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Functors for Long dimodules and Yetter—-Drinfeld modules
in a weak setting
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ABsTRACT — In this paper, for two weak Hopf monoids H and B with invertible antipode, we
define a functor between the category of left-left H ® B-Yetter—Drinfeld modules and the
category of H-B-Long dimodules. We also show that, if moreover H is quasitriangular and
B is coquasitriangular, this functor is a retraction of the well-known injective functor between
left-left H-B-Long dimodules and left-left H ® B-Yetter—Drinfeld modules.
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1. Introduction

Let R be a commutative fixed ring with unit and let H be a commutative and
cocommutative Hopf algebra in the non-strict symmetric monoidal category of R-Mod.
In order to study the Brauer group of H -dimodule algebras, Long introduced in [10]
the notion of Long H -dimodule. Later, the notion was extended by considering two
arbitrary Hopf algebras H and B with bijective antipode, introducing the category of
left-left H - B-Long dimodules, denoted by 2Long.

On the other hand, to characterize bialgebras B such that B ® H with the smash
product structure is a bialgebra, Radford introduced in [14] conditions that subsequently
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give rise to the notion of Yetter—Drinfeld module on a bialgebra. The category of these
modules was defined by Yetter in [16], denoted by ZYD and called crossed bimodule.

It is a well-known fact that Yetter—Drinfeld modules over a Hopf algebra provide
solutions of the quantum Yang—Baxter equation and then this category allows us
to explain the relationship between different theories in mathematics and physics.
Moreover, Yetter—Drinfeld modules play a central role in the theory of monoidal
categories, allowing to categorize the concept of Drinfeld double (see [11]). Therefore,
its generalization to broader contexts is very interesting. For example, in this sense, the
category of Yetter—Drinfeld modules was studied in the context of weak Hopf algebras
(see [8, 12]), Hopf quasigroups (see [6]) and Hom-Hopf algebras (see [15]).

Obviously, it is also interesting to know the connection between Yetter—Drinfeld
modules and other categories. In the classic case of Hopf algebras, it is a well-known
fact that, if the Hopf algebras H and B are quasitriangular and coquasitriangular,
respectively, fl Long is a braided monoidal subcategory of g g g YD and as a consequence
of the above, the categories of Long dimodules provide non-trivial examples of solutions
of the quantum Yang—Baxter equation. All this makes it interesting to obtain similar
relations in the most popular generalizations of Hopf algebras, namely Hopf quasigroups
[17] and weak Hopf algebras [5].

This paper is a continuation of [5]. By working again in the weak Hopf algebra setting,
in the main result (Theorem 3.6) we define a functor between Z g gYD and fILong. If
moreover H is quasitriangular and B coquasitriangular, we show in Theorem 4.4 that
this functor is a retraction of the one defined in [5].

2. Preliminaries

Recall that a monoidal category is a category C equipped with a tensor product
functor ® : C x C — C, a unit object K of C and a family of natural isomorphisms

aynp - MROIN)®P > MQ®(NQP),
y MK —->M, ly:KQM —> M,

in C (called associativity, right unit and left unit constraints, respectively) satisfying
the pentagon axiom and the triangle axiom. A monoidal category is called strict if
the associativity, right unit and left unit constraints are identities. On the other hand,
a strict monoidal category C is braided if it has a natural family of isomorphisms
cuN - M @ N — N ® M such that the equalities

cu.Neop = (idy ® cp,p) o (e, N @ idp).

cmen,p = (cm,p ®idy) o (idy ® cn,P)
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hold for all M, N in C, where idys, idy and idp denote the corresponding identity
morphisms. If cy p o cpy, v = idygn, for all M, N in C, we will say that C is sym-
metric.

From now on C denotes a strict symmetric monoidal category with tensor product
®, unit object K and natural isomorphism of symmetry c¢. Taking into account that
every non-strict monoidal category is monoidally equivalent to a strict one (see [9]), we
can assume without loss of generality that the category is strict and, as a consequence,
the results contained in this paper remain valid for every non-strict symmetric monoidal
category, what would include for example the categories of vector spaces over a field F,
or the one of left modules over a commutative ring R. In what follows, for simplicity of
notation, given objects M, N, P in C and a morphism f : M — N, we write P Q f
foridp ® f and f ® P for f ® idp. We also assume that in C every idempotent
morphism splits, i.e., for any morphism g : ¥ — Y such that g o ¢ = ¢ there exists
an object Z, called the image of ¢, and morphismsi : Z — Y, p : Y — Z such that
q =1iopand poi =idz. The pair of morphisms p and i will be called a factorization
of g. Note that Z, p and i are unique up to isomorphism. The categories satisfying
this property constitute a broad class that includes, among others, the categories with
epi-monic decomposition for morphisms and categories with (co)equalizers.

