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A formula for the minimal perimeter of clusters with density

Vincenzo Scattaglia (*)

Abstract – This paper deals with the isoperimetric problem for clusters in a Euclidean space
with double density. In particular, we show that a limit of an isoperimetric minimizing
sequence of clusters with volumes V is always isoperimetric for its own volumes (which may
be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula.
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1. Introduction

In this paper, we examine some aspects of the isoperimetric problem with density
for clusters; this arises as a fusion of two well-known problems which we are going to
briefly recall, both readable as generalizations of the classical Euclidean isoperimetric
problem.

The first one is the minimal partitioning problem. Given a positive integer N , we
callN -cluster every family ofN mutually disjoint (measure theoretically) sets of finite
perimeter E D ¹E.h/ºhD1;:::;N and we look for a N -clusters satisfying the volume
constraints jE.h/j D V.h/ for every h D 1; : : : ; N which minimizes the perimeter

P.E/ D Hn�1
� N[
hD1

@�E.h/
�
:

There is a huge literature on properties of minimal clusters, starting from the founding
work of Almgren and Taylor [1, 23], where existence and regularity, among the many
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other results, have been proved. For what concerns the classification of minimal clusters,
much is known about minimal 2-clusters [8, 12, 21], planar 3-clusters [24], and planar
4-clusters with chambers with equal area [17, 18], while there are still open problems
regarding the structure of minima for more than three chambers, though symmetry
properties are known, under restrictions on dimension and number of chambers.

The other well studied generalization of the Euclidean isoperimetric problem is the
so called isoperimetric problem with (double) density: given two lower semi-continuous
and locally summable functions f WRn ! RC and gWRn � Sn�1 ! RC, which we
will call the density functions, we measure the f -volume and the g-perimeter of a
Borel subset E � Rn as

(1.1) jEjf D

Z
E

f .x/ dx; Pg.E/ D

Z
@�E

g.x; �E .x// dHn�1.x/;

and we ask if there exists a setE which minimizes theg-perimeter among all sets of fixed
f -volume V . In the previous definitions of perimeter, we consider @�E the reduced
boundary ofE and �E .x/ the outer unit normal at x 2 @�E; for sufficient regular subsets
of Rn, the reduced boundary precisely corresponds to the usual topological boundary.
Along with the problem of existence (or the non-existence) of isoperimetric sets, usual
properties which are examined are boundedness and regularity of the boundary; in
particular, information about boundedness of isoperimetric sets may be decisive in
order to prove existence.

The isoperimetric problem with density may be seen as a generalization of the
isoperimetric problem on Riemannian manifolds, since the density functions which
weight volume and perimeter may be more general than the ones given by those related
to the Riemannian metric [14,15]. Moreover, we underline that the generalization is
consistent as long as we allow the density for the perimeter to be different from the one
on the volume and to depend on the normal on @�E. As one expects, the existence of
isoperimetric sets and their geometric properties are intimately related to the densities
f and g; a partial list of results is [3, 5, 6, 11,16,22] in case f D g (single density),
and [4, 9, 10, 19, 20] for the general case (double density).

As anticipated, the isoperimetric problem with density for clusters is a combination
of the two: we look for a N -cluster which minimizes the g-perimeter among those
having chambers of fixed f -volume .V .h//hD1;:::;N . More precisely, if we define the
g-perimeter of a cluster E by

(1.2) Pg.E/´
1

2

� NX
hD1

Pg.E.h//C Pg

� N[
hD1

E.h/
��
;
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its f -volume as the vector

(1.3) jEjf ´ .jE.h/jf /hD1;:::;N ;

and the .f; g/-isoperimetric profile as the function which assigns to each volume
V D .V .h//hD1;:::;N 2 RNC the quantity

