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Abstract – We prove that a K3 surface with an automorphism acting on the global 2-forms by a
primitivem-th root of unity,m¤ 1; 2; 3; 4; 6, does not degenerate (assuming the existence of
the so-called Kulikov models). A key result used to prove this is the rationality of the actions
of automorphisms on the graded quotients of the weight filtration of the l-adic cohomology
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1. Introduction

Let OK be a Henselian discrete valuation ring (DVR) with fraction field K and
residue field k. We consider the problem of degeneration of K3 surfaces: Given a
K3 surface X over K, we investigate its possible extensions X over OK and their
reductions X0 over k.

The so-called Kulikov models, which are semistable models of X over OK with
nice properties, is a standard tool to discuss degeneration of K3 surfaces. The special
fibers of Kulikov models are classified into three types: Type I, smooth K3 surfaces,
and Types II and III, which are reducible surfaces satisfying certain conditions. It is
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conjectured that any K3 surface overK admits a Kulikov model after replacingK by a
finite extension, but not yet proved in general. See Section 4 for details.

In this paper we relate the properties of Kulikov models with (non-symplectic)
automorphisms of X :

Theorem 1.1. Assume charK ¤ 2. Let X be a Kulikov model over OK of a K3
surface X over K and X0 its special fiber over k. Denote by m D m.X/ the order of
the image of �WAutK.X/! GL.H 0.X;�2

X=K
// (which is finite).

(1) Assume m ¤ 1; 2; 3; 4; 6. Then X0 is of Type I, i.e. a smooth K3 surface.

(2) Assume m ¤ 1; 2. Then X0 is either of Type I or II.

The key idea of the proof is describing the action of Aut.X/ on the n-th graded
quotients grWn of the weight filtration of H 2

ét.X xK ;Ql/ in terms of � (see Lemma 5.1).
We also show the rationality (and l-independence) of such action (see Theorem 3.3),
and using this we derive some restrictions on dim grWn . By calculating dim grWn (using
the classification of the special fibers of Kulikov models, see Section 4) we can exclude
certain types of degeneration, and then the remaining possibilities are as stated in the
theorem.

The assumption on m in Theorem 1.1 is optimal: see Examples 7.1–7.2.
In Section 6 we give an application on K3 surfaces with non-symplectic automor-

phisms of prime order p � 5: we can show that the moduli space of such K3 surfaces
(in characteristic 0) is compact and that any such surface defined over a number field
has everywhere potential good reduction. Since these moduli spaces for p D 5; 7; 11
have positive dimension 4; 2; 1 respectively, there are plenty of such surfaces.

We also have a conjectural generalization of Theorem 1.1:

Conjecture 1.2. Assume charK D 0. Let X and X be as in the previous theorem.
Let E be the Hodge endomorphism field of X .

(1) Assume E is neither Q nor an imaginary quadratic field. Then X0 is of Type I.

(2) Assume E ¤ Q. Then X0 is either of Type I or II.

Theorem 1.3. If the Hodge conjecture for X �X is true, then Conjecture 1.2 for
X is true.

It is known that the Hodge conjecture for X � X is true if E is a CM field (see
Section 5 for the definition of the Hodge endomorphism field). It is either a totally real
field or a CM field.

Remark 1.4. The Hodge endomorphism field of X clearly contains Q.�m/, where
m D m.X/. The cyclotomic field Q.�m/ is a CM field for m ¤ 1; 2 and is imaginary
quadratic only if m D 3; 4; 6. Hence, Theorem 1.3 generalizes Theorem 1.1.
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2. Transcendental lattices and 2-forms of K3 surfaces

In this section X is a K3 surface over a field k and l is an arbitrary prime different
from char k.

Let �WAutk.X/! GL.H 0.X;�2
X=k

// D k� be the natural action (notice that we
have dimH 0.X;�2

X=k
/D 1 sinceX is a K3 surface). An element of Autk.X/ is called

symplectic if it belongs to Ker �.

Lemma 2.1. Im � is a finite (cyclic) group.

We denote by m.X/ (resp. m.g/) the order of the group Im � (resp. of the element
�.g/). We denote by �m the group of m-th roots of 1.

Proof. Characteristic 0: Finiteness follows from a general result [28, Theorem
14.10] by Ueno. Nikulin also showed in [19, Theorem 10.1.2] finiteness and moreover
showed �.m.X// � 20, where �.m/ D #.Z=mZ/� is the number of invertible classes
modulo m. (In particular, we have m.X/ � 66.)

Characteristicp > 0, supersingular: In [20, Theorem 2.1] (see Remark 2.2) Nygaard
showed that �.g/ 2 �p�0C1 for every g, where �0 is the Artin invariant of X (which
is a positive integer � 10). Hence m.g/ and m.X/ divide p�0 C 1.

Characteristic p > 0, finite height: LetW D W.xk/ be the ring of Witt vectors over
xk and letK D FracW . Lieblich–Maulik showed in [13, Corollary 4.2] that there exists
a lifting zX over W such that the specialization morphism NS. zX xK/! NS. zXxk/ is an
isomorphism. They also showed in [13, Theorem 2.1] that for such zX the restriction map
Aut. zX/!Aut.XK/ is an isomorphism, and the same assertion holds for zXR´ zX ˝R

for any finite extension R ofW . Moreover, they showed [13, Section 6] that for such zX
the specialization map Aut. zX xK/! Aut.Xxk/, defined as the limit of Aut. zXFracR/

�
!

