 can be rephrased by saying that, under the condition (�), the coderived
category in the sense of Becker coincides with the coderived category in the sense
of [24–26,28, 30].
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