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Classification of p-groups via their 2-nilpotent multipliers
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ABsTRACT — For a p-group of order p", it is known that the order of 2-nilpotent multiplier is
equal to |[MP(G)| = p%"("_l)(”_2)+3_52(0), for an integer s2(G). In this article, we
characterize all non-abelian p-groups satisfying s> (G) € {1, 2, 3}.
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1. Preliminaries

The 2-nilpotent multiplier of a group is a generalization of the well-known notion
of Schur multiplier. The latter was introduced by J. Schur in his works on projective
representations in [15] and plays a considerable role in classifying groups. In fact,
2-nilpotent multiplier is a special case of the more general notion of Baer invariant.

For a group G with a free presentation G =~ F/R, the c-nilpotent multiplier of G,

M (G), is defined as
RN yet1(F)
[R7 CF] ’

in which y.4+1(F) is the c-th term of the lower central series of F, and [R, . F] =
[[R,c—1F], F] (see [4]).

The motivation of studying the 2-nilpotent multiplier comes from [4]. It is the
connection to isologism of groups which is an important tool in classifying groups.
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Recall from [6] that a group G which is isomorphic to H/Z,(H ), for some group
H , is called 2-capable. Choose a free presentation G = F/R, and consider the natural
epimorphism a: F/[R, F, f] — G. We may define Z3(G) = a(Z,(F/[R, F, F])).
Proposition 1.2 in [4] allows us to decide when a group G is 2-capable. More precisely,
G is 2-capable if and only if Z3 (G ) = 1. There is a somehow different way for detecting
2-capable groups using the notion of 2-nilpotent multiplier. In more detail, for a group
G, the natural epimorphism M? (G) — M@ (G/N) is a monomorphism if and only
if N is a subgroup of Z5(G) (see [4, Lemma 2.1]).

Now, we restrict our study to finite p-groups. A famous result of Green shows
that for a given finite 2-group G of order p”, |M(G)| = p%”(”_l)_’(G) for some
integer 1(G) > 0. Several authors worked on classifying the structure of G in term of
t(G) when 0 < ¢t(G) < 5 (see [1,12-14,16]). In [10], considering only non-abelian
finite p-groups, a Green-type inequality was obtained. The first-named author showed
that | M(G)| < p2@=D0=2+1 \here G is a finite p-group of order p”, and hence
there is an integer s(G) such that |M(G)| = p2@—D@=2+1=5(G) A similar result
for the 2-nilpotent multiplier of finite p-groups appeared in [14]. The authors proved
for a non-abelian p-group of order p” that there exists an integer s,(G) such that
|IMP(G)| = p%”(”_l)(”_2)+3_s2(c), and the structure of all p-groups are classified
when s,(G) = 0. In the present paper, by the same motivation as in [1, 13, 14, 16], we
are interested in characterizing p-groups up to isomorphisms when s,(G) € {1,2, 3}.

Let us start by stating some lemmas which are needed for the present work. In the
following lemma, G; ® G, denotes the non-abelian tensor product of two arbitrary
groups G1 and G, and G A G, denotes the non-abelian exterior product. For more
information on these two concepts one may see [2]. It is worth noting that if G; and G,
are two groups acting trivially on each other, then G; ® G, coincides with the usual
tensor product G; /G| ® G,/ G} of abelian groups, by [3, Proposition 2.4].

Lemma 1.1 ([5, Proposition 2], [7,9]). Let G be a finite group and B < G. Set
A=G/B.
(1) (@) If B € Z,(G), then
G ) 2 G ‘
y3(G))  y3(G) [

IMP(G)||B N y3(G)| divides |MP(A)] ‘(B ®
(b) The sequence
(BAG)AG = MP(G) > MP(G/B) - BN y3(G) — 1

is exact.
(i) | M@ (A)| divides |[MP(G)||B N y3(G)|/I[[B.G].G]|.
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The following result plays an essential role in the rest of the paper.