Aut. zXR/! Aut.Xxk/, has finite cokernel. Comparing the actions on a 2-form on zXR
and its mod p reduction, we observe that this specialization map is compatible with �.
The assertion is reduced to the characteristic 0 case.

Remark 2.2. We cited a theorem of Nygaard, [20, Theorem 2.1], which is stated for
p ¤ 2. We show that this is still true if p D 2: the argument is due to Kazuhiro Ito. The
only step where the assumption p D 2 is used is the inductive step of [21, Lemma 3.14].
If p D 2, we can argue as follows. If there exists x 2 � with p − hx; xi, then we argue
as in [21]. Suppose there is no such x. There are still x1; x2 2 � with p − hx1; x2i, and
then the matrix .hxi ; xj i/

2
i;jD1 is invertible (since p j hxi ; xi i), hence � decomposes as

the sum of the subspace generated by .x1; x2/ and its orthogonal complement. Apply
the induction hypothesis to the complement.



Y. Matsumoto 230

We recall the transcendental lattices of K3 surfaces. Let Tl.X/ be the orthogonal
complement of NS.Xxk/˝ Zl.�1/ in H 2

ét.Xxk;Zl/, and denote by

�l WAut.X/! GL.Tl.X//

the natural action. If kDC, we defineT .X/�H 2.X;Z/ and�WAut.X/!GL.T .X//
similarly. If char k > 0, we define

Tcrys.X/ � H
2
crys.Xxk=W.

xk// and �crysWAut.X/! GL.Tcrys.X//

similarly, where W.xk/ is the ring of Witt vectors over xk.
In characteristic 0 the following relationship between � and � is well-known (see

for example [26, Remark 3.4]). We include the proof for the reader’s convenience.

Lemma 2.3. Assume char k D 0. Then the characteristic polynomial of �l.g/
belongs to ZŒx� and is independent of l . It is a power of the m.g/-th cyclotomic
polynomial ˆm.g/. If k D C, then it is equal to that of �.g/.

Proof. We may assume k D C. By the comparison of Betti and étale cohomology
groups, �.g/ and �l.g/ have the same characteristic polynomial P 2 ZŒx�. Since
H 0.X;�2/ � T .X/˝C (by Hodge decomposition), P has �.g/ as a root, and hence
is divisible byˆm.g/. Note that T .X/Q is irreducible as a rational Hodge structure (if it
admits a decompositionT .X/QD T1˚ T2, then since dim.T .X/C/2;0D h2;0.X/D 1
there exists i 2 ¹1; 2º for which Ti � H 1;1, but then by the Lefschetz .1; 1/ theorem
we have Ti � H 1;1 \H 2.X;Q/ D NS.X/Q, whence Ti D 0). Therefore, P has no
other irreducible factor in ZŒx�.

We also need a positive characteristic version. We say that g 2 Aut.X/ in positive
characteristic is liftable to characteristic 0 if there exist a pair . zX; zg/ of a proper smooth
scheme zX over a DVR V that is finite over W.xk/, and an automorphism zg 2 Aut. zX/
satisfying . zX; zg/˝V xkD .X;g/˝k xk. (By the proof of [3, Corollaire 1.10], the generic
fiber of zX is then automatically a K3 surface.)

Lemma 2.4. Assume char k D p > 0.

(1) The characteristic polynomial P of �l.g/ belongs to ZŒx�, it is independent of l
and equal to that of �crys.g/.

(2) If g is liftable to characteristic 0, then P is a power of ˆm.g/pe , for some integer
e � 0.

(3) If p > 2 and X is of finite height (we no longer assume liftability), then P is a
product of cyclotomic polynomials of the form ˆm.g/pei , for some integers ei � 0.
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Proof. We may assume k is algebraically closed.
(1) This follows from the corresponding assertions for the actions on H 2

ét and H 2
crys

(showed in [5, (3.7.3)]) and on their subspaces generated by NS.
(2) Let . zX; zg/ be a lifting over V and let K D Frac V . Comparing the actions

of zg on a 2-form on zX and its mod p reduction, we observe that �.zgj zXK / maps
to �.g/ under the map �m.K/ ! �m.xk/, where m D m.zgj zXK /. Since the kernel
of this map is formed precisely by the elements whose order is a power of p, we
obtain m.zgj zXK / D m.g/pe , for some e � 0. Since NS. zX xK/ ,! NS.Xxk/, we have an
equivariant injection Tl.X/ ,! Tl. zXK/, and the assertion follows from Lemma 2.3.

(3) The images of �l and �crys are finite (this can be shown by reducing to char-
acteristic 0 as in the proof of Lemma 2.1). By replacing g with its pN-th power for
some N , we may assume that the order of �crys.g/ is prime to p; this does not change
m.g/ because p − m.g/ (since there are no primitive p-th roots of 1 in k). By [7, The-
orem 3.2], an automorphism of a K3 surface of finite height in characteristic p > 2
with this property is liftable to characteristic 0. Hence, the assertion is reduced to
point (2).

In general, e and ei in (2) and (3) may be nonzero: see Example 7.3. We do not
know whether P in (3) can have more than one different factors.

3. Action of correspondences on the weight spectral sequence

Let l be an arbitrary prime different from chark. In this section we study the actions
of automorphisms, and more generally of algebraic correspondences, on the l-adic
cohomology groups of varieties X over the fraction field K of a Henselian DVR OK .
We show that they act on the graded quotients grWn of the weight filtration and that for
certain n these actions are rational, i.e. their characteristic polynomials have coefficients
in Q.

