Weakly S**-semipermutable subgroups and** p**-nilpotency of groups**

Hassan Jafarian Dehkordy (*) – Gholamreza R. Rezaeezadeh (**)

- ABSTRACT A subgroup H of a finite group G is said to be S-semipermutable in G if $HG_p =$ G_pH for every Sylow subgroup G_p of G with $(|H|, p) = 1$. A subgroup H of G is said to be weakly S-semipermutable in G if there exists a normal subgroup T of G such that HT is S-permutable and $H \cap T$ is S-semipermutable in G. In this paper we prove that for a finite group G , if some cyclic subgroups or maximal subgroups of G are weakly S -semipermutable in G , then G is p -nilpotent.
- Mathematics Subject Classification (2020) Primary 20D15; Secondary 20D20, 20F19, 20D10.

 K EYWORDS – S-permutable, S-semipermutable, weakly S-semipermutable, p-nilpotent.

1. Introduction

All groups considered in this paper are finite. For a group G, let $\pi(G)$ denote the set of all prime divisors of $|G|$; G_p a Sylow p-subgroup of G for some $p \in \pi(G)$; $F(G)$ the Fitting subgroup of G ; $F^*(G)$ the generalized Fitting subgroup of G ; $\Phi(G)$ the Frattini subgroup of G. Let \mathfrak{F} be a class of groups, \mathfrak{F} is said to be a formation, provided that if $G \in \mathfrak{F}$ and $H \leq G$, then $G/H \in \mathfrak{F}$, and for any normal subgroups N, M of G, if G/N and G/M are in \mathfrak{F} , then $G/(M \cap N) \in \mathfrak{F}$. The formation \mathfrak{F} is said to be saturated if $G/\Phi(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$. In this paper, U will denote the class of all supersoluble groups. As is well known, U is a saturated formation. $Z_{\infty}(G)$ is the

^(*) *Indirizzo dell'A.*: Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran; h.jafarian.d@sku.ac.ir

^(**) *Indirizzo dell'A.*: Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran; rezaeezadeh@sku.ac.ir

hypercenter of G . A normal subgroup H of G is said to be hypercyclically embedded in G if every chief factor of G below H is cyclic. $Z_{\mathfrak{U}}(G)$ is said to be a U-hypercenter of G and is the product of all hypercyclically embedded subgroups of G.

Let H and K be two subgroups of G. The product HK of these subgroups is a subgroup of G if and only if $HK = KH$. The subgroup H is said to be quasinormal or permutable $[12]$ in G if H permutes with all subgroups of G, and S-permutable or S-quasinormal or π -quasinormal [\[9\]](#page-11-1) in G if H permutes with all Sylow subgroups of G. It is observed by Ore [\[12\]](#page-11-0) that every permutable subgroup of a finite group G is subnormal in G. By extending this result, Ito and Szép have proved in [\[8\]](#page-10-0) that for every permutable subgroup H of a finite group G, H/H_G is nilpotent. Here, H_G is the Core of H , which is the largest normal subgroup of G contained in H . Maier and Schmid proved in [\[11\]](#page-11-2) that for every permutable subgroup H of G it is true that $(H^G/H_G) \subseteq Z_\infty(G/H_G)$. Here, H^G is the normal closure of H in G, which is the intersection of all normal subgroups of G that contain H .

A subgroup H of G is said to be S-semipermutable [\[1\]](#page-10-1) in G, if $HG_p = G_pH$ for every Sylow subgroup G_p of G with $(|H|, p) = 1$.

Clearly, every S -permutable subgroup of G is S -semipermutable in G but the converse does not hold; for example, a Sylow 2-subgroup of S_3 (the symmetric group of degree 3) is semipermutable, thus S -semipermutable in S_3 , but it is not S -permutable in S_3 .

H is said to be an S-embedded subgroup [\[3\]](#page-10-2) of G if G has normal subgroup T such that HT is S-permutable in G and $H \cap T \leq H_{SG}$, where H_{SG} denotes the subgroup generated by all subgroups of H that are S-permutable in G .

DEFINITION. A subgroup H of a finite group G is called *weakly* S-semipermutable in G if there exists a normal subgroup T of G such that HT is S-permutable and $H \cap T$ is S-semipermutable in G.

Clearly every S-semipermutable subgroup of G is weakly S-semipermutable in G , but the converse does not hold: for example, let $G = S_4$ (symmetric group of degree 4) and $H = \langle (12) \rangle$. Then H is weakly S-semipermutable in G, but H is not S-semipermutable in G.

We prove that for a finite group G , if some cyclic subgroups or maximal subgroups of G are weakly S-semipermutable in G , then G is p -nilpotent.

2. Preliminaries

In this section, we give some results which will be useful in the sequel.