Lemma 1.2 ([8]). Let G be a finite group. Put G*? = G/ G'. Then there is a natural
isomorphism
MP(G x H) =~ MP(G) x MP (H)
x (Gab ® Gab) ® Hab « (Hab ® Hab) ® Gab.

The following two lemmas are from [14].

Lemma 1.3. Let G be an extra-special p-group of order p?"*1.

() Ifn > 1, then M®(G) is an elementary abelian p-group of order p%(8”3_2”).

(ii) Suppose that |G| = p3 and p is odd. Then eM(Z)(G) = Z;,S) if G is of exponent p
and M(2)(G) = Zp x 7, if G is of exponent p>.

(iii) The quaternion group of order 8 has Klein four-group as the 2-nilpotent multiplier,
whereas the 2-nilpotent multiplier of the dihedral group of order 8 is 7.5 @ Z.4.
Lemma 1.4. Let G = Zpmy @ Zpmz @ -+ @ Lpmy, where my > myp > -+ > my

and Y"¥_ m; = n. Then
() |[MP(G)| = p3"t=DO+D it and only if m; = 1 for all i;
(i) [MP(G)| < p3"@=DO=2) if und only if my > 2.

2. Main results

As mentioned above, we know that the order of the 2-nilpotent multiplier of a finite
non-abelian p-group of order p” is bounded by p3""—D@=2)+3 therefore for any
group G there exists a non-negative integer s, (G) for which

|M(2)(G)| _ p%n(n—l)(n—2)+3—sz(G)'
In this paper, we characterize the explicit structures of finite non-abelian p-groups
when s,(G) € {1,2,3}.

First, we state the following theorem from [14] to prove that the only groups which
may have the desired property are those with small derived subgroups.

TuEOREM 2.1. Let G be a p-group of order p™ with |G'| = p™ (m > 1). Then

|M(2)(G)| < p%(n—m)((n+2m—2)(n—m—1)+3(m—1))+3

and the equality holds if and only if G = E| x Zl(,n_z').
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LeEmMA 2.2. Let G be a non-abelian p-group of order p" with |G'| > p3. Then
|M(2)(G)| < p%n(n—l)(n—z)—Z'

Proor. Just use Theorem 2.1 and the fact that » is at least 5. [

The following lemma has a completely similar proof to that of Lemma 2.2.

LemmMa 2.3. Let G be a non-abelian p-group of order p™ with |G'| = p?. Then
|M(2)(G)| < p%n(n—l)(n—Z)—{-l.

The following theorem gives an upper bound for the order of the 2-nilpotent multi-
plier of a finite group G. Since B and G/ B act trivially on each other, B ® G/B is
isomorphic to the usual tensor product B ® (G/G’B), by [3, Proposition 2.4].

THEOREM 2.4. Let G be a p-group and B be a cyclic central subgroup of G. Then
IMP(G)] = IMP(G/B)||(B®G/G'B)® G/G'l.

Proor. Let G = F/Rand B = S/ R be free presentations for G and B, respectively.
Since B is central, we have [S, F] € R, and also R N S’ = [R, S] because B is cyclic.
Now S’ C R,andso S’ = [R, S].

By definition, we have

@ S Nys(F)
=) —[R,F, F] and M (G/B) = —[S, FF]
and so

@) @ [S, F, F]‘
MG = 1263 ||

The proof is completed if there exists a well-defined epimorphism

[S, F, F]

V:S/R® F/SF'® F/RF' e
Y:S/RQ F/SF'® F/ _>[R,F,F]

To get this, considering the universal property of the usual tensor product of abelian
groups, it is enough to produce a well-defined multi-linear map v by the rule