In this section, we recall some basic definitions and well-known facts about monoids,
comonoids, weak bimonoids and weak Hopf monoids in C that we shall need later.

A monoidin Cisatriple A = (A, n4, 4) Where A isanobjectinCandny : K — A
(unit), ug : A ® A — A (product) are morphisms in C such that

pao(A®@ng) =idg =pao(Ma®A), pao(A® pa) = pao (s ® A).

Given two monoids A = (A, n4, t4) and B = (B, np, up), amorphism f : A - B
in C is a monoid morphism if

upo(f ® f)= foua, [fona=ns.

Also, if A, B are monoids in C, the object A ® B is also a monoid in C where
NaeB = N4 ® 1Np and wagp = (L4 ® Up) o (A ® cp,4 ® B). Note that, if A and B
are commutative monoids, sois A ® B.

A comonoid in C is a triple D = (D, ep, dp) where D is an object in C and
ep : D — K (counit), §p : D — D ® D (coproduct) are morphisms in C such that

(ep ® D)odp =idp =(D ®ep)odp, (5p ® D)odp = (D ®p)odp.

If D=(D,ep,0p)and E = (E,eg,dE) are comonoids, f : D — E is a comonoid
morphism if

(f® f)odp=08gof. erof =ep.



J.N. Alonso Alvarez — R. Gonzilez Rodriguez 250

If D, E are comonoids in C, then D ® E is a comonoid in C where epgr = ep ® €
anddpgr = (D ® cp.g ® E) o (§p ® §g). Note that, if D and E are cocommutative
comonoids, sois D ® E.

Finally, if A is a monoid, C is a comonoid and f : C — A, g : C — A are
morphisms in C, we define the convolution product f %« g : C — A of f and g by

frg=pao(f ®g)odc.

DerintTiON 2.1. A weak bimonoid H is an object in C with a monoid structure
(H,ng, ng) and acomonoid structure (H, e, 8 ) satisfying the following conditions:

(al)  dpoun = (ug @ uH)oSHRH.

(@2) egopupgo(up ® H) = (eg ®ep)o (g @ up)o (H @ 6y @ H)
=(en ®eg)o (g @ ug)o (H ® (cyg ody) ® H),

@) (Bu®H)obgong=(HQug®H)o(Sg ®n) o (ng ®NH)
=(H® (uuocHn)® H)o By ®du)o (e ® n).

Let H be a weak bimonoid. If there exists a morphism Ay : H — H in C (called
the antipode of H') such that the equalities

(a4) idgxAg =((egopn)® H)o(H ®ch,p)o((dgony)® H),
@) A xidg =(H Q®(egopg))o(cgn ® H)o(H ® (8 onm)),
(a6) /\H*idH*AH :)tH

hold, we will say that H is a weak Hopf monoid.

For a weak bimonoid H , the morphisms I1 ILJ (target), I1 IIS (source), ﬁIL{ and ﬁz
are defined by

M} = ((em o pr) ® H) o (H ® cg.i) o (8 0 ) ® H),
NE = (H ® (ey o pum)) o (cum ® H) o (H ® (8 © nar)),
Ty = (H ® (e5 0 im)) (s 0 1) ® H),
Tl = (1 0 prr) ® H) o (H & (8 0 1)
These morphisms are idempotent and satisfy the identities
) Mf oMy = h. Nk o Ty, =Ty,
MR oMl =Ty, MR oMy =X,
) MyoMNy =Ty, T,omnk =T,

My olk =1k, TiyolR =Tk
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If H;, denotes the image of the target morphism IT%, and pé :H — Hp and
i fLI : Hp — H are the morphisms such that

L L _ 1L L L _;
igopg =g, pgoig=idu,,

then the triples

(Hr, nw,, = pii o nms im, = ph o fw o (i ® i),
(Hp.en, =¢en oifi. 8u, = (pf ® pfp) o 8u o ifp)
determine a monoid and a comonoid, respectively.

In the weak monoid setting, for the morphisms target and source, we have the
following identities:

3 Thopyo(HeUk) =0%4o0un,
N opg o (Nf ® H) = T o g
4  (H®Tf)odyolly =8y olly,
(MX ® H)oby o IR =65 o TR,
(5)  pmo(H®Mg) = (e opn) ® H)o (H @ cau) o (Bu ® H),
(6) (H®T) ody = (ug ® H) o (H @ cu,u) o (5 0 1) ® H),
(7 ugo(H®Ty) = (H® (e o pm)) o 6 ® H),
®) (H®Tg)ody = (uu ® H) o (H ® Gz o 1))
which will be useful in what follows.

