
Rend. Sem. Mat. Univ. Padova 149 (2023), 183–190
DOI 10.4171/RSMUP/114

© 2023 Università degli Studi di Padova
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Algebraic curves admitting non-collinear Galois points

Satoru Fukasawa (*)

Abstract – This paper presents a criterion for the existence of a birational embedding into
a projective plane with non-collinear Galois points for algebraic curves and describes its
application via a novel example of a plane curve with non-collinear Galois points. In addition,
this paper presents a new characterisation of the Fermat curve in terms of non-collinear
Galois points.
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1. Introduction

The theory of Galois points was formulated by Hisao Yoshihara in 1996 and was
developed by him and several other authors [1,14,16,17], resulting in many interesting
studies. One such study was on the number of Galois points, and it contained several
characterisation results of algebraic varieties according to the number. The relation
between Galois point theory and other research subjects, such as automorphism groups
of algebraic curves, the theory of maximal curves with respect to the Hasse–Weil
bound, or coding theory, was also elucidated. The automorphism group generated
by the Galois groups of Galois points is large in many cases [3, 11–13]. A class of
curves characterised as smooth plane curves of degree d � 5 possessing exactly d
inner Galois points has interesting properties, more precisely, they are ordinary and
admit many automorphisms [3]. All curves with many automorphisms appearing in
the classification list by Stichtenoth and Henn [9, Theorem 11.127] have a plane model
with two Galois points [5, 6, 10]. Many important maximal curves and their quotient
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curves also admit a plane model with two Galois points [5–7, 10]. For the Ballico–
Hefez curve, the set of Galois points coincides with the set of rational points [2], and
algebraic-geometric codes from this curve have good parameters [8].

Let X be a (reduced, irreducible) smooth projective curve over an algebraically
closed field k of characteristic p � 0, and let k.X/ be its function field. We consider a
morphism ' W X ! P2, which is birational, onto its image. Fixing a point P 2 P2 and
a line ` � P2 with ` 63 P , we consider the projection �P W '.X/ Ü ` Š P1 from
P to `. Note that the subfield ��P k.`/ � k.'.X// does not depend on the choice of
the line `. The point P is called a Galois point if the extension k.'.X//=��Pk.`/ is
Galois [14,16]. The associated Galois group is then denoted by GP . Furthermore, a
Galois point P is said to be inner (resp. outer) if P 2 '.X/ n Sing.'.X// (resp. if
P 2 P2 n '.X/).

To obtain a general result regarding the number of Galois points for plane curves, it
would avail us to gather numerous examples of plane curves with two (or more) Galois
points. Until recently, it has been difficult to construct a pair .X; '/ such that '.X/
admits two Galois points. In 2016, a criterion for the existence of birational embedding
with two Galois points was described by the present author [4] whereby many new
examples of plane curves with two Galois points were obtained [4–7, 12, 17]. This
criterion is described hereunder.

Fact 1.1. Fix two finite subgroups G1 and G2 of Aut.X/ and two different points
P1 and P2 of X . Then the conditions (1) and (2) below are equivalent.

(1) The following three conditions are satisfied:

(a) X=Gi Š P1 for i D 1; 2;

(b) G1 \G2 D ¹1º;

(c) P1 C
P
�2G1

�.P2/ D P2 C
P
�2G2

�.P1/ in Div.X/.

(2) There exists a birational embedding ' W X ! P2 of degree jG1j C 1 such that
'.P1/ and '.P2/ are different inner Galois points for '.X/ and G'.Pi / D Gi for
i D 1; 2.

Obtaining three Galois points, however, would greatly aid further development. For
non-collinear Galois points, we obtained the following theorems.

