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Abstract – For a p-group of order pn, it is known that the order of 2-nilpotent multiplier is
equal to jM.2/.G/j D p

1
2 n.n�1/.n�2/C3�s2.G/, for an integer s2.G/. In this article, we

characterize all non-abelian p-groups satisfying s2.G/ 2 ¹1; 2; 3º.
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1. Preliminaries

The 2-nilpotent multiplier of a group is a generalization of the well-known notion
of Schur multiplier. The latter was introduced by J. Schur in his works on projective
representations in [15] and plays a considerable role in classifying groups. In fact,
2-nilpotent multiplier is a special case of the more general notion of Baer invariant.

For a group G with a free presentation G Š F=R, the c-nilpotent multiplier of G,
M.c/.G/, is defined as

R \ 
cC1.F /

ŒR; cF �
;

in which 
cC1.F / is the c-th term of the lower central series of F , and ŒR; cF � D
ŒŒR; c�1F �; F � (see [4]).

The motivation of studying the 2-nilpotent multiplier comes from [4]. It is the
connection to isologism of groups which is an important tool in classifying groups.
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Recall from [6] that a group G which is isomorphic to H=Z2.H/, for some group
H , is called 2-capable. Choose a free presentation G Š F=R, and consider the natural
epimorphism ˛WF=ŒR; F; f �! G. We may define Z�2 .G/ D ˛.Z2.F=ŒR; F; F �//.
Proposition 1.2 in [4] allows us to decide when a group G is 2-capable. More precisely,
G is 2-capable if and only ifZ�2 .G/D 1. There is a somehow different way for detecting
2-capable groups using the notion of 2-nilpotent multiplier. In more detail, for a group
G, the natural epimorphism M.2/.G/!M.2/.G=N/ is a monomorphism if and only
if N is a subgroup of Z�2 .G/ (see [4, Lemma 2.1]).

Now, we restrict our study to finite p-groups. A famous result of Green shows
that for a given finite 2-group G of order pn, jM.G/j D p

1
2n.n�1/�t.G/ for some

integer t .G/ � 0. Several authors worked on classifying the structure of G in term of
t .G/ when 0 � t .G/ � 5 (see [1, 12–14,16]). In [10], considering only non-abelian
finite p-groups, a Green-type inequality was obtained. The first-named author showed
that jM.G/j � p

1
2 .n�1/.n�2/C1, where G is a finite p-group of order pn, and hence

there is an integer s.G/ such that jM.G/j D p
1
2 .n�1/.n�2/C1�s.G/. A similar result

for the 2-nilpotent multiplier of finite p-groups appeared in [14]. The authors proved
for a non-abelian p-group of order pn that there exists an integer s2.G/ such that
jM.2/.G/j D p

1
2n.n�1/.n�2/C3�s2.G/, and the structure of all p-groups are classified

when s2.G/ D 0. In the present paper, by the same motivation as in [1, 13, 14, 16], we
are interested in characterizing p-groups up to isomorphisms when s2.G/ 2 ¹1; 2; 3º.

Let us start by stating some lemmas which are needed for the present work. In the
following lemma, G1 ˝G2 denotes the non-abelian tensor product of two arbitrary
groups G1 and G2, and G1 ^G2 denotes the non-abelian exterior product. For more
information on these two concepts one may see [2]. It is worth noting that ifG1 andG2
are two groups acting trivially on each other, then G1 ˝G2 coincides with the usual
tensor product G1=G01 ˝G2=G

0
2 of abelian groups, by [3, Proposition 2.4].

Lemma 1.1 ([5, Proposition 2], [7, 9]). Let G be a finite group and B E G. Set
A D G=B .

(i) (a) If B � Z2.G/, then

jM.2/.G/j jB \ 
3.G/j divides jM.2/.A/j

ˇ̌̌̌�
B ˝

G


3.G/

�
˝

G


3.G/

ˇ̌̌̌
:

(b) The sequence

.B ^G/ ^G !M.2/.G/!M.2/.G=B/! B \ 
3.G/! 1

is exact.