In this paper, an algebraic space X over OK is said to be strictly semistable model
of its generic fiber X if it is regular and flat over OK , its generic fiber X over K is a
smooth scheme, and its special fiber X0 over k is a simple normal crossing divisor that
is a scheme. (X itself is not assumed to be a scheme.)

We review the following results on the weight spectral sequence.

Theorem 3.1. Let X be a strictly semistable model over OK of a variety X . Then
one can attach to X a spectral sequence

E
p;q
1 D

M
i�max¹0;�pº

H
q�2i
ét .X

.pC2i/
x0

;Ql.�i//) H
pCq
ét .X xK ;Ql/;
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whereX .p/
x0

are the disjoint unions of .pC 1/-fold intersections of the irreducible com-
ponents of Xx0´ X0 ˝k xk. The spectral sequence is compatible with automorphisms
of X. The spectral sequence degenerates at E2.

Under the assumption that X is a scheme, the first assertion is proved by Rapoport–
Zink (see [23, Satz 2.10]) and also by Saito (see [25, Corollary 2.8]), whereas E2-
degeneration is proved by Nakayama (see [17, Proposition 1.9]). Compatibility with
automorphisms follows from the proof of Saito. In [16, Proposition 2.3] we removed
the assumption that X is a scheme.

The filtration induced by this spectral sequence is called the weight filtration and
denotedWnH i

ét.X xK ;Ql/. This filtration is independent of the choice of a proper strictly
semistable model X (use the argument in [6, Section 2.3]). We let

grWn ´ grWn H i
ét D WnH

i
ét=Wn�1H

i
ét:

More generally, we can define the weight filtration onH i
ét.X xK ;Ql/ in the following

way, without assuming the existence of a proper strictly semistable model of X . It
is known by [2, Theorem 6.5] that, after replacing OK by a finite extension of its
completion, there exists an alteration Y of X (i.e. a proper surjective generically-finite
morphism f WY ! X from a variety Y ) that admits a proper strictly semistable model
that is a scheme. The composite

f� ı f
�
WH i

ét.X xK ;Ql/! H i
ét.Y xK ;Ql/! H i

ét.X xK ;Ql/

is equal to the multiplication by deg.f /, and we regardH i
ét.X xK ;Ql/ to be a direct sum-

mand ofH i
ét.Y xK ;Ql/. We defineWnH i

ét.X xK ;Ql/ as the restriction ofWnH i
ét.Y xK ;Ql/

(the weight filtration ofH i
ét.Y xK ;Ql/, defined using a proper strictly semistable model of

Y ). Arguing as in [6, Section 2.3] again, we can show that this filtration is independent
of the choice of Y and a strictly semistable model of Y . In particular, if X itself admits
a strictly semistable model, then this filtration coincides with the one defined in the
previous paragraph.

We also recall the monodromy filtration MrH
i
ét on H i

ét D H
i
ét.X xK ;Ql/ (see [25,

Section 2.1] for details). Let tl W IK ! Zl.1/ be the homomorphism defined by tl.�/D
.�.�1=l

n
/=�1=l

n
/n2Z�0 , where � is a uniformizer of OK , .�1=ln/n2Z�0 is a system

of ln-th roots of � , and IK D Ker.Gal. xK=K/! Gal.xk=k// is the inertia subgroup.
The monodromy operator N is the unique nilpotent map N WH i

ét.1/! H i
ét such that

there exists an open subgroup J � IK for which any element � 2 J acts on H i
ét

by exp.tl.�/N /. Then the monodromy filtration is defined as the unique increasing
filtration satisfying Mr D 0 for r � 0, Mr D H

i
ét for r � 0, N.Mr/ � Mr�2, and
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N r W grMr
�
! grM�r . An equivalent definition is

MrH
i
ét D

X
p;q2Z�0
p�qDr

.KerN pC1
\ ImN q/:

In particular, sinceN acts by zero on the classes of algebraic cycles, we have NS.X/ �
KerN �M0H

2
ét.1/.

The weight-monodromy conjecture states that MrH
i
ét D WrCiH

i
ét for any X and

any i .

Theorem 3.2. If dimX D 2, then the weight-monodromy conjecture for H 2
ét is

true, i.e. we have MrH
2
ét D WrC2H

2
ét .

This is proved by Rapoport–Zink in [23, Satz 2.13] in the case X admits a strictly
semistable model that is a scheme. The general case is reduced to this case by de Jong’s
alteration (see [25, Lemma 3.9]).

Now we consider the actions of algebraic correspondences on the l-adic cohomology
groups.

Theorem 3.3. Let X be a proper smooth variety over K of dimension d , and
� 2 CHd .X �X/ an algebraic correspondence (i.e. � is a Z-linear combination of
codimension d subvarieties of X �X ). Then:

(1) For each integer 0 � i � 2d , the action of �� onH i
ét.X xK ;Ql/ preserves the weight

filtration. Hence it acts on grWn D grWn H i
ét.X xK ;Ql/.

(2) For each integer 0 � i � 2d and each n 2 ¹0; 1; 2d � 1; 2dº, the characteristic
polynomial of ��jgrWn is in ZŒx� and independent of l . If d � 2, then this holds for
all 0 � n � 2d .

To the author’s knowledge, this result has not previously been known.
We use the following lemma, which follows from [10, Lemma 2.8] (cf. also [25,

Lemma 3.4]).