Moreover, if H is a weak Hopf monoid in C, then the antipode Ag is unique,
antimultiplicative, anticomultiplicative and leaves the unit and the counit invariant, i.e.,

) Agoug = pugo(Ag ® Ag)ocun.
SHoAg =ca oAy ®Ayg)ody,
(10) AHONH =NH, EHOAH =¢&H.

Also, it is easy to show that for the convolution product the morphisms target and
source satisfy the equalities

(1) 0L =idg * Ay, OR =iy xidg, 1L xidg =idyg = idg * 11X,
HfI*AH:lH:AH*HfL}, H%I*HIL-IZH%P HII-QI*HfI:HII-QI

and

12) Tk =igoTly =ThoAy, NE =Th oAy =Ayolly.
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Finally, by [2, Proposition 2.15] and the condition of symmetric category for C, we
have the identities:

(13) pr o cam o (T @ TI) = g o (M @ TIE),
g ocam o (M ® M) = py o (MF @ ),
(14) (M @ IR) o e 08 = (M @ TIR) 0 85,

(MR @ML)ocypody = (MR @1L)068y.

LemMma 2.2. Let H be a weak Hopf monoid in C such that its antipode is an
isomorphism. The following equalities hold:

(15) pr o (H® (ko g o(H®Ag)ocym)) oSy ® H)
= pu o (H ® (I x (A7 o TIR))),
(16) (kg ® H) o (H ® (ca,p o (H ® Ap) o8 o Tf)) 0 8

= (H ® (I * Az o 1)) 0 8p,
where /\Ez = k;ll o )L;Il.
Proor. Identity (15) follows from

pr o (H® (I o g o (H®Ag)ocym))o By @ H)
2 g oH® Moy oH® @Y ory)ocnn)o@n e H)
par o (H ® (M o g o (H ® (T o Tl 0 Ag)) o carm)) o (61 ® H)
pa o (H® (I o g o (H ® (T 0 ) o cim)) o (65 ® H)
o (H® (M opm o (HRTE)ochm)) o @u®H)
= pgo(H® (G opuyocnm)o(H®TR) o8y ® H)
Ly o (H® (g o g o e ) o (H @ (g 0 Tigy)) 0 81) ® H)
= ugo(H®MMopnocunm)o(un ® iy ® H)
o(H®(@gong)®H)
2 g o (ur ® (M o pp)) o (H @ cay @ Am) o (H @ H ® (81 0 1))

10), (9
WL o (ua ® (T o ) o (H ® e ® M)
o(H® H®((Ag' ® Ag') och i o8m o nm))

—~
=

Q' pmo(un ® H)

o (H ® (ca,pr o (T o ug) @ A5Y) o (H ® (81 © 1))
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1 =R
o (H® (uw o e m o (M ® (A o Tg)) 0 8))

Ly o (H @ (1o 0 carpr o (T ® (g 0 A7) 0 84)

w0 (H @ (g o e o (T @ (IR o Ty 0 451)) 0 811))
pa o (H ® (up o (I ® (TR o Ty 0 A51)) 0 81)

par o (H ® (ua o (M ® (T 0 A1) 0 8a1))

pr o (H ® (M * (A o TI))),

—
=

(13)

—~
=

—~
N
~

where the three equations marked with (x) follow by naturality of c.
Identity (16) follows from

(ugr @ H)o (H ® (cy. o (H ® Ag) o8y o T15)) o 8y

Q (g ®H)o(H® (cpgo(H® Mg ollk))osy olk))osy
2 (uw ®H) o (H ® (crrr o (H ® (g o Ty 0 T1)) 0 851 0 1)) 0 8y
(tg ® H)yo (H ® (g o (H ® (I 0 1)) 08y 0 I1f;)) 0 g
= (ug ® H)o(H ® (cg,g o (H®TIR) 08y o 11h)) 0 8x
L (uw ® H)o (H @ (cm o (H ® (TTgy 0 Agp)) 0 37 0 ) 0 8y
D (ugo(H®TH)® H) o (H ® (e o (H ® Ay) oy o T1h)) o6y
2 (H®(emopun) ® H)o By ® (cam o (H®Ag) o8y o)) ody
LY (H ® (err o pr o e 0 (' ® A5H) ® H)

o (8r ® (ca,u o (H ® ) o8y o T1f;)) o 8n

= (H®((H® (sr o pum)) o (Gm o M) @ Ay o cam)) o S ® H) 0 8n
D (H® (ug o (TTh ® (T 0 A5") 0 cm 0 8u)) 0 8
(H® (g o (Mg ® (A o T) o e ©8)) o 8
(H ® (i o (Mg ® (W' o Ty 0 TIR)) 0 cir.w 0 811)) 0 8
(H ® (ua o (g ® (! o Ty 0 TIR)) 0 8p1)) 0 8
2 (H @ (a0 (Mg ® (A5 0 Ty)) 0 81)) 0
S (@ Mk« 07 o TIR)) 0 bn,

(14)

where the two equations marked with () follow again by naturality of c. |
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Let H be a weak bimonoid in C. Then,
H® = (H.ng.pn ocug.¢n.85), H® = (H.ng.|uy.eH.cH,H ©0H)
are weak bimonoids in C. Therefore so is
(H)*P = (H,nH, /A0 © CH,H,€H, CH,H © §H)-
Note that
nk, =Te. 0R, =15,
Mk, =T, MOR., =Ts.