Lemma 2.1 ([\[10,](#page-11-3) Lemma 2.1]). *Suppose that a subgroup* H *of a group* G *is* S*-permutable in* G *and* N *is a normal subgroup of* G*. Then the following hold:*

- (1) If $H \leq K \leq G$, then H is S-permutable in K.
- (2) HN and $H \cap N$ are S-permutable in G, HN/N is S-permutable in G/N .
- (3) $H \cap K$ *is* S-permutable in K.
- (4) If H is a p-subgroup of G, then $H \subseteq O_p(G)$ and $O^p(G) \leq N_G(H)$.
- (5) H/H_G *is nilpotent.*

Lemma 2.2 ([\[10,](#page-11-3) Lemma 2.2]). *Suppose that a subgroup* H *of a group* G *is* S*-semipermutable in* G *and* N *is a normal subgroup of* G*. Then the following hold:*

- (1) If $H \leq K \leq G$, then H is S-semipermutable in K.
- (2) If H is a p-subgroup for some prime $p \in \pi(G)$, then HN/N is S-semipermutable *in* G/N .
- (3) *If* $(|H|, |N|) = 1$, then HN/N is S-semipermutable in G/N .
- (4) If $H \leq O_p(G)$, then H is S-permutable in G.

Lemma 2.3 ([\[7,](#page-10-3) IV, Theorems 5.4 and 2.8]). *Suppose that* G *is a minimal nonnilpotent group. Then the following hold:*

- (1) G has a normal Sylow p-subgroup G_p , for some prime p and $G = G_p Q$, where O is a non-normal cyclic q-subgroup for some prime $q \neq p$.
- (2) $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G/\Phi(G_p)$.
- (3) If G_p *is non-abelian and* $p > 2$, then the exponent of G_p *is* p ; *if* G_p *is non-abelian and* $p = 2$ *, then the exponent of* G_p *is* 4*.*
- (4) If G_p *is abelian, then the exponent of* G_p *is p.*

LEMMA 2.4 ([\[16,](#page-11-4) Lemma 2.2]). Let G be a group and $p \in \pi(G)$ satisfying ($|G|, p 1) = 1$. Then the following hold:

- (1) If N is a normal subgroup in G of order p, then N lies in $Z(G)$ *.*
- (2) *If* G *has cyclic Sylow* p*-subgroup, then* G *is* p*-nilpotent.*
- (3) *If* M *is a subgroup of* G *with index* p*, then* M *is normal in* G*.*

Lemma 2.5 ([\[2,](#page-10-4) Lemma 1.2]). *Let* H; K *and* T *be subgroups of a group* G*. Then the following statements are equivalent:*

- (1) $H \cap KT = (H \cap K)(H \cap T)$.
- (2) $HK \cap HT = H(K \cap T)$.

Lemma 2.6 ([\[6,](#page-10-5) Lemma 2.5]). *Let* N *be an elementary abelian normal subgroup of a group* G. If there exists a subgroup D in N satisfying $1 < |D| < |N|$ and every *subgroup* H of G with $|H| = |D|$ is S-semipermutable in G, then there exists a *maximal subgroup* L *of* N *which is normal in* G*.*

Lemma 2.7. *Suppose that a subgroup* H *of a group* G *is weakly* S*-semipermutable in* G *and* N *is a normal subgroup of* G*. Then the following hold:*

- (1) If $H \leq K \leq G$, then H is weakly S-semipermutable in K.
- (2) *If* $(|H|, |N|) = 1$, then HN/N is weakly S-semipermutable in G/N .
- (3) If $H \leq K \leq G$, then G has a normal subgroup L contained in K such that HL is S-permutable in G and $H \cap L$ is S-semipermutable in G.
- (4) If H is a p-subgroup of G, then $H N/N$ is weakly S-semipermutable in G/N .
- (5) If $N \leq U$ and U/N is weakly S-semipermutable in G/N , then U is weakly S*semipermutable in* G*.*

PROOF. (1) Since H is weakly S-semipermutable in G , then there exists a normal subgroup T of G such that HT is S-permutable and H \cap T is S-semipermutable in G. Let $T' = T \cap K$. Then $T' \lhd K$, $HT' = H(T \cap K) = HT \cap K$ is S-permutable in K by Lemma [2.1,](#page-2-0) and $H \cap T' = H \cap (T \cap K) = (H \cap T) \cap K = H \cap T$ is S-semipermutable in K by Lemma [2.2.](#page-2-1) Thus, H is weakly S-semipermutable in K.

(2) Since H is weakly S-semipermutable in G , there exists a normal subgroup T of G such that HT is S-permutable and $H \cap T$ is S-semipermutable in G. Let $T'/N = TN/N$. Then $T'/N \lhd G/N$, $(H/N)(T'/N) = HTN/N$ is S-permutable, and $(HN/N) \cap (T'/N) = (HN \cap TN)/N = (H \cap TN)N/N = (H \cap T)N/N$ is S-semipermutable in G/N by Lemma [2.2.](#page-2-1) Hence, HN/N is weakly S-semipermutable in G/N .

(3) Since H is weakly S-semipermutable in G , there exists a normal subgroup T of G such that HT is S-permutable and $H \cap T$ is S-semipermutable in G. Let $T' = T \cap K$. Then $T' \lhd G$, $HT' = H(T \cap K) = HT \cap K$ is S-permutable in G by Lemma [2.1,](#page-2-0) and $H \cap T' = H \cap (T \cap K) = H \cap T$ is S-semipermutable in G.