(1.4) 	.f;g/.V/´ inf¹Pg.E/ W E an N -cluster; jE.h/jf D V.h/; h D 1; : : : ; N º;

we ask if the infimum is reached.
This question inherits the difficulties of both problems it generalizes; in particular,

the existence of isoperimetric clusters is strictly related to the density. Nevertheless, we
can take advantage of strategies already working for the case of single sets. The basic
idea, as customary in the Calculus of Variations, is to consider a minimizing sequence
¹Ej ºj2N , that is, jEj .h/jf D V.h/ for each h 2 ¹1; : : : ;N º, and Pg.Ej /! 	.f;g/.V/,
in order to apply a standard compactness-semi-continuity argument: by compactness
properties ofBV functions, up to subsequences we can assume Ej ! E as j !1, and
by semi-continuity of the perimeter we havePg.E/� lim infj!1Pg.Ej /. Actually, the
limit cluster may not have the right f -volume, since there may be loss of mass at infinity
for one or more than one of the chambers. This cannot happen if f 2 L1.Rn/, since
obviously jEjf D limj!1jEj jf ; this means that E is a competitor for the isoperimetric
problem, and by lower semi-continuityPg.E/� lim infj!1Pg.Ej /D	.f;g/.V/, thus
we have that isoperimetric clusters exist for every volume V. For general f 2 L1loc n L

1,
we only have the inequality jE.h/jf � V.h/.

Let us focus for a moment on the single-set case (i.e. N D 1). As already shown in
[6, 19], even in the case of loss of volume at infinity, limits of minimizing sequences
are isoperimetric sets for their own volumes. Moreover, if the density f and g converge
at infinity both to a finite positive value a, the following formula holds:

	.f;g/.V /´ inf¹Pg.F / W jF jf D V º

D Pg.E/C n.a!n/
1
n .V � jEjf /

n�1
n ;

!n being the Lebesgue measure of the unit ball in Rn and E being a limit set of any
minimizing sequence for the problem; that is, the optimal profile is obtained as the
union of E and a ball at infinity of volume V � jEjf , where the density is constantly
equal to a.

As we are going to prove in the article, limit points of minimizing sequences of
clusters behave in a similar fashion; moreover, we can notice some extra structure if
the densities f and g are converging to positive limits at infinity.
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Theorem 1.1. Let f and g be L1loc and lower semi-continuous functions and
assume them to be bounded from above and below (away from 0) away from the origin.
Define

gC.x/´ sup
�2Sn�1

g.x; �/

and assume it is locally integrable in Rn. Let also ¹Ej ºj2N be an isoperimetric sequence
of clusters with volume V which converges to a cluster E in the L1loc sense. Then:

(i) E is a cluster of minimal g-perimeter for its own volume.

(ii) If in addition limjxj!1 f .x/ D a 2 .0;1/ and limjxj!1 g.x; �/ D b 2 .0;1/
uniformly in �, then

(1.5) 	.f;g/.V/ D Pg.E/C ba�
n�1
n 	eucl.V � jEjf /:

For converging densities, as in [6, 19] for single sets, formula (1.5) suggests that
an isoperimetric cluster for volume V is given by the union of the limit E and an
“Euclidean cluster at infinity” which has precisely the missing f -volume.

For N D 1, in [6, 19] this heuristic is actually made rigorous, under some extra
hypothesis on the densities f and g. Indeed, for a fixed V > 0, if we call E a limit
point of a minimizing sequence ¹Ej ºj2N for 	.f;g/.V /, it is possible to find a set zB far
from the origin, not intersecting E, having exactly the missing f -volume V � jEjf ,
and g-perimeter smaller than or equal to

ba�
n�1
n n!n

1
n .V � jEjf /

n�1
n I

by (1.5), we can conclude thatE [ zB is an isoperimetric set of volumeV , thus obtaining
an existence result.

For N � 2, we expect that Theorem 1.1 may be the starting point for deducing
an existence result for isoperimetric clusters, in analogy with the single set case. The
construction of a candidate cluster zB which recovers the missing f -volume with a
controlled increase of the g-perimeter is much more delicate, due to the fact that the
structure of Euclidean isoperimetric clusters in general is unknown (with the exceptions
already discussed). The existence problem, in particular in the case N D 2, will be
addressed in a forthcoming work.