Theorem 1.2. Fix three finite subgroups G1, G2 and G3 of Aut.X/ and three
different points P1, P2 and P3 of X . Then the conditions (1) and (2) below are
equivalent.
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(1) The following four conditions are satisfied:

(a) X=Gi Š P1 for i D 1; 2; 3;

(b) Gi \Gj D ¹1º for any i; j with i ¤ j ;

(c) Pi C
P
�2Gi

�.Pj / D Pj C
P
�2Gj

�.Pi / for any i; j with i ¤ j ;

(d) GiPj ¤ GiPk for any i; j; k with ¹i; j; kº D ¹1; 2; 3º.

(2) There exists a birational embedding ' WX! P2 of degree jG1j C 1 such that '.P1/,
'.P2/ and '.P3/ are non-collinear inner Galois points for '.X/ andG'.Pi / D Gi

for i D 1; 2; 3.

Theorem 1.3. Fix three finite subgroups G1, G2 and G3 of Aut.X/ and three
different points Q1, Q2 and Q3 of X . Then the conditions (1) and (2) below are
equivalent.

(1) The following four conditions are satisfied:

(a) X=Gi Š P1 for i D 1; 2; 3;

(b) Gi \Gj D ¹1º for any i; j with i ¤ j ;

(c0)
P
�2Gi

�.Qk/ D
P
�2Gj

�.Qk/ for any i; j; k with ¹i; j; kº D ¹1; 2; 3º;

(d0) GiQj ¤ GiQk for any i; j; k with ¹i; j; kº D ¹1; 2; 3º.

(2) There exists a birational embedding ' W X ! P2 of degree jG1j and non-collinear
outer Galois points P1; P2 and P3 exist for '.X/ such that GPi

D Gi and PiPj 3
'.Qk/ for any i; j; k with ¹i; j; kº D ¹1; 2; 3º, where PiPj is the line passing
through Pi and Pj .

A new example of a plane curve with non-collinear outer Galois points was con-
structed as follows for the purposes of application.

Theorem 1.4. Let the characteristic p be positive, q be a power of p, and let
X � P2 be the Hermitian curve, which is (the projective closure of) the curve given by

xq C x D yqC1:

If a positive integer s divides q � 1, then a plane model of X of degree s.q C 1/
admitting non-collinear outer Galois points P1; P2 and P3 is derived.

The next task was to classify plane curves with non-collinear Galois points. We
considered the group G WD hGP1

; GP2
; GP3

i � Aut.X/ for non-collinear outer Galois
points P1; P2 and P3. The following result provides a criterion to establish when for
all pointsQ 2 '�1.

S
i¤j PiPj / the orbit GQ ofQ is contained in '�1.

S
i¤j PiPj /.
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Theorem 1.5. Let ' W X ! P2 be a birational embedding of degree d � 3, and
let C D '.X/. Then the following conditions are equivalent.

(a) There exist non-collinear Galois points P1; P2 and P3 2 P2 n C such that GQ �
'�1.

S
i¤j PiPj / for any Q 2 '�1.

S
i¤j PiPj /, where G D hGP1

; GP2
; GP3

i.

(b) p D 0 or d is prime to p, and C is projectively equivalent to the Fermat curve
Xd C Y d CZd D 0.

2. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. First, we must consider (2)) (1). According to Fact 1.1,
conditions (a), (b) and (c) are satisfied. Since the points '.P1/; '.P2/ and '.P3/ are
not collinear, the lines '.Pi /'.Pj / and '.Pi /'.Pk/ are different for any i; j; k with
¹i; j; kº D ¹1; 2; 3º. According to the definition of the Galois points and a property of a
Galois extension [15, III.7.1 Theorem], it follows that G'.Pi /Pj � '

�1.'.Pi /'.Pj //,
and that if the line '.Pi /'.Pj / is not a tangent line at '.Pi /, then G'.Pi /Pj D

'�1.'.Pi /'.Pj // n ¹Piº. Since one of the lines '.Pi /'.Pj / and '.Pi /'.Pk/ is not a
tangent line at'.Pi /, it follows thatGiPj DG'.Pi /Pj ¤G'.Pi /Pk DGiPk . Condition
(d) is satisfied.

