Functors for Long dimodules and Yetter–Drinfeld modules in a weak setting

José Nicanor Alonso Álvarez (*) – Ramón González Rodríguez (**)

ABSTRACT – In this paper, for two weak Hopf monoids H and B with invertible antipode, we define a functor between the category of left-left $H \otimes B$ -Yetter–Drinfeld modules and the category of H-B-Long dimodules. We also show that, if moreover H is quasitriangular and B is coquasitriangular, this functor is a retraction of the well-known injective functor between left-left H-B-Long dimodules and left-left $H \otimes B$ -Yetter–Drinfeld modules.

MATHEMATICS SUBJECT CLASSIFICATION (2020) – Primary 16T05; Secondary 18M05, 18M15, 16T25.

KEYWORDS - Monoidal category, weak Hopf monoid, Yetter-Drinfeld module, Long dimodule.

1. Introduction

Let R be a commutative fixed ring with unit and let H be a commutative and cocommutative Hopf algebra in the non-strict symmetric monoidal category of R-Mod. In order to study the Brauer group of H-dimodule algebras, Long introduced in [10] the notion of Long H-dimodule. Later, the notion was extended by considering two arbitrary Hopf algebras H and B with bijective antipode, introducing the category of left-left H-B-Long dimodules, denoted by H-Long.

On the other hand, to characterize bialgebras B such that $B \otimes H$ with the smash product structure is a bialgebra, Radford introduced in [14] conditions that subsequently

^(*) *Indirizzo dell'A*.: Departamento de Matemáticas, Facultade de Ciencias Económicas e Empresariais, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36280 Vigo, Spain; jnalonso@uvigo.es

^(**) *Indirizzo dell'A*.: Departamento de Matemática Aplicada II, Escola de Enxeñaría de Telecomunicación, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36280 Vigo, Spain; rgon@dma.uvigo.es

give rise to the notion of Yetter–Drinfeld module on a bialgebra. The category of these modules was defined by Yetter in [16], denoted by $_H^H$ YD and called *crossed bimodule*.

It is a well-known fact that Yetter–Drinfeld modules over a Hopf algebra provide solutions of the quantum Yang–Baxter equation and then this category allows us to explain the relationship between different theories in mathematics and physics. Moreover, Yetter–Drinfeld modules play a central role in the theory of monoidal categories, allowing to categorize the concept of Drinfeld double (see [11]). Therefore, its generalization to broader contexts is very interesting. For example, in this sense, the category of Yetter–Drinfeld modules was studied in the context of weak Hopf algebras (see [8, 12]), Hopf quasigroups (see [6]) and Hom-Hopf algebras (see [15]).

Obviously, it is also interesting to know the connection between Yetter–Drinfeld modules and other categories. In the classic case of Hopf algebras, it is a well-known fact that, if the Hopf algebras H and B are quasitriangular and coquasitriangular, respectively, $_H^B$ Long is a braided monoidal subcategory of $_{H\otimes B}^{H\otimes B}$ YD and as a consequence of the above, the categories of Long dimodules provide non-trivial examples of solutions of the quantum Yang–Baxter equation. All this makes it interesting to obtain similar relations in the most popular generalizations of Hopf algebras, namely Hopf quasigroups [17] and weak Hopf algebras [5].

This paper is a continuation of [5]. By working again in the weak Hopf algebra setting, in the main result (Theorem 3.6) we define a functor between ${}^{H \otimes B}_{H \otimes B} YD$ and ${}^{B}_{H \otimes B} L$ and ${}^{B}_{H \otimes B} L$ moreover ${}^{H}_{H \otimes B} L$ is quasitriangular and ${}^{B}_{H \otimes B} L$ coquasitriangular, we show in Theorem 4.4 that this functor is a retraction of the one defined in [5].

2. Preliminaries

Recall that a monoidal category is a category C equipped with a tensor product functor $\otimes : C \times C \to C$, a unit object K of C and a family of natural isomorphisms

$$\mathbf{a}_{M,N,P}: (M \otimes N) \otimes P \to M \otimes (N \otimes P),$$

 $\mathbf{r}_{M}: M \otimes K \to M, \quad \mathbf{I}_{M}: K \otimes M \to M,$

in C (called associativity, right unit and left unit constraints, respectively) satisfying the pentagon axiom and the triangle axiom. A monoidal category is called strict if the associativity, right unit and left unit constraints are identities. On the other hand, a strict monoidal category C is braided if it has a natural family of isomorphisms $c_{MN}: M \otimes N \to N \otimes M$ such that the equalities

$$c_{M,N\otimes P} = (\mathrm{id}_N \otimes c_{M,P}) \circ (c_{M,N} \otimes \mathrm{id}_P),$$

$$c_{M\otimes NP} = (c_{MP} \otimes \mathrm{id}_N) \circ (\mathrm{id}_M \otimes c_{NP})$$

hold for all M, N in C, where id_M , id_N and id_P denote the corresponding identity morphisms. If $c_{N,M} \circ c_{M,N} = \mathrm{id}_{M \otimes N}$, for all M, N in C, we will say that C is symmetric.

From now on C denotes a strict symmetric monoidal category with tensor product \otimes , unit object K and natural isomorphism of symmetry c. Taking into account that every non-strict monoidal category is monoidally equivalent to a strict one (see [9]), we can assume without loss of generality that the category is strict and, as a consequence, the results contained in this paper remain valid for every non-strict symmetric monoidal category, what would include for example the categories of vector spaces over a field \mathbb{F} , or the one of left modules over a commutative ring R. In what follows, for simplicity of notation, given objects M, N, P in C and a morphism $f: M \to N$, we write $P \otimes f$ for $\mathrm{id}_P \otimes f$ and $f \otimes P$ for $f \otimes \mathrm{id}_P$. We also assume that in C every idempotent morphism splits, i.e., for any morphism $q: Y \to Y$ such that $q \circ q = q$ there exists an object Z, called the image of q, and morphisms $i: Z \to Y$, $p: Y \to Z$ such that $q = i \circ p$ and $p \circ i = \mathrm{id}_Z$. The pair of morphisms p and p will be called a factorization of p. Note that p and p are unique up to isomorphism. The categories satisfying this property constitute a broad class that includes, among others, the categories with epi-monic decomposition for morphisms and categories with (co)equalizers.

In this section, we recall some basic definitions and well-known facts about monoids, comonoids, weak bimonoids and weak Hopf monoids in C that we shall need later.

A monoid in C is a triple $A = (A, \eta_A, \mu_A)$ where A is an object in C and $\eta_A : K \to A$ (unit), $\mu_A : A \otimes A \to A$ (product) are morphisms in C such that

$$\mu_A \circ (A \otimes \eta_A) = \mathrm{id}_A = \mu_A \circ (\eta_A \otimes A), \quad \mu_A \circ (A \otimes \mu_A) = \mu_A \circ (\mu_A \otimes A).$$

Given two monoids $A=(A,\eta_A,\mu_A)$ and $B=(B,\eta_B,\mu_B)$, a morphism $f:A\to B$ in C is a monoid morphism if

$$\mu_B \circ (f \otimes f) = f \circ \mu_A, \quad f \circ \eta_A = \eta_B.$$

Also, if A, B are monoids in C, the object $A \otimes B$ is also a monoid in C where $\eta_{A \otimes B} = \eta_{A} \otimes \eta_{B}$ and $\mu_{A \otimes B} = (\mu_{A} \otimes \mu_{B}) \circ (A \otimes c_{B,A} \otimes B)$. Note that, if A and B are commutative monoids, so is $A \otimes B$.

A comonoid in C is a triple $D=(D,\varepsilon_D,\delta_D)$ where D is an object in C and $\varepsilon_D:D\to K$ (counit), $\delta_D:D\to D\otimes D$ (coproduct) are morphisms in C such that

$$(\varepsilon_D \otimes D) \circ \delta_D = \mathrm{id}_D = (D \otimes \varepsilon_D) \circ \delta_D, \quad (\delta_D \otimes D) \circ \delta_D = (D \otimes \delta_D) \circ \delta_D.$$

If $D=(D,\varepsilon_D,\delta_D)$ and $E=(E,\varepsilon_E,\delta_E)$ are comonoids, $f:D\to E$ is a comonoid morphism if

$$(f \otimes f) \circ \delta_D = \delta_E \circ f, \quad \varepsilon_E \circ f = \varepsilon_D.$$

If D, E are comonoids in C, then $D \otimes E$ is a comonoid in C where $\varepsilon_{D \otimes E} = \varepsilon_D \otimes \varepsilon_E$ and $\delta_{D \otimes E} = (D \otimes c_{D,E} \otimes E) \circ (\delta_D \otimes \delta_E)$. Note that, if D and E are cocommutative comonoids, so is $D \otimes E$.