If H is a weak Hopf monoid and the antipode Ag is an isomorphism, H°P and
H P are weak Hopf monoids in € with antipode A oo = A greop = AI:,I. Then, under
these conditions, (H °P)*® is a weak Hopf monoid with antipode A (gopycr = Af7.

If H and B are weak bimonoids in C, so is the tensor product H ® B. In this case,
the monoid-comonoid structure is the one of H ® B and

L L L R R R
Hpep =g ® g, Iggp = Iy ® Ip.

Then, if H and B are weak Hopf monoids in C, so is the tensor product H ® B,
with Aggp = Ay ® Ap. Note that (H ® B);, = Hp ® By.

3. Yetter—Drinfeld modules and Long dimodules

DeriniTION 3.1. Let H be a weak Hopf monoid in C. We say that a pair (M, ¢pr)
is a left H-module if M is an objectin C and ¢ps : H ® M — M is a morphism in C
satisfying the following conditions:

(17) oMo @ M) =1idy, om0 (H @ op) = @m0 (ug @ M).

If (M, gpr) and (N, @) are left H-modules, a morphism f : M — N inCis a
morphism of left H-modules if

(18) gno(H® f) = foou

holds.
For two left H-modules (M, ¢pr) and (N, ¢n ), the morphism ppron : H @ M @ N
— M ® N is defined by

omeN = (o @ on) o (H @ cgmy @ N)o (g ® M ® N).
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Then, ppren satisfies the equality
pmen © (H @ pmen) = ¢men © (LH ® M ® N)

and Vyon = omen (Mg @M @ N): M @ N - M ® N is an idempotent mor-
phism. Let M [ N be the image of Vyygn and let pyyoy : M @ N - M I N,
iMon : M EON — M ® N be the morphisms such that

IM®N © PMoN = VM®N. DPM@N °©imeN = idyan.
The object M [ N is a left H-module with action
oMEaN = pMeN ©¢MeN © (H Qiygn) - H QM EN — M EN
and the equalities
pmen © (H ® Vugn) = ¢meN = VMeN © ¢MeN
hold. Also, if (M, ¢pr), (N, ¢n) and (P, pp) are left H-modules, we have that
(M ® VNgpr) o (Vuen ® P) = (Vuen ® P)o (M ® Vnep).

For two morphisms f : (M, gp) — (M', gp) and g : (N, on) — (N', on7) of
left H-modules,

fOg=puweno(f®goimen : MEON — M N’

is a morphism of left H-modules between (M [ N, pyrmn) and (M’ O N', oprrmns)-
Also, the following identity holds:

(f ®8)oVmen = Vuren' o (f ® g).

DeriniTION 3.2. Let H be a weak Hopf monoid in the category C. We say that
a pair (M, ppr) is a left H-comodule in the category C if M is an object in C and
pm M — H ® M is amorphism in C satisfying the following conditions:

(eH @ M)opy =idy. (H ®pm)opm = On ®M)opy.

If (M, ppr) and (N, py) are left H-comodules, a morphism f : M — N inCis a
morphism of left H-comodules if

(19) pnof =(H® f)opm

holds.
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For two left H-comodules (M, pps) and (N, px ) the morphism pprgy : M @ N —
H®M ® N definedby pyen = (aH @ M @ N)o (H Q cu,r ® N) o (pm ® pw)
satisfies the equality

(H ® pmen) © pmen = (61 ® M Q@ N) o pyen-

Then, as a consequence, Vy, oy = (67 @ M ® N)o pyen : M ® N - M @ N
is an idempotent morphism. Let M © N be the image of Vj, o and let py o :
M®N - MON,iyey:MON — M ®N be the morphisms such that

iMen © Puon = Vumen: Puen °iven =idmon.
The object M © N is a left H-comodule with coaction
pmon = (H ® piygn) © pMen ©iyey : M ON — H® (M ON)
and the equalities
(H ® Viyygn) © PMON = PMeN = PMeN © Vign
hold. Also, if (M, par), (N, pn) and (P, pp) are left H-comodules, we have that
(M ® Vygp) o (Viygn ® P) = (Viygn ® P)o (M ® Viygp).