(4) Since H is weakly S-semipermutable in G , there exists a normal subgroup T of G such that HT is S-permutable and $H \cap T$ is S-semipermutable in G. Since $TN/N \triangleleft G/N$ and HT is S-permutable in G, we have that $(HN/N)(TN/N)$ is S-permutable in G/N by Lemma [2.1.](#page-2-0) Since $(H \cap T)N/N$ is S-semipermutable in G/N , we have that $(HN/N) \cap (TN/N) = (HN \cap TN)/N = (H \cap T)N/N$ is S-semipermutable in G/N .

(5) Apply the same arguments as in part (4).

 \blacksquare

Lemma 2.8. *Let* L *be a minimal normal and elementary abelian subgroup of* G*. Then* L has not a proper subgroup D with $1 < |D| < |L|$, such that every subgroup *H* of *L* with $|H| = |D|$ is weakly *S*-semipermutable in *G*.

Proof. Let L have a proper subgroup D with $1 < |D| < |L|$ such that every subgroup H of L with $|H| = |D|$ is weakly S-semipermutable in G. Then there exists a normal subgroup T of G with $T \leq L$ such that HT is S-permutable and $H \cap T$ is S-semipermutable in G by Lemma [2.7.](#page-3-0) If $T = L$, then $H = H \cap T$ is S-semipermutable in G. If $T = 1$, then $H = HT$ is S-permutable in G. Therefore L has a maximal subgroup which is a normal subgroup of G , a contradiction by Lemma [2.6](#page-3-1) and the minimality of L.

Lemma 2.9 ([\[15,](#page-11-5) Theorem C]). *Let* E *be a normal subgroup of a group* G*. If* $F^*(E)$ is hypercyclically embedded in G, then E is hypercyclically embedded in G.

Lemma 2.10 ([\[5,](#page-10-6) Lemma 2.2]). *Let* N *be a non-identity normal* p*-subgroup of a group* G*. Then the following hold:*

- (1) *If* N *is elementary and every maximal subgroup of* N *is* S*-embedded in* G*, then some maximal subgroup of* N *is normal in* G*.*
- (2) *If* N *is a group of exponent* p *and every minimal subgroup of* N *is* S*-embedded in* G, then $N \leq Z_{\text{U}}(G)$ *.*

Lemma 2.11 ([\[15,](#page-11-5) Lemma 2.2]). *Let* E *be a normal* p*-subgroup of a group* G*. If* $E \le Z_{\mathfrak{U}}(G)$, then $(G/C_G(E))^{\mathcal{A}(p-1)} \le O_p(G/C_G(E)).$

LEMMA 2.12 ([\[14,](#page-11-6) Lemma 2.16]). *Let* \mathfrak{F} *be a saturated formation containing* U *and* G *be a group with normal subgroup* E such that $G/E \in \mathcal{F}$ *. If* E *is cyclic, then* $G \in \mathfrak{F}$.

3. Main results

THEOREM 3.1. Let G be a group and p be the smallest prime divisor of $|G|$. If G_p *is a Sylow p-subgroup of* G *such that every maximal subgroup of* G_p *is weakly* S*-semipermutable in* G*, then* G *is soluble.*

THEOREM 3.2. Let G be a group, $p \in \pi(G)$ with $(|G|, p - 1) = 1$, and G_p be a *Sylow p-subgroup of G. If every maximal subgroup of* G_p *is weakly S-semipermutable in* G*, then* G *is* p*-nilpotent.*

THEOREM 3.3. Let G be a group, $p \in \pi(G)$ with $(|G|, p - 1) = 1$, and G_p be *a Sylow* p*-subgroup of* G*. If every cyclic subgroup of* G^p *which does not have any* p*-nilpotent supplement in* G *with order* p *or* 4 *(*G² *is a non-abelian* 2*-group) is weakly* S*-semipermutable in* G*, then* G *is* p*-nilpotent.*

Theorem 3.4. *Let* G *be a group and* N *be a normal subgroup of* G*. If there exists* a normal subgroup L of G such that $F^*(N) \le L \le N$ and for any non-cyclic Sylow p*-subgroup* L^p *of* L*, either every maximal subgroup of* L^p *or every cyclic subgroup of* L^p *with order* p *or* 4 *(*L² *is a non-abelian* 2*-group) is weakly* S*-semipermutable in* G, then $N \leq Z_{\mathfrak{U}}(G)$ (i.e., each G-chief factor below N is cyclic).

Theorem 3.5. *Let* F *be a saturated formation containing* U*. If* G *has a normal subgroup* N *such that* $G/N \in \mathfrak{F}$ *and there exists a normal subgroup* L *of* G *such that* $F^*(N) \leq L \leq N$ and for any non-cyclic Sylow p-subgroup L_p of L, either every *maximal subgroup of* L_p *or every cyclic subgroup of* L_p *with order* p *or* 4 (L_2 *is a non-abelian* 2-group) is weakly S-semipermutable in G, then $G \in \mathfrak{F}$.