Finally, if A is a monoid, C is a comonoid and $f: C \to A$, $g: C \to A$ are morphisms in C, we define the convolution product $f*g: C \to A$ of f and g by $f*g = \mu_A \circ (f \otimes g) \circ \delta_C$.

DEFINITION 2.1. A weak bimonoid H is an object in C with a monoid structure (H, η_H, μ_H) and a comonoid structure $(H, \varepsilon_H, \delta_H)$ satisfying the following conditions:

(a1)
$$\delta_H \circ \mu_H = (\mu_H \otimes \mu_H) \circ \delta_{H \otimes H}$$
,

(a2)
$$\varepsilon_{H} \circ \mu_{H} \circ (\mu_{H} \otimes H) = (\varepsilon_{H} \otimes \varepsilon_{H}) \circ (\mu_{H} \otimes \mu_{H}) \circ (H \otimes \delta_{H} \otimes H)$$
$$= (\varepsilon_{H} \otimes \varepsilon_{H}) \circ (\mu_{H} \otimes \mu_{H}) \circ (H \otimes (c_{H,H} \circ \delta_{H}) \otimes H),$$

(a3)
$$(\delta_H \otimes H) \circ \delta_H \circ \eta_H = (H \otimes \mu_H \otimes H) \circ (\delta_H \otimes \delta_H) \circ (\eta_H \otimes \eta_H)$$
$$= (H \otimes (\mu_H \circ c_{H,H}) \otimes H) \circ (\delta_H \otimes \delta_H) \circ (\eta_H \otimes \eta_H).$$

Let H be a weak bimonoid. If there exists a morphism $\lambda_H: H \to H$ in C (called the antipode of H) such that the equalities

(a4)
$$\operatorname{id}_H * \lambda_H = ((\varepsilon_H \circ \mu_H) \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_H \circ \eta_H) \otimes H),$$

(a5)
$$\lambda_H * \mathrm{id}_H = (H \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,H} \otimes H) \circ (H \otimes (\delta_H \circ \eta_H)),$$

(a6)
$$\lambda_H * id_H * \lambda_H = \lambda_H$$

hold, we will say that H is a weak Hopf monoid.

For a weak bimonoid H, the morphisms Π_H^L (target), Π_H^R (source), $\overline{\Pi}_H^L$ and $\overline{\Pi}_H^R$ are defined by

$$\Pi_{H}^{L} = ((\varepsilon_{H} \circ \mu_{H}) \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_{H} \circ \eta_{H}) \otimes H),
\Pi_{H}^{R} = (H \otimes (\varepsilon_{H} \circ \mu_{H})) \circ (c_{H,H} \otimes H) \circ (H \otimes (\delta_{H} \circ \eta_{H})),
\overline{\Pi}_{H}^{L} = (H \otimes (\varepsilon_{H} \circ \mu_{H})) \circ ((\delta_{H} \circ \eta_{H}) \otimes H),
\overline{\Pi}_{H}^{R} = ((\varepsilon_{H} \circ \mu_{H}) \otimes H) \circ (H \otimes (\delta_{H} \circ \eta_{H})).$$

These morphisms are idempotent and satisfy the identities

(1)
$$\Pi_{H}^{L} \circ \overline{\Pi}_{H}^{L} = \Pi_{H}^{L}, \quad \Pi_{H}^{L} \circ \overline{\Pi}_{H}^{R} = \overline{\Pi}_{H}^{R},$$

$$\Pi_{H}^{R} \circ \overline{\Pi}_{H}^{L} = \overline{\Pi}_{H}^{L}, \quad \Pi_{H}^{R} \circ \overline{\Pi}_{H}^{R} = \Pi_{H}^{R},$$

$$\overline{\Pi}_{H}^{L} \circ \Pi_{H}^{L} = \overline{\Pi}_{H}^{L}, \quad \overline{\Pi}_{H}^{L} \circ \Pi_{H}^{R} = \Pi_{H}^{R},$$

$$\overline{\Pi}_{H}^{R} \circ \Pi_{H}^{L} = \Pi_{H}^{L}, \quad \overline{\Pi}_{H}^{R} \circ \Pi_{H}^{R} = \overline{\Pi}_{H}^{R}.$$

If H_L denotes the image of the target morphism Π^L_H , and $p^L_H: H \to H_L$ and $i^L_H: H_L \to H$ are the morphisms such that

$$i_H^L \circ p_H^L = \Pi_H^L, \quad p_H^L \circ i_H^L = \mathrm{id}_{H_I},$$

then the triples

$$(H_L, \eta_{H_L} = p_H^L \circ \eta_H, \mu_{H_L} = p_H^L \circ \mu_H \circ (i_H^L \otimes i_H^L)),$$

$$(H_L, \varepsilon_{H_I} = \varepsilon_H \circ i_H^L, \delta_{H_I} = (p_H^L \otimes p_H^L) \circ \delta_H \circ i_H^L)$$

determine a monoid and a comonoid, respectively.

In the weak monoid setting, for the morphisms target and source, we have the following identities:

(3)
$$\Pi_H^L \circ \mu_H \circ (H \otimes \Pi_H^L) = \Pi_H^L \circ \mu_H,$$
$$\Pi_H^R \circ \mu_H \circ (\Pi_H^R \otimes H) = \Pi_H^R \circ \mu_H,$$

(4)
$$(H \otimes \Pi_H^L) \circ \delta_H \circ \Pi_H^L = \delta_H \circ \Pi_H^L,$$
$$(\Pi_H^R \otimes H) \circ \delta_H \circ \Pi_H^R = \delta_H \circ \Pi_H^R,$$

(5)
$$\mu_H \circ (H \otimes \Pi_H^L) = ((\varepsilon_H \circ \mu_H) \otimes H) \circ (H \otimes c_{H,H}) \circ (\delta_H \otimes H),$$

(6)
$$(H \otimes \Pi_H^L) \circ \delta_H = (\mu_H \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_H \circ \eta_H) \otimes H),$$

(7)
$$\mu_H \circ (H \otimes \overline{\Pi}_H^L) = (H \otimes (\varepsilon_H \circ \mu_H)) \circ (\delta_H \otimes H),$$

$$(8) (H \otimes \overline{\Pi}_{H}^{R}) \circ \delta_{H} = (\mu_{H} \otimes H) \circ (H \otimes (\delta_{H} \circ \eta_{H})),$$

which will be useful in what follows.

Moreover, if H is a weak Hopf monoid in C, then the antipode λ_H is unique, antimultiplicative, anticomultiplicative and leaves the unit and the counit invariant, i.e.,

(9)
$$\lambda_{H} \circ \mu_{H} = \mu_{H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ c_{H,H},$$

$$\delta_{H} \circ \lambda_{H} = c_{H,H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ \delta_{H},$$

$$\lambda_{H} \circ \eta_{H} = \eta_{H}, \quad \varepsilon_{H} \circ \lambda_{H} = \varepsilon_{H}.$$

Also, it is easy to show that for the convolution product the morphisms target and source satisfy the equalities

(11)
$$\Pi_{H}^{L} = \mathrm{id}_{H} * \lambda_{H}, \quad \Pi_{H}^{R} = \lambda_{H} * \mathrm{id}_{H}, \quad \Pi_{H}^{L} * \mathrm{id}_{H} = \mathrm{id}_{H} = \mathrm{id}_{H} * \Pi_{H}^{R},$$

 $\Pi_{H}^{R} * \lambda_{H} = \lambda_{H} = \lambda_{H} * \Pi_{H}^{L}, \quad \Pi_{H}^{L} * \Pi_{H}^{L} = \Pi_{H}^{L}, \quad \Pi_{H}^{R} * \Pi_{H}^{R} = \Pi_{H}^{R},$

and

$$\Pi_H^L = \lambda_H \circ \overline{\Pi}_H^L = \overline{\Pi}_H^R \circ \lambda_H, \quad \Pi_H^R = \overline{\Pi}_H^L \circ \lambda_H = \lambda_H \circ \overline{\Pi}_H^R.$$

Finally, by [2, Proposition 2.15] and the condition of symmetric category for C, we have the identities:

(13)
$$\mu_{H} \circ c_{H,H} \circ (\Pi_{H}^{L} \otimes \Pi_{H}^{R}) = \mu_{H} \circ (\Pi_{H}^{L} \otimes \Pi_{H}^{R}),$$

$$\mu_{H} \circ c_{H,H} \circ (\Pi_{H}^{R} \otimes \Pi_{H}^{L}) = \mu_{H} \circ (\Pi_{H}^{R} \otimes \Pi_{H}^{L}),$$

$$(\Pi_{H}^{L} \otimes \Pi_{H}^{R}) \circ c_{H,H} \circ \delta_{H} = (\Pi_{H}^{L} \otimes \Pi_{H}^{R}) \circ \delta_{H},$$

$$(\Pi_{H}^{R} \otimes \Pi_{H}^{L}) \circ c_{H,H} \circ \delta_{H} = (\Pi_{H}^{R} \otimes \Pi_{H}^{L}) \circ \delta_{H}.$$

Lemma 2.2. Let H be a weak Hopf monoid in C such that its antipode is an isomorphism. The following equalities hold:

(15)
$$\mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes \lambda_{H}) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$= \mu_{H} \circ (H \otimes (\Pi_{H}^{L} * (\lambda_{H}^{-2} \circ \Pi_{H}^{R}))),$$
(16)
$$(\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes \lambda_{H}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$= (H \otimes (\Pi_{H}^{L} * (\lambda_{H}^{-2} \circ \Pi_{H}^{R}))) \circ \delta_{H},$$

where $\lambda_H^{-2} = \lambda_H^{-1} \circ \lambda_H^{-1}$.