For two morphisms of left H-comodules f : (M, py) — (M', pprr) and g :
(N, pn) = (N', pn7),

fOg=rPyweno(f®goiyegy : MON—>M ON'
is amorphism of left H -comodules between (M © N, ppron) and (M’ © N/, pprron’).
Also, the following identity holds:
(f®go V1/1/1®N = VI/M’@)N' o(f ®g).

Following [8, 12], we recall the notion of a left-left Yetter—Drinfeld module in the
weak Hopf monoid setting.

DerintTion 3.3. Let H be a weak Hopf monoid in C. We shall denote by Z YD
the category of left-left Yetter—Drinfeld modules over H. The objects of Z YD are
triples M = (M, ¥rpr, yar) where (M, rar) is a left H-module and (M, yps) is a left
H -comodule satisfying the following conditions:

(bl) (ug @M)o(H @cpya)o((ymoVym)® H)o(H Qcym)o By @ M)

=(ug @Ym)o(H @ cag ® M)o(8g ® ym),
(b2) (ur @ VYm)o(H Qcaug ®M)o(Bmonu)ym)=ym.



Functors for Long dimodules and Yetter—Drinfeld modules 257

A morphism in gYD between (M, V¥ar, yp) and (N, ¥y, YN ) is @ morphism
f : M — N in C such that (18) and (19) hold.

Let (M, ¥ar, yum) be a left-left Yetter—Drinfeld module. It is easy to show that the
axiom (b2) is equivalent to

(eropm) ® Ym) o (H @ cym ® M) o 8y ® ym) = V.
As a consequence of the previous identity we obtain that
(20) Va0 (T ® M) o yy = idy
holds and by [3, (37) of Remark 1.11] we have the equality
@) ([ ®M)oyy = (I o Ax) ® Ynr) © (cm,z © 8 ) ® M).

It is a well-known fact (see [8, Proposition 2.2]) that conditions (b1) and (b2) are
equivalent to

(22) ymoVYm = (ua ® M)o (H Q cm,H)
o((ug ®Ym)o(H ®cuuy ®M)o (Su ® ym)) ® An)
o(H ®cum)o (Bu ®M).
LemMmA 3.4. Let H be a weak Hopf monoid in C such that its antipode is an

isomorphism. Let (M, Vrar, Yy ) be a left-left Yetter—Drinfeld module. The following
identity holds:

(23) Y o (AF o T ® M) o yy = id.
Proor. We have
U o (A" o TI) ® M) o yy
2 a0 (A2 o TR 0 Aw) ® Yiar) o ((covmt 0 8a 0 Ner) ® M)
Yo (s o (T ® H) o gy 0 811 0 1) ® M)

(k%)

= Ymo(nu ® M)

= idw,
where (x) follows by (17), (12) and the naturality of ¢, and (xx) follows by (11) for
Heep, [

If the antipode of the weak Hopf monoid H is an isomorphism, the category ZYD
is an example of a non-strict braided monoidal category. In the following paragraphs
we will make a brief summary of its braided monoidal structure.
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Let (M, ¥pr, ym) and (N, ¥, yn ) be objects in gYD. Then, for the morphisms
Vuen and %@N, defined in Definitions 3.1 and 3.2, by [2, Proposition 1.12 (iii)]
we have that

/
VM®N = VM®N‘

Then, the tensor product of (M, ¥ar, yar) and (N, ¥, vn) is defined as the image of
the idempotent morphism Vs g N, denoted by M [ N, with the following action and
coaction:

YmMan = pmenN © Ymen © (H @ iyen),
yman = (H ® ppyenN) © YMeN ©iMaN-

The base object in IZIYD is Hy,, which is a left-left Yetter—Drinfeld module over H
with (co)module structure

Yu, = pipopno(H®if). yu, =(H® pf)oduoif.
The unit constrains are defined by
y =Vmo(if ®M)oig,em : HHEOM — M,
tw = Yo e o (M ® (T 0 i) oinen, : M B HL — M,

and the associativity constrains aps vy, p : (M O N) P — M (N O P) are defined
by
am,N,p = PMaaP) © (M ® pner) o (inen ® P)ocimaner.

where (P, ¥p, yp) is a third object in the category of left-left Yetter—Drinfeld modules.
If f: M — M’ and g: N — N’ are morphisms in £ YD, then

fOg=puano(f®goimegn : MEN — M TN’
is a morphism in the same category and
(f'Bg)e(fBg=(fofHE(E og)

holds, where f’: M’ — M" and g’ : N’ — N are morphisms in ZYD.
Finally, the braiding is defined by

IMN = PN@M © TM,N CiMeN - M ON — N M,
where

N =(UNOM)o(H®cyn)o(yy @N): M QN — N QM.
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DeriniTION 3.5. Let H and B be weak Hopf monoids in C. A left-left H-B-Long
dimodule (M, pr, par) is both a left H-module with action ¢ps : H ® M — M and
a left B-comodule with coaction pps : M — B ® M satisfying the axiom

(24) pmoem = (B®¢pm) o (cup @ M)o (H Q py).