PROOF OF THEOREM [3.1.](#page-4-0) If $p \neq 2$, then G is soluble by Feit–Thompson's theorem. So let $p = 2$, suppose that the theorem is false and consider a counterexample G of minimal order.

Step 1. $O_p(G) = 1$ and $O_{p'}(G) = 1$.

Suppose that $O_p(G) \neq 1$. It is clear that $|G_p/O_p(G)| \geq 2$. Let $P_1/O_p(G)$ be a maximal subgroup of $G_p/O_p(G)$. Then P_1 is a maximal subgroup of G_p , therefore P_1 is weakly S-semipermutable in G. Then $G/O_p(G)$ is soluble by Lemma [2.7](#page-3-0) and the choice of G, hence G is soluble, a contradiction. Suppose that $O_{p'}(G) \neq 1$. Let $M/O_{p'}(G)$ be a maximal subgroup of $G_pO_{p'}(G)/O_{p'}(G)$, $M = P_1O_{p'}(G)$ for some maximal subgroup P_1 of G_p . So, by the hypothesis of the theorem and Lemma [2.7](#page-3-0) (2), $M/O_{p'}(G)$ is weakly S-semipermutable in $G/O_{p'}(G)$. Thus, $G/O_{p'}(G)$ is soluble by our choice of G and hence G is soluble, a contradiction.

Step 2. Final contradiction.

Let N be a minimal normal subgroup of G. If $N \cap G_p \leq \Phi(G_p)$, then N is p-nilpotent by [\[7,](#page-10-3) IV, Theorem 4.7]. Let $N_{p'}$ be a normal p-complement of N. Then $N_{p'} \leq O_{p'}(G) = 1$, N is a p-subgroup of G. This is a contradiction as $O_p(G) = 1$ by Step 1. Thus $N \cap G_p \nleq \Phi(G_p)$. Then there exists a maximal subgroup M of G_p such that $G_p = M(G_p \cap N)$. There exists a normal subgroup T of G such that MT is S-permutable in G and $M \cap T$ is S-semipermutable in G. If $T = 1$, then M is S-permutable in G. Then by Lemma [2.1](#page-2-0) (4), $M \le O_p(G) = 1$, thus $|G_p|$ = 2. By $[13,$ Theorem 10.1.9], G is 2-nilpotent. Then G is soluble, a contradiction. Hence $T \neq 1$ and $N \leq T$, $N \cap M = N \cap M \cap T$ is S-semipermutable in G, thus for every Sylow q-subgroup N_q of N, $N_q(N \cap M) = (N \cap M)N_q$ and therefore $(N \cap M)N_q$ is a subgroup of G. Then there exists a proper normal subgroup N' of N such that either $N \cap M \leq N'$ or $N_q < N'$ by Lemma [2.1.](#page-2-0) If $N_q \leq N'$, then $N = N'$ by [\[7,](#page-10-3) I, Theorem 9.12], a contradiction. Thus $N \cap M \le N' \cap M$ and $|N/N'|_2 = |N|_2 / |N'|_2 = |G_2 \cap N| / |G_2 \cap N'| \leq |G_2 \cap N| / |M \cap N| \leq 2$. Hence N/N' is p-nilpotent by [\[13,](#page-11-7) Theorem 10.1.9]. Then N/N' is soluble, so N/N' is an elementary p -group, therefore N is a p -group, a contradiction.

PROOF OF THEOREM [3.2.](#page-4-1) Suppose that the theorem is false and consider a counterexample G of minimal order.

Step 1. G is soluble.

G is soluble by Feit–Thompson's theorem and Theorem [3.1.](#page-4-0)

Step 2. G_p is not cyclic and G is not a non-abelian simple group.

G has a non-cyclic Sylow p-subgroup G_p by Lemma [2.4,](#page-2-2) thus G_p is not cyclic. Let G be a non-abelian simple group and G_p^* be a maximal subgroup of G_p . Then there exists a normal subgroup T of G such that G_p^*T is S-permutable in G and $G_p^* \cap T$ is S-semipermutable in G. If $T = 1$, then G_p^* is a proper subnormal subgroup of G, a contradiction. If $T = G$, we also get a contradiction.

Step 3. There exists a unique minimal normal subgroup N of G such that G/N is p-nilpotent and $G = N \rtimes T$ where T is a maximal subgroup of G.

Assume that N is a minimal normal subgroup of G and $G_p \in \text{Syl}_p(G)$. Hence G_pN/N is a Sylow p-subgroup of G/N . Let M/N be a maximal subgroup of G_pN/N . Then there exists a maximal subgroup P_1 of G_p such that $M = P_1N$ and $G_p \cap N = P_1 \cap N$ is a Sylow p-subgroup of N. Since P_1 is weakly S-semipermutable in G, there exists a normal subgroup K of G such that P_1K is S-permutable and $P_1 \cap K$ is S-semipermutable in G. KN/N is a normal subgroup of G/N . P_1KN/N is S-permutable in G/N by Lemma [2.1,](#page-2-0) so $(M/N)(KN/N) = (P_1N/N)(KN/N) =$ P_1KN/N is S-permutable in G/N . $(P_1 \cap K)N/N$ is S-semipermutable in G/N by Lemma [2.2.](#page-2-1) $(P_1 \cap N)(K \cap N) = P_1K \cap N$, hence $P_1N \cap KN = (P_1 \cap K)N$ by Lemma [2.5,](#page-2-3) thus $M/N \cap K/N = P_1 N/N \cap KN/N = (P_1 N \cap KM)/N$ is S-semipermutable in G/N . Then M/N is weakly S-semipermutable in G/N , therefore G/N is p -nilpotent by the choice of G . Since the class of all p -nilpotent groups is a saturated formation, N is a unique minimal normal subgroup of G and $N \nleq \Phi(G)$. Then there exists a maximal subgroup T of G such that $G = N \rtimes T$ and $C_G(N) \cap T = 1$, thus $N = C_G(N)$.