PROOF. Identity (15) follows from

$$\mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes \lambda_{H}) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$\stackrel{(3)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \lambda_{H})) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$\stackrel{(1)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \overline{\Pi}_{H}^{L} \circ \lambda_{H})) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$\stackrel{(3)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes (\overline{\Pi}_{H}^{L} \circ \lambda_{H})) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$\stackrel{(12)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ (H \otimes \Pi_{H}^{R}) \circ c_{H,H})) \circ (\delta_{H} \otimes H)$$

$$\stackrel{(*)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ c_{H,H})) \circ (((H \otimes \Pi_{H}^{R}) \circ \delta_{H}) \otimes H)$$

$$\stackrel{(12)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ c_{H,H})) \circ (((H \otimes (\lambda_{H} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \otimes H)$$

$$\stackrel{(*)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ \mu_{H} \circ c_{H,H})) \circ (\mu_{H} \otimes \lambda_{H} \otimes H)$$

$$\circ (H \otimes (\delta_{H} \circ \eta_{H}) \otimes H)$$

$$\stackrel{(*)}{=} \mu_{H} \circ (\mu_{H} \otimes (\Pi_{H}^{L} \circ \mu_{H})) \circ (H \otimes c_{H,H} \otimes \lambda_{H})$$

$$\circ (H \otimes H \otimes (((\lambda_{H}^{-1} \otimes \lambda_{H}^{-1}) \circ c_{H,H} \circ \delta_{H} \circ \eta_{H}))$$

$$\stackrel{(*)}{=} \mu_{H} \circ (\mu_{H} \otimes H)$$

$$\circ (H \otimes (c_{H} H \circ (((\Pi_{H}^{L} \circ \mu_{H}) \otimes \lambda_{H}^{-1}) \circ (H \otimes (\delta_{H} \circ \eta_{H}))))$$

$$\stackrel{(8)}{=} \mu_{H} \circ (H \otimes (\mu_{H} \circ c_{H,H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}))$$

$$\stackrel{(12)}{=} \mu_{H} \circ (H \otimes (\mu_{H} \circ c_{H,H} \circ (\Pi_{H}^{L} \otimes (\overline{\Pi}_{H}^{L} \circ \lambda_{H}^{-1})) \circ \delta_{H}))$$

$$\stackrel{(1)}{=} \mu_{H} \circ (H \otimes (\mu_{H} \circ c_{H,H} \circ (\Pi_{H}^{L} \otimes (\Pi_{H}^{R} \circ \overline{\Pi}_{H}^{L} \circ \lambda_{H}^{-1})) \circ \delta_{H}))$$

$$\stackrel{(13)}{=} \mu_{H} \circ (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\Pi_{H}^{R} \circ \overline{\Pi}_{H}^{L} \circ \lambda_{H}^{-1})) \circ \delta_{H}))$$

$$\stackrel{(1)}{=} \mu_{H} \circ (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\overline{\Pi}_{H}^{L} \circ \lambda_{H}^{-1})) \circ \delta_{H}))$$

$$\stackrel{(12)}{=} \mu_{H} \circ (H \otimes (\Pi_{H}^{L} \circ (\Pi_{H}^{L} \otimes (\overline{\Pi}_{H}^{R} \circ \Pi_{H}^{R}))),$$

where the three equations marked with (*) follow by naturality of c. Identity (16) follows from

$$(\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes \lambda_{H}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(4)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes (\lambda_{H} \circ \Pi_{H}^{L})) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes (\lambda_{H} \circ \overline{\Pi}_{H}^{R} \circ \Pi_{H}^{L})) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(12)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes (\Pi_{H}^{R} \circ \Pi_{H}^{L})) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(4)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes \Pi_{H}^{R}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(4)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes \Pi_{H}^{R}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(12)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes \Pi_{H}^{R}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (\mu_{H} \otimes H) \circ (H \otimes (c_{H,H} \circ (H \otimes (\Pi_{H}^{L} \circ (H \otimes \lambda_{H}) \circ \delta_{H} \circ \Pi_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(*)}{=} ((\mu_{H} \circ (H \otimes \overline{\Pi}_{H}^{L})) \otimes H) \circ (\delta_{H} \otimes (c_{H,H} \circ (H \otimes \lambda_{H}) \circ \delta_{H} \circ \overline{\Pi}_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(*)}{=} (H \otimes (\epsilon_{H} \circ \mu_{H} \circ c_{H,H} \circ (\lambda_{H}^{-1} \otimes \lambda_{H}^{-1})) \otimes H) \circ (\delta_{H} \otimes (c_{H,H} \circ (H \otimes \lambda_{H}) \circ \delta_{H} \circ \overline{\Pi}_{H}^{L})) \circ \delta_{H}$$

$$\stackrel{(*)}{=} (H \otimes ((H \otimes (\epsilon_{H} \circ \mu_{H})) \circ ((\delta_{H} \circ \Pi_{H}^{L}) \otimes \lambda_{H}^{-1}) \circ c_{H,H})) \circ (\delta_{H} \otimes H) \circ \delta_{H}$$

$$\stackrel{(*)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ c_{H,H} \circ \delta_{H})) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ c_{H,H} \circ \delta_{H})) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

$$\stackrel{(2)}{=} (H \otimes (\mu_{H} \circ (\Pi_{H}^{L} \otimes (\lambda_{H}^{-1} \circ \overline{\Pi}_{H}^{R})) \circ \delta_{H}) \circ \delta_{H}$$

where the two equations marked with (*) follow again by naturality of c.

Let *H* be a weak bimonoid in C. Then,

$$H^{\text{op}} = (H, \eta_H, \mu_H \circ c_{H,H}, \varepsilon_H, \delta_H), \quad H^{\text{cop}} = (H, \eta_H, \mu_H, \varepsilon_H, c_{H,H} \circ \delta_H)$$

are weak bimonoids in C. Therefore so is

$$(H^{\text{op}})^{\text{cop}} = (H, \eta_H, \mu_H \circ c_{H,H}, \varepsilon_H, c_{H,H} \circ \delta_H).$$

Note that

$$\Pi_{H^{\text{op}}}^{L} = \overline{\Pi}_{H}^{R}, \quad \Pi_{H^{\text{op}}}^{R} = \overline{\Pi}_{H}^{L},$$
$$\Pi_{H^{\text{cop}}}^{L} = \overline{\Pi}_{H}^{L}, \quad \Pi_{H^{\text{cop}}}^{R} = \overline{\Pi}_{H}^{R}.$$

If H is a weak Hopf monoid and the antipode λ_H is an isomorphism, H^{op} and H^{cop} are weak Hopf monoids in \mathcal{C} with antipode $\lambda_{H^{\text{op}}} = \lambda_{H^{\text{cop}}} = \lambda_H^{-1}$. Then, under these conditions, $(H^{\text{op}})^{\text{cop}}$ is a weak Hopf monoid with antipode $\lambda_{(H^{\text{op}})^{\text{cop}}} = \lambda_H$.

If H and B are weak bimonoids in C, so is the tensor product $H \otimes B$. In this case, the monoid-comonoid structure is the one of $H \otimes B$ and

$$\Pi^L_{H\otimes B}=\Pi^L_H\otimes\Pi^L_B,\quad \Pi^R_{H\otimes B}=\Pi^R_H\otimes\Pi^R_B.$$

Then, if H and B are weak Hopf monoids in C, so is the tensor product $H \otimes B$, with $\lambda_{H \otimes B} = \lambda_{H} \otimes \lambda_{B}$. Note that $(H \otimes B)_{L} = H_{L} \otimes B_{L}$.

