
L’Enseignement Mathématique (2) 55 (2009), 33–75

ON THE QUANTIZATION OF CONJUGACY CLASSES

by Eckhard MEINRENKEN

ABSTRACT. Let G be a compact, simple, simply connected Lie group. A theorem
of Freed-Hopkins-Teleman identifies the level k � 0 fusion ring Rk(G) of G with
the twisted equivariant K -homology at level k + h_ , where h_ is the dual Coxeter
number of G . In this paper, we will review this result using the language of Dixmier-
Douady bundles. We show that the additive generators of the group Rk(G) are obtained
as K -homology push-forwards of the fundamental classes of pre-quantized conjugacy
classes in G .

1. INTRODUCTION

A classical result of Dixmier-Douady [10] states that the integral degree
three cohomology group H3(X) of a space X classifies bundles of C� -algebrasA ! X , with typical fiber the compact operators on a Hilbert space. For any
such Dixmier-Douady bundle A ! X , one defines the twisted K -homology
and K -cohomology groups of X as the K -groups of the C� -algebra of sections
of A , vanishing at infinity :

Kq(X;A) := Kq(Γ0(X;A)) ; Kq(X;A) := Kq(Γ0(X;A)) :
If a group G acts by automorphisms of A , one has definitions of G -equivariant
K -groups.

The twisted K -groups have attracted a lot of interest in recent years, mainly
due to their applications in string theory. For the case of torsion twistings,
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34 E. MEINRENKEN

they were pioneered by Donovan-Karoubi [11] in 1963, while the general case
was developed by Rosenberg [36] in 1989. Rosenberg also gave an alternative
characterization of K0(X;A) as homotopy classes of sections of a bundle of
Fredholm operators ; this viewpoint was further explored by Atiyah-Segal [4]
(see [6, 43] for alternative approaches).

One of the most natural examples of an integral degree three cohomology
class comes from Lie theory. Let G be a compact, simple, simply connected
Lie group, acting on itself by conjugation. The generator of H3

G(G) = Z is
realized by a G -Dixmier-Douady bundle A ! G . Let h_ be the dual Coxeter
number of G , and k � 0 a non-negative integer (the level). A beautiful result of
Freed-Hopkins-Teleman [13, 14, 15, 16, 17] asserts that the twisted equivariant
K -homology at the shifted level k+h_ coincides with the level k fusion ring
(Verlinde algebra) of G :

(1) KG
0 (G;Ak+h_) = Rk(G) :

Here Rk(G) may be defined as the ring of positive energy level k representa-
tions of the loop group LG , or equivalently as the quotient Rk(G) = R(G)=Ik(G)
of the usual representation ring by the level k fusion ideal. The quotient map
R(G) ! Rk(G) is realized on the K -homology side as push-forward under
inclusion feg ,! G , while the product on Rk(G) is given by push-forward
under group multiplication.

As a Z -module, the fusion ring Rk(G) is freely generated by the set Λ�
k

of level k weights of G . In this paper the isomorphism Rk(G) = Z[Λ�
k ] is

realized as follows. Given � 2 Λ�
k � t� , (where t is the Lie algebra of a

maximal torus), let C be the conjugacy class of the element exp(�=k) 2 G ,
where the basic inner product is used to identify t� �= t . We will show
that there is a canonical stable isomorphism between the restriction Ak+h_ jC
and the Clifford algebra bundle Cl(TC) . This then defines a push-forward
map in twisted K -homology, and the image of the K -homology fundamental
class [C] 2 KG

0 (C;Cl(TC)) under the push-forward is exactly the generator
of Rk(G) labeled by � . This is parallel to the fact that the generators of
R(G) = Z[Λ�+] are obtained by geometric quantization of the coadjoint orbits
through dominant weights. In fact, as shown in [15] the generators of Rk(G)
can also be obtained by geometric quantization of coadjoint orbits of the loop
group of G . Hence, our modest observation is that this can also be carried
out in finite-dimensional terms. In a forthcoming paper with A. Alekseev, we
will discuss more generally the quantization of group-valued moment maps
[1] along similar lines.
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A second theme in this paper is the construction of a canonical resolution
of Rk(G) in the category of R(G) -modules,

(2) 0 �! Cl
��! Cl�1

��! � � � ��! C0
��! Rk(G) �! 0 ;

where l = rank(G) . In more detail, let f0; : : : ; lg label the vertices of the
extended Dynkin diagram of G . For each non-empty subset I � f0; : : : ; lg ,
let GI � G be the maximal rank subgroup whose Dynkin diagram is obtained
by deleting the vertices labeled by I . These groups have canonical central
extensions 1 ! U(1) ! bGI ! GI ! 1 (described below). Let R( bGI)k denote
the Grothendieck group of all bGI -representations for which the central circle
acts with weight k . Define