(ii) jM.2/.A/j divides jM.2/.G/j jB \ 
3.G/j=jŒŒB;G�;G�j.
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The following result plays an essential role in the rest of the paper.

Lemma 1.2 ([8]). LetG be a finite group. PutGab DG=G0: Then there is a natural
isomorphism

M.2/.G �H/ ŠM.2/.G/ �M.2/.H/

� .Gab ˝Gab/˝H ab
� .H ab

˝H ab/˝Gab:

The following two lemmas are from [14].

Lemma 1.3. Let G be an extra-special p-group of order p2nC1.

(i) If n > 1, then M.2/.G/ is an elementary abelian p-group of order p 1
3 .8n

3�2n/.

(ii) Suppose that jGj D p3 and p is odd. Then M
.2/
.G/ D Z.5/p if G is of exponent p

and M
.2/
.G/ D Zp � Zp if G is of exponent p2.

(iii) The quaternion group of order 8 has Klein four-group as the 2-nilpotent multiplier,
whereas the 2-nilpotent multiplier of the dihedral group of order 8 is Z2 ˚ Z4.

Lemma 1.4. Let G D Zpm1 ˚Zpm2 ˚ � � � ˚Zpmk , where m1 � m2 � � � � � mk
and

Pk
iD1mi D n. Then

(i) jM.2/.G/j D p
1
3n.n�1/.nC1/ if and only if mi D 1 for all i ;

(ii) jM.2/.G/j � p
1
3n.n�1/.n�2/ if and only if m1 � 2.

2. Main results

As mentioned above, we know that the order of the 2-nilpotent multiplier of a finite
non-abelian p-group of order pn is bounded by p 1

3n.n�1/.n�2/C3, therefore for any
group G there exists a non-negative integer s2.G/ for which

jM.2/.G/j D p
1
3n.n�1/.n�2/C3�s2.G/:

In this paper, we characterize the explicit structures of finite non-abelian p-groups
when s2.G/ 2 ¹1; 2; 3º.

First, we state the following theorem from [14] to prove that the only groups which
may have the desired property are those with small derived subgroups.

Theorem 2.1. Let G be a p-group of order pn with jG0j D pm (m � 1). Then

jM.2/.G/j � p
1
3 .n�m/..nC2m�2/.n�m�1/C3.m�1//C3

and the equality holds if and only if G Š E1 � Z.n�3/p .
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Lemma 2.2. Let G be a non-abelian p-group of order pn with jG0j � p3. Then
jM.2/.G/j � p

1
3n.n�1/.n�2/�2.

Proof. Just use Theorem 2.1 and the fact that n is at least 5.

The following lemma has a completely similar proof to that of Lemma 2.2.

Lemma 2.3. Let G be a non-abelian p-group of order pn with jG0j D p2. Then
jM.2/.G/j � p

1
3n.n�1/.n�2/C1.

The following theorem gives an upper bound for the order of the 2-nilpotent multi-
plier of a finite group G. Since B and G=B act trivially on each other, B ˝G=B is
isomorphic to the usual tensor product B ˝ .G=G0B/, by [3, Proposition 2.4].

Theorem 2.4. Let G be a p-group and B be a cyclic central subgroup of G. Then

jM.2/.G/j � jM.2/.G=B/j j.B ˝G=G0B/˝G=G0j:

Proof. LetGDF=R andB D S=R be free presentations forG andB , respectively.
Since B is central, we have ŒS; F � � R, and also R \ S 0 D ŒR; S� because B is cyclic.
Now S 0 � R, and so S 0 D ŒR; S�.