A morphism between two left-left H-B-Long dimodules (M, ¢ar, ppr) and
(N, ¢N, pn) is a morphism f : M — N of left H-modules and left B-comodules.
Left-left H-B-Long dimodules and morphisms of left-left H - B-Long dimodules form
a category, denoted as 2Long.

In [5] we can find many examples of Long dimodules in the weak setting. One of
the main results proved in [5] asserts that zLong is an example of a monoidal category
(see [5, Theorem 1]). As in the Yetter—Drinfeld case, in the following paragraphs we
will make a brief summary of its monoidal structure. The complete details can be found
in [5, Lemmas 2—6, Propositions 1-3 and Theorem 1].

Let (M, @pr, par) and (N, N, py) bein fl Long. The idempotent morphisms Vas g N

and VI/VI ON° defined in Definitions 3.1 and 3.2, satisfy

A /
VM@N (0] VM®N = VM@N o VM®N'
As a consequence, the morphism
/
QuenN = Vygn © VMeN

is idempotent and we have two morphisms jyygny : M X N - M & N and qyren :
M ® N — M x N such that

dMeN © jueN = idyxN, JMeN °©qMeN = LMenN.

where M x N is the image of Q275 . Then, the tensor product of (M, ¢ar, par) and
(N, ¢n, pn) is defined as the image of the idempotent morphism Qs gx . It belongs
to fILong with H-module and B-comodule structures

PMxN = qMeN © PMeN © (H ® juen),

puxN = (B @ quMenN) © PMON © JMON -

respectively.
Moreover, if

[ M om,ppm) = (M om,pm7), g2 (N,on,pn) = (N, on7, pN7)
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are morphisms in gLong, then
fxg=qmuxno(f®g o jmuxny :MxN-—>M xN’

is a morphism in fILong between (M x N, oaprxn, pmxn) and (M’ x N, oprrsn,
PM/xN’)-
If (M, om, pm), (N, on, pn) and (P, @p, pp) are in fILong, the associativity
constraint
amyNp:(MxN)xP —- Mx (N xP)

is defined by
am,N,P = que(NxP) °© (M @ gner) o (juen ® P)o juxn)ep
and the base object is Hy, ® Br, where the action and the coaction are defined by
vr, 98, = (P o r o (H ® if;)) ® BL,
pr o8, = (cr;,.B ® pg) o (HL ® (8p 0 if)).

Finally, the unit constraints are lps : (Hp @ Bp) x M — M andry : M x (Hp ®
Br) — M, where

Im = ((gouB) ® M) o (B Q (pm © ¢m))
o((chBo(iff ®iF)) ® M) o j(h,08,)eM
rm = ((pm © cm,r) ® (e o up)) o (M ® cp,u ® B)
=L . . .
o ((ca.m o pm) ® (T 0 ify) ®if) © jue(H, o8,)-
THEOREM 3.6. Let H and B be weak Hopf algebras such that their antipodes are
isomorphisms. There exists a functor

F:HoBYD — fLong

defined on objects by
FI(M. Y. ym)) = (M. yp = Ym0 (H Q@ np ® M), om = (1 ® BQ M) o yn)
and by the identity on morphisms.

Proor. Let (M, ¥y, ym) bein ZggYD. Then, using that (M, ¥ps) isaleft H ® B-
module, the unit properties and the naturality of ¢, we obtain that (M, yas) is a left H-
module. Similarly, using that (M, ypr) is aleft H ® B-comodule, the counit properties
and the naturality of ¢, we obtain that (M, wys) is a left B-comodule. The proof for
equality (24) is the following:
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WM ©° XM

Y ((ew ® B) o prren) ® M) o (H ® B® (H ® cp,p) o (cp,u ® B)))

o((haHeB @ VM) o (H ® BR® crgp,HeB @ M) o (Snep ® YM)) @An ® Ap)

o(H®B®((camMm®B)o(H®cpm)))o((8agpo(H 1))@ M)

© B&YM)o(cup®BRM)o(((er o pur)® H)o (H ®crp)

0o(lg®H))®(up®B)o(BR®cpp)o(dp®(upo(B®Ap)oca,p))
0(6p®B))@M)o(HQ (((ua o (H®Ag)ocu )R B)

o(H®cpH)®BROM)o (g ®np ®ym)