(3) Cp = LjIj=p+1
R( bGI)k :

The differentials � in (2) are given by holomorphic induction maps relative
to the inclusions bGI ,! bGJ for J � I . As we will explain, the chain complex
(C•; �) arises as the E1 -term of a spectral sequence computing KG

• (G;Ak+h_) ,
and the exactness of (2) implies that the spectral sequence collapses at the
E2 -term. Since Rk(G) is free Abelian, there are no extension problems, and
one recovers the equality KG

0 (G;Ak+h_) = Rk(G) as R(G) -modules, and hence
also as rings.

This article does not make great claims of originality. In particular,
I learned that a very similar computation of the twisted equivariant K -groups
of a Lie group had appeared in the article Thom prospectra for loopgroup
representations by Kitchloo-Morava [25]. The argument itself may be viewed
as a natural generalization of the Mayer-Vietoris calculation for G = SU(2) ,
as explained by Dan Freed in [13]. Independently, the chain complex had
been obtained by Christopher Douglas (unpublished), who used it to obtain
information about the algebraic structure of the fusion ring Rk(G) .

ACKNOWLEDGEMENTS. I would like to thank Nigel Higson, John Roe and
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Nitu Kitchloo for his patient explanations of [25]. I also thank Christopher
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2. REVIEW OF TWISTED EQUIVARIANT K -HOMOLOGY

Throughout this paper, all Hilbert spaces H will be taken to be separable,
but not necessarily infinite-dimensional. All (topological) spaces X will be
assumed to allow the structure of a countable CW-complex (respectively
G -CW-complex, in the equivariant case).

2.1 DIXMIER-DOUADY BUNDLES

[10, 35, 36] For any Hilbert space H , we denote by U(H) the unitary
group, with the strong operator topology. Let K(H) be the C� -algebra of
compact operators, that is, the norm closure of the finite rank operators. The
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ON THE QUANTIZATION OF CONJUGACY CLASSES 37

conjugation action of the unitary group on K(H) descends to the projective
unitary group, and provides an isomorphism, Aut(K(H)) = PU(H) . A Dixmier-
Douady bundle A ! X is a locally trivial bundle of C� -algebras, with typical
fiber K(H) and structure group PU(H) , for some Hilbert space H . That is,

(4) A = P �PU(H) K(H)

for a principal PU(H) -bundle P ! X . Dixmier-Douady bundles of finite
rank are also known as Azumaya bundles [26, 27]. A gauge transformation
of A is a bundle automorphism inducing the identity on X , and whose
restriction to the fibers are C� -algebra automorphisms. Equivalently, the group
of gauge transformations consists of sections of the associated group bundle,
Aut(A) = P �PU(H) Aut(K(H)) . This group bundle has a central extension

(5) 1 ! X � U(1) !gAut(A) ! Aut(A) ! 1 ;
where gAut(A) = P �PU(H) U(H) .

If A1;A2 are Dixmier-Douady bundles modeled on K(H1);K(H2) , then
their (fiberwise) C� -tensor product A1 
 A2 is a Dixmier-Douady bundle
modeled on K(H1 
H2) . Also, the (fiberwise) opposite Aopp of a Dixmier-
Douady bundle modeled on K(H) is a Dixmier-Douady bundle modeled on
K(Hopp) . Here the Hilbert space Hopp is equal to H as an additive group,
but with the new scalar multiplication by z 2 C equal to the old scalar
multiplication by z .

A Morita isomorphism between two Dixmier-Douady bundles A1;A2 ! X
is a lift of the structure group PU(H2) � PU(Hopp

1 ) of A2 
 Aopp
1 to

the group P(U(H2) � U(Hopp
1 )) . It is thus given by a bundle E ! X ofA2 � A1 -bimodules, modeled on the K(H2) � K(H1) -bimodule K(H1;H2) .

We will write A1 'E A2 if E defines such a Morita isomorphism, andA1 ' A2 if A1;A2 are Morita isomorphic for some E . Morita isomorphism
is an equivalence relation : In particular, if A1 'E A2 and A2 'F A3 , then
the bundle F 
A2 E (a completion of the algebraic tensor product over A2 )
defines a Morita isomorphism between A1;A3 . The set of Morita isomorphism
classes of Dixmier-Douady bundles over X is an Abelian group, with sum
[A1]+[A2] = [A1
A2] , neutral element 0 = [C] , and inverse �[A] = [Aopp] .

