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Abstract – In a recent paper written by Y. Ibrahim and M. Yousif (2018), the following class of
modules is considered: a right R-module M is called a Utumi module if, whenever A and B

are submodules of M with A Š B and A \ B D 0, there exist direct summands K and L

of M such that A is essential in K, B is essential in L and K ˚ L is a direct summand of
M . In this paper, all the Utumi Z-modules (i.e. Abelian groups) and some special classes of
these are determined. As an application, it is proved that all the pseudo-continuous Abelian
groups are quasi-continuous.
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1. Introduction

There is a two-way connection between Abelian group theory and module theory.
In one direction, notions and results for Abelian groups are sometimes generalized to
modules (see for instance [7]). In the opposite direction, when notions and results arise
for modules, and examples are given (more or less only) as Abelian groups, then the
characterization of Abelian groups having these properties may be of interest (for both
theories). Our paper falls in this last direction.
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In [8] the following class of modules is considered. A right R-module M is called
a Utumi module (U-module for short) if, whenever A and B are submodules of M

with A Š B and A \ B D 0, there exist direct summands K and L of M such that A

is essential in K, B is essential in L and K ˚ L is a direct summand of M . A useful
fact which we use throughout is that direct summands of U-modules are U-modules
(see [8, Proposition 3.2]).

The class of U-modules is a simultaneous and strict generalization of three fun-
damental classes of modules; namely, the quasi-continuous, the square-free, and the
automorphism-invariant modules. The paper [8] includes a large number of examples.
All these examples are Z-modules, that is, Abelian groups.

Therefore, a natural project is to determine all the Utumi Z-modules, that is, all the
Utumi Abelian groups (U-groups for short). This is what we do in this note.

In the Abelian group case, we record the characterizations of all the special cases
of U-groups listed above, and give another one: we prove that every pseudo-continuous
group is quasi-continuous.

Our main result is the following.

Theorem. Let G be an Abelian group. Then G is a U-group if and only if G has
one of the following forms:

(i) G is divisible (i.e. injective);

(ii) G is a torsion group, all whose primary components are isomorphic to a direct
sum of copies of a cocyclic group (i.e. G is quasi-injective);

(iii) G is a torsion-free group of rank 1 (i.e. any subgroup of Q);

(iv) G is a mixed group of torsion-free rank 1; in that case G D Q˚H , where Q is a
quasi-injective torsion group and H is a mixed group of torsion-free rank 1 such
that for all primes p with Tp.H/ ¤ 0 we have that Tp.H/ is cyclic and Qp D 0.

All the groups we consider are Abelian. For unexplained notions and results, we
refer the reader to Laszlo Fuchs’ treatise on infinite Abelian groups [6]. To simplify the
writing, we shall use the term homo(co)cyclic, for direct sums of isomorphic (co)cyclic
groups. By cocyclic p-groups we mean groups isomorphic to Z.pn/ D Z=pnZ or to
the (quasi-cyclic) Prüfer group Z.p1/.

For a group G, r0.G/ and rp.G/ denote the torsion-free rank and the p-rank of G,
respectively. The term “component” will be used only for a “primary component” of
some group. For a group G, Gp denotes the p-component of G and D.G/ denotes the
maximum divisible subgroup of G. For a submodule K of a module M , K �ess M

means that K is essential in M , and K �˚ M means that K is a direct summand of M .
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2. The Abelian U-groups

First recall the following definitions.
An R-module M is said to be quasi-injective if every R-homomorphism from any

submodule can be extended to an R-endomorphism of M . It is square-free (see [13]) if
it contains no non-zero submodules isomorphic to a square A˚A. It is automorphism-
invariant (auto-invariant for short) (see [10]) if it is invariant under any automorphism of
its injective hull. It is pseudo-injective if every R-monomorphism from any submodule
can be extended to an R-endomorphism of M . Clearly, quasi-injective modules are
also pseudo-injective.

Next, recall that in [16] it is proved that over a principal ideal domain, all pseudo-
injective modules are quasi-injective, and, that in [5] it was proved that a module is
auto-invariant if and only if it is pseudo-injective.

Finally, recall that a module M is called quasi-continuous if every submodule of
M is essential in a direct summand of M and every direct sum of two direct summands
of M intersecting trivially is again a direct summand of M , and continuous if every
submodule of M is essential in a direct summand of M and every submodule of M

isomorphic to a direct summand is itself a direct summand.
It is worth mentioning that the quasi-continuous Abelian groups can be traced in

[6, Proposition 2.12] and can be fully characterized using results in [14, Corollary 3.3].
Namely, an Abelian group G is quasi-continuous if and only if either G is quasi-
injective or if G D T ˚K where T is torsion divisible and K is a rank one torsion-free
group (i.e. a proper subgroup of Q). As for continuous Abelian groups, results in
[14, Corollary 3.3] show that these are precisely the quasi-injective Abelian groups
(see also [2]).