3. Yetter-Drinfeld modules and Long dimodules

DEFINITION 3.1. Let H be a weak Hopf monoid in C. We say that a pair (M, φ_M) is a left H-module if M is an object in C and $\varphi_M : H \otimes M \to M$ is a morphism in C satisfying the following conditions:

(17)
$$\varphi_M \circ (\eta_H \otimes M) = \mathrm{id}_M, \quad \varphi_M \circ (H \otimes \varphi_M) = \varphi_M \circ (\mu_H \otimes M).$$

If (M, φ_M) and (N, φ_N) are left H-modules, a morphism $f: M \to N$ in C is a morphism of left H-modules if

(18)
$$\varphi_N \circ (H \otimes f) = f \circ \varphi_M$$

holds.

For two left H-modules (M, φ_M) and (N, φ_N) , the morphism $\varphi_{M \otimes N} : H \otimes M \otimes N \to M \otimes N$ is defined by

$$\varphi_{M\otimes N}=(\varphi_{M}\otimes\varphi_{N})\circ(H\otimes c_{H,M}\otimes N)\circ(\delta_{H}\otimes M\otimes N).$$

Then, $\varphi_{M \otimes N}$ satisfies the equality

$$\varphi_{M\otimes N}\circ (H\otimes \varphi_{M\otimes N})=\varphi_{M\otimes N}\circ (\mu_{H}\otimes M\otimes N)$$

and $\nabla_{M\otimes N} = \varphi_{M\otimes N} \circ (\eta_H \otimes M \otimes N) : M \otimes N \to M \otimes N$ is an idempotent morphism. Let $M \odot N$ be the image of $\nabla_{M\otimes N}$ and let $p_{M\otimes N} : M \otimes N \to M \odot N$, $i_{M\otimes N} : M \odot N \to M \otimes N$ be the morphisms such that

$$i_{M\otimes N}\circ p_{M\otimes N}=\nabla_{M\otimes N},\quad p_{M\otimes N}\circ i_{M\otimes N}=\mathrm{id}_{M\cap N}.$$

The object $M ext{ } ext{D} ext{ } N$ is a left H-module with action

$$\varphi_{M \square N} = p_{M \otimes N} \circ \varphi_{M \otimes N} \circ (H \otimes i_{M \otimes N}) : H \otimes M \square N \to M \square N$$

and the equalities

$$\varphi_{M\otimes N}\circ (H\otimes \nabla_{M\otimes N})=\varphi_{M\otimes N}=\nabla_{M\otimes N}\circ \varphi_{M\otimes N}$$

hold. Also, if (M, φ_M) , (N, φ_N) and (P, φ_P) are left H-modules, we have that

$$(M \otimes \nabla_{N \otimes P}) \circ (\nabla_{M \otimes N} \otimes P) = (\nabla_{M \otimes N} \otimes P) \circ (M \otimes \nabla_{N \otimes P}).$$

For two morphisms $f:(M,\varphi_M)\to (M',\varphi_{M'})$ and $g:(N,\varphi_N)\to (N',\varphi_{N'})$ of left H-modules,

$$f\boxdot g=p_{M'\otimes N'}\circ (f\otimes g)\circ i_{M\otimes N}:M\boxdot N\to M'\boxdot N'$$

is a morphism of left H-modules between $(M \boxdot N, \varphi_{M \boxdot N})$ and $(M' \boxdot N', \varphi_{M' \boxdot N'})$. Also, the following identity holds:

$$(f \otimes g) \circ \nabla_{M \otimes N} = \nabla_{M' \otimes N'} \circ (f \otimes g).$$

DEFINITION 3.2. Let H be a weak Hopf monoid in the category C. We say that a pair (M, ρ_M) is a left H-comodule in the category C if M is an object in C and $\rho_M: M \to H \otimes M$ is a morphism in C satisfying the following conditions:

$$(\varepsilon_H \otimes M) \circ \rho_M = \mathrm{id}_M, \quad (H \otimes \rho_M) \circ \rho_M = (\delta_H \otimes M) \circ \rho_M.$$

If (M, ρ_M) and (N, ρ_N) are left H-comodules, a morphism $f: M \to N$ in C is a morphism of left H-comodules if

$$\rho_N \circ f = (H \otimes f) \circ \rho_M$$

holds.

For two left H-comodules (M, ρ_M) and (N, ρ_N) the morphism $\rho_{M \otimes N} : M \otimes N \to H \otimes M \otimes N$ defined by $\rho_{M \otimes N} = (\mu_H \otimes M \otimes N) \circ (H \otimes c_{M,H} \otimes N) \circ (\rho_M \otimes \rho_N)$ satisfies the equality

$$(H \otimes \rho_{M \otimes N}) \circ \rho_{M \otimes N} = (\delta_H \otimes M \otimes N) \circ \rho_{M \otimes N}.$$

Then, as a consequence, $\nabla'_{M\otimes N}=(\varepsilon_H\otimes M\otimes N)\circ \rho_{M\otimes N}:M\otimes N\to M\otimes N$ is an idempotent morphism. Let $M\odot N$ be the image of $\nabla'_{M\otimes N}$ and let $p'_{M\otimes N}:M\otimes N\to M\odot N, i'_{M\otimes N}:M\odot N\to M\otimes N$ be the morphisms such that

$$i'_{M\otimes N}\circ p'_{M\otimes N}=\nabla'_{M\otimes N},\quad p'_{M\otimes N}\circ i'_{M\otimes N}=\mathrm{id}_{M\odot N}.$$

The object $M \odot N$ is a left H-comodule with coaction

$$\rho_{M \odot N} = (H \otimes p'_{M \otimes N}) \circ \rho_{M \otimes N} \circ i'_{M \otimes N} : M \odot N \to H \otimes (M \odot N)$$

and the equalities

$$(H \otimes \nabla'_{M \otimes N}) \circ \rho_{M \otimes N} = \rho_{M \otimes N} = \rho_{M \otimes N} \circ \nabla'_{M \otimes N}$$

hold. Also, if (M, ρ_M) , (N, ρ_N) and (P, ρ_P) are left H-comodules, we have that

$$(M \otimes \nabla'_{N \otimes P}) \circ (\nabla'_{M \otimes N} \otimes P) = (\nabla'_{M \otimes N} \otimes P) \circ (M \otimes \nabla'_{N \otimes P}).$$

For two morphisms of left *H*-comodules $f:(M,\rho_M)\to (M',\rho_{M'})$ and $g:(N,\rho_N)\to (N',\rho_{N'}),$

$$f \odot g = p'_{M' \otimes N'} \circ (f \otimes g) \circ i'_{M \otimes N} : M \odot N \to M' \odot N'$$

is a morphism of left H-comodules between $(M \odot N, \rho_{M \odot N})$ and $(M' \odot N', \rho_{M' \odot N'})$. Also, the following identity holds:

$$(f \otimes g) \circ \nabla'_{M \otimes N} = \nabla'_{M' \otimes N'} \circ (f \otimes g).$$

Following [8, 12], we recall the notion of a left-left Yetter–Drinfeld module in the weak Hopf monoid setting.

DEFINITION 3.3. Let H be a weak Hopf monoid in C. We shall denote by $_H^H$ YD the category of left-left Yetter–Drinfeld modules over H. The objects of $_H^H$ YD are triples $M = (M, \psi_M, \gamma_M)$ where (M, ψ_M) is a left H-module and (M, γ_M) is a left H-comodule satisfying the following conditions:

(b1)
$$(\mu_H \otimes M) \circ (H \otimes c_{M,H}) \circ ((\gamma_M \circ \psi_M) \otimes H) \circ (H \otimes c_{H,M}) \circ (\delta_H \otimes M)$$

= $(\mu_H \otimes \psi_M) \circ (H \otimes c_{H,H} \otimes M) \circ (\delta_H \otimes \gamma_M),$

(b2)
$$(\mu_H \otimes \psi_M) \circ (H \otimes c_{H,H} \otimes M) \circ ((\delta_H \circ \eta_H) \otimes \gamma_M) = \gamma_M.$$

A morphism in H_H YD between (M, ψ_M, γ_M) and (N, ψ_N, γ_N) is a morphism $f: M \to N$ in C such that (18) and (19) hold.