By definition, we have

M.2/.G/ Š
R \ 
3.F /

ŒR; F; F �
and M.2/.G=B/ Š

S \ 
3.F /

ŒS; F; F �
;

and so

jM.2/.G/j � jM.2/.G=B/j

ˇ̌̌̌
ŒS; F; F �

ŒR; F; F �

ˇ̌̌̌
:

The proof is completed if there exists a well-defined epimorphism

x WS=R˝ F=SF 0 ˝ F=RF 0 �!
ŒS; F; F �

ŒR; F; F �
:

To get this, considering the universal property of the usual tensor product of abelian
groups, it is enough to produce a well-defined multi-linear map  by the rule

 .sR; f1SF
0; f2RF

0/ D Œs; f1; f2�ŒR; F; F �:

First we show that

Œsr; f1s
0
 0; f2r

0
� � Œs; f1; f2� .mod ŒR; F; F �/

where r; r 0 2 R, s; s0 2 S and 
; 
 0 2 F 0.
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Expanding the commutator on the left hand side we have Œsr; f1s0
 0; f2r 0
� D
Œsr; f1s

0
 0; r 0
�Œsr; f1s
0
 0; f2�Œsr; f1s

0
 0; f2; r
0
�. Trivially, Œsr; f1s0
 0; f2; r 0
� 2

ŒS; F; F; F �, but ŒS; F � � R, hence ŒS; F; F; F � � ŒR; F; F �. On the other hand,
Œsr; f1s

0
 0; r 0
� D Œsr; f1s
0
 0; 
�Œsr; f1s

0
 0; r 0�Œsr; f1s
0
 0; r 0; 
�, which is contained

in ŒS; F; F 0�ŒS; F; R�. A simple use of the three subgroup lemma shows that the
latter is contained in ŒR; F; F �. We claim that Œsr; f1s0
 0; f2r 0
� � Œsr; f1s0
 0; f2�
.mod ŒR; F; F �/. Using commutator calculus again, we get

Œsr; f1s
0
 0; f2� D Œsr; s

0
 0; f2�
�
sr; s0
 0; f2; Œsr; f1�

s0
 0
��
Œsr; f1�

s0
 0 ; f2
�
:

It is easy to see that

Œsr; s0
 0; f2�
�
sr; s0
 0; f2; Œsr; f1�

s0
 0
�
2 ŒS; SF 0; F � D ŒS; S; F �ŒS; F 0; F �

but we have

ŒS; S; F � D ŒS 0; F � D ŒR; S; F � � ŒR; F; F �

and
ŒS; F 0; F � � ŒS; F; F; F � D ŒR; F; F �:

Finally, ŒŒsr; f1�s
0
 0 ; f2�D Œsr; f1; f2�Œsr; f1; f2; Œsr; f1; s

0
 0��Œsr; f1; s
0
 0; f2�, and for

the last two we have Œsr;f1;f2; Œsr;f1; s0
 0��Œsr;f1; s0
 0;f2�2 ŒS;F;F;F �� ŒR;F;F �.
The first one can be decomposed as

Œsr; f1; f2� D Œs; f1; f2�
�
s; f1; f2; Œs; f1; r�

�
� Œs; f1; r; f2�

�
Œs; f1�

r ; f2; Œr; f1�
�
Œr; f1; f2�;

and we have�
s; f1; f2; Œs; f1; r�

�
Œs; f1; r; f2� �

�
Œs; f1�

r ; f2; Œr; f 1�
�
Œr; f1; f2�

2 ŒS; F; F; F �ŒR; F; F � � ŒR; F; F �:

The multi-linearity of this mapping follows by a straightforward application of com-
mutator calculus.

Considering Lemmas 2.2 and 2.3, in order to characterize allp-groups with s2.G/ 2
¹1; 2; 3º, it is enough to work with p-groups with jG0j � p2. First we deal with those
groups having commutator subgroup of order p. If G=G0 is not elementary abelian,
we have:

Lemma 2.5. Let G be a p-group of order pn with G0 of order p. If G=G0 is not
elementary abelian, then

jM.2/.G/j � p
1
3n.n�1/.n�2/�2:
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Proof. We use Theorem 2.4 with B D G0, to get

jM.2/.G/j � jM.2/.G=G0/j jG0 ˝G=G0 ˝G=G0j:

Since G=G0 is not elementary abelian, by using Lemma 1.4 we have

jM.2/.G=G0/j � p
1
3 .n�1/.n�2/.n�3/:

Since jG0 ˝G=G0 ˝G=G0j � p.n�2/2 , we get the result.