The quasi-injective groups were determined in [9], so we can summarize all these
results in the next theorem.

Theorem 2.1. The following conditions are equivalent:

(1) the group G is pseudo-injective;

(2) the group G is quasi-injective;

(3) the group G is auto-invariant;

(4) the group G is continuous;

(5) G is either injective (i.e. divisible) or is a torsion group with homococyclic compo-
nents.

As for the square-free (Abelian) groups, since p-groups or torsion-free groups of
rank at least two cannot be square-free, we easily obtain the following characterization.
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Theorem 2.2. The square-free groups are

(1) torsion groups with cocyclic components, or

(2) rank 1 torsion-free groups, or

(3) direct sums T ˚ F with torsion square-free T and torsion-free square-free F , if
splitting mixed, or

(4) groups of torsion-free rank 1 and each p-rank at most 1, if not splitting mixed.

The determination of the Abelian U-groups is facilitated by results obtained in [8]
(see Theorem 3.13, Corollary 3.18 and a special case of Corollary 3.7) and by the fact
(proved in [8, Proposition 3.2]) that direct summands of U-modules are U-modules.

The precise statement of [8, Theorem 3.13] is as follows.

Theorem 2.3. If M is a U-module, then M D Q˚ T where

(1) Q is a quasi-injective module,

(2) Q D A˚ B ˚D, where A Š B and D is isomorphic to a summand of A˚ B ,

(3) T is a square-free module,

(4) T is Q-injective, and

(5) Q and T are orthogonal.

Here a module N is called M -injective if every diagram in the category Mod-R
with exact row

0! K !M

#

N

can be extended commutatively by a morphism M ! N .
Further, the statement of [8, Corollary 3.18] is as follows.

Theorem 2.4. If M is a non-singular right R-module, then M is a U-module if
and only if M D X ˚ Y , where X is quasi-injective, Y is square-free, and X and Y

are orthogonal.

Finally, the statement of [8, Corollary 3.7] is as follows.

Theorem 2.5. If A˚B is a U-module such that A and B are subisomorphic, then
A Š B and A˚ B is quasi-injective. In particular, A˚ A is a U-module if and only
if A is quasi-injective.

The previous theorems show that in order to find the U-modules we just have to
look at the quasi-injective modules and at the square-free modules, and direct sums of
these, respectively. Fortunately, for Abelian groups this can be done.



Utumi Abelian groups 153

We are now ready to start the determination of the (Abelian) U-groups.
Since the implications

injective) quasi-injective) continuous) quasi-continuous) U-module

already hold for modules (see [12, p. 18] and [8]), we obtain the following result at
once.

Proposition 2.6. All divisible groups are U-groups.

Therefore, arbitrary direct sums of quasi-cyclic groups (i.e. Z.p1/ for some
prime p) and copies of Q are U-groups. As customarily in Abelian group theory,
one should expect to reduce the study of U-groups (via the divisible part) to the study
of reduced U-groups.

While if G DD.G/˚R is a U-group it follows that the (reduced) direct summand
R is a U-group (direct summands of U-groups are U-groups), the converse fails.

As an example, the (genuine) mixed Z-module G WD Q˚Q˚ Z.p/˚ Z.p/ is
not a Utumi module. This follows as a consequence of the special case of Theorem 2.5:
A˚ A is a U-module if and only if A is quasi-injective. From a forthcoming result
(see Proposition 2.8), it follows that R D Z.p/˚ Z.p/ is a U-group, by the above
proposition it follows that D.G/ D Q˚Q is a U-group, but, since Q˚ Z.p/ is not
quasi-injective, D.G/˚R is not a U-group. Notice that r0.D.G// D 2.

Recall that two modules are orthogonal if these have no non-zero isomorphic
submodules.

For Abelian groups it is easy to describe which pairs of groups are orthogonal. We
just gather these in the following lemma.

Lemma 2.7. Two groups G, H are orthogonal if and only if

(i) G is torsion-free and H is torsion;

(ii) G is mixed and H is torsion, whose components correspond to disjoint sets of
primes;

(iii) G and H are torsion groups, whose components correspond to disjoint sets of
primes.