In particular, a Morita trivialization C 'E A is a Hilbert space bundle E
together with an isomorphism A �= K(E) . The obstruction to the existence
of a Morita trivialization is given by the Dixmier-Douady class 1 ) [10, 35]

DD(A) 2 H3(X) :
1 ) We take all cohomology groups with integer coefficients, unless indicated otherwise.
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38 E. MEINRENKEN

The Dixmier-Douady class descends to a group isomorphism between Morita
isomorphism classes of Dixmier-Douady bundles A ! X and H3(X) .

EXAMPLE 2.1. Let V ! X be an oriented Euclidean vector bundle of
rank k , and let Cl(V) ! X be the complex Clifford algebra bundle. If k
is even, the bundle Cl(V) is a bundle of matrix algebras, and hence is a
Dixmier-Douady bundle. A Morita trivialization

C 'S Cl(V)

is equivalent to the choice of a spinor module S ! X , which in turn
is equivalent to the choice of a Spinc structure on V . For details, see
Plymen [34]. The canonical anti-involution of Cl(V) defines an isomorphism
Cl(V) �= Cl(V)opp , thus

DD(Cl(V)) = DD(Cl(V)opp) = �DD(Cl(V)) ;
showing that DD(Cl(V)) is 2-torsion. The Dixmier-Douady class DD(Cl(V))
is the third integral Stiefel-Whitney class W3(V) 2 H3(X) of the bundle, i.e.
the image of w2(V) 2 H2(X;Z2) under the Bockstein homomorphism. In the
case of k odd, the even part Cl+(V) is a Dixmier-Douady bundle, and a
similar discussion applies.

If both E ; E 0 ! X define Morita isomorphisms A1 ' A2 , then the bundle
of bi-module homomorphisms L = HomA2�A1 (E ; E 0) is a Hermitian line
bundle. We will call E ; E 0 equivalent if this line bundle is isomorphic to
the trivial line bundle. Conversely, if E is a Morita isomorphism then so isE 0 = E 
 L , for any line bundle L . Thus, if A1;A2 have the same Dixmier-
Douady class, then the equivalence classes of Morita isomorphisms A1 'E A2

are a principal homogeneous space (torsor) over H2(X;Z) . (In the exampleA = Cl(V) , this is the usual twist of Spinc -structures by line bundles.)
Given a compact Lie group G acting on X , one may similarly define

G -equivariant Dixmier-Douady bundles. All of the above extends to this
equivariant setting : In particular, there is a G -equivariant Dixmier-Douady
class DDG(A) 2 H3

G(X) , which classifies G -Dixmier-Douady bundles up to
G -equivariant Morita isomorphisms. The extension of the Dixmier-Douady
theorem to the G -equivariant case was proved by Atiyah-Segal [4].

Still more generally, one can also consider Z2 -graded G -Dixmier-Douady
bundles A ! X . Here, isomorphisms and tensor products are understood in the
Z2 -graded sense, and the bimodules in the definition of Morita isomorphism
are Z2 -graded. We continue to denote by DDG(A) the Dixmier-Douady class
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ON THE QUANTIZATION OF CONJUGACY CLASSES 39

of A as an ungraded bundle. If DDG(A) = 0, so that C 'E A , there is an
obstruction in H1(X;Z2) for the existence of a compatible Z2 -grading on E .
Hence, the map from Morita isomorphism classes of Z2 -graded G -Dixmier-
Douady bundles to those of ungraded G -Dixmier-Douady bundles is onto,
with kernel H1(X;Z2) . See Parker [32] and Atiyah-Segal [4] for details.

2.2 DIXMIER-DOUADY BUNDLES RELATED TO CENTRAL EXTENSIONS

We assume that G is compact and connected. Then H1
G(pt) = 0, while

H2
G(pt) is the group of G -equivariant line bundles over a point, or equivalently

H2
G(pt) = Hom(G;U(1)) . The group H3

G(pt) is realized as the isomorphism
classes of central extensions of G by U(1) ,

(6) 1 ! U(1) ! bG ! G ! 1 :
For any such extension there is an associated G -equivariant line bundle
L = bG �U(1) C ! G from which bG is recovered as the unit circle bundle.
The group structure is encoded in an isomorphism

Mult� L �= pr�1 L
 pr�2 L ;
where Mult : G�G ! G is group multiplication, and pri are the two projec-

tions. For any l 2 Z , the l th power bG(l)
of the extension is defined in terms

of the l th power of the corresponding line bundle. More generally one defines
products of central extensions of G by U(1) in terms of the tensor products
of the corresponding line bundles. The group of gauge transformations of a
given central extension bG (i.e. group automorphisms covering the identity
on G ) is H2

G(pt) = Hom(G;U(1)) .