Lemma 3.4. Let F be a field of characteristic 0 and f an F -linear endomorphism
of an F -vector space of finite dimension. If there exists a nonzero integer N such
that any power of f has trace in N�1Z, then the characteristic polynomial of f has
coefficients in Z.

Proof of Theorem 3.3. First we prove the assertions (1) and (2) under the assump-
tion that X admits a proper strictly semistable model X that is a scheme.

By [25, Proposition 2.20] there exists a collection of algebraic cycles � .p/ 2
CHd�p.X .p/

x0
�X

.p/
x0
/ (p � 0) such that there is an endomorphism of the weight
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spectral sequence that acts on

E
p;q
1 D

M
i�max¹0;�pº

H
q�2i
ét .X

.pC2i/
x0

;Ql.�i//

by

.d Š/�1 �
M

i�max¹0;�pº

�
.pC2i/�

and on HpCq
ét .X xK ;Ql/ by ��. Hence (1) follows.

Next we show (2). Assume n D 0. Then grW0 H
i
ét D E

i;0
2 is the i -th cohomology of

the complex E�;01 D H
0
ét.X

.�/
x0
;Ql/. This complex is naturally isomorphic to the base

change V .�/ ˝Z Ql of the complex V .�/ of the Z-modules freely generated by the
components of X .�/

x0
. The algebraic correspondences � .p/ induce an endomorphism of

this complex of Z-modules, independent of l . Hence the coefficients of the characteristic
polynomial of ��jgrW

0
lie in .d Š/�1Z, and the same assertion holds for any power of � .

Hence, by Lemma 3.4, the coefficients actually lie in Z.
Assume n D 1. Then grW1 H i

ét D E
i�1;1
2 is the i-th cohomology of the complex

E
��1;1
1 D H 1

ét.X
.��1/
x0

;Ql/. By [25, Lemma 3.6], this complex is naturally isomorphic
to Tl.A.��1// ˝Ql.�1/ induced by the complex A.��1/ of the Picard varieties of
X
.��1/
x0

. As above, � .p/ induce an endomorphism of this complex of abelian varieties
that is independent of l . Hence the action of � on grW1 H i

ét is .d Š/�1 times the l-adic
realization of an endomorphism of an abelian variety, and therefore its characteristic
polynomial has coefficients in .d Š/�1Z and is independent of l . By Lemma 3.4 again,
the coefficients lie in Z.

The cases n D 2d � 1 and n D 2d are similar to the cases of n D 1; 0 respectively.
Consider the latter assertion of (2). Since grWn is 0 outside the range 0 � n � 2d ,

we are done if d � 1. If d D 2, then the only remaining case of nD 2 follows from the
assertions forH i

ét (see [25, Corollary 0.2]) and for grWn for the other n’s (nD 0; 1; 3; 4).
Now we show that the assertions for the general case (i.e. not assuming the exis-

tence of a semistable model that is a scheme) can be reduced to this special case.
Take an alteration Y ! X as above (after replacing OK if necessary). Assertion (1)
applied to f � ı f� 2 CHd .Y � Y / implies that f�.WnH i

ét.Y xK ;Ql// is contained in
WnH

i
ét.X xK ;Ql/. Hence �� D deg.f /�2 � f� ı .f ��/� ı f � preserves the filtration.

Using Lemma 3.4 and the equality

tr.�� j WnH i
ét.X xK ;Ql// D deg.f /�1 � tr.f � ı �� ı f� j WnH i

ét.Y xK ;Ql//

for � and its powers, we reduce assertion (2) for � to the case of Y .

For n D 1; 2d � 1, we actually proved:
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Corollary 3.5. LetX and � be as in Theorem 3.3. Then for each integer 0 � i �
2d and each n 2 ¹1; 2d � 1º, ��jgrWn 2 End.grWn H i

ét/ lies in the image of the algebra
End.B.i/n /˝Q, where B.i/n is an abelian variety with grWn H i

ét Š H
1
ét..B

.i/
n /xk;Ql/.

The variety B.i/1 is obtained as the i -th “cohomology” of the complexA.��1/ above,
while B.i/n�1 is the dual of B.i/1 .

Remark 3.6. We can also prove Theorem 3.3 without using alterations, ifX admits
a strictly semistable model that is not necessarily a scheme, which is the case in the
setting of our main theorems. For this, we need to generalize [25, Proposition 2.20] to
the case of algebraic spaces. Most of its proof is étale-local and hence can be reduced to
the scheme case, and the only non-trivial part is the construction (see [25, Lemma 2.17])
of cycle classes �.p/ on X .p/

x0
for a cycle class � on the generic fiber X . Although we

cannot mimic the construction of Saito (which uses locally-free resolution of coherent
sheaves), we can take an algebraic cycle on X .p/

x0
to be the intersection with the closure

of (a cycle representing) � , and then check the required properties étale-locally. We
omit the details.

4. Kulikov models

Definition 4.1. Let X be a K3 surface or an abelian surface overK. An algebraic
space X over OK with generic fiber X is a Kulikov model of X if it is a proper strictly
semistable model (in the sense of the previous section) and its relative canonical divisor
KX=OK is trivial.

Remark 4.2. The standard, but conditional, recipe to construct a Kulikov model
of a K3 (or an abelian) surface X is the following. Take a proper strictly semistable
model of X after extending K, then apply a suitable MMP to get a log terminal model
with nef canonical divisor (in this case, the canonical divisor is in fact trivial), and
then apply Artin’s simultaneous resolution to make it semistable. If the residue field k
is of characteristic 0, this is unconditional. If char k D p > 0, then the existence of a
semistable model is still conjectural and the MMP is proved only for p � 5 (see [8]).