Let (M, ψ_M, γ_M) be a left-left Yetter–Drinfeld module. It is easy to show that the axiom (b2) is equivalent to

$$((\varepsilon_H \circ \mu_H) \otimes \psi_M) \circ (H \otimes c_{H,H} \otimes M) \circ (\delta_H \otimes \gamma_M) = \psi_M.$$

As a consequence of the previous identity we obtain that

(20)
$$\psi_M \circ (\Pi_H^L \otimes M) \circ \gamma_M = \mathrm{id}_M$$

holds and by [3, (37) of Remark 1.11] we have the equality

$$(21) \qquad (\Pi_H^R \otimes M) \circ \gamma_M = ((\Pi_H^R \circ \lambda_H) \otimes \psi_M) \circ ((c_{H,H} \circ \delta_H \circ \eta_H) \otimes M).$$

It is a well-known fact (see [8, Proposition 2.2]) that conditions (b1) and (b2) are equivalent to

(22)
$$\gamma_{M} \circ \psi_{M} = (\mu_{H} \otimes M) \circ (H \otimes c_{M,H})$$
$$\circ (((\mu_{H} \otimes \psi_{M}) \circ (H \otimes c_{H,H} \otimes M) \circ (\delta_{H} \otimes \gamma_{M})) \otimes \lambda_{H})$$
$$\circ (H \otimes c_{H,M}) \circ (\delta_{H} \otimes M).$$

Lemma 3.4. Let H be a weak Hopf monoid in C such that its antipode is an isomorphism. Let (M, ψ_M, γ_M) be a left-left Yetter-Drinfeld module. The following identity holds:

(23)
$$\psi_M \circ ((\lambda_H^{-2} \circ \Pi_H^R) \otimes M) \circ \gamma_M = \mathrm{id}_M.$$

PROOF. We have

$$\psi_{M} \circ ((\lambda_{H}^{-2} \circ \Pi_{H}^{R}) \otimes M) \circ \gamma_{M}$$

$$\stackrel{(21)}{=} \psi_{M} \circ ((\lambda_{H}^{-2} \circ \Pi_{H}^{R} \circ \lambda_{H}) \otimes \psi_{M}) \circ ((c_{H,H} \circ \delta_{H} \circ \eta_{H}) \otimes M)$$

$$\stackrel{(*)}{=} \psi_{M} \circ ((\mu_{H} \circ (\overline{\Pi}_{H}^{L} \otimes H) \circ c_{H,H} \circ \delta_{H} \circ \eta_{H}) \otimes M)$$

$$\stackrel{(**)}{=} \psi_{M} \circ (\eta_{H} \otimes M)$$

$$\stackrel{(17)}{=} \text{id}_{M}.$$

where (*) follows by (17), (12) and the naturality of c, and (**) follows by (11) for H^{cop} .

If the antipode of the weak Hopf monoid H is an isomorphism, the category H YD is an example of a non-strict braided monoidal category. In the following paragraphs we will make a brief summary of its braided monoidal structure.

Let (M, ψ_M, γ_M) and (N, ψ_N, γ_N) be objects in H_H YD. Then, for the morphisms $\nabla_{M \otimes N}$ and $\nabla'_{M \otimes N}$, defined in Definitions 3.1 and 3.2, by [2, Proposition 1.12 (iii)] we have that

$$\nabla_{M\otimes N} = \nabla'_{M\otimes N}$$
.

Then, the tensor product of (M, ψ_M, γ_M) and (N, ψ_N, γ_N) is defined as the image of the idempotent morphism $\nabla_{M \otimes N}$, denoted by $M \odot N$, with the following action and coaction:

$$\psi_{M \odot N} = p_{M \otimes N} \circ \psi_{M \otimes N} \circ (H \otimes i_{M \otimes N}),$$

$$\gamma_{M \odot N} = (H \otimes p_{M \otimes N}) \circ \gamma_{M \otimes N} \circ i_{M \otimes N}.$$

The base object in H_H YD is H_L , which is a left-left Yetter–Drinfeld module over H with (co)module structure

$$\psi_{H_L} = p_H^L \circ \mu_H \circ (H \otimes i_H^L), \quad \gamma_{H_L} = (H \otimes p_H^L) \circ \delta_H \circ i_H^L.$$

The unit constrains are defined by

$$\begin{split} & \mathfrak{l}_{M} = \psi_{M} \circ (i_{H}^{L} \otimes M) \circ i_{H_{L} \otimes M} : H_{L} \boxdot M \to M, \\ & \mathfrak{r}_{M} = \psi_{M} \circ c_{M,H} \circ (M \otimes (\overline{\Pi}_{H}^{L} \circ i_{H}^{L})) \circ i_{M \otimes H_{L}} : M \boxdot H_{L} \to M, \end{split}$$

and the associativity constrains $a_{M,N,P}:(M\boxdot N)\boxdot P\to M\boxdot (N\boxdot P)$ are defined by

$$\mathfrak{a}_{M,N,P} = p_{M \otimes (N \odot P)} \circ (M \otimes p_{N \otimes P}) \circ (i_{M \otimes N} \otimes P) \circ i_{(M \odot N) \otimes P},$$

where (P, ψ_P, γ_P) is a third object in the category of left-left Yetter–Drinfeld modules. If $f: M \to M'$ and $g: N \to N'$ are morphisms in H_H YD, then

$$f \boxdot g = p_{M' \boxdot N'} \circ (f \otimes g) \circ i_{M \otimes N} : M \boxdot N \to M' \boxdot N'$$

is a morphism in the same category and

$$(f'\boxdot g')\circ (f\boxdot g)=(f'\circ f)\boxdot (g'\circ g)$$

holds, where $f': M' \to M''$ and $g': N' \to N''$ are morphisms in H_H YD. Finally, the braiding is defined by

$$t_{M,N} = p_{N \otimes M} \circ \tau_{M,N} \circ i_{M \otimes N} : M \odot N \to N \odot M,$$

where

$$\tau_{M,N} = (\psi_N \otimes M) \circ (H \otimes c_{M,N}) \circ (\gamma_M \otimes N) : M \otimes N \to N \otimes M.$$

DEFINITION 3.5. Let H and B be weak Hopf monoids in C. A left-left H-B-Long dimodule (M, φ_M, ρ_M) is both a left H-module with action $\varphi_M : H \otimes M \to M$ and a left B-comodule with coaction $\rho_M : M \to B \otimes M$ satisfying the axiom

(24)
$$\rho_{M} \circ \varphi_{M} = (B \otimes \varphi_{M}) \circ (c_{H,B} \otimes M) \circ (H \otimes \rho_{M}).$$

A morphism between two left-left H-B-Long dimodules (M, φ_M, ρ_M) and (N, φ_N, ρ_N) is a morphism $f: M \to N$ of left H-modules and left B-comodules. Left-left H-B-Long dimodules and morphisms of left-left H-B-Long dimodules form a category, denoted as B_H Long.

In [5] we can find many examples of Long dimodules in the weak setting. One of the main results proved in [5] asserts that $_H^B$ Long is an example of a monoidal category (see [5, Theorem 1]). As in the Yetter–Drinfeld case, in the following paragraphs we will make a brief summary of its monoidal structure. The complete details can be found in [5, Lemmas 2–6, Propositions 1–3 and Theorem 1].

Let (M, φ_M, ρ_M) and (N, φ_N, ρ_N) be in B_H Long. The idempotent morphisms $\nabla_{M \otimes N}$ and $\nabla'_{M \otimes N}$, defined in Definitions 3.1 and 3.2, satisfy

$$\nabla'_{M\otimes N}\circ\nabla_{M\otimes N}=\nabla_{M\otimes N}\circ\nabla'_{M\otimes N}.$$

As a consequence, the morphism

$$\Omega_{M\otimes N}=\nabla'_{M\otimes N}\circ\nabla_{M\otimes N}$$

is idempotent and we have two morphisms $j_{M\otimes N}: M\times N\to M\otimes N$ and $q_{M\otimes N}: M\otimes N\to M\times N$ such that

$$q_{M\otimes N}\circ j_{M\otimes N}=\mathrm{id}_{M\times N},\quad j_{M\otimes N}\circ q_{M\otimes N}=\Omega_{M\otimes N},$$

where $M \times N$ is the image of $\Omega_{M \otimes N}$. Then, the tensor product of (M, φ_M, ρ_M) and (N, φ_N, ρ_N) is defined as the image of the idempotent morphism $\Omega_{M \otimes N}$. It belongs to B_H Long with H-module and B-comodule structures

$$\varphi_{M\times N} = q_{M\otimes N} \circ \varphi_{M\otimes N} \circ (H \otimes j_{M\otimes N}),$$

$$\rho_{M\times N} = (B \otimes q_{M\otimes N}) \circ \rho_{M\otimes N} \circ j_{M\otimes N},$$

respectively.