Y (SR, /iSF', LRF') = [s, f1, L2][R, F, F].
First we show that
[sr, fis'y', far'y] =[5, f1, f2] (mod [R, F, F))

where r,r’ € R, s,s’ € Sand y,y' € F'.
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Expanding the commutator on the left hand side we have [sr, f1s'y’, far'y] =
[sr. fis'y' r'yllsr, fis'y!, follsr. fis'y', fa, r'y]. Trivially, [sr, fis'y', f2.r'y] €
[S, F, F, F],but [S, F] € R, hence [S, F, F, F] C [R, F, F]. On the other hand,
[sr, f1s'y', 'yl = [sr, f1s'y', yllsr, fis'y’, ¥ llsr, fis'y’, ', v], which is contained
in [S, F, F'][S, F, R]. A simple use of the three subgroup lemma shows that the
latter is contained in [R, F, F]. We claim that [sr, f15'y’, for'y] = [sr, f15'Y', f2]
(mod [R, F, F]). Using commutator calculus again, we get

s fis'y' fo) = Isrsy' fol[sros'y' s fadsr P (s A7 1],
It is easy to see that
[sr,s’y’,fz][sr,s’y’,fz,[sr, fl]s/y/] €[S,SF',F]=1S.S,F][S,F', F]
but we have
[S,S,F]=[S'.F]=[R,S,F]C[R,F,F]

and
[S,F',FIC|[S.F,F,F]=[R.F,F].

Finally, [[sr, /17", f2] = [sr. f1. f2lls7. f1. fa.[s7, f1.8"ylsr. f1.s'y". f2], and for
the last two we have [sr, f1, f2,[s7, f1.8'Y |llsr, f1.8'y', f2] €[S, F,F,F]C[R,F, F].
The first one can be decomposed as
[sr. f1. f2) = [s. /1. Sol[s. fis fau s, f1.7]]
[s, fr.r fllls, AL fo I Al 1 fal,

and we have

[S,fl’fZ’[& flsr]][s’flar’ f2] : [[s’fl]r7 fz,[l",fl]][}’, flﬂfZ]
e[S,F,F,Fl[R,F,FIC[R,F,F].

The multi-linearity of this mapping follows by a straightforward application of com-
mutator calculus. ]

Considering Lemmas 2.2 and 2.3, in order to characterize all p-groups with s5(G) €
{1,2,3}, it is enough to work with p-groups with |G’| < p2. First we deal with those
groups having commutator subgroup of order p. If G/ G’ is not elementary abelian,
we have:

LemMa 2.5. Let G be a p-group of order p" with G’ of order p. If G/ G’ is not
elementary abelian, then

|M(2)(G)| < p%n(n—l)(n—Z)—Z'
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Proor. We use Theorem 2.4 with B = G’, to get
IMP(G)] = IMP(G/GNIIG'® G/G'® G/G'l.
Since G/ G’ is not elementary abelian, by using Lemma 1.4 we have
|M(2)(G/G/)| < p%(n—l)(n—Z)(n—3).
Since |G’ ® G/G' ® G/G'| < p™=2? we get the result. n

Now we may assume that G/ G’ is elementary abelian. In [10, Lemma 2.1] p-groups
with G’ = ¢(G) (the Frattini subgroup) of order p are classified as the central product
of an extra-special p-group H by the center Z(G) of G; thatis, G = H - Z(G). Now,
depending on how G’ embeds into Z(G), we have the following lemma which has a
straightforward proof.

LeMMA 2.6. Let G be a p-group with G’ = ¢(G) of order p. Then:

(1) If G’ is a direct summand of Z(G), then G = H x K for some finite abelian group
K.

(i) If G' is not a direct summand of Z(G), then G = (H - Z,2) x K where K is a
finite abelian p-group.

Proor. As G is a p-group and |G'| = p, we have G’ C Z(G). Consider G/ G’ as
a vector space over Z, and let H/G’ be a complement to Z(G)/G' in it. It is easy
tosee that G = H - Z(G) and H N Z(G) = G’. Now, if G’ is a direct summand
of Z(G), then we have Z(G) = G’ x K for some abelian subgroup K of Z(G) and
hence G = H x K.If G’ is not a direct summand of Z(G), we have exp(Z(G)) = p?,
because G/G’ is an elementary abelian p-group and G’ € Z(G). Now it is easy to
see that Z(G) = Z,2 x K and G’ C Z 2, so we can write G = (H - Z,2) x K. =

As we consider the groups for which G/ G’ is elementary abelian, we have only the
following two cases:

(1) G=HxT,
2 G=H -ZpxT,

where T is an elementary abelian p-group. By Lemma 1.2, without loss of generality
we can assume that Z(G) = Z 2. For the groups of type (1) we have the following
theorem.
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THeOREM 2.7. Let G = H X T, where H is an extra-special p-group and T is an
elementary abelian p-group. Then:

(i) If H = E{ then [M@(G)| = p3n=Dn-2)+3
(i) If H = Dg then M@ (G)| = 23n(=D (=241,
(iii) In all other cases, M@ (G)| = p3nn=D=2),

Proor. It is just straightforward computations using Lemmas 1.2 and 1.3. ]

For the groups of type (2), first we compute the order of the 2-nilpotent multiplier
of H- -Z p2- It should be noted that, as mentioned before Theorem 2.7, we may assume
that Z(G) = Z 2.

Tueorem 2.8. With the above notation and assumptions, let G = H - Z > be of
order p". Then |IM@(G)| = p%"("_l)(”_z).
Proor. Using Theorem 2.4 with B = sz’ we get
IMP(G)| < IMP(G/Z,2)||Z,2 ® G/Z,2 ® G/ G|
In order to compute | M P (G/Z »2)|, we have
G H-Zyp H

Z,, Ly ~ HNLyp

But as we had in the proof of Lemma 2.6, H N Z,> = G’. Therefore, G/Z,» = H/G.

2m+1

By assumption, |H| = p ,s0 H/G' is an elementary abelian p-group of order

p>™, hence using Lemma 1.2 and the multi-linearity of the tensor product of abelian
groups, we have

|cM(2)(G/Zp2)| _ p§2m(2m+1)(2m—1) and |Zp2 ) G/sz ®G/G'| = p(2m+1)2'

After some computations, one gets |M? (G)| < p%”(”_l)(”_z). Now, Lemma 1.1(a)
with B = G’ shows that | M@ (G/G")| < | M@ (G)|. The result now follows by using
Lemma 1.4. ]

Now the following theorem, whose proof is completely similar to the last two ones,
completes the groups of type (2).

TueOREM 2.9. Let G = H - Z,» x T be of order p", where T is an elementary

abelian p-group and H is an extra-special p-groups. Then |[ M@ (G)| = p%”("_l)(”_z).

In the rest we concentrate on the groups with the derived subgroup of order p2.
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LemMa 2.10. Let G be a p-group of order p" with G' of order p?. If Z(G) is not
elementary abelian, then | M@ (G)| < p%”(”_l)(”_z)_z.

Proor. Choose B € Z(G) cyclic of order p? and use Theorem 2.4 to obtain
IMP(G)| = |IMP(G/B)||B®G/B®G/G|.
Since
IMP(G/B)| < p3 DD und |B® G/B®G/G'| < pt P’
we have | M@ (G)| < p3"@=D("=2-2 anq the result follows. n

In the class of groups with an elementary abelian center we must consider the
following two lemmas.

LemMma 2.11. Let G be a p-group of order p™ with G’ of order p?. Let Z(G) be ele-
mentary abelian. If | Z(G)| = p> or |Z(G)| = p?, and G’ # Z(G), then |M?P(G)| <
p%n(n—l)(n—Z)—Z.

Proor. Let K be a central subgroup of order p with K N G’ = 1. By Lemma 1.1(a),
we have |[MP(G)| < |MP(G/K)||K ® G/y3(G) ® G/y3(G)|. But G/K is a non-
abelian p-group with [(G/K)'| = p2, thus | M@ (G/K)|< p3@=DE-2)n-3)+1 py
Lemma 2.9. Since |K ® G/y3(G) ® G/y3(G)| < p®=2? the result follows. n

LemMA 2.12. Let G be a p-group of order p" with G' of order p?. If G/ G' is not
elementary, then |[M®(G)| = p%"("_l)("_z)_z.

Proor. The result is obtained by a similar argument used in the proof of Lemma 2.5
and Theorems 2.7 and 2.8. |

The next lemma shows that the same upper bound in Lemma 2.11 works when
Z(G) is of order p.