A classification of the special fibers of Kulikov models is given by Kulikov in
[12, Theorem II] when the characteristic is 0, and by Nakkajima in [18, Proposition 3.4]
when the characteristic is> 0. Then we can compute dim grWn using the weight spectral
sequence. We summarize:
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Proposition 4.3. Let X be a K3 surface and X a Kulikov model of X .

(1) The geometric special fiber Xx0 D X0 ˝ xk is one of the following types:

(I) A smooth K3 surface.

(II) Xx0 D Z1 [ � � � [ ZN , N � 2, Z1 and ZN are rational and the others are
elliptic ruled (i.e. birational to a P1-bundle over an elliptic curve), Zi \ Zj
is an elliptic curve if ji � j j D 1, and there are no other intersections. (The
components form a “chain”.)

(III) Xx0 is a union of rational surfaces, each double curve is rational, and the dual
graph of the components forms a triangulation of S2 (the 2-dimensional sphere).

(2) dimQl grWn H 2
ét.X xK ;Ql/ (n D 0; 1; 2; 3; 4) of the generic fiber X depends only on

the type, and are given by the following ones:

(I) 0; 0; 22; 0; 0.

(II) 0; 2; 18; 2; 0.

(III) 1; 0; 20; 0; 1.

We will simply say that X0 is of Type I, II, or III if Xx0 is so.

5. Proof of the main theorems

Lemma 5.1. LetK,X , and X be as in Theorem 1.1 (so charK ¤ 2). Assume either
charK D p > 2 and ht.X/ <1, or charK D 0. Assume X0 is of Type II or III, and
let n D 3 or n D 4 respectively. Then any eigenvalue of the action of g 2 Aut.X/ on
grWn D grWn H 2

ét.X xK ;Ql/ is a primitivem0-th root of 1, wherem0 D m.g/pe for some
integer e � 0 (possibly depending on g and the eigenvalue) if charK D p > 0, and
m0 D m.g/ if charK D 0.

Proof. By Proposition 4.3, we have grWn D Wn=W2 ¤ 0.
As noted in Section 3, we have NS.X xK/˝Z Ql.�1/ � KerN �M0H

2
ét.X xK ;Ql/,

and we have M0H
2
ét D W2H

2
ét (Theorem 3.2). Hence, grWn D Wn=W2 is a quotient of

Tl.X/˝Zl Ql . The assertions follow from Lemmas 2.3–2.4.

Proof of Theorem 1.1. If charK > 0 and ht.X/ � 3, then it is proved in [24,
Section 2, Corollary] (without the condition on automorphisms) that X0 is of Type I:
Since the height is upper semi-continuous, and since Type II (resp. III) surfaces have
height � 2 (resp.D 1), then X0 cannot be of Type II nor III.

Now assume either charK D p > 2 and ht.X/ <1, or charK D 0. We can apply
Lemma 5.1 to  l WAut.X/! GL.grWn /.
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Assume that X0 is of Type II. Let n D 3. By Corollary 3.5,  l factors through
.End.C /Q/�, where C is the elliptic curve appearing as the intersection of two compo-
nents of Xx0. For any g 2 Aut.X/,  l.g/ belongs to a (commutative) Q-subalgebra of
End.C /Q generated by a single element ( l.g/ itself), and such a subalgebra is either
Q or an imaginary quadratic field. Hence m0 2 ¹1; 2; 3; 4; 6º and so is m.g/.

Assume that X0 is of Type III. Let n D 4. Similarly, by Theorem 3.3, we have
 l.g/ 2 GL1.Q/ D Q�. Hence m0 2 ¹1; 2º and so is m.g/.

Corollary 5.2. Assume that X0 is of Type III. Let g 2 Aut.X/, and suppose
that g extends to an automorphism of X, so that g acts on X0 and on the set of the
irreducible components of Xx0. Then the induced action of g on the (2-element) set of
orientations of S2 (which the dual graph of Xx0 triangulates) coincides with the image
�.g/ 2 ¹˙1º of g by �WAut.X/! GL.H 0.X;�2//.

Proof. We have

grW4 H 2
ét D E

�2;4
2 D Ker

�
H 0

ét.X
.2/
x0
;Ql.�2//! H 2

ét.X
.1/
x0
;Ql.�1//

�
Š H2.S

2;Q/˝Q Ql.�2/;

and the two generators of H2.S2;Z/ correspond to the two orientations.

Remark 5.3. Actually, it was the assertion of Corollary 5.2, proposed by Yuji
Odaka, that led the author to the study of this paper. The author first looked for an
example of a Type III degeneration with m.X/ D jIm �j � 3, which would be a coun-
terexample to the assertion, but failed to find one. It turned out that such examples do
not exist!

Next we prove Theorem 1.3. First we define the Hodge endomorphism field.
Let X be a K3 surface over a field F of characteristic 0. Let XC be a K3 surface

over C isomorphic to X over some field F 0 containing both F and C (such XC always
exists). We call E D EndHS.T .XC/Q/ the Hodge endomorphism field of X , where
EndHS denotes the endomorphisms of a rational Hodge structure. It is known that E is
either a totally real field or a CM field ([29, Theorem 1.5.1]).