Then, we must consider (1)) (2). According to condition (d),

supp
� X
�2G1

�.P2/
�
\ supp

� X
�2G1

�.P3/
�
D ;:

Then, by condition (a), there exists a function f 2 k.X/ n k such that

k.X/G1 D k.f /; .f / D
X
�2G1

�.P3/ �
X
�2G1

�.P2/

(see also [15, III.7.1 Theorem, III.7.2 Corollary, III.8.2 Theorem]). Similarly, there
exists g 2 k.X/ n k such that

k.X/G2 D k.g/; .g/ D
X
�2G2

�.P3/ �
X
�2G2

�.P1/:

Considering condition (c), we take a divisor

D WD P1 C
X
�2G1

�.P2/ D P2 C
X
�2G2

�.P1/:

Then f; g 2L.D/. It follows that the sublinear system of jDj corresponding to a linear
space hf; g; 1i is base-point-free. Under condition (b), the induced morphism

' W X ! P2I .f W g W 1/
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is birational onto its image, and points '.P1/ D .0 W 1 W 0/ and '.P2/ D .1 W 0 W 0/ are
inner Galois points for '.X/ such thatG'.P1/ DG1 andG'.P2/ DG2 (see [4, proofs of
Proposition 1 and Theorem 1]). Furthermore, '.P3/ D .0 W 0 W 1/. Under condition (c),
we have

.g=f / D
X
�2G2

�.P3/ �
X
�2G2

�.P1/ �
X
�2G1

�.P3/C
X
�2G1

�.P2/

D

�
P2 C

X
�2G2

�.P3/
�
�

�
P2 C

X
�2G2

�.P1/
�

�

�
P1 C

X
�2G1

�.P3/
�
C

�
P1 C

X
�2G1

�.P2/
�

D

�
P3 C

X

2G3


.P2/
�
�

�
P3 C

X

2G3


.P1/
�

D

X

2G3


.P2/ �
X

2G3


.P1/:

Then, the subfield k.g=f / induced via projection from P3 coincides with k.X/G3 .
Therefore, this point '.P3/ is an inner Galois point with G'.P3/ D G3.

The proof of Theorem 1.3 is similar to the preceding one.

3. A new example

Let X � P2 be the Hermitian curve of degree q C 1. The set of all Fq2-rational
points of X is denoted by X.Fq2/; see [9] for the properties of the Hermitian curve.

Proof of Theorem 1.4. LetQ1 D .1 W 0 W 0/ andQ2 D .0 W 0 W 1/, and letQ3 D
.˛ W ˇ W 1/ 2 X.Fq2/ with Q3 62 Q1Q2 D ¹Y D 0º. The matrix

Aa WD

0B@aqC1 0 0

0 a 0

0 0 1

1CA
then acts on X and fixes Q1 and Q2, where a 2 Fq2 n ¹0º. Let sm D q � 1 and let
G3 � Aut.X/ be the cyclic group of order s.q C 1/ whose elements are the matrices
Aam . Note that each element ofG3 n ¹1º does not fixQ3. There exists an automorphism
ˆ 2 Aut.X/ represented by 0B@0 0 ˛qC1

0 �˛q ˛qˇ

1 �ˇq ˛q

1CA
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such that ˆ.Q1/ D Q2, ˆ.Q2/ D Q3 and ˆ.Q3/ D Q1. In such a case, the group
ˆG3ˆ

�1 fixes points Q2 and Q3, and each element of this group that differs from
identity does not fix Q1. Therefore, for each pair .Qi ;Qj /, there exists a cyclic group
Gk of order s.qC 1/ such thatGk fixes pointsQi andQj , and each element ofGk n ¹1º
does not fix Qk . Therefore, we would like to show that conditions (a), (b), (c0) and (d0)
in Theorem 1.3 are satisfied for groups G1; G2 and G3.