The article is structured in the following way. In Section 2 we introduce the main
definitions and we recall the basic properties of sets of finite perimeter we will need.
Section 3 covers the proof of Theorem 1.1.
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2. Definitions and basic properties of sets of finite perimeter

In this section, we introduce the definitions, the notation and the basic results on
sets of finite perimeter we will need in the proof of Theorem 1.1; for more information
on definitions and results, the reader should refer to [2, 7, 13].

LetE � Rn be a set of (locally) finite measure; we say this is a set of (locally) finite
perimeter if its characteristic function �E is a BV function (resp. BVloc function),
i.e. it is summable (resp. locally summable) and its distributional derivative D�E is
a Radon measure, and we will put �E ´ �D�E . For any Borel subset A � Rn, we
define the relative perimeter of E in A by

P.EIA/´ j�E j.A/;

and we define the perimeter of E by P.E/´ P.EIRn/.
For a set of locally finite perimeter E, the reduced boundary is

@�E ´
°
x 2 spt.�E /

ˇ̌̌
9 lim
r!0C

�E .B.x; r//

j�E j.B.x; r//
µ �E .x/; j�E .x/j D 1

±
and we define �E .x/ as the exterior normal to @�E at x.

We recall a fundamental result on sets of finite perimeter.

Theorem (Blow-up, structure). Assume E is a set of locally finite perimeter. Then:

• For any x 2 @�E, define Ex;r ´ .E � x/=r; then, we have the L1loc convergence

Ex;r
r!0C

�! H�E.x/ D ¹y 2 Rn W y � �E .x/ � 0º;

and if we put ��E.x/ D @H�E.x/, we have

�Ex;r
�
�* �E .x/H

n�1x��E.x/; j�Ex;r j
�
�* Hn�1x��E.x/:

• The reduced boundary @�E is a .n� 1/-dimensional rectifiable set, and the measure
�E satisfies

�E D �EHn�1x@�E; j�E j D Hn�1x@�E:

In particular, this allows to rewrite the perimeter of E in the equivalent form
P.E/ D Hn�1.@�E/.

We say that a point x 2 Rn is of density d 2 Œ0; 1� for the set E if

lim
r!0C

jE \ B.x; r/j

!nrn
D d;

where j � j ´ Ln is the Lebesgue measure on Rn and !n D jB.0; 1/j.
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We define the essential boundary of E

@eE ´ Rn n .E.0/ [E.1//:

By Federer’s theorem, we have that

@�E D E.1=2/ D @eE;

up to Hn�1-negligible sets.
Given a positive integer N , a N -cluster is a family of sets of finite perimeter

¹E.h/ºhD1;:::;N , called chambers, such that

jE.h/j 2 .0;1/; h D 1; : : : ; N;

jE.h/ \ E.k/j D 0; h; k D 1; : : : ; N; h ¤ k:

If we put @�E ´
SN
hD1 @

�E.h/, the Euclidean perimeter of the cluster is defined as

P.E/´ Hn�1.@�E/:

We can think to the perimeter of a cluster as given by the sum of the perimeter of each
chamber, counting only once each interface, meaning the non-empty intersection of
two chambers. If we define E.0/´ Rn n

SN
hD1 E.h/ the exterior chamber of E , we

can equivalently define the perimeter of the cluster as

P.E/´
X

0�h<k�N

Hn�1.@�E.h/ \ @�E.k// D
1

2

NX
hD0

P.E.h//;

where the second equality is a consequence of Federer’s theorem.
We define the g-perimeter and the f -volume of a cluster respectively as in (1.2)

and (1.3). In the following, we will use j � jeucl and Peucl to define the Euclidean volume
and perimeter, while we will use j � jf and Pg for the weighted volume and perimeter.