LemMa 2.13. Let G be a p-group of order p™ with G’ of order p?. If | Z(G)| = p,
then |M(2)(G)| < p%"(”_l)(”_z)_z.

Proor. By using Lemma 1.1(a) when B = Z(G), and Theorems 2.7 and 2.8, the
result follows. ]

The last case is the one for which G’ = Z(G) = Z, @ Z,.
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THEOREM 2.14. There is no finite p-group of order p" withG' = Z(G) = Z, ® Z,
such that [ M®(G)| = p%"("_l)(”_z).

Proor. By contradiction, assume that there is a finite p-group G of order p”
such that [ M@ (G)| = p3"=D®=2) and G’ = Z(G) = Z, ® Z,. Let K be a central
subgroup of order p in G’; by Lemma 1.1(a), we have | M@ (G)| < [MP(G/K)||K ®
G/G’' ® G/G’|. Now Theorems 2.7 and 2.8 show that

|M(2)(G/K)| < p%(n—l)(n—Z)(n—3)+3’

whereas G/G’ is elementary abelian by Lemma 2.12. Therefore, p37—D#-2) —
IM@(G)| < p3B—D@=2)(1-3+3 ,1=2) \whence n < 5. Since n # 4, we have n = 5.
Now [11, page 345] shows that G =~ Z§,4) X Zp. By a similar argument used in the
proof of [14, Theorem 3.5], we have | M® (G)| = p'3, which is a contradiction. Hence,
the assumption is false and the result follows. ]

We conclude summarizing the achieved results.

THEOREM 2.15. Let G be a non-abelian p-group of order p". Then:
(i) There is no group G with |M(2)(G)| = p%"(”—l)(”—2)+2.
(i) M@ (G)| = p3n=DO=H i and only if p = 2 and G = Dy x 792,

(i) | M@ (G)| = p3"@=D@=2) jfand only if G 2= Hyy x Z82™ Y where H,y, is an
extra-special p-group of order p>™*' andm > 2 0r G = Hy, - Z,2 X Z},"_zm_z).

REFERENCES

[1] Y. G. BErkovicH, On the order of the commutator subgroup and the Schur multiplier of a
finite p-group. J. Algebra 144 (1991), no. 2, 269-272. Zbl 0739.20005 MR 1140606

[2] R. BRowN —D. L. Jounson — E. F. RoBerTsoN, Some computations of nonabelian tensor
products of groups. J. Algebra 111 (1987), no. 1, 177-202. Zbl 0626.20038
MR 913203

[3] R. BRown —J.-L. Lopay, Van Kampen theorems for diagrams of spaces. Topology 26
(1987), no. 3, 311-335. Zbl 0622.55009 MR 899052

[4] J. Burns — G. ELLis, On the nilpotent multipliers of a group. Math. Z. 226 (1997), no. 3,
405-428. 7Zbl 0892.20024 MR 1483540

[5] J. Burns — G. ELLis, Inequalities for Baer invariants of finite groups. Canad. Math. Bull.
41 (1998), no. 4, 385-391. Zbl 0943.20029 MR 1658215

[6] M. HaLrt, Jr. —J. K. SENIOR, The groups of order 2" (n < 6). The Macmillan Company,
New York; Collier Macmillan Ltd., London, 1964. MR 0168631


https://doi.org/10.1016/0021-8693(91)90106-I
https://doi.org/10.1016/0021-8693(91)90106-I
https://zbmath.org/?q=an:0739.20005
https://mathscinet.ams.org/mathscinet-getitem?mr=1140606
https://doi.org/10.1016/0021-8693(87)90248-1
https://doi.org/10.1016/0021-8693(87)90248-1
https://zbmath.org/?q=an:0626.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=913203
https://doi.org/10.1016/0040-9383(87)90004-8
https://zbmath.org/?q=an:0622.55009
https://mathscinet.ams.org/mathscinet-getitem?mr=899052
https://doi.org/10.1007/PL00004348
https://zbmath.org/?q=an:0892.20024
https://mathscinet.ams.org/mathscinet-getitem?mr=1483540
https://doi.org/10.4153/CMB-1998-051-3
https://zbmath.org/?q=an:0943.20029
https://mathscinet.ams.org/mathscinet-getitem?mr=1658215
https://mathscinet.ams.org/mathscinet-getitem?mr=0168631