Now we may assume thatG=G0 is elementary abelian. In [10, Lemma 2.1] p-groups
with G0 D �.G/ (the Frattini subgroup) of order p are classified as the central product
of an extra-special p-groupH by the center Z.G/ of G; that is, G D H �Z.G/. Now,
depending on how G0 embeds into Z.G/, we have the following lemma which has a
straightforward proof.

Lemma 2.6. Let G be a p-group with G0 D �.G/ of order p. Then:

(i) If G0 is a direct summand of Z.G/, then G D H �K for some finite abelian group
K.

(ii) If G0 is not a direct summand of Z.G/, then G D .H � Zp2/ �K where K is a
finite abelian p-group.

Proof. As G is a p-group and jG0j D p, we have G0 � Z.G/. Consider G=G0 as
a vector space over Zp and let H=G0 be a complement to Z.G/=G0 in it. It is easy
to see that G D H � Z.G/ and H \ Z.G/ D G0. Now, if G0 is a direct summand
of Z.G/, then we have Z.G/ D G0 �K for some abelian subgroup K of Z.G/ and
henceG DH �K. IfG0 is not a direct summand ofZ.G/, we have exp.Z.G//D p2,
because G=G0 is an elementary abelian p-group and G0 � Z.G/. Now it is easy to
see that Z.G/ D Zp2 �K and G0 � Zp2 , so we can write G D .H � Zp2/ �K.

As we consider the groups for which G=G0 is elementary abelian, we have only the
following two cases:

(1) G D H � T ,

(2) G D H � Zp2 � T ,

where T is an elementary abelian p-group. By Lemma 1.2, without loss of generality
we can assume that Z.G/ D Zp2 . For the groups of type (1) we have the following
theorem.
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Theorem 2.7. Let G D H � T , whereH is an extra-special p-group and T is an
elementary abelian p-group. Then:

(i) If H D E1 then jM.2/.G/j D p
1
3n.n�1/.n�2/C3.

(ii) If H D D8 then jM.2/.G/j D 2
1
3n.n�1/.n�2/C1.

(iii) In all other cases, jM.2/.G/j D p
1
3n.n�1/.n�2/.

Proof. It is just straightforward computations using Lemmas 1.2 and 1.3.

For the groups of type (2), first we compute the order of the 2-nilpotent multiplier
ofH � Zp2 . It should be noted that, as mentioned before Theorem 2.7, we may assume
that Z.G/ D Zp2 .

Theorem 2.8. With the above notation and assumptions, let G D H � Zp2 be of
order pn. Then jM.2/.G/j D p

1
3n.n�1/.n�2/.

Proof. Using Theorem 2.4 with B D Zp2 , we get

jM.2/.G/j � jM.2/.G=Zp2/j jZp2 ˝G=Zp2 ˝G=G0j:

In order to compute jM.2/.G=Zp2/j, we have

G

Zp2

D
H � Zp2

Zp2

Š
H

H \ Zp2

:

But as we had in the proof of Lemma 2.6,H \Zp2 D G0. Therefore,G=Zp2 ŠH=G0.
By assumption, jH j D p2mC1, so H=G0 is an elementary abelian p-group of order
p2m, hence using Lemma 1.2 and the multi-linearity of the tensor product of abelian
groups, we have

jM.2/.G=Zp2/j D p
1
32m.2mC1/.2m�1/ and jZp2 ˝G=Zp2 ˝G=G0j D p.2mC1/

2

:

After some computations, one gets jM.2/.G/j � p
1
3n.n�1/.n�2/. Now, Lemma 1.1(a)

with B D G0 shows that jM.2/.G=G0/j � jM.2/.G/j. The result now follows by using
Lemma 1.4.

Now the following theorem, whose proof is completely similar to the last two ones,
completes the groups of type (2).

Theorem 2.9. Let G D H � Zp2 � T be of order pn, where T is an elementary
abelianp-group andH is an extra-specialp-groups. Then jM.2/.G/j Dp

1
3n.n�1/.n�2/.

In the rest we concentrate on the groups with the derived subgroup of order p2.
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Lemma 2.10. Let G be a p-group of order pn with G0 of order p2. If Z.G/ is not
elementary abelian, then jM.2/.G/j � p

1
3n.n�1/.n�2/�2.