From the interpretation via Dixmier-Douady bundles, the identification
of H3

G(pt) with isomorphism classes of central extensions may be seen as
follows : Given a G -equivariant Dixmier-Douady bundle A ! pt , the action
of G defines a group homomorphism G ! Aut(A) , and hence a central
extension of G by pull-back of (5) (in the case X = pt). Conversely, given
a central extension bG , choose a unitary representation bG ! U(E) where
the central circle U(1) acts by scalar multiplication. Then K(E) ! pt is a
G -Dixmier-Douady bundle with the prescribed class in H3

G(pt) . Note that we
may take E to be of finite rank, reflecting that H3

G(pt) is torsion. (Recall that
Hp

G(pt;R) = Hp(BG;R) = 0 for p odd.)
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Suppose X is a connected space, with H1(X) torsion-free, and with the
trivial action of G . The Künneth theorem [38, Chapter 5.5] for H•

G(X) =
H•(X � BG) gives a direct sum decomposition,

H3
G(X) = H3(X)� �H1(X)
 H2

G(pt)
�� H3

G(pt) :
For any G -Dixmier-Douady bundle A ! X , we obtain a corresponding
decomposition of DDG(A) . The first component is the non-equivariant class
DD(A) . The last summand is the class of the central extension of G , defined
by the homomorphism G ! Aut(Ax0) at any given base point x0 2 X . To
describe the middle summand, note that the family of actions G ! Aut(Ax)
defines a family of central extensions, by pull-back of (5),

1 ! U(1) ! bG(x) ! G ! 1 :
For any x0 2 X , there exists an isomorphism bG(x) ! bG(x0) of central
extensions, unique up to Hom(G;U(1)) �= H2

G(pt) . Since the latter group
is discrete, it follows that the family bG(x) carries a flat connection : Any
path from a base point x0 to x defines an isomorphism bG := bG(x0) ! bG(x) ,
depending only on the homotopy class of the path. We therefore obtain
a holonomy homomorphism � : �1(X; x0) ! H2

G(pt) , hence an element of
H1(X) 
 H2

G(pt) � H3
G(X) . This element is identified with the corresponding

component of DDG(A) .

REMARK 2.2. Any element of H1(X) 
 H2
G(pt) is realized in this way.

Indeed, let H = L2(G) with the left-regular representation of G . The
homomorphism � : �1(X) ! H2

G(pt) = Hom(G;U(1)) defines a unitary action
of �1(X) on H , where � 2 �1(X) acts as pointwise multiplication by the
function � (�) . The actions of G and �1(X) commute up to a scalar. The
bundle A = eX ��1(X) K(H) associated to the universal covering eX ! X is
a G -equivariant Dixmier-Douady bundle, with DDG(A) the prescribed class
in H1(X) 
 H2

G(pt) . Note that the component in H3(X) is zero, since non-
equivariantly A = K(E) for E = eX ��1(X) H .

2.3 TWISTED K -HOMOLOGY

The input for the twisted equivariant K -homology of a G -space X is a
Z2 -graded G -Dixmier-Douady bundle A ! X . From now on, we will usually
omit explicit mention of the Z2 -grading (which may be trivial), with the
understanding that all tensor products are in the Z2 -graded sense, isomorphisms
should preserve the Z2 -grading, and so on.
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Given A ! X , the space A = Γ0(X;A) of continuous sections ofA vanishing at infinity is a (Z2 -graded) G � C� -algebra, with normjjsjj = supx2X jjsxjjAx . Following J. Rosenberg [36], we define the twisted
equivariant K -homology and K -cohomology groups as the equivariant
C� -algebra K -homology and K -cohomology groups of A :

KG
q (X;A) := Kq

G(Γ0(X;A)) ; Kq
G(X;A) := KG

q (Γ0(X;A)) :
In this paper, we will mostly work with the K -homology groups. See
Appendix B for a quick review of the K -homology of C� -algebras, and
some examples. We list some basic properties of the K -homology groups.