P. Niroomand — M. Parvizi 136

[71 A.S.-T. Lug, The Ganea map for nilpotent groups. J. London Math. Soc. (2) 14 (1976),
no. 2, 309-312. Zbl 0357.20030 MR 430103

[8] M. R. R. MogHADDAM, The Baer-invariant of a direct product. Arch. Math. (Basel) 33
(1979/80), no. 6, 504-511. Zbl 0413.20025 MR 570485

[9] M. R. R. MoGgHADDAM, Some inequalities for the Baer-invariant of a finite group. Bull.
Iranian Math. Soc. 9 (1981/82), no. 1, 5-10. MR 660335

[10] P. NirooMAND, On the order of Schur multiplier of non-abelian p-groups. J. Algebra 322
(2009), no. 12, 4479-4482. Zbl 1186.20013 MR 2558872

[11] P. NirooMAND, A note on the Schur multiplier of groups of prime power order. Ric. Mat.
61 (2012), no. 2, 341-346. Zbl 1305.20021 MR 3000665

[12] P. NirooMAND, Characterizing finite p-groups by their Schur multipliers, #(G) = 5. Math.
Rep. (Bucur.) 17(67) (2015), no. 2, 249-254. Zbl 1374.20017 MR 3375732

[13] P. NirooMaND, Classifying p-groups by their Schur multipliers. Math. Rep. (Bucur.) 20(70)
(2018), no. 3, 279-284. Zbl 1424.20006 MR 3873102

[14] P. NiRooMAND — M. Parvizi, On the 2-nilpotent multiplier of finite p-groups. Glasg. Math.
J. 57 (2015), no. 1, 201-210. Zbl 1311.20010 MR 3292687

[15] J. ScHur, Untersuchungen iiber die Darstellung der endlichen Gruppen durch gebrochene
lineare Substitutionen. J. Reine Angew. Math. 132 (1907), 85-137. Zbl 38.0174.02
MR 1580715

[16] X. M. Zuou, On the order of Schur multipliers of finite p-groups. Comm. Algebra 22
(1994), no. 1, 1-8. Zbl 0832.20038 MR 1255666

Manoscritto pervenuto in redazione il 3 ottobre 2020.


https://doi.org/10.1112/jlms/s2-14.2.309
https://zbmath.org/?q=an:0357.20030
https://mathscinet.ams.org/mathscinet-getitem?mr=430103
https://doi.org/10.1007/BF01222793
https://zbmath.org/?q=an:0413.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=570485
https://mathscinet.ams.org/mathscinet-getitem?mr=660335
https://doi.org/10.1016/j.jalgebra.2009.09.030
https://zbmath.org/?q=an:1186.20013
https://mathscinet.ams.org/mathscinet-getitem?mr=2558872
https://doi.org/10.1007/s11587-012-0134-4
https://zbmath.org/?q=an:1305.20021
https://mathscinet.ams.org/mathscinet-getitem?mr=3000665
https://zbmath.org/?q=an:1374.20017
https://mathscinet.ams.org/mathscinet-getitem?mr=3375732
https://zbmath.org/?q=an:1424.20006
https://mathscinet.ams.org/mathscinet-getitem?mr=3873102
https://doi.org/10.1017/S0017089514000263
https://zbmath.org/?q=an:1311.20010
https://mathscinet.ams.org/mathscinet-getitem?mr=3292687
https://doi.org/10.1515/crll.1907.132.85
https://doi.org/10.1515/crll.1907.132.85
https://zbmath.org/?q=an:38.0174.02
https://mathscinet.ams.org/mathscinet-getitem?mr=1580715
https://doi.org/10.1080/00927879408824827
https://zbmath.org/?q=an:0832.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=1255666

	1. Preliminaries
	2. Main results
	References