For every cluster E and every Borel set B , we define the relative g-perimeter of E

in B by

Pg.EIB/´
1

2

� NX
hD1

Z
@�E.h/\B

g.x; �E.h/.x// dHn�1.x/

C

Z
@�.[E/\B

g.x; �[E.x// dHn�1.x/

�
;

where we put [E ´
SN
hD1 E.h/.
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3. Proof of Theorem 1.1

For a fixed volume V D .V .h//hD1;:::;N 2 RNC , let us consider a minimizing
sequence of clusters ¹Ej ºj2N for 	.f;g/.V/, that is, jEj jf D V for any j 2 N and

	.f;g/.V/ D lim
j!1

Pg.Ej /:

By assumption, we consider E such that Ej
L1loc
�! E .

If jEjf DV, there is nothing to prove; the cluster is isoperimetric for its own volume,
thanks to the lower semi-continuity of the perimeter.

Therefore, henceforth we assume jEjf <V, meaning that there exists h2 ¹1; : : : ;N º
such that jE.h/jf < V.h/. Without loss of generality, we may assume that jE.h/jf > 0
for every h D 1; : : : ; N ; if E does not verify this condition, we simply consider it as a
cluster with a smaller number of chambers.

We assume by contradiction that there exists a cluster F such that

(3.1) jF jf D jEjf ;
Pg.E/ � Pg.F /

6
µ � > 0:

We can find points x1; : : : ; xN of density 1 respectively for F .1/; : : : ;F .N / and which
are Lebesgue points for f and gC so that f .xh/ > 0 for every h D 1; : : : ; N ; hence,
there exists xr > 0 such that for every h D 1; : : : ; N :

1

2
!nf .xh/r

n
� jB.xh; r/ \ F .h/jf � jB.xh; r/jf � 2!nf .xh/r

n;(3.2)

Pg.R
n
n B.xh; r// � 2n!ng

C.xh/r
n�1;(3.3)

where (3.2) holds true for every 0 < r < xr , (3.3) holds true for arbitrarily many r
smaller than xr (to prove (3.3), one can consider the analogue of (3.2) for gC and work
by contradiction).

Since f … L1 (otherwise we would have had jEjf D V, a contradiction, we can
find points y1; : : : ; yN of density 0 for [F ´

SN
hD1F .h/ which are Lebesgue points

for f and gC and verifying f .yh/ > 0 for every h D 1; : : : ; N , far enough from the
origin to assume 1

M
� f; g �M for some M > 0, by the assumptions on f and g;

hence, we obtain the estimates

jB.yh; �/ n .[F /jf �
f .yh/

2
!n�

n;(3.4)

Pg.B.yh; �// �Mn!n�
n�1;(3.5)

both inequalities being true for every � 2 .0; x� /, for some x� > 0 small enough.
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Up to consider a smaller x�, we define a constant ı > 0 so that

(3.6) M 2ı < �; Mn!nx�
n�1 <

�

N
;

f .yh/

2
!nx�

n > ı 8h D 1; : : : ; N:

We claim that there exists a N -cluster F 0 and R > 0 big enough such that F 0 � BR

and

Pg.F
0/ < Pg.E/ � 5�;(3.7)

0 < ı0h´ jE.h/jf � jF
0.h/jf <

ı

2
;(3.8)

for every h D 1; : : : ; N .

Case 1: The cluster F is bounded.

For every h D 1; : : : ; N , choose rh < xr so small that all balls Bh´ B.xh; rh/ are
mutually disjoint and transversally intersect all the chambers of F (i.e., Hn�1.@�F \

@Bh/ D 0). Define the new cluster

F 0´ F n
� N[
hD1

Bh

�
D

²
F .h/ n

� N[
jD1

Bj

�³
hD1;:::;N

;

which is obviously bounded.
We easily notice that, for a given open set of locally finite perimeter B � Rn

transversal to each chamber:

(3.9) Pg.F n B/ D Pg.F I xB
c/C

NX
hD1

Z
@�B\F .h/.1/

g.x;��B.x// dHn�1.x/:

By the previous relations (3.2) and (3.3), up to possibly decreasing the r 0
h
s, we have

that

Pg.F
0/ � Pg.F /C

NX
hD1

Pg.R
n
n Bh/ < Pg.E/ � 5�:

and (3.8) holds as well.