Moreover, if

$$f:(M,\varphi_M,\rho_M)\to (M',\varphi_{M'},\rho_{M'}), \quad g:(N,\varphi_N,\rho_N)\to (N',\varphi_{N'},\rho_{N'})$$

are morphisms in $_{H}^{B}$ Long, then

$$f \times g = q_{M' \times N'} \circ (f \otimes g) \circ j_{M \times N} : M \times N \to M' \times N'$$

is a morphism in B_H Long between $(M \times N, \varphi_{M \times N}, \rho_{M \times N})$ and $(M' \times N', \varphi_{M' \times N'}, \rho_{M' \times N'})$.

If (M, φ_M, ρ_M) , (N, φ_N, ρ_N) and (P, φ_P, ρ_P) are in B_H Long, the associativity constraint

$$a_{M,N,P}:(M\times N)\times P\to M\times (N\times P)$$

is defined by

$$a_{M,N,P} = q_{M \otimes (N \times P)} \circ (M \otimes q_{N \otimes P}) \circ (j_{M \otimes N} \otimes P) \circ j_{(M \times N) \otimes P}$$

and the base object is $H_L \otimes B_L$, where the action and the coaction are defined by

$$\varphi_{H_L \otimes B_L} = (p_H^L \circ \mu_H \circ (H \otimes i_H^L)) \otimes B_L,$$

$$\rho_{H_L \otimes B_L} = (c_{H_L, B} \otimes p_B^L) \circ (H_L \otimes (\delta_B \circ i_B^L)).$$

Finally, the unit constraints are $l_M: (H_L \otimes B_L) \times M \to M$ and $r_M: M \times (H_L \otimes B_L) \to M$, where

$$\begin{split} l_{M} &= ((\varepsilon_{B} \circ \mu_{B}) \otimes M) \circ (B \otimes (\rho_{M} \circ \varphi_{M})) \\ &\circ ((c_{H,B} \circ (i_{H}^{L} \otimes i_{B}^{L})) \otimes M) \circ j_{(H_{L} \otimes B_{L}) \otimes M}, \\ r_{M} &= ((\varphi_{M} \circ c_{M,H}) \otimes (\varepsilon_{B} \circ \mu_{B})) \circ (M \otimes c_{B,H} \otimes B) \\ &\circ ((c_{B,M} \circ \rho_{M}) \otimes (\overline{\Pi}_{H}^{L} \circ i_{H}^{L}) \otimes i_{B}^{L}) \circ j_{M \otimes (H_{L} \otimes B_{L})}. \end{split}$$

THEOREM 3.6. Let H and B be weak Hopf algebras such that their antipodes are isomorphisms. There exists a functor

$$F: {}^{H \otimes B}_{H \otimes B} YD \rightarrow {}^{B}_{H} Long$$

defined on objects by

$$\mathsf{F}((M,\psi_M,\gamma_M))=(M,\chi_M=\psi_M\circ(H\otimes\eta_B\otimes M),\omega_M=(\varepsilon_H\otimes B\otimes M)\circ\gamma_M)$$
 and by the identity on morphisms.

PROOF. Let (M, ψ_M, γ_M) be in ${}^{H \otimes B}_{H \otimes B}$ YD. Then, using that (M, ψ_M) is a left $H \otimes B$ -module, the unit properties and the naturality of c, we obtain that (M, χ_M) is a left H-module. Similarly, using that (M, γ_M) is a left $H \otimes B$ -comodule, the counit properties and the naturality of c, we obtain that (M, ω_M) is a left B-comodule. The proof for equality (24) is the following:

```
\omega_M \circ \chi_M
 \stackrel{\text{(a)}}{=} (((\varepsilon_H \otimes B) \circ \mu_{H \otimes B}) \otimes M) \circ (H \otimes B \otimes ((H \otimes c_{MB}) \circ (c_{MB} \otimes B)))
      \circ (((\mu_{H \otimes B} \otimes \psi_{M}) \circ (H \otimes B \otimes c_{H \otimes B.H \otimes B} \otimes M) \circ (\delta_{H \otimes R} \otimes \gamma_{M})) \otimes \lambda_{H} \otimes \lambda_{R})
      \circ (H \otimes B \otimes ((c_{H,M} \otimes B) \circ (H \otimes c_{B,M}))) \circ ((\delta_{H \otimes B} \circ (H \otimes \eta_B)) \otimes M)
 \stackrel{\text{(b)}}{=} (B \otimes \psi_M) \circ (c_{H,B} \otimes B \otimes M) \circ ((((\varepsilon_H \circ \mu_H) \otimes H) \circ (H \otimes c_{H,H})))
      \circ (\delta_H \otimes H)) \otimes ((\mu_R \otimes B) \circ (B \otimes c_{R,R}) \circ (\delta_R \otimes (\mu_R \circ (B \otimes \lambda_R) \circ c_{R,R}))
      \circ (\delta_B \otimes B)) \otimes M) \circ (H \otimes (((\mu_H \circ (H \otimes \lambda_H) \circ c_{H,H}) \otimes B)))
      \circ (H \otimes c_{B,H})) \otimes B \otimes M) \circ (\delta_H \otimes \eta_B \otimes \gamma_M)
 \stackrel{(c)}{=} (B \otimes \psi_M) \circ (c_{H,B} \otimes B \otimes M) \circ ((\mu_H \circ (H \otimes (\Pi_H^L \circ \mu_H \circ (H \otimes \lambda_H) \circ c_{H,H})))
      \otimes ((\mu_B \otimes B) \circ (B \otimes (c_{B,B} \circ (B \otimes \lambda_B) \circ \delta_B)) \circ (\mu_B \otimes B) \circ (B \otimes c_{B,B})
      \circ ((\delta_B \circ \eta_B) \otimes B)) \otimes M) \circ (\delta_H \otimes \gamma_M)
 \stackrel{\text{(d)}}{=} (B \otimes \psi_M) \circ (c_{H,B} \otimes B \otimes M) \circ ((\mu_H \circ (H \otimes (\Pi_H^L \circ \mu_H \circ (H \otimes \lambda_H) \circ c_{H,H})))
      \otimes ((\mu_B \otimes B) \circ (B \otimes (c_{B,B} \circ (B \otimes \lambda_B) \circ \delta_B)) \circ (B \otimes \Pi_B^L) \circ \delta_B) \otimes M)
      \circ (\delta_H \otimes \gamma_M)
 \stackrel{\text{(e)}}{=} (B \otimes \psi_M) \circ (c_{H,R} \otimes B \otimes M) \circ ((\mu_H \circ (H \otimes (\Pi_H^L * (\lambda_H^{-2} \circ \Pi_H^R)))))
      \otimes ((B \otimes (\Pi_R^L * (\lambda_R^{-2} \circ \Pi_R^R))) \circ \delta_R) \otimes M) \circ (H \otimes \gamma_M)
 \stackrel{\text{(f)}}{=} (B \otimes (\psi_M \circ (\mu_{H \otimes R} \otimes M))) \circ (((c_{H R} \otimes \Pi_R^L) \circ ((\mu_H \circ (H \otimes \Pi_H^L)) \otimes \delta_R)))
      \otimes ((\lambda_H^{-2} \circ \Pi_H^R) \otimes (\lambda_R^{-2} \circ \Pi_R^R) \otimes M)) \circ (H \otimes ((\delta_{H \otimes R} \otimes M) \circ \gamma_M))
 \stackrel{(g)}{=} (B \otimes \psi_M) \circ (((c_{H,B} \otimes \Pi_B^L) \circ ((\mu_H \circ (H \otimes \Pi_H^L)) \otimes \delta_B))
      \otimes (\psi_M \circ ((\lambda_H^{-2} \circ \Pi_H^R) \otimes (\lambda_R^{-2} \circ \Pi_R^R) \otimes M) \circ \gamma_M)) \circ (H \otimes \gamma_M)
 \stackrel{\text{(h)}}{=} (B \otimes \psi_M) \circ (((c_{H,B} \otimes \Pi_B^L) \circ ((\mu_H \circ (H \otimes \Pi_H^L)) \otimes \delta_B)) \otimes M) \circ (H \otimes \gamma_M)
 \stackrel{\text{(i)}}{=} (B \otimes (\psi_M \circ ((\mu_{H \otimes B} \circ (H \otimes \eta_B \otimes H \otimes B)) \otimes M))) \circ (c_{H,B} \otimes \Pi_H^L \otimes \Pi_R^L \otimes M)
      \circ (H \otimes ((((\varepsilon_H \otimes B \otimes H \otimes B) \circ \delta_{H \otimes R}) \otimes M) \circ \gamma_M))
 \stackrel{(g)}{=} (B \otimes \gamma_M) \circ (c_{H,R} \otimes (\psi_M \circ (\Pi_H^L \otimes \Pi_R^L \otimes M) \circ \gamma_M)) \circ (H \otimes \omega_M)
 \stackrel{(j)}{=} (B \otimes \gamma_M) \circ (c_{H B} \otimes M) \circ (H \otimes \omega_M).
```

where (a) follows by (22) for $H \otimes B$; (b) by naturality of c and the associativity of μ_H and μ_B ; (c) by the coassociativity of δ_B , the naturality of c and (5); (d) by naturality of c and (6); (e) by (15) for H and (16) for B; (f) by naturality of c and the associativity of μ_H ; (g) by the condition of left $H \otimes B$ (co)module for M; (h) by (23) for $H \otimes B$; (i) by naturality of c and the properties of η_B and ε_H ; (j) by (20) for $H \otimes B$.