Step 4. $O_{p'}(G) = 1$.

Let $O_{p'}(G) \neq 1$. Then $G/O_{p'}(G)$ is p-nilpotent by the choice of G, hence G is p-nilpotent, which is a contradiction.

Step 5. $O_p(G) \neq 1$ and $O_p(G) = N$.

Let $O_p(G) = 1$. Then $N \leq O_{p'}(G) = 1$, thus $G = G/N$ is p-nilpotent by Step 3, a contradiction. There exists a normal subgroup L of G such that $G = LN$ and $L \cap N = 1$. Since $O_p(G) \cap L$ is normalized by N and L, thus $O_p(G) \cap L$ is normalized by $G = LN$. This implies $O_p(G) = N$.

Step 6. Final contradiction.

We have $G_p = N \rtimes (G_p \cap T)$ by Steps 3 and 4. Then there exists a maximal subgroup P' of G_p such that $G_p \cap T \leq P'$, $G_p = NP'$. There is a normal subgroup L of G such that $P'L$ is S-permutable and $P' \cap L$ is S-semipermutable in G. Since N is minimal normal in G, we have $N \leq (P')^G = (P')^{O^p(G)G_p}$ by $G = O^p(G)G_p$. If $L = 1$, then P' is S-permutable in G and $N \leq (P')^{G_p} = P'$ by Lemma [2.1.](#page-2-0) Since $G_p = NP'$, we have $G_p = P'$, a contradiction. Hence $L \neq 1$ and $N \leq L$. Then $N \cap P' = N \cap (P' \cap L)$ is S-semipermutable in G by Lemma [2.2.](#page-2-1) If $N \cap P' \neq 1$, then $N \leq (N \cap P')^G = (N \cap P')^{O^p(G)G_p} \leq (P')^{G_p} = P'$, a contradiction. Thus $N \cap P' = 1$ and $|N| = p$. Then $G/N = G/C_G(N) \cong A \le \text{Aut}(N)$ and $(|G|, p - 1) = 1$ lead to $G = N$, a contradiction. \blacksquare

PROOF OF THEOREM [3.3.](#page-5-0) Suppose that the theorem is false and consider a counterexample G of minimal order.

Step 1. G is a minimal non-nilpotent group and G_p is non-cyclic.

Clearly G is non-nilpotent. If G_p is cyclic, then G is p-nilpotent by Lemma [2.4,](#page-2-2) a contradiction. Hence G_p is non-cyclic. Let $M \subsetneq G$ and L be a cyclic subgroup of $G_p \cap M$ with order p or 4 (G_2 is a non-abelian 2-group) which does not have any pnilpotent supplement in M, hence L has no p-nilpotent supplement in G. Therefore L is weakly S -semipermutable in G by hypothesis. Thus L is weakly S -semipermutable in M by Lemma [2.7.](#page-3-0) Hence M is p-nilpotent, by the choice of G. Then G is minimal non-nilpotent and G satisfies the results of Lemma [2.3.](#page-2-4)

Step 2. There exists a minimal normal subgroup $L/\Phi(G_p)$ of $G_p/\Phi(G_p)$ such that $L/\Phi(G_p)$ is not S-permutable in $G/\Phi(G_p)$.

If all minimal normal subgroups of $G_p/\Phi(G_p)$ are S-permutable in $G/\Phi(G_p)$, we get a contradiction by Lemma [2.8.](#page-4-2) Hence $G_p/\Phi(G_p)$ has a minimal normal subgroup $L/\Phi(G_p)$ such that $L/\Phi(G_p)$ is not S-permutable in $G/\Phi(G_p)$.