Case 2: The cluster F is unbounded.

Without loss of generality, let us assume that the chambers F .1/; : : : ;F .L/ are
unbounded, for a certain 1 � L � N .
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We choose R0 > 0 big enough so that F .h/ � BR0 for all h D LC 1; : : : ; N ,
1
M
� f; g �M in Rn n BR0 , and

jF .h/ n BR0 jf <
ı

2

for all h D 1; : : : ; L.
Let us consider R > R0 to be chosen later; we define the new cluster

F 0´ F \ BR D ¹F .h/ \ BRºhD1;:::;N

and we notice that for every open set of locally finite perimeter B transversal to each
chamber:

(3.10) Pg.F \ B/ D Pg.F IB/C

NX
hD1

Z
@B\F .h/.1/

g.x; �B.x// dHn�1.x/:

We need to find a R > R0 such that

(3.11) Pg.F
0/ < Pg.E/ �

�
5C

1

2

�
�:

By contradiction, let us assume that for every R > R0 the inequality (3.11) does not
hold. By (3.1) and (3.10), we obtain

LX
hD1

Z
@BR\F .h/.1/

g.x; �BR.x// dHn�1.x/ �
�

2

and so

C1 >

LX
hD1

jF .h/ n BRjf �

Z C1
R0

LX
hD1

Z
@BR\F .h/.1/

f .x/ dHn�1.x/ dR

�

Z C1
R0

1

M 2

LX
hD1

Z
@BR\F .h/.1/

g.x; �BR.x// dHn�1.x/

�

Z C1
R0

�

2M 2
dR D C1;

which is a contradiction. Thus, there must exist R > R0 for which (3.11) holds.
Now, we want to reduce the volume of the bounded chambers and obtain the complete

estimate (3.7). We apply the same strategy of case 1 to F 0; we call F 00 the new cluster
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and we require that

Pg.F
00/ < Pg.F

0/C
1

2
�;

0 < ı0h´ jE.h/jf � jF
00.h/jf <

ı

2
; h D LC 1; : : : ; N:

Putting together the estimates and renaming F 00 in F 0, we obtain (3.7) and (3.8) also
in this case.

The leading idea in the proof is to construct a new sequence of competitors ¹E 0j ºj2N

with the right volume V, but converging to the “wrong” perimeter, that is a little smaller
than the minimum.

For every R0 > R large enough (say, more than maxjyhj C x� ), we have that

jE.h/ n BR0 jf <
ı0
h

2
; h D 1; : : : ; N;(3.12)

Pg.EIBR0/ > Pg.E/ � �:(3.13)

By the L1loc convergence of Ej to E , for j big enough and by lower semi-continuity of
Pg :

jE.h/jf �
ı0
h

N
< jEj .h/ \ BR0 jf � jEj .h/ \ BR0C1jf < jE.h/jf C

ı0
h

N
;(3.14)

Pg.EIBR0/ � Pg.Ej IBR0/C �:(3.15)

Combining (3.14), (3.12) and (3.6), we notice thatZ R0C1

R0

NX
hD1

Z
@B\E.h/.1/

g.x;��B.x// dHn�1.x/ dR

�

Z R0C1

R0
M 2

NX
hD1

Hn�1
f .Ej .h/ \ @BR/ dR

DM 2

NX
hD1

jEj .h/ \ .BR0C1 n BR0/jf

< 2M 2 max
hD1;:::;N

ı0h < M
2ı < �;

and so for each j big enough there exists Rj 2 .R0; R0 C 1/ such that

(3.16)
NX
hD1

Z
@B\E.h/.1/

g.x;��BRj
.x// dHn�1.x/ < �I
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moreover, for each chamber we have the estimate on the volume