Therefore (M, χ_M, ω_M) is an object in $_H^B$ Long. Finally, if f is a morphism in $_{H \otimes B}^{H \otimes B}$ YD between the objects (M, ψ_M, γ_M) and (N, ψ_N, γ_N) , it is immediate to obtain that f is a morphism in B_H Long between the objects (M, χ_M, ω_M) and (N, χ_N, ω_N) . Therefore, F is a functor between the categories $_{H \otimes B}^{H \otimes B}$ YD and $_{H}^{B}$ Long.

4. The retraction in the (co)quasitriangular case

In [5, Theorem 2] we proved that, if H is a quasitriangular weak Hopf monoid and B is a coquasitriangular weak Hopf monoid, there exists a functor

$$L: {}^B_H \mathsf{Long} \to {}^{H \otimes B}_{H \otimes B} \mathsf{YD}$$

injective on objects and, consequently, $_{H}^{B}$ Long can be identified with a subcategory of $H \otimes B \times B$ YD. In this section, we will show that in this context the functor F, introduced at the end of the previous section, is a retraction of L. We will begin with a brief review of the fundamental properties of weak Hopf (co)quasitriangular monoids (see [4,5] for the complete details).

The following definition is the monoidal version of the definition of quasitriangular weak Hopf monoid introduced by Nikshych, Turaev and Vainerman in [13].

Definition 4.1. Let H be a weak Hopf monoid. Let Ω_H and Ω_H' be the idempotent morphisms defined by $\Omega_H = \Omega_H^2 \circ \Omega_H^1$ and $\Omega_H' = \Omega_H^4 \circ \Omega_H^3$ where Ω_H^i are the idempotent morphisms defined by

$$\Omega_{H}^{1} = \mu_{H \otimes H} \circ ((c_{H,H} \circ \delta_{H} \circ \eta_{H}) \otimes H \otimes H) : H \otimes H \to H \otimes H,
\Omega_{H}^{2} = \mu_{H \otimes H} \circ (H \otimes H \otimes (\delta_{H} \circ \eta_{H})) : H \otimes H \to H \otimes H,
\Omega_{H}^{3} = \mu_{H \otimes H} \circ (H \otimes H \otimes (c_{H,H} \circ \delta_{H} \circ \eta_{H})) : H \otimes H \to H \otimes H,
\Omega_{H}^{4} = \mu_{H \otimes H} \circ ((\delta_{H} \circ \eta_{H}) \otimes H \otimes H) : H \otimes H \to H \otimes H.$$

We will say that H is a quasitriangular weak Hopf monoid if there exists a morphism $\sigma: K \to H \otimes H$ in C satisfying the following conditions:

(c1)
$$\Omega_H \circ \sigma = \sigma$$
,

(c2)
$$(\delta_H \otimes H) \circ \sigma = (H \otimes \mu_H) \circ (H \otimes c_{H,H} \otimes H) \circ (\sigma \otimes \sigma),$$

(c3)
$$(H \otimes \delta_H) \circ \sigma = (\mu_H \otimes c_{H,H}) \circ (H \otimes c_{H,H} \otimes H) \circ (\sigma \otimes \sigma),$$

(c4)
$$\mu_{H\otimes H} \circ (\sigma \otimes \delta_H) = \mu_{H\otimes H} \circ ((c_{H,H} \circ \delta_H) \otimes \sigma).$$

(c5) There exists a morphism $\overline{\sigma}: K \to H \otimes H$ such that

(c5.1)
$$\Omega'_{H} \circ \overline{\sigma} = \overline{\sigma},$$

(c5.2)
$$\sigma * \overline{\sigma} = c_{H,H} \circ \delta_H \circ \eta_H$$
,

(c5.3)
$$\overline{\sigma} * \sigma = \delta_H \circ \eta_H$$
.

We will say that a quasitriangular weak Hopf monoid H is triangular if moreover $\overline{\sigma} = c_{H,H} \circ \sigma$.

For any quasitriangular weak Hopf monoid the morphism $\overline{\sigma}$ is unique and by [4, Lemma 3.5] and [5, Lemma 7] the following equalities hold:

(25)
$$\sigma * \overline{\sigma} * \sigma = \sigma, \quad \overline{\sigma} * \sigma * \overline{\sigma} = \overline{\sigma}$$
$$(\varepsilon_H \otimes H) \circ \sigma = (H \otimes \varepsilon_H) \circ \sigma = \eta_H.$$

Definition 4.2. Let B be a weak Hopf monoid. Let Γ_B and Γ_B' be the idempotent morphisms defined by $\Gamma_B = \Gamma_B^2 \circ \Gamma_B^1$ and $\Gamma_B' = \Gamma_B^4 \circ \Gamma_B^3$, where Γ_B^i are the idempotent morphisms

$$\Gamma_{B}^{1} = ((\varepsilon_{B} \circ \mu_{B} \circ c_{B,B}) \otimes B \otimes B) \circ \delta_{B \otimes B} : B \otimes B \to B \otimes B,$$

$$\Gamma_{B}^{2} = (B \otimes B \otimes (\varepsilon_{B} \circ \mu_{B})) \circ \delta_{B \otimes B} : B \otimes B \to B \otimes B,$$

$$\Gamma_{B}^{3} = (B \otimes B \otimes (\varepsilon_{B} \circ \mu_{B})) \circ \delta_{B \otimes B} : B \otimes B \to B \otimes B,$$

$$\Gamma_{B}^{4} = ((\varepsilon_{B} \circ \mu_{B}) \otimes B \otimes B) \circ \delta_{B \otimes B} : B \otimes B \to B \otimes B.$$

We will say that B is a coquasitriangular weak Hopf monoid if there exists a morphism $\omega: B \otimes B \to K$ in C satisfying the following conditions:

(d1)
$$\omega \circ \Gamma_R = \omega$$
,

$$(d2) \qquad \omega \circ (\mu_B \otimes B) = (\omega \otimes \omega) \circ (B \otimes c_{B,B} \otimes B) \circ (B \otimes B \otimes \delta_B),$$

$$(d3) \qquad \omega \circ (B \otimes \mu_B) = (\omega \otimes \omega) \circ (B \otimes c_{B,B} \otimes B) \circ (\delta_B \otimes c_{B,B}),$$

(d4)
$$(\omega \otimes \mu_B) \circ \delta_{B \otimes B} = ((\mu_B \circ c_{B,B}) \otimes \omega) \circ \delta_{B \otimes B}.$$

(d5) There exists a morphism $\overline{\omega}: B \otimes B \to \text{such that}$

(d5.1)
$$\overline{\omega} \circ \Gamma_B' = \overline{\omega}$$
,

(d5.2)
$$\omega * \overline{\omega} = \varepsilon_B \circ \mu_B \circ c_{B,B}$$
,

(d5.3)
$$\overline{\omega} * \omega = \varepsilon_B \circ \mu_B$$
.

We will say that a coquasitriangular weak Hopf monoid B is cotriangular if moreover $\overline{\omega} = \omega \circ c_{B,B}$.

For any coquasitriangular weak Hopf monoid B, we obtain that $\overline{\omega}$ is unique and the following equalities hold (see [5, Lemma 8]):

(26)
$$\omega * \overline{\omega} * \omega = \omega, \quad \overline{\omega} * \omega * \overline{\omega} = \overline{\omega},$$
$$\omega \circ (\eta_B \otimes B) = \omega \circ (B \otimes \eta_B) = \varepsilon_B.$$

EXAMPLE 4.3. There are many interesting examples in the literature of quasitriangular and coquasitriangular weak Hopf monoids. Let $G = (G_0, G_1)$ be a finite groupoid such that its set of arrows G_1 is finite and let R be a commutative ring. Then, the groupoid algebra of G, denoted by R[G], is an example of triangular weak Hopf monoid in the category R-Mod. Since G_1 is finite, R[G] is free of a finite rank as an R-module. Hence R[G] is finite as object in the category R-Mod and $R[G]^*$ is an example of a cotriangular weak Hopf monoid in R-Mod.