Note that

.Aam/s D Aaq�1 D

0B@1 0 0

0 aq�1 0

0 0 1

1CA :
Let G03 � G3 be a subgroup consisting entirely of Aaq�1 . Since k.X/G3 � k.X/G

0
3 D

k.x/, by Lüroth’s theorem, X=G3 is rational. Condition (a) is thus satisfied. Since
G1 fixes Q2 and the set G2 n ¹1º does not contain an element fixing Q2, we have
G1 \G2 D ¹1º. Condition (b) is thus satisfied. For any i; j; k with ¹i; j; kº D ¹1; 2; 3º,X

�2Gi

�.Qk/ D s.q C 1/Qk D
X
�2Gj

�.Qk/:

Therefore, condition (c0) is satisfied. SinceGiQj D ¹Qj º ¤ ¹Qkº D GiQk , condition
(d0) is also satisfied.

4. A characterisation of the Fermat curve

Proof of Theorem 1.5. (a)) (b). LetQ 2 '�1.P1P2/. By the definition of the
outer Galois points,

GP1
Q � '�1.P1P2/; GP2

Q � '�1.P1P2/; GP3
Q � '�1.P3'.Q//:

If 
.Q/ 2 '�1.P2P3/ for some 
 2 GP3
, then '.
.Q// 2 P3'.Q/ \ P2P3 D ¹P3º.

This is a contradiction. Therefore, condition (a) implies that GP3
Q � '�1.P1P2/,

and it follows that 
 2 GP3
induces a bĳection of supp.'�P1P2/. Since GP1

acts on
supp.'�P1P2/ transitively,

'�P1P2 D
X

Q2supp.'�P1P2/

mQ

for some integer m � 1. Therefore, for any 
 2 GP3
,


�'�.P1P2/ D '
�.P1P2/:

Let D WD '�P3P1. We take a function f 2 k.X/ with k.f / D k.X/G3 such that

.f / D '�P3P2 � '
�P3P1:
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Similarly, we can take a function g 2 k.X/G1 such that

.g/ D '�P1P2 � '
�P1P3:

Since P1P2 does not pass through P3, it follows that g 62 h1; f i � L.D/. It follows
from the condition 
�'�.P1P2/ D '�.P1P2/ that 
�g D a.
/g for some a.
/ 2 k.
Therefore, a linear subspace h1; f; gi � L.D/ is invariant under the action of any

 2 GP3

. Since ' is represented by .1 W f W g/, there exists an injective homomorphism

GP3
,! PGL.3; k/I 
 7!

0B@1 0 0

0 1 0

0 0 a.
/

1CA :
It follows that d is prime to p, and the map GP3

! k n ¹0º; 
 7! a.
/ is an injective
homomorphism. This implies that GP3

is a cyclic group and that C is invariant under
the linear transformation .X W Y W Z/ 7! .X W Y W �Z/, where � is a primitive d -th
root of unity. Similarly, GP1

is generated by the automorphism given by the linear
transformation .X W Y W Z/ 7! .X W �Y W Z/. Let F.X; Y; Z/ D

Pd
iD0 Fi .X; Y /Z

i

be a defining polynomial of C . Since F.X; Y; �Z/ D F.X; Y;Z/ up to a constant, it
follows that F1 D � � � D Fd�1 D 0. Let F0 D

Pd
iD0Gi .X/Y

i . Similarly, it follows that
G1 D � � � DGd�1 D 0. Therefore,F D aXd C bY d C cZd for some a;b; c 2 k n ¹0º.
It follows that C is projectively equivalent to the Fermat curve Xd C Y d CZd D 0.

(b)) (a). This is derived from the fact that groupsGP1
,GP2

andGP3
fix all points

on the lines ¹X D 0º, ¹Y D 0º and ¹Z D 0º, respectively, for the Fermat curve, where
P1 D .1 W 0 W 0/, P2 D .0 W 1 W 0/ and P3 D .0 W 0 W 1/.
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