(3.17) V.h/ � jE.h/jf � ı
0
h < jEj .h/ n BRj jf < V.h/ � jE.h/jf C ı

0
h:

We define the new sequence of clusters Gj ´ ¹F
0.h/ [ .Ej .h/ n BRj /ºhD1;:::;N . By

(3.17) and since jEj .h/jf D V.h/ for every h D 1; : : : ; N , we notice that

(3.18) jGj .h/jf 2 .V .h/ � ı; V .h//;

and by (3.7), (3.16), (3.13), (3.15), we have the estimate on the perimeter

Pg.Gj / � Pg.F
0/C Pg.Ej n BRj /

< Pg.E/ � 5�C Pg.Ej IBRj
c
/

C

NX
hD1

Z
@BRj \E.h/.1/

g.x;��BRj
.x// dHn�1.x/

< Pg.EIBR0/ � 3�C Pg.Ej ; BRj
c
/

� Pg.Ej IBR0/ � 2�C Pg.Ej ; BRj
c
/

� Pg.Ej / � 2�:

Finally, we define the new sequence

zEj ´ ¹Gj .h/ [ .B.yh; �h/ n [G /ºhD1;:::;N ;

where we choose each �h 2 .0; x� / so that j zEj .h/jf D V.h/ for each h D 1; : : : ; N
(this can occur, because of (3.4), (3.18) and the condition R0 > maxjyhj C x� implies
that B.yh; �/ n [G D B.yh; �/ n [F for each h D 1; : : : ; N ). Each zEj is a N -cluster
of volume V; putting together the preceding estimates and (3.5), we have

Pg. zEj / < Pg.Ej / � �;

that is, we have built a sequence of competitors for the problem having perimeters
strictly smaller than the infimum if j is large enough. This is a contradiction, and hence
E is a minimal cluster for its own volume, concluding the proof of statement (i).

3.1 – Proof of statement (ii)

From now on, we assume that the densities f and g are converging to finite positive
limits a and b at infinity. Our goal is to prove that

(3.19) 	.f;g/.V/ D Pg.E/C ba�
n�1
n 	eucl.V � jEjf /;
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E being limit of a minimizing sequence ¹Ej ºj2N with jE.h/jf D V.h/ for each h D
1; : : : ; N .

As already seen in statement (i), we can chooseN points y1; : : : ; yN far away from
the origin which are Lebesgue points for f and 0-density points of [E . It follows that
there exist x� > 0 such that for each � 2 .0; x� / we have

!n
f .yh/

2
�n � jB.yh; �/ n Ejf � jB.yh; �/jf � !n�

n2a;(3.20)

Pg.B.yh; �// � n!n�
n�12b:

We choose " > 0 so small that for each h D 1; : : : ; N

(3.21) !n
f .yh/

2
.x� /n >

�2V.h/
a
C 1

�
"I

we define F ´ E \ BR, with R� 1, R > maxhD1;:::;N jyhj C x� such that

j.E \ BR/.h/jf � jE.h/jf � ";

Pg.E \ BR/ � Pg.E/C ":

We choose an Euclidean minimal N -cluster B, with Euclidean volume�V.h/ � jE.h/jf
aC "

�
hD1;:::;N

;

so far from the origin that it does not intersect BR and a � " < f < aC ", b � " <
g < b C ". Clearly, we notice that

.a � "/jB.h/jeucl � jB.h/jf � V.h/ � jE.h/jf

for each h D 1; : : : ; N . We define the cluster G ´ ¹F .h/ [B.h/ºhD1;:::;N and we
notice that

Pg.G / � Pg.E/C "C Pg.B/

� Pg.E/C "C .b C "/	eucl

�V � jEjf
aC "

�
D Pg.E/C "C .b C "/.aC "/

1
n
�1	eucl.V � jEjf /:

This is not yet a competitor for the minimization problem with volume V; indeed, we
have that