On the other hand, in [7] Andruskiewitsch and Natale proved that it is possible to construct a weak Hopf monoid $\mathbb{K}(G, H)$ in the symmetric monoidal category of vector spaces over a field \mathbb{K} by working with a matched pair of finite groupoids (G, H). Moreover, in [1] Aguiar and Andruskiewitsch proved the following result: A matched pair of rotations gives rise to a quasitriangular structure for the associated weak Hopf monoid $\mathbb{K}(G, H)$. Also, by [1, Theorem 5.10] we know that there is an isomorphism of quasitriangular weak Hopf monoids between the Drinfeld double of $\mathbb{K}(G, H)$ and the weak Hopf monoid of a suitable matched pair of groupoids.

Finally, in [13], for a weak Hopf monoid H in the symmetric monoidal category of vector spaces over an algebraically closed field, Nikshych, Turaev and Vainerman defined the Drinfeld double D(H) of H and proved that D(H) is a quasitriangular weak Hopf monoid (see [13, Proposition 6.2]).

The main result in [5] asserts the following: Let H be a quasitriangular weak Hopf monoid with morphism $\sigma: K \to H \otimes H$ and let B be a coquasitriangular weak Hopf monoid with morphism $\omega: B \otimes B \to K$. There exists a functor

$$L: {}^B_H \mathsf{Long} \to {}^{H \otimes B}_{H \otimes B} \mathsf{YD}$$

defined on objects by

$$L((M, \varphi_M, \rho_M)) = (M, \phi_M, \varrho_M),$$

where

$$\phi_M = \varphi_M \circ (H \otimes (\omega \circ c_{B,B}) \otimes M) \circ (H \otimes B \otimes \rho_M),$$

$$\rho_M = (H \otimes (\rho_M \circ \varphi_M)) \circ ((c_{H,H} \circ \sigma) \otimes M),$$

and by the identity on morphisms. Moreover, the functor L is injective on objects and, consequently, $_H^B Long$ can be identified with a subcategory of $_{H \otimes B}^{H \otimes B} YD$. Moreover, by

[5, Lemmas 10–12] we can conclude that the category $_H^B$ Long is a braided monoidal subcategory of $_{H\otimes B}^{H\otimes B}$ YD if the antipodes of H and B are isomorphisms.

Theorem 4.4. Let H be a quasitriangular weak Hopf monoid with morphism $\sigma: K \to H \otimes H$ and let B be a coquasitriangular weak Hopf monoid with morphism $\omega: B \otimes B \to K$. Then the functor F introduced in Theorem 3.6 is a retraction of the functor F.

PROOF. Obviously for morphisms there is nothing to prove. For objects we have the following: Let (M, φ_M, ρ_M) be an object in B_H Long. Then

$$(\mathsf{F} \circ \mathsf{L})((M, \varphi_M, \rho_M)) = (M, \varphi_M, \rho_M)$$

because

$$F(L((M, \varphi_M, \rho_M))) = F((M, \varphi_M, \varrho_M)) = (M, \chi_M, \omega_M),$$

where, by (26) and (25), we have that

$$\chi_{M} = \phi_{M} \circ (H \otimes \eta_{B} \otimes M) = \varphi_{M} \circ (H \otimes (\omega \circ c_{B,B}) \otimes M) \circ (H \otimes \eta_{B} \otimes \rho_{M})$$
$$= \varphi_{M} \circ (H \otimes ((\varepsilon_{B} \otimes M) \circ \rho_{M})) = \varphi_{M}$$

and

$$\omega_{M} = (\varepsilon_{H} \otimes B \otimes M) \circ \varrho_{M} = (\varepsilon_{H} \otimes (\rho_{M} \circ \varphi_{M})) \circ ((c_{H,H} \circ \sigma) \otimes M)$$
$$= \rho_{M} \circ \varphi_{M} \circ (\eta_{H} \otimes M) = \rho_{M}.$$

Funding – The authors were supported by Ministerio de Ciencia e Innovación of Spain. Agencia Estatal de Investigación. Unión Europea – Fondo Europeo de Desarrollo Regional (FEDER). Grant PID2020-115155GB-I00: Homología, homotopía e invariantes categóricos en grupos y álgebras no asociativas.

References

- [1] M. AGUIAR N. ANDRUSKIEWITSCH, Representations of matched pairs of groupoids and applications to weak Hopf algebras. In *Algebraic structures and their representations*, pp. 127–173, Contemp. Math. 376, American Mathematical Society, Providence, RI, 2005. Zbl 1100.16032 MR 2147019
- [2] J. N. Alonso Álvarez J. M. Fernández Vilaboa R. González Rodríguez, Weak braided Hopf algebras. *Indiana Univ. Math. J.* 57 (2008), no. 5, 2423–2458. Zbl 1165.16021 MR 2463974

- [3] J. N. Alonso Álvarez J. M. Fernández Vilaboa R. González Rodríguez, Weak Hopf algebras and weak Yang-Baxter operators. J. Algebra 320 (2008), no. 5, 2101–2143. Zbl 1163.16024 MR 2437645
- [4] J. N. Alonso Álvarez J. M. Fernández Vilaboa R. González Rodríguez, Weak Yang-Baxter operators and quasitriangular weak Hopf algebras. *Arab. J. Sci. Eng. Sect. C Theme Issues* **33** (2008), no. 2, 27–40. Zbl 1186,16019 MR 2500026
- [5] J. N. Alonso Álvarez J. M. Fernández Vilaboa R. González Rodríguez, Long dimodules and quasitriangular weak Hopf monoids. *Mathematics* 9 (2021), no. 4, article no. 424.
- [6] J. N. Alonso Álvarez J. M. Fernández Vilaboa R. González Rodríguez C. Soneira Calvo, Projections and Yetter–Drinfel'd modules over Hopf (co)quasigroups. J. Algebra 443 (2015), 153–199. Zbl 1328.18008 MR 3400400
- [7] N. Andruskiewitsch S. Natale, Double categories and quantum groupoids. *Publ. Mat. Urug.* 10 (2005), 11–51. Zbl 1092.16021 MR 2147687
- [8] S. CAENEPEEL D. WANG Y. YIN, Yetter–Drinfeld modules over weak bialgebras. *Ann. Univ. Ferrara Sez. VII (N.S.)* **51** (2005), 69–98. Zbl 1132.16031 MR 2294760
- [9] C. KASSEL, *Quantum groups*. Grad. Texts in Math. 155, Springer, New York, 1995.Zbl 0808.17003 MR 1321145
- [10] F. W. Long, The Brauer group of dimodule algebras. J. Algebra 30 (1974), 559–601.
 Zbl 0282.16007 MR 357473
- [11] S. Majid, Doubles of quasitriangular Hopf algebras. Comm. Algebra 19 (1991), no. 11, 3061–3073. Zbl 0767.16014 MR 1132774
- [12] A. Nenciu, The center construction for weak Hopf algebras. Tsukuba J. Math. 26 (2002), no. 1, 189–204. Zbl 1029.16023 MR 1915985
- [13] D. Nikshych V. Turaev L. Vainerman, Invariants of knots and 3-manifolds from quantum groupoids. *Topology Appl.* 127 (2003), no. 1-2, 91–123. Zbl 1021.16026 MR 1953322
- [14] D. E. Radford, The structure of Hopf algebras with a projection. J. Algebra 92 (1985), no. 2, 322–347. Zbl 0549.16003 MR 778452
- [15] S. Wang N. Ding, New braided monoidal categories over monoidal Hom-Hopf algebras. Collog. Math. 146 (2017), no. 1, 77–97. Zbl 1361.16024 MR 3570203
- [16] D. N. Yetter, Quantum groups and representations of monoidal categories. *Math. Proc. Cambridge Philos. Soc.* **108** (1990), no. 2, 261–290. Zbl 0712.17014 MR 1074714
- [17] T. Zhang S. Wang D. Wang, A new approach to braided monoidal categories. *J. Math. Phys.* **60** (2019), no. 1, article no. 013510. Zbl 1441.18023 MR 3902694

Manoscritto pervenuto in redazione il 12 maggio 2021.