This definition of E depends a priori on the choice of XC . However, if the Hodge
conjecture for the self-product of a K3 surface holds, then every element of E can be
realized as the action of an algebraic cycle on XC � XC , hence as the action of an
algebraic cycle on .X �X/ xF , and therefore E (up to isomorphism) depends only on
X . The conjecture forXC �XC is proved by Ramón Marí [22, Theorem 5.4] under the
assumption that E (of XC) is a CM field. Thus, for a CM field E, the statement “E is
the Hodge endomorphism field ofX” is well-defined, and the statement of Theorem 1.3
should be understood accordingly.
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Proof of Theorem 1.3. Assume that X0 is of Type II or III, and let n D 3 or
nD 4 respectively. We have two homomorphisms of Q-algebras l WCH2.X �X/Q!
End.grWn / and �W CH2.X � X/Q ! EndHS T .XC/Q Š E. Since we are assuming
that the Hodge conjecture for X � X is true, the E-action is realized as algebraic
correspondences, i.e. � is surjective. Since T .XC/ ˝ Ql ! grWn is surjective, we
have a surjection Im�� Im l . Since Im� Š E is a field and Im l is nonzero, this
surjection is an isomorphism.

Assume that X0 is of Type II. Let n D 3. By Corollary 3.5, Im l is contained in
End.C /Q for some elliptic curve C . A (commutative) subfield of End.C /Q is either
Q or an imaginary quadratic field.

Assume that X0 is of Type III. Let n D 4. Similarly by Theorem 3.3, Im l is
contained in M1.Q/ D Q.

6. Application: moduli spaces of K3 surfaces with non-symplectic automorphisms
of prime order

We apply Theorem 1.1 to obtain a compactification of the moduli spaces of K3
surfaces with non-symplectic automorphisms of fixed prime order � 5.

For a moment we work over C. In this section, a lattice is a free Z-module of finite
rank equipped with a Z-valued symmetric bilinear form. Let U be the hyperbolic plane
(i.e. the rank 2 lattice with Gram matrix .0 11 0/) andE8 the (negative definite) root lattice
of type E8. Then LK3 ´ U˚3 ˚E˚28 is isometric to H 2.X;Z/, for any K3 surface
X over C, and is called the K3 lattice.

We recall the notation of [1]. Fix a prime p � 19 and a primitive p-th root �p of 1.
Fix an isometry � 2 O.LK3/ of order p, and denote by Œ�� its conjugacy class. We
write S.�/ D .LK3/

�D1. Let M� be the moduli space of a pair .X; g/ consisting of a
complex K3 surface X and an automorphism g of X of order p with �.g/ D �p and
acting onH 2.X;Z/ by � via some marking (i.e. isometry) LK3

�
!H 2.X;Z/. We call

such .X; g/ a Œ��-polarized K3 surface. Such X is automatically algebraic and has an
ample class in S.g/DH 2.X;Z/gD1. The marking induces an isometry S.�/Š S.g/.

Let D� D ¹w 2 P ..LK3 ˝C/�D�p / W .w;w/ D 0; .w;w/ > 0º: this is a type IV
Hermitian symmetric space if p D 2, and a complex ball if p > 2. Define the divisor

�� D
[

ı2.S.�//?

ı2D�2

.D�
\ ı?/

and the discrete group
�� D ¹ 2 O.LK3/ W � D �º:
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Then the space ��n.D� n �� / is naturally isomorphic to the space M� .C/

of C-valued points of M� (see [1, Theorem 9.1]).
Hereafter, we consider only isometries � for which M� is nonempty.
In fact, the moduli space M� can be defined algebraically over Q.�p/. Indeed,

by [1, Proposition 9.3], if p � 3, then Œ�� is uniquely determined by the topology of
Fix.g/ � X , and if p D 2, then Œ�� is uniquely determined by the parameters r; a; ı of
the lattice S.�/ Š S.g/, which can be read off from the action of g on the 2-adic étale
cohomology group H 2

ét.X;Z2/.
Now we consider the compactification of M� . Theorem 1.1 does not imply that

M� is compact, since the action on the K3 lattice may change by specialization. So we
need to attach some M� ’s on the boundary.

Consider the space ��nD� . The points on the boundary correspond to pairs .X; g/
with non-symplectic automorphism of order p but acting on H 2 by some � ¤ � . We
can translate this into an algebraic construction of M� by attaching M� ’s to M� , and
we have M� .C/ D ��nD� . Then we have the following:

Proposition 6.1. Let � be an isometry of LK3 of order p � 5. Then M� is proper.

Proof. It suffices to show that anyK-rational point,K DC..t//, extends to an OK-
rational point, OK D CŒŒt ��, after replacing K by a finite extension C..t1=n//. So let
.X; g/ 2M.K/ be a pair defined overK. By Theorem 1.1 there exists, after extending
K, a smooth proper algebraic space X over OK D CŒŒt �� with K3 fibers, and g extends
to a birational map gWXÜ X. The period map gives an extension of the morphism
Spec C..t//!M� to Spec CŒŒt ��!M� . By [15, Proposition 2.2], gWXÜ X is
defined over the complement of a closed subspace of X of codimension � 2, and the
birational map g0´ gjX0 extends to an automorphism zg0 of X0. This zg0 also satisfy
�.zg0/ D �p , but the action on H 2 is possibly different from � .