Proof. Choose B � Z.G/ cyclic of order p2 and use Theorem 2.4 to obtain

jM.2/.G/j � jM.2/.G=B/j jB ˝G=B ˝G=G0j:

Since

jM.2/.G=B/j � p
1
3 .n�1/.n�2/.n�3/ and jB ˝G=B ˝G=G0j � p.n�2/

2

;

we have jM.2/.G/j � p
1
3n.n�1/.n�2/�2, and the result follows.

In the class of groups with an elementary abelian center we must consider the
following two lemmas.

Lemma 2.11. LetG be a p-group of order pn withG0 of order p2. LetZ.G/ be ele-
mentary abelian. If jZ.G/j � p3 or jZ.G/j D p2, andG0 ¤Z.G/, then jM.2/.G/j �

p
1
3n.n�1/.n�2/�2.

Proof. LetK be a central subgroup of orderp withK \G0D 1. By Lemma 1.1(a),
we have jM.2/.G/j � jM.2/.G=K/j jK ˝G=
3.G/˝G=
3.G/j. But G=K is a non-
abelian p-group with j.G=K/0j D p2, thus jM.2/.G=K/j� p

1
3 .n�1/.n�2/.n�3/C1 by

Lemma 2.9. Since jK ˝G=
3.G/˝G=
3.G/j � p.n�2/
2 , the result follows.

Lemma 2.12. Let G be a p-group of order pn with G0 of order p2. If G=G0 is not
elementary, then jM.2/.G/j D p

1
3n.n�1/.n�2/�2.

Proof. The result is obtained by a similar argument used in the proof of Lemma 2.5
and Theorems 2.7 and 2.8.

The next lemma shows that the same upper bound in Lemma 2.11 works when
Z.G/ is of order p.

Lemma 2.13. Let G be a p-group of order pn with G0 of order p2. If jZ.G/j D p,
then jM.2/.G/j � p

1
3n.n�1/.n�2/�2.

Proof. By using Lemma 1.1(a) when B D Z.G/, and Theorems 2.7 and 2.8, the
result follows.

The last case is the one for which G0 D Z.G/ Š Zp ˚ Zp .
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Theorem 2.14. There is no finitep-group of orderpn withG0DZ.G/ŠZp ˚Zp
such that jM.2/.G/j D p

1
3n.n�1/.n�2/.

Proof. By contradiction, assume that there is a finite p-group G of order pn

such that jM.2/.G/j D p
1
3n.n�1/.n�2/ andG0 DZ.G/Š Zp ˚Zp . LetK be a central

subgroup of orderp inG0; by Lemma 1.1(a), we have jM.2/.G/j � jM.2/.G=K/j jK ˝

G=G0 ˝G=G0j. Now Theorems 2.7 and 2.8 show that

jM.2/.G=K/j � p
1
3 .n�1/.n�2/.n�3/C3;

whereas G=G0 is elementary abelian by Lemma 2.12. Therefore, p 1
3n.n�1/.n�2/ D

jM.2/.G/j � p
1
3 .n�1/.n�2/.n�3/C3p.n�2/

2 , whence n� 5. Since n¤ 4, we have nD 5.
Now [11, page 345] shows that G Š Z.4/p Ì Zp. By a similar argument used in the
proof of [14, Theorem 3.5], we have jM.2/.G/j D p18, which is a contradiction. Hence,
the assumption is false and the result follows.

We conclude summarizing the achieved results.

Theorem 2.15. Let G be a non-abelian p-group of order pn. Then:

(i) There is no group G with jM.2/.G/j D p
1
3n.n�1/.n�2/C2.

(ii) jM.2/.G/j D p
1
3n.n�1/.n�2/C1 if and only if p D 2 and G Š D8 � Z.n�3/2 .

(iii) jM.2/.G/j D p
1
3n.n�1/.n�2/ if and only ifG ŠHm �Z.n�2m�1/p , whereHm is an

extra-special p-group of order p2mC1 andm � 2 or G Š Hm �Zp2 �Z.n�2m�2/p .
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