We infer that (a) any two torsion-free groups are not orthogonal, (b) any torsion-free
group and any (genuine) mixed group are not orthogonal, (c) any two (genuine) mixed
groups are not orthogonal.

As customarily, in order to determine the reduced torsion U-groups we start with
p-groups, for an arbitrary prime p.

Proposition 2.8. A reduced p-group G is a U-group if and only if G is homocyclic.
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Proof. According to Theorem 2.3, G DQ˚ T with quasi-injective Q and square-
free T .

By the previous characterizations, T is a cyclic p-group Tp (i.e. Š Z.pk/ for
k 2 ¹1; 2; : : :º), and Q is a homocyclic p-group, that is, a direct sum of isomorphic
cyclic p-groups. In what follows we refer to the conditions in Theorem 2.3.

Q satisfies condition (2). Since by (5) Q and T are orthogonal and both have (in
their socle) a subgroup isomorphic to Z.p/, one must be zero.

Therefore, in order to satisfy (1)–(3) and (5), G is cyclic or homocyclic. As for (4),
it is readily seen that whenever N D 0 or M D 0, N is trivially M -injective. Hence,
for the (two possible) cases above, (4) is also fulfilled. Since every cyclic group is also
homocyclic, the statement follows. Conversely, just recall that the cyclic p-groups are
square-free, and the homocyclic p-groups are (by Theorem 2.1) quasi-injective.

In what follows we show that a p-group is a U-group only if it is divisible or reduced.
We start with an example.

Lemma 2.9. Z.p/˚ Z.p1/ is not a U-group.

Proof. The subgroup lattice of Z.p1/ is an infinite bounded chain 0 < hc1i <

hc2i < � � � < hcni < � � � < Z.p1/ and the subgroup lattice of Z.p/ is a two-element
chain. Denote

G WD Z.p/˚ Z.p1/ D H ˚K; H D hai D ¹0; aº; K D hc1; c2; : : : ; cn; : : :i

with pc1 D 0; pc2 D c1; : : : ; pcnC1 D cn; : : :

The subgroup lattice of G consists of the direct product of the chains, and the
countable many “diagonals” Dn corresponding to the lattice isomorphisms of the
“sections” Œ0; H�! Œhcn�1i; hcni� (for details see [3] or [15, pp. 35–36]).

Notice that the diagonals are cyclic subgroups, namely Dn D haC cni Š hcni Š

Z.pn/. Also notice that the subgroups H ˚ hcni Š Z.p/˚ Z.pn/ are not cyclic. It
is readily seen that the choice of two isomorphic subgroups A Š B with A\B D 0 is
possible only for .A; B/ 2 ¹.H; D1/; .H; hc1i/; .D1; hc1i/º.

Moreover, the only direct summands of G are H and D1, as complements of K

(the sum of two subgroups different from K is not equal to G, and K is disjoint only
from H and D1).

Take the pair .H; D1/. Then H �ess K and D1 �
ess L, for two direct summands

K and L of G, is possible only if H D K and D1 D L. However K ˚ L D H ˚D1

is not a direct summand of G.

In a similar way, one can show that Z.pk/˚ Z.p1/ is not a U-group, for any
positive integer k.
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Proposition 2.10. A p-group is a U-group only if it is divisible or reduced.

Proof. Suppose G is a p-group which is neither divisible nor reduced but a
U-group. Since the divisible part is a direct summand, GDD.G/˚R for some reduced
subgroup R. Since, as direct summand, R is a U-group, according to Proposition 2.8
(and the structure of divisible p-groups), G has a direct summand isomorphic to
Z.pk/˚ Z.p1/, which is a U-group. This contradicts the generalization (mentioned
above) of the previous lemma.

Next, we need the following easy to foresee proposition.

Proposition 2.11. A torsion group is a U-group if and only if all its primary
components are U-groups.

Proof. One way is clear since direct summands of U-groups are U-groups: the
p-components of a torsion U-group are also U-groups.

Conversely, notice that the p-components of any torsion group are fully invariant
direct summands. To simplify the writing, suppose G D Gp ˚ Gq is the primary
decomposition for a group G, with different primes p; q and suppose both Gp , Gq are
U-groups. Let A, B be subgroups of G with A Š B and A\ B D 0. Decompose both
A and B into components, say, A D Ap ˚ Aq and B D Bp ˚ Bq . Clearly, Ap Š Bp

and Ap \Bp D 0 and the same for the q-components. Since both Gp , Gq are U-groups,
there exist direct summands Kp, Lp of Gp such that Ap �

ess Kp, Bp �
ess Lp and

Kp ˚ Lp �
˚ Gp and the same for the q-components. Finally, if K WD Kp ˚Kq and

L WD Lp ˚ Lq , it is easy to check A �ess K, B �ess L and K ˚ L �˚ G.