Example 6.2. Let p D 11. By [1, Theorem 7.3], there are three non-conjugate
isometries �1; �2; �3 2 O.LK3/ of order 11, respectively with S.�1/ Š U , S.�2/ Š
U.11/, S.�3/ Š U ˚ A10, and the geometric points of M�1 consist of elliptic K3
surfaces y2 D x3 C ax C t11 � b with an automorphism g.x; y; t/ D .x; y; �11t /,
parametrized by ¹.a3 W b2/ 2 P1W 4a3 C 27b2 ¤ 0º. We use Kodaira’s notation for
types In; II; : : : of singular fibers of elliptic surfaces (not be confused with type I, II,
III of Kulikov models). This elliptic surface has one singular fiber of type II at t D1,
and 22 of type I1 at 4a3 C 27.t11 � b/2 D 0, unless a D 0, in which case it has 12
singular fiber of type II. The boundary of the compactification M�1 consists of one
point (4a3 C 27b2 D 0), and this is M�3 . At this point the elliptic surface has one
singular fiber of type II, 11 of type I1, and one of type I11.
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The following is also a direct consequence of Theorem 1.1.

Proposition 6.3. Assume the existence of a Kulikov model (after field extension)
for any K3 surface defined over a number field. Take an isometry � with order p � 5.
Then any K3 surface corresponding to a point of M� .xQ/ has everywhere potential
good reduction.

In [16, Theorem 6.3] the author proved (conditionally) everywhere potential good
reduction of K3 surfaces with complex multiplications, which however gives only iso-
lated examples. To the contrary, Proposition 6.3 can be applied to positive dimensional
family: for p D 5; 7; 11 there exists � 2 O.LK3/ of order p with dim M� D 4; 2; 1,
respectively.

Example 6.4. Consider again a K3 surface of the form y2 D x3 C ax C t11 � b,
this time defined over a number fieldK. Then by the previous proposition it has potential
good reduction at any prime of K. We can also show potential good reduction directly.
If the residue characteristic is equal to 11 then this is done in [15, Example 6.8]. In
other characteristics we proceed as follows. After extending K, we can find ai 2 OK

such that

E D .F.x0; y0/ D y02 C a1x
0y0 C a3y

0
C x03 C a2x

02
C a4x

0
C a6 D 0/ � P2OK

is a minimal Weierstrass model over OK of the elliptic curve .y2 D x3 C ax � b/, and
that the special fiber E0 D E ˝OK k of E is either an elliptic curve or a nodal curve.
Then the special fiber of

X D .F.x0; y0/C t11 D 0/

is smooth or has one A10 singularity, according to E0 being smooth or nodal respec-
tively. Applying Artin’s simultaneous resolution (after extending K) we achieve good
reduction.

7. Examples

7.1 – Theorems 1.1 and 1.3 are optimal

The following two examples show that we cannot weaken the assumptions on m
and E in Theorems 1.1 and 1.3.

Example 7.1 (Type III). Assume char k ¤ 2. Consider the family X0 over OK of
quartic surfaces given by t .w4C x4C y4C z4/Cwxyz D 0, where t is a uniformizer
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of OK . This is not a Kulikov model, since it has non-regular points, but we can
perform small blow-ups to obtain a Kulikov model X. (For example, we can resolve the
singularity at t D w D x D y4 C z4 by blowing-up either the ideal .t;w/ or .t; x/ at a
neighborhood.) Then the special fiber is of Type III (whose dual graph is a tetrahedron).
The symmetric group S4 acts on X (over K) naturally and its action on the 2-forms
is given by sgnWS4� ¹˙1º. Hence m.X/ is divisible by 2 (and by Theorem 1.1 we
have m.X/ D 2).

Example 7.2 (Type II). Assume again chark ¤ 2. LetE be an imaginary quadratic
field. Let C1 be an elliptic curve with complex multiplication by an order of E, and
C2 an elliptic curve with multiplicative reduction. Let Ci be the minimal regular
models of Ci over OK . By extending K, we may assume that .C1/0 is smooth and that
.C2/0 has an even number of components. Let � be the multiplication-by-.�1/ map
on A D C1 �OK C2 (then Fix.�/ is finite étale over OK), and X the blow-up of A=� at
the image of Fix.�/. Then X is a Kulikov model of X D Km.C1 � C2/ with Type II
degeneration, T .XC/Q Š H

1..C1/C;Q/˝H 1..C2/C;Q/ and EndHS T .X/Q � E

(moreover, by Theorem 1.3, we have EndHS T .X/Q D E).
In particular, if we take C1 to be the elliptic curve with an automorphism of order 4

(resp. 6), then we have an example of Type II degeneration with m.X/ divisible by 4
(resp. 6).

7.2 – Some automorphisms of K3 surfaces of finite order in positive characteristic

The following collection of examples shows that in general e (and ei ) in Lemma 2.4
(statements (2) and (3)) may be nonzero.

Example 7.3. Considering the obvious degree constraint, i.e. deg p̂e � 22, in
Lemma 2.4 the condition pe with e ¤ 0 can occur only if pe belongs to the set

¹2e .e � 5/; 3e .e � 3/; 5e .e � 2/; 7; 11; 13; 17; 19º:

We give examples for pe D 2; 22; 3; 5; 7; 11. All examples are automorphisms of finite
order. For the other cases we do not know whether examples exist.

Let pe be one of 2; 22; 3; 5; 7; 11. Define an integer n as in Table 1 below. Let
K DQp.�pen/ if e D 1, andK DQp.�3pen/ if pe D 22. If pe D 2; 22; 3; 7; 11, let X

(over OK) be the elliptic K3 surface defined by the corresponding equation in Table 1
(with the E8 singularity at t D 1 resolved in the standard way if pe D 2; 22; 7). If
pe D 5, let X (over OK) be the blow-up of the double sextic surface defined by the
equation below at the non-smooth locus .wD xDG5.y/D 0/. Defineg1;g2 2Aut.X/
as in Table 1.
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pe n equation g1.x; y; t/ g2.x; y; t/ char. poly.