Let $x \in L \setminus \Phi(G_p)$. Then $\langle x \rangle$ is a cyclic group of order p or 4. Suppose that T is an arbitrary supplement of $\langle x \rangle$ in G. Then $G_p = G_p \cap \langle x \rangle T = \langle x \rangle (G_p \cap T)$. Since $G_p/\Phi(G_p)$ is a normal subgroup of $G/\Phi(G_p)$, we have $((G_p \cap T)\Phi(G_p)/\Phi(G_p)) \triangleleft$ $G/\Phi(G_p)$, then $(G_p \cap T)\Phi(G_p) \lhd G$. The group $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G/\Phi(G_p)$ by Lemma [2.3,](#page-2-4) hence $(G_p \cap T) \leq \Phi(G_p)$ or $(G_p \cap T) =$ G_p , as $G_p/\Phi(G_p)$ is a chief factor of G. If $(G_p \cap T) \leq \Phi(G_p)$, then $G_p = \langle x \rangle$, a contradiction. If $(G_p \cap T) = G_p$, then $T = G$ and T is a unique supplement of $\langle x \rangle$ in G. A cyclic subgroup $\langle x \rangle$ is weakly S-semipermutable in G by Step 2. Then there exists a normal subgroup K of G with $K \leq G_p$ such that $K\langle x \rangle$ is S-permutable and $\langle x \rangle \cap K$ is S-semipermutable in G by Lemma [2.7.](#page-3-0) Then $\langle x \rangle \cap K$ is S-permutable in G by Lemma [2.2.](#page-2-1) Since $G_p/\Phi(G_p)$ is a chief factor of G, we have $K \leq \Phi(G_p)$ or $K = G_p$. If $K \leq \Phi(G_p)$, then $L/\Phi(G_p) = (\langle x \rangle K \Phi(G_p)) / \Phi(G_p)$ is S-permutable in $G/\Phi(G_p)$, a contradiction. If $K = G_p$, then $\langle x \rangle = \langle x \rangle \cap K$ is S-permutable in G, and $L/\Phi(G_p) = (\langle x\rangle \Phi(G_p))/\Phi(G_p)$ is S-permutable in $G/\Phi(G_p)$, a contradiction.

PROOF OF THEOREM [3.4.](#page-5-1) Since $F^*(N) \leq L$, it is sufficient to show that $L \leq$ $Z_{\mathfrak{U}}(G)$ by Lemma [2.9.](#page-4-3) Suppose that the theorem is false and consider a counterexample (G, L) for which $|G||L|$ is minimal. Let $L_p \in \mathrm{Syl}_p(L)$ where p is the smallest prime number dividing $|L|$. By [\[7,](#page-10-3) IV, Theorem 2.8], L_p is not cyclic.

Step 1. L is p-nilpotent.

Since L_p is not cyclic, either every maximal subgroup of L_p or any cyclic subgroup of L_p , with order p or 4 (L_2 is a non-abelian 2-group) is weakly S-semipermutable in L by Lemma [2.7.](#page-3-0) Then L is p -nilpotent by Theorems [3.2](#page-4-1) and [3.3.](#page-5-0)

Step 2. $L = L_p$.

L is p-nilpotent by Step 1. Therefore there exists a normal p -complement subgroup K of L, thus $K \lhd G$. If $K \neq 1$, then $L/K \leq Z_{\mathfrak{U}}(G/K)$. Since $K \leq Z_{\mathfrak{U}}(G)$, we have $L \le Z_{\mathfrak{U}}(G)$ by the choice of (G, L) , thus $N \le Z_{\mathfrak{U}}(G)$, which is a contradiction. So $K = 1$ and then $L = L_p$.

Step 3. L_p is not a minimal normal subgroup of G and every cyclic subgroup of L_p with order p or 4 (L_2 is a non-abelian 2-group) is S-embedded in G.

Assume that L_p is a minimal normal subgroup of G. Thus L_p is a normal elementary abelian p-subgroup of G by Step 2. Let M be a maximal subgroup of L_p . Thus ML_p is S-permutable in G and $M \cap L_p = M \leq L_p = (L_p)_{sG}$. Then M is S-embedded in G. Therefore L_p has a maximal subgroup such that it is normal in G by Lemma [2.10,](#page-4-4) a contradiction. This contradiction shows that L_p is not a minimal normal subgroup of G. Assume that any maximal subgroup M of L_p is weakly S-semipermutable in G. Hence, for any minimal normal subgroup H of G with $H \le L_p$, $L_p/H \le Z_{\mathfrak{U}}(G/H)$ by Lemma [2.7](#page-3-0) and the choice of (G, L) . Therefore H is a unique minimal normal subgroup of G with $H \leq L_p$ and $|H| > p$. Now we consider two cases: $\Phi(L_p) = 1$, and $\Phi(L_p) \neq 1$. If $\Phi(L_p) = 1$, then L_p is an elementary abelian p-subgroup of G. Let H_1 be a maximal subgroup of H, let B be the complement of H in L_p , and let $L_1 = H_1B$. Then L_1 is a maximal subgroup of L_p , therefore L_1 is weakly S-semipermutable in G, thus there exists $T \leq G$ with $T \leq L_p$ such that TL_1 is S-permutable and $T \cap L_p$ is S-semipermutable in G by Lemma [2.7.](#page-3-0) If $T = 1$, then $L_1 = TL_1$ is Spermutable in G, hence $H_1 = H_1(B \cap H) = H_1B \cap H = L_1 \cap H$ is S-permutable in G by Lemma [2.1.](#page-2-0) If $T = L_p$, then $L_1 = T \cap L_1$ is S-semipermutable in G, hence L_1 is S-permutable in G by Lemma [2.2,](#page-2-1) hence $H_1 = H_1(B \cap H) = H_1B \cap H =$ $L_1 \cap H$ is S-permutable in G by Lemma [2.1.](#page-2-0) If $1 < T < L_p$, then $H \leq T$, hence $H_1 \leq T$, thus $H_1 \leq L_1 \cap T \leq (L_1)_{sG}$, since $H \cap L_1 = H_1$ and $H_1 = H \cap (L_1)_{sG}$ is S-permutable in G . Therefore every maximal subgroup of H is S-permutable in G. It is a contradiction by Lemma [2.8.](#page-4-2) Hence $\Phi(L_p) \neq 1$ and $H \leq \Phi(L_p)$. Thus $L_p/H \leq Z_{\mathfrak{U}}(G/H)$ by the choice of (G, L) . Then $(G/C_G(L_p/\Phi(L_p)))^{A(p-1)}$ is a p-group by Lemma [2.11.](#page-4-5) Hence $(G/C_G(H))^{A(p-1)}$ is a p-group by [\[4,](#page-10-7) Theorem 5.1.4]. Therefore $O_p(G/C_G(H)) = 1$ by [\[17,](#page-11-8) Corollary 6.4] and $(G/C_G(H)) \in \mathcal{A}(p-1)$. Then $|H| = p$ by [\[17,](#page-11-8) I, Theorem 1.4]. This is a contradiction by $|H| > p$. Therefore every cyclic subgroup K of L_p with order p or 4 (L_2 is a non-abelian 2-group) is weakly S-semipermutable in G , thus K is S-embedded in G .