© B&Ym)o(cup®BR®M)o((jupo(H® Mk oumo(H®Ag)ocu n))

®((uB®B)o(B®(cppo(B®Ap)odp))o(up®B)o(B®cp,B)

o((6pong)®B))®M)o(éy ®ym)

@ BRYM) o (e s ®B&M)o (g o (H® (M 0 g o (H & Ar) o chrir)))

®((up ® B)o(B® (cppo(B®Ag)odp))o(BRI5)0bp) @ M)

o(8g ® ym)

QB Yum)o (e ®B®M)o (o (H® (T « (A3f o TIX))))

® (B (I x (A5> o T15))) 0 8p) ® M) o (H ® yu)

D (B & (a o (s ® M))) o (ca.s ® TIS) o (g o (H @ 1)) @ 65))

(A oTIR)Y @ (A2 o TIR) ® M) o (H ® ($res ® M) o yu))

(B®Yn) o ((ca,p ®T15) o (ka0 (H ®T15)) ®8p))
® (Wm0 (A o) ® (A5° o TI) @ M) oyy)) o (H ® yar)

@ (B®Yur)o((cap®@T5)o((ug o (HRTTE)®68) @ M) o (H ®yum)

£ (B®(Wa o (naes o (H @15 ® H® B)® M) o (e ® Iy @ T © M)

o(H® (et ® B® H® B) 0dnepr) ® M) o yn))

6)

© (B®ym)o(cup® W o (Tl @TI:® M) o)) o (H @ wp)

i)
9 (B® ym)o(crp®M)o(H®wy).

where (a) follows by (22) for H ® B; (b) by naturality of ¢ and the associativity of ug
and up; (c) by the coassociativity of §p, the naturality of ¢ and (5); (d) by naturality of
¢ and (6); (e) by (15) for H and (16) for B; (f) by naturality of ¢ and the associativity
of g ; (g) by the condition of left H ® B (co)module for M ; (h) by (23) for H ® B;
(i) by naturality of ¢ and the properties of np and eg; (j) by (20) for H ® B.
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Therefore (M, yar, wpr) is an object in 2Long.

Finally, if f is a morphism in gggYD between the objects (M, Vs, var) and
(N, ¥, yYN), it is immediate to obtain that f is a morphism in fILong between the
objects (M, yar,wpr) and (N, y v, wn ). Therefore, F is a functor between the categories

gggYD and & Long. u

4. The retraction in the (co)quasitriangular case

In [5, Theorem 2] we proved that, if H is a quasitriangular weak Hopf monoid and
B is a coquasitriangular weak Hopf monoid, there exists a functor

L: gLong — ZggYD

injective on objects and, consequently, fl Long can be identified with a subcategory of
Z g gYD. In this section, we will show that in this context the functor F, introduced at
the end of the previous section, is a retraction of L. We will begin with a brief review
of the fundamental properties of weak Hopf (co)quasitriangular monoids (see [4,5] for
the complete details).

The following definition is the monoidal version of the definition of quasitriangular
weak Hopf monoid introduced by Nikshych, Turaev and Vainerman in [13].

DeriniTION 4.1, Let H be a weak Hopf monoid. Let 7 and Q7 be the idempotent
morphisms defined by Qp = Q% o Q}, and Q) = Q% o Q3 where Q; are the
idempotent morphisms defined by

QL = pupeno(cprodyong) ® HRH): H®H — H ® H,
Q% = pugno(H®H® Bgony): H®H — H® H,
QY =upeno(H® H® (cggodygony)): H®H — H® H,
Qy =preno(@Bponn) ®HR®H): H®H — H® H.

We will say that H is a quasitriangular weak Hopf monoid if there exists a morphism
o0 : K — H ® H in C satisfying the following conditions:

(cl) Qy oo =o,
(c2) g ®H)oo=(H®pug)o(HQcugug® H)o (o ®o0),
(c3) (H®dg)oo =(ug ®@cpp)o(HQcyp @ H)o (0 ®0),

(c4)  pHeH (0 ®J0H) = paeH © ((cH,H °8H) ® 0).
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(c5) There exists a morphism o : K — H ® H such that
(c5.1) Qoo =0,
(c52) o%x0=cHgHo8HoNH,
(05.3) O %0 :(SHOT]H-

We will say that a quasitriangular weak Hopf monoid H is triangular if moreover
o = CHH©°O.

For any quasitriangular weak Hopf monoid the morphism & is unique and by
[4, Lemma 3.5] and [5, Lemma 7] the following equalities hold:

O*X0O%x0 =0, O0O*%k0*%x0 =0

(25) (tr®@H)oo =(H®¢en)oo =nHn.