2 21 G2.y/ D x
3 C t7 .x;�y C 1; t/ .�7

21
x; y; �15

21
t / ˆ10

1
ˆ
42

22 7 H.x; y/C t7 D 0 .h.x; y/;�t / .x; y; �
7
t / ˆ10

1
ˆ
28

3 22 y2 D G
3
.x/C t11 .�

3
x C 1; y; t/ .x;�y; �12

22
t / ˆ2

1
ˆ
66

5 8 w2 D x.x4 CG5.y// .x; �
5
y C 1;w/ .�2

8
x; y; �

8
w/ ˆ2

1
ˆ
5
ˆ
40

7 6 y2 D x3 CG7.t/ .x; y; �
7
t C 1/ .�4

6
x;�y; t/ ˆ10

1
ˆ
42

11 1 y2 D x3 C x2 CG
11
.t/ .x; y; �

11
t C 1/ id ˆ2

1
ˆ2
11

Table 1. Equations of surfaces and automorphisms

In Table 1, Gp and H are defined as follows:

• Gp.z/ D
Qp�1
iD0 .z � ai / 2 ZpŒ�p�Œz�, with ai D .�ip � 1/=.�p � 1/. It satisfies

Gp.�pz C 1/ D Gp.z/ and Gp.z/ � zp � z .mod .�p � 1// (since ai � i ).

• H.x; y/ D y2 C a1xy C a3y C x
3 C a2x

2 C a4x C a6 D 0 and

hW .x; y/ 7! .�x C b2; �
�1
4 y C b1x C b3/;

with ai ; bi 2 OK , are equations of the Néron model of an elliptic curve with an
automorphism acting on the 1-forms by ��14 . (For example, one can take

a1 D 3 �
p
3; a3 D 2 �

p
3; a2 D a4 D a6 D 0

b2 D �.2 �
p
3/; b1 D �12.1 � �12/

p
3; b3 D �

�1
12 .�12 � 1/

3;

with
p
3 D �12 C �

�1
12 .)

Then X is smooth proper over OK with K3 fibers, g1; g2 2 Aut.X/ commute and
are of orders pe and n respectively, moreover, �.g1jXK / D �pe and �.g2jXK / D �n.
Hence g´ g1g2 is of order pen, and m.gjXK / D pen, m.gjX0/ D n. Therefore, g
acts on Tl.XK/ by a power of p̂en, hence also on Tl.X0/.

Moreover, we can determine the characteristic polynomial of g on H 2
ét completely

(although we do not need this). For pe D 2; 4; 3; 7, one observes that the sublattice
of NS.XK/ generated by the zero section and the components of the singular fibers
already has rank 22� �.pen/, and henceH 2

ét ofXK is generated up to torsion by these
curves and T

l
.XK/. Since the action of g on the classes of those curves are trivial,

we obtain the characteristic polynomial ˆ22��.p
en/

1 p̂en. For pe D 5, similarlyH 2
ét is

generated by Tl.XK/, the five exceptional curves, and the pullback of OP2.1/. Since
g1 and g2 act respectively on the classes of the exceptional curves transitively and
trivially, we obtain the characteristic polynomial ˆ21ˆ5ˆ40. Finally, for pe D 11, it is
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proved by Dolgachev–Keum [4, Lemma 2.3(i)] that the characteristic polynomial of an
order 11 automorphism of a K3 surface in characteristic 11 is always ˆ21ˆ

2
11.

It remains to show thatX0 is not supersingular. For the case pe D 11 this is checked
in [27, Section 3.2]. Assume pe ¤ 11. By [20, Theorem 2.1] (see Remark 2.2), if g is
an automorphism of a supersingular K3 surface Y , then m.g/ should divide p�0 C 1,
where �0 is the Artin invariant of Y (which is a positive integer � 10). For the cases
pe ¤ 11, we observe that no such integer �0 exists, and henceX0 are not supersingular.

As the reader might have noticed, the generic fibers of X for pe D 2; 22; 3; 5; 7 are
the well-known examples of automorphisms g of characteristic zero K3 surfaces with
ord.g/ D ord.�.g// D 42; 28; 66; 40; 42, given by Kondo in [11, Section 3] (order
28; 42; 66) and Machida–Oguiso in [14, Proposition 4(15)] (order 40). (To check this,
use the equality Gp.z/ D .�p � 1/�p.z0p � 1/, where z0 D .�p � 1/z C 1.)

Example 7.4. In [9], Keum classified possible finite orders of automorphisms
of K3 surfaces over each characteristic ¤ 2; 3. Since the problem is still open for
characteristic 2 and 3, we note some examples in these characteristics, although these
might be known to experts.

Case pe D 22 in the previous example gives an automorphism of order 28 of a K3
surface in characteristic 2. By replacing 7 with 9 or 11, we also obtain automorphisms
of order 36 or 44, respectively.

Case pe D 2 gives order 42 in characteristic 2, and by replacing 7with 11we obtain
order 66. However these two examples are almost written in [9, Example 3.6].

Case pe D 3 gives an automorphism of order 66 of a K3 surface in characteristic 3.
By replacing 11 with 7, 8 and 10 (and then resolving the singularity at t D1 in the
standard way) we also obtain automorphisms of order 42, 48 and 60.
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