Step 4. There exists $R \leq G$ with $R \leq L_p$, L_p/R is a non-cyclic chief factor of G, $R \le Z_{\mathfrak{U}}(G)$ and $V \le R$ for any normal subgroup $V \ne R$ of G contained in L_p .

Let L_p/R be a chief factor of G. Then $R \neq 1$ by Step 3, hence $R \leq Z_{\text{U}}(G)$ by the choice of (G, L) . Therefore $L \leq Z_{\mathfrak{U}}(G)$ and we know that L_p/R is not cyclic. Let $V \lhd G$ with $V \lneq L_p$. Then $V \leq Z_{\mathfrak{U}}(G)$ by the choice of (G, L) . If $V \nleq R$, then $L_p \leq Z_{\mathfrak{U}}(G)$ by the G-isomorphism $L_p/R = VR / R \cong V / (V \cap R)$, a contradiction by the choice of (G, L) , therefore $V \leq R$.

Let L_p be a non-abelian 2-subgroup of G. We use $\Omega := \Omega_2(L_p)$, otherwise, let $\Omega := \Omega_1(L_p).$

Step 5. $C_G(\Omega)/C_G(H)$ is a *p*-group. It is true by [\[2,](#page-10-4) A, Lemma 1.2].

Step 6. $\Omega \not\leq Z_{\text{U}}(G)$.

Let $\Omega \leq Z_{\mathfrak{U}}(G)$. Then $\left(\frac{G}{C_G(\Omega)}\right)^{A(p-1)}$ is a p-group by Lemma [2.11.](#page-4-5) Hence $(G/C_G(L_p/R)) \in \mathcal{A}(p-1)$ and so $|L_p/R| = p$ by Step 5, a contradiction. Hence $\Omega \nleq Z_{\mathfrak{U}}(G)$.

Step 7. Final contradiction.

 $\Omega = L_p$ by Steps 4 and 6. Let W_1, W_2, \ldots, W_m be the set of all cyclic subgroups of L_p with order p or 4 (L_2 is a non-abelian 2-group) and $W_i \nleq R$. Then W_i is Sembedded in G for $i = 1, 2, ..., m$. Then there exists $T_i \le G$ with $T_i \le L_p$ such that $W_i T_i$ is S-permutable in G and $W_i \cap T_i \leq (W_i)_{sG}$ for $i = 1, 2, ..., m$. Since $R \lhd G$, if W_i is S-permutable in G, then $W_i R/R$ is S-permutable in G/R . Suppose that W_i is not S-permutable in G, then $1 < T_i < L_p$. Thus $T_i \le R$ and $W_i R = W_i T_i R$ is Spermutable in G. Therefore $W_i R$ is S-permutable in G in all of the cases, thus $W_i R/R$ is S-permutable in G/R in all of the cases. This is a contradiction by Lemma [2.8,](#page-4-2) since $(L_p/R) = (W_1 R/R)(W_2 R/R) \dots (W_m R/R)$ is an elementary abelian group.

PROOF OF THEOREM [3.5.](#page-5-2) We have $N \leq Z_{\mathfrak{U}}(G)$ by Theorem [3.4.](#page-5-1) Since $G/N \in \mathfrak{F}$, Lemma [2.12](#page-4-6) implies $G \in \mathfrak{F}$.

ACKNOWLEDGMENTS – The authors cordially thank the referees for their careful reading and helpful comments.

FUNDING – The authors thank Shahrekord University for the financial support.