DEFINITION 4.2. Let B be a weak Hopf monoid. Let I'g and I'y be the idempotent
morphisms definedby I'g = '3 o'} and I’y = I'j o '3, where 'y are the idempotent
morphisms

Iy =((epopupocpp)®BRB)odpgp: B®B — B® B,
F%:(B@B@(SBOMB))OSB@,B:B®B—>B®B,
I3 =(B®B®(epoupocpp)odpep:B®B — B®B,
'3 =((epoup)® B® B)odpep: B®B — B® B.

We will say that B is a coquasitriangular weak Hopf monoid if there exists a
morphism w : B ® B — K in C satisfying the following conditions:

(dl) wol'p =w,
(d2) wo(up®B)=(w®w)o(B®cpp® B)o(B®B®Rp),
(d3) wo(B®pup)=(w@w)o(BRcpp®B)o(sp ®cp,B),

(d4) (0 ® up)odpep = ((LBocpB)®w)odpeB.
(d5) There exists a morphism @ : B ® B — such that
d5.1) wolp =0,
(d52) w*w =¢epoupoca,a,
(d53) wxw=-¢poup.

We will say that a coquasitriangular weak Hopf monoid B is cotriangular if moreover
W = woCR,B.
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For any coquasitriangular weak Hopf monoid B, we obtain that @ is unique and
the following equalities hold (see [5, Lemma 8]):

W*xW*kW=w, W*OW*xOL =0,
(26) wo(np® B) =wo(BQng) = ép.

ExampLE 4.3. There are many interesting examples in the literature of quasitrian-
gular and coquasitriangular weak Hopf monoids. Let G = (Go, G;) be a finite groupoid
such that its set of arrows G is finite and let R be a commutative ring. Then, the
groupoid algebra of G, denoted by R[G], is an example of triangular weak Hopf monoid
in the category R-Mod. Since G is finite, R[G] is free of a finite rank as an R-module.
Hence R[G] is finite as object in the category R-Mod and R[G]* is an example of a
cotriangular weak Hopf monoid in R-Mod.

On the other hand, in [7] Andruskiewitsch and Natale proved that it is possible
to construct a weak Hopf monoid K(G, H) in the symmetric monoidal category of
vector spaces over a field K by working with a matched pair of finite groupoids (G, H).
Moreover, in [1] Aguiar and Andruskiewitsch proved the following result: A matched
pair of rotations gives rise to a quasitriangular structure for the associated weak Hopf
monoid K (G, H). Also, by [1, Theorem 5.10] we know that there is an isomorphism of
quasitriangular weak Hopf monoids between the Drinfeld double of K(G, H) and the
weak Hopf monoid of a suitable matched pair of groupoids.

Finally, in [13], for a weak Hopf monoid H in the symmetric monoidal category
of vector spaces over an algebraically closed field, Nikshych, Turaev and Vainerman
defined the Drinfeld double D(H) of H and proved that D(H ) is a quasitriangular
weak Hopf monoid (see [13, Proposition 6.2]).

The main result in [5] asserts the following: Let H be a quasitriangular weak Hopf
monoid with morphism o : K — H ® H and let B be a coquasitriangular weak Hopf
monoid with morphism w : B ® B — K. There exists a functor

L: gLong — ZggYD
defined on objects by
LM, opr. pm)) = (M. dpr.0m),
where

dm =¢mo(HQ®(wocpp)@M)o(H ® B ® pm).
om = (H ® (om o ¢m)) o ((ca,m 00) @ M),

and by the identity on morphisms. Moreover, the functor L is injective on objects and,

consequently, flLong can be identified with a subcategory of Z g gYD. Moreover, by
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[5, Lemmas 10-12] we can conclude that the category ZLong is a braided monoidal

subcategory of Z g gYD if the antipodes of H and B are isomorphisms.

TaEOREM 4.4. Let H be a quasitriangular weak Hopf monoid with morphism
o0 : K — H ® H and let B be a coquasitriangular weak Hopf monoid with morphism
o : B ® B — K. Then the functor F introduced in Theorem 3.6 is a retraction of the
functor L.

Proor. Obviously for morphisms there is nothing to prove. For objects we have
the following: Let (M, ¢pr, par) be an object in ZLong. Then

(FoLY((M,opm, pm)) = (M, oum. pm)

because
FILAM, om, M) = F((M, ¢p,0m)) = (M, xpm, om),

where, by (26) and (25), we have that

M =¢mo(H®npOM)=qpo(HR(wocpp) ®M)o(H®np® pum)
=ypmo(H Q® (e ® M) opm)) = ¢m

and

oy =(Eg®BRM)ooym = (eag ® (om o ¢m)) o ((ca,H00) @ M)
=pmopmo(nu @ M) = pum. L]
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