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A short proof of a non-vanishing result by
Conca, Krattenthaler and Watanabe
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ABSTRACT — In this note, we propose a short and elementary proof of a non-vanishing result by
Conca, Krattenthaler and Watanabe (2009).
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In their paper Regular sequences of symmetric polynomials [1], Aldo Conca, Chris-
tian Krattenthaler and Junzo Watanabe needed to prove, as an intermediate result, the
fact that for any 2 > 1, the rational number
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is non-zero, except for # = 3. The proof in [1, Appendix, pp. 190-199] performs a
(quite intricate) 3-adic analysis. In this note, we propose a shorter and elementary proof,
based on the following observation.

TueoOREM 1. For any h > 1, consider the polynomials

R e (h —b

h—>b 2b
b=0

)Ub € Q[U]

and sp := h - ap. Then, the sequence (sp)p>1 satisfies the linear recurrence

(1) Sha3 +28p40 +Sp1 =U -5y, forallh > 1.
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Proor. Using h/(h —b) =1 + b/(h — b) and 2b - (hz—bb) = (h—b)- (hz—bb_—ll)
yields the additive decomposition s, = pj + g, where
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It is thus enough to prove that both (py)x>1 and (qn)n>1 satisfy recurrence (1). We

prove this for (pp)n>1, the proof for (¢,)n>1 being similar. Extracting the coefficient
of U" on both sides of (1) with (s) replaced by (py,) is equivalent to

h+3—n 2h+2—n N h+1-n\ (h+1-n
2n 2n 2n S\ 2n-2
and this identity is an immediate consequence of the Pascal triangle rule. ]

COROLLARY 2. For any h > 1, the rational number

Lk/3] h—b
(=D b (h—b\ 2\b
D h—b (2b )(3)

is non-zero, except for h = 3.

Proor. With previous notation, we need to prove that a;(2/3) = 0 if and only if
h = 3. By Theorem 1, the sequence

pns1:= (3" h-ap(2/3)),., = (—1,3,0,—45,324,..))
satisfies the linear recurrence relation
) Upt3 + OUpo + Qupq = 18uy  forallh > 1.

It is clearly enough to prove that u; = 0 if and only if & = 3. First, the terms uy,
are all integers, by induction. Recurrence (2) shows that uy3 and ujy41 have the
same parity for all & > 1; since up = 3, this implies that u,; is an odd integer, and
in particular it is non-zero, for all # > 1. It remains to consider the odd subsequence
(n)n>1 = (Map—1)n>1 = (—1,0,324,5508,2916, . ..). From (2) it follows that the
sequence (vy),>1 satisfies the recurrence relation

Vp+3 — 18vp10 + 2970y 41 = 324v,  forallh > 1.

The same recurrence is also satisfied with (v;),>1 replaced by the sequence (wp)x>1
= (vp/Vn>3 = (81,1377,729, =369603, .. .). In particular, w3 and wy41 have
the same parity for all 2z > 1, hence wy, is odd for any & > 1. It follows that vy, is
non-zero for all 7 > 3, which concludes the proof. [ ]
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REmARK 3. An equivalent, equally simple, but slightly more “conceptual” proof
of Theorem 1 is expressed in terms of generating functions. One starts with the Pascal
triangle rule in its “generating function” form ), , (Z)sz" =1/(1-(1+U)z),
then extracts odd and even parts (with respect to U) from it,

a boa 1—z
Z(zb)U ST U= —uzx

a,b
Z(a_l)szaz Uz?
_ _ 2 _Uz2’
oy 2b—1 (1-2)?2-Uz
and finally substitutes successively a <— h — b, z < —z, U < Uz; this yields
Z i < z4+1 ) n 1 Uz3
sp 2l ={— — -
£ h (1+z)2—Uz3 2 (1+z)2-Uz3
_z+ 1+ Uz3/2
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Recurrence (1) is now read off the denominator of the last rational function.

RemMARK 4. We leave it as an open problem to prove that the polynomials aj (U)
and s (U) are irreducible in Q[U] for all 4 > 3. (Computer calculations show that this
holds for 3 < & < 10000.) If true, this would imply a generalization of Corollary 2.
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