REFERENCES

- [1] C. CHEN, *Inner outer* Σ -groups and minimal non Σ -groups (in Chinese). Southwest Normal University Press, Chongqing, 1988.
- [2] K. Doerk – T. Hawkes, *Finite soluble groups*. De Gruyter Exp. Math. 4, Walter de Gruyter, Berlin, 1992. Zbl [0753.20001](https://zbmath.org/?q=an:0753.20001) MR [1169099](https://mathscinet.ams.org/mathscinet-getitem?mr=1169099)
- [3] V. Go – I. Lu – V. Nyu, On S-embedded subgroups of finite groups. *Algebra Logic* **49** (2010), no. 4, 293–304. MR [2790171](https://mathscinet.ams.org/mathscinet-getitem?mr=2790171)
- [4] D. Gorenstein, *Finite groups*. Harper & Row, Publishers, New York-London, 1968. Zbl [0185.05701](https://zbmath.org/?q=an:0185.05701) MR [0231903](https://mathscinet.ams.org/mathscinet-getitem?mr=0231903)
- [5] W. Guo – K. P. Shum – A. N. Skiba, On solubility and supersolubility of some classes of finite groups. *Sci. China Ser. A* **52** (2009), no. 2, 272–286. Zbl [1189.20023](https://zbmath.org/?q=an:1189.20023) MR [2491727](https://mathscinet.ams.org/mathscinet-getitem?mr=2491727)
- [6] Z. Han, On s-semipermutable subgroups of finite groups and p-nilpotency. *Proc. Indian Acad. Sci. Math. Sci.* **120** (2010), no. 2, 141–148. Zbl [1214.20026](https://zbmath.org/?q=an:1214.20026) MR [2748585](https://mathscinet.ams.org/mathscinet-getitem?mr=2748585)
- [7] B. Huppert, *Endliche Gruppen. I*. Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. Zbl [0217.07201](https://zbmath.org/?q=an:0217.07201) MR [0224703](https://mathscinet.ams.org/mathscinet-getitem?mr=0224703)
- [8] N. Itô – J. Szép, Über die Quasinormalteiler von endlichen Gruppen. *Acta Sci. Math. (Szeged)* **23** (1962), 168–170. Zbl [0112.02106](https://zbmath.org/?q=an:0112.02106) MR [138676](https://mathscinet.ams.org/mathscinet-getitem?mr=138676)
- [9] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen. *Math. Z.* **78** (1962), 205–221. Zbl [0102.26802](https://zbmath.org/?q=an:0102.26802) MR [147527](https://mathscinet.ams.org/mathscinet-getitem?mr=147527)
- $[10]$ Y. L_I – S. Q_{IAO} – N. S_U – Y. W_{ANG}, On weakly s-semipermutable subgroups of finite groups. *J. Algebra* **371** (2012), 250–261. Zbl [1269.20020](https://zbmath.org/?q=an:1269.20020) MR [2975395](https://mathscinet.ams.org/mathscinet-getitem?mr=2975395)
- [11] R. MAIER – P. SCHMID, The embedding of quasinormal subgroups in finite groups. *Math. Z.* **131** (1973), 269–272. Zbl [0259.20017](https://zbmath.org/?q=an:0259.20017) MR [364443](https://mathscinet.ams.org/mathscinet-getitem?mr=364443)
- [12] O. Ore, Contributions to the theory of groups of finite order. *Duke Math. J.* **5** (1939), no. 2, 431–460. Zbl [0021.21104](https://zbmath.org/?q=an:0021.21104) MR [1546136](https://mathscinet.ams.org/mathscinet-getitem?mr=1546136)
- [13] D. J. S. Robinson, *A course in the theory of groups*. Second edn., Grad. Texts in Math. 80, Springer, New York, 1996. Zbl [0836.20001](https://zbmath.org/?q=an:0836.20001) MR [1357169](https://mathscinet.ams.org/mathscinet-getitem?mr=1357169)
- [14] A. N. Skiba, On weakly s-permutable subgroups of finite groups. *J. Algebra* **315** (2007), no. 1, 192–209. Zbl [1130.20019](https://zbmath.org/?q=an:1130.20019) MR [2344341](https://mathscinet.ams.org/mathscinet-getitem?mr=2344341)
- [15] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups. *J. Pure Appl. Algebra* **215** (2011), no. 3, 257–261. Zbl [1206.20020](https://zbmath.org/?q=an:1206.20020) MR [2729221](https://mathscinet.ams.org/mathscinet-getitem?mr=2729221)
- [16] H. Wei – Y. Wang, The c-supplemented property of finite groups. *Proc. Edinb. Math. Soc. (2)* **50** (2007), no. 2, 493–508. Zbl [1132.20011](https://zbmath.org/?q=an:1132.20011) MR [2334959](https://mathscinet.ams.org/mathscinet-getitem?mr=2334959)
- [17] M. WEINSTEIN (ED.), *Between nilpotent and solvable*. Polygonal Publishing House, Washington, N.J., 1982. Zbl [0488.20001](https://zbmath.org/?q=an:0488.20001) MR [655785](https://mathscinet.ams.org/mathscinet-getitem?mr=655785)

Manoscritto pervenuto in redazione il 2 dicembre 2020.