Corollary 2.12. A torsion group is a U-group if and only if it is divisible or it
has homococyclic components.

Proof. Another similar proof (notice that the proof of Lemma 2.9 is lattice theoretic,
dealing with chains of subgroups of cocyclic groups) shows that Z.qk/˚ Z.p1/ is
not a U-group, for any different primes p, q. Therefore, a torsion U-group is divisible
or reduced and we use Proposition 2.10.

In closing the discussion on torsion U-groups, it is worth mentioning the following
simple result observed by S. Breaz.

Proposition 2.13. Every fully invariant subgroup of a U-group is a U-group.

Proof. Let H be a fully invariant subgroup of a U-group G, and AŠB , A\B D 0

subgroups of H . There are direct summands K, L of G such that A �ess K, B �ess L
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and K ˚ L is a direct summand of G. Consider the subgroups H \K, H \ L of H

and suppose G D K ˚K 0. Since H is fully invariant, H D .H \K/˚ .H \K 0/

(see [6, Lemma 2.3]) shows that H \K (and similarly H \ L) is a direct summand
of H . Clearly, A �ess H \ K, B �ess H \ L and .H \ K/˚ .H \ L/ is a direct
summand in H (using again the fact that H is fully invariant).

Notice that the proof relies only on [6, Lemma 2.3], whose proof extends verbatim
to modules. Hence, fully invariant submodules of U-modules are U-modules, a result
which we could not find in [8] (it was not necessary). Therefore we state:

Corollary 2.14. The torsion subgroup of any U-group is a U-group.

The previous proposition also gives an alternative proof for: the divisible part of
any U-group is a U-group.

Since the non-singular Z-modules are precisely the torsion-free groups, for the
determination of the torsion-free U-groups, we use Theorem 2.4.

Recall that X is torsion-free quasi-injective if and only if X is divisible (i.e. a direct
sum of copies of Q) and Y is torsion-free square-free if and only if it is of rank 1

(any subgroup of Q). Since the orthogonality condition is exclusive (Q and any rank 1

torsion-free group have subgroups isomorphic to Z), we obtain the following:

Proposition 2.15. A torsion-free group G is a U-group if and only if G is a (finite
or infinite) direct sum Q˚Q˚ � � �, or G is isomorphic to any proper subgroup of Q.

Corollary 2.16. A reduced torsion-free group is a U-group if and only if it is
isomorphic to a proper subgroup of Q.

As an example, Z is a U-group, but free groups (i.e. direct sums of Z) of rank at least
2 are not U-groups. That Z is a U-group follows also from the fact that, being locally
cyclic, it has a distributive subgroup lattice and, more general (see [11, Lemma 4.4]),
distributive modules are square-free (and so U-modules).

Finally, we characterize the mixed U-groups. First we separate the mixed groups
whose torsion-free rank is at least 2.

Proposition 2.17. If G is a U-group of torsion-free rank at least 2, then G is
divisible.

Proof. Let G be a U-group with r0.G/ � 2. By Theorem 2.3, G D Q˚ T with
quasi-cyclic Q and square-free T . Since these two summands are orthogonal, both
cannot contain infinite order elements. We go into two cases.

Case 1. Q is torsion (with homococyclic components) and r0.T / D r0.G/ � 2. This
cannot happen since T is square-free T (see Theorem 2.2).



Utumi Abelian groups 157

Case 2. Q is divisible with r0.Q/� 2 and T is square-free torsion, that is, with cocyclic
components. If T has finite cocyclic components, this does not fulfill condition (4) in
Theorem 2.3: T is not Q-injective. Indeed, this reduces to the easy to check fact that
Z.pk/ is not Q-injective. So T is (torsion) divisible, and so is G (together with Q).

Finally, we describe the mixed U-groups of torsion-free rank 1.

Theorem 2.18. A group G of torsion-free rank 1 is a U-group if and only if
G D Q˚H , where Q is a quasi-injective torsion group and H is a mixed group of
torsion-free rank 1 such that for all primes p with Tp.H/ ¤ 0 we have that Tp.H/ is
cyclic and Qp D 0.

Proof. By Theorem 2.3, G D U ˚ V with U quasi-injective, V square-free, and
U and V are orthogonal.