V.h/ �
�2V.h/

a
C 1

�
" � jE.h/jf � "C

a � "

aC "
.V .h/ � jE.h/jf /(3.22)

� jG .h/jf � V.h/:
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We define the new cluster E 0 chamber by chamber by

E 0.h/´ G .h/ [ B.yh; �h/;

with 0 < �h < x� so that jE 0.h/jf D V.h/ for each h D 1; : : : ; N , taking (3.20), (3.21)
and (3.22) into account. Finally, we have that

	.f;g/.V/ � Pg.E 0/ D Pg.G /C
NX
hD1

Pg.B.yh; �h//

� Pg.E/C "C .b C "/.aC "/
1
n�1	eucl.V � jEjf /CNn!n.x� /n�12b

and since x�� 1 and "� x�, by sending "; �! 0 we have one side of (3.19).
To get the reverse inequality, we need to act on a minimizing sequence converging

to E .
By the continuity of the Euclidean isoperimetric function, for a fixed "0 > 0 there

exists ı > 0 such that

(3.23)
ˇ̌
	eucl.V0/ � 	eucl.V � jEjf /

ˇ̌
� "0;

if
ˇ̌
V0 � .V � jEjf /

ˇ̌
� ı. Choose " such that

0 < "
�
N C

ˇ̌
V � jEjf

ˇ̌
C "

a � "

�
< ı:

By means of formulae (3.9) and (3.10), we findR big enough so that a� " < f < aC ",
b � " < g < b C " out of BR, and for every h D 1; : : : ; N we have

jE.h/jf � " < jE.h/ \ BRjf

and
Pg.E n BR/ � ":(3.24)

We claim that, for every j big enough there exists Rj 2 .R;RC 1/ so that

jE.h/jf � " � jEj .h/ \ BRj jf � jE.h/jf C "; for every h D 1; : : : ; N ,(3.25)
NX
hD1

Z
@BRj \E.h/.1/

g.x; �BRj
.x//C g.x;��BRj

.x// dHn�1.x/ � 2";(3.26)

Pg.E/ � Pg.Ej \ BRj /C 2":(3.27)

Indeed, estimates (3.25) and (3.26) are perfectly analogous to what already seen in
statement (i); by (3.10), (3.9), (3.24) and the lower semi-continuity of Pf , for j � 1
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we get

Pg.E/ D Pg.EIBR/C Pg.EIBR
c
/ � Pg.EIBR/C Pg.E n BR/

< Pg.EIBR/C " < Pg.Ej IBR/C 2" � Pg.Ej IBRj /C 2":

By (3.25), we notice thatˇ̌
V � jEjf � ajEj n BRj jeucl

ˇ̌
� "

�
N C

ˇ̌
jEj n BRj jeucl

ˇ̌�
� "

�
N C

ˇ̌
jEj n BRj jf

ˇ̌
a � "

�
� "

�
N C

ˇ̌
V � jEjf

ˇ̌
C "

a � "

�
< ı;

by our choice of ". Thanks to these estimates and by (3.23), we obtain

Pg.Ej n BRj / � .b � "/Peucl.Ej n BRj / �
b � "

a
n�1
n

	eucl.ajEj n BRj jeucl/

�
b � "

a
n�1
n

Œ	eucl.V � jEjf / � "0�:

Finally, by (3.26) and (3.27) we can conclude

Pg.Ej / D Pg.Ej \ BRj /C Pg.Ej n BRj /

�

NX
hD1

Z
@BRj \Ej .h/

g.x; �BRj
.x//C g.x;��BRj

.x// dHn�1.x/

� Pg.E/C
b � "

a
n�1
n

Œ	eucl.V � jEjf / � "0� � 6":

Sending first j !1 and then "0 ! 0 (hence "! 0 as well), we have that

	.f;g/.V/ � Pg.E/C ba�
n�1
n 	eucl.V � jEjf /;

thus concluding formula (3.19).
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