Suppose that r0.U /D 1. Then (by Theorem 2.1) U DL˚C where L is isomorphic
to Q and C is a quasi-injective torsion group. Taking H D L and Q D C ˚ V , it
follows (by Corollary 2.14) that Q D T .G/ is an U-group and so (by Theorem 2.1) it
is quasi-injective. In this case, the condition on H is trivially satisfied.

Suppose that r0.V / D 1 and let p be a prime such that Tp.V / ¤ 0. Notice that, by
the orthogonality condition, in this case U is quasi-injective torsion. Then, since V is
square-free (and so a U-group), as p-group of p-rank 1, Tp.V / is cocyclic (according
to Proposition 2.10). Since its divisible part can be included in U , we can choose Tp.V /

being cyclic. Using again the orthogonality condition, it is easy to see that U cannot
have elements of order p. Hence Tp.U / D 0. It remains to take Q D U ˚D.V / and
H , any reduced part of V .

Conversely, suppose that A and B are disjoint subgroups of G such that A Š B .
Then A and B must be torsion subgroups. Moreover, since the p-components Tp.H/

are cyclic, it follows that A and B are contained in Q. Since Q is quasi-injective (and
so a U-group), it now follows that A and B can be embedded as essential subgroups of
some direct summands K and L of G such that K ˚ L is a direct summand of G.

Open question. Are pure subgroups of U-groups also U-groups? As mentioned
above, the torsion part of a U-group is a pure U-subgroup.

3. An application

First we recall some definitions and known results.
A module M is said to satisfy the C1 condition (or CS or extending) if every

submodule of M is essential in a direct summand (equivalently, each complement



G. Călugăreanu – S. Das 158

submodule is a direct summand). A module M is said to satisfy the C2 condition,
if every submodule isomorphic to a summand of M is itself a summand of M . A
module M satisfies the C3 condition, if the sum of any two summands of M with zero
intersection is a summand of M .

A module M is called (see [4]) a C4-module if, whenever A1 and A2 are submodules
of M with M DA1˚A2 and f WA1!A2 is an R-homomorphism with kerf �˚ A1,
we have Imf �˚ A2.

As already mentioned in Section 2, a module is called continuous if it satisfies both
the C1 and C2 conditions, and is called quasi-continuous if it satisfies both the C1 and
C3 conditions.

A module M is called pseudo-continuous if it is both a C1- and a C4-module. It is
proved in [8, Corollary 2.15] that pseudo-continuous modules are U-modules. Since
C3-modules are C4, quasi-continuous modules are pseudo-continuous.

The characterization of quasi-continuous groups was mentioned in Section 2.
For the reader’s convenience, we recall the following result.

Theorem 3.1. (a) A torsion Abelian group G is C1 if and only if it is divisible, or
it is a sum of cyclic groups, such that for each prime number p there is a positive
integer nD n.p/ such that the p-component Gp ' .

L
s Z.pn//˚ .

L
t Z.pnC1//

with (possible zero) cardinals s; t .

(b) A reduced torsion-free Abelian group is C1 if and only if it is homogeneous completely
decomposable of finite rank.

(c) An Abelian group is C1 if and only if it is torsion C1 (see (a)), or the direct sum of
a torsion-free reduced C1 group (see (b)) and an arbitrary divisible group.

In [4], to find an example of a pseudo-continuous module that is not quasi-continuous
was left as an open question. The next proposition, which follows using our results in
the previous section, shows that such an Abelian group example does not exist.

Proposition 3.2. All pseudo-continuous (Abelian) groups are quasi-continuous.

Proof. From Theorem 3.1 it follows that, being C1, the pseudo-continuous groups
are splitting. Since these are also U-groups, by Theorem 2.18, these are direct sums
of quasi-injective groups and rank 1 torsion-free groups. But (by the characterization
before Theorem 2.1) such groups are indeed quasi-continuous.

It is worth mentioning that an elaborate example of square-free module which is
not C3 was found by P. P. Nielsen (see [4, Example 2.10] and [11, Example 6.1]).
This also works as an example of a C4-module that is not a C3-module. As for an
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example of pseudo-continuous module which is not quasi-continuous (i.e. a C1- and
C4-module which is not C3), this seems (so far) to be an open question (see also
[1, Question 4.4.23]).

Acknowledgments – Thanks are due to Simion Breaz for fruitful discussion on
the subject and for simplifying the proof of Theorem 2.18 and to the referee, whose
observations have improved our presentation.
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