(i) Morita isomorphisms. Any Morita isomorphism A1 'E A2 of
G -Dixmier-Douady bundles over X induces an isomorphism in K -homology,

KG
q (X;A1) �= KG

q (X;A2) :
(ii) Push-forwards. The morphisms in the category of G -Dixmier-Douady

bundles (X;A) are the equivariant C� -algebra bundle maps A1 ! A2 for
which the induced map on the base f : X1 ! X2 is proper. Any such morphism
induces a morphism of G -C� -algebras f � : Γ0(X2;A2) ! Γ0(X1;A1) , hence
a push-forward in K -homology

KG
q ( f ) : KG

q (X1;A1) ! KG
q (X2;A2) :

In this way KG
• becomes a covariant functor, invariant under proper

G -homotopies.

(iii) Excision. For any closed, invariant subset Y � X , with complement
U = XnY , there is a long exact sequence 2 )� � � ! KG

q (Y;AjY) ! KG
q (X;A) ! KG

q (U;AjU) ! KG
q�1(Y;AjY ) ! � � � :

Here the restriction map KG
q (X;A) ! KG

q (U;AjU) is induced by the
C� -algebra morphism Γ0(U;AjU) ! Γ0(X;A) , given as extension by 0.
More generally, one obtains a spectral sequence for any filtration of X by
closed, invariant subspaces.

(iv) Products. Suppose A ! X and B ! Y are two G -Dixmier-
Douady bundles. Then the exterior tensor product A � B ! X � Y is
again a G -Dixmier-Douady bundle. Its space of sections is the C� -tensor
product of the spaces of sections of A;B . As a special case of the
Kasparov product in K -homology, one has a natural associative cross product,

KG
• (X;A)
 KG

• (Y;B) ! KG
• (X � Y; A� B) :

2 ) Note that K -homology is analogous to Borel-Moore homology (homology with non-
compact supports), rather than ordinary homology.
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(v) Module structure. The group KG
0 (pt) is canonically identified with the

representation ring R(G) . The ring structure on KG
0 (pt) is defined by the cross

product for C � C ! pt� pt . Similarly, if A ! X is a G -Dixmier-Douady
bundle, the cross product for C�A ! pt�X makes KG

• (X;A) into a module
over R(G) . The maps KG

q ( f ) are R(G) -module homomorphisms.

If M is a manifold, one has the Poincaré duality isomorphism relating
twisted K -homology and K -cohomology,

(7) KG
q (M;A) �= Kq

G(M;Aopp 
 Cl(TM)) :
Here Cl(TM) is the Clifford algebra bundle for some choice of invariant metric.
For A = C the Poincaré duality was proved by Kasparov in [21, Section 8];
the result in the twisted case was obtained by J.-L. Tu [41, Theorem 3.1].
(See also [9, Section 2].) The image of 1 2 K0

G(M) under this isomorphism
is Kasparov’s K-homology fundamental class [24],

[M] 2 KG
0 (M;Cl(TM)) :

REMARK 2.3. Note that Cl(TM) is a Dixmier-Douady bundle only if
dim M is even. However, the definition of the twisted K -groups works for
arbitrary bundles of C� -algebras, and the isomorphism (7) holds in this sense
(but with A a Dixmier-Douady bundle). Alternatively, one may state the result
in terms of Dixmier-Douady bundles, using Cl(TM) = Cl+(TM)
 Cl(R) and
the isomorphism KG

q+1(M;B) = KG
q (M;B 
 Cl(R)) .

The following basic computations in twisted equivariant K -homology may
be deduced from their K -theory counterparts, using Poincaré duality.

(a) If M = pt, the twisted K -homology is

KG
0 (pt;A) = R( bG)�1 ;

while KG
1 (pt;A) = 0. Here bG is the central extension defined by the action

G ! Aut(A) , and R( bG)�1 is the Grothendieck group of bG -representations
where the central U(1) acts with weight �1.

(b) Suppose H is a closed subgroup of G . For any H -Dixmier-Douady
bundle B ! Y , there is a natural isomorphism

IG
H : KH

q (Y;B 
 Cl(g=h))
�=�! KG

q (G�H Y; G�H B) ;
which is Poincaré dual to the isomorphism Kq

G(G �H Y; G �H Bopp) �=
Kq

H(Y;Bopp) . If Y = pt , the left hand side may be evaluated as in (a).
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If H � H0 � G are closed subgroups, we have

IG
H = IG

H0 Æ IH0
H :

Here we are identifying Cl(g=h) �= Cl(g=h0)
Cl(h0=h) , and we are using the
canonical isomorphism H0 �H Cl(g=h0) �= H0=H � Cl(g=h0) .

(c) Let A ! pt be a G -Dixmier-Douady algebra as in (a), and let H
be a closed subgroup of G . Then G �H A is canonically isomorphic to��A , the pull-back under the map � : G=H ! pt . By composing the map
IG

H with the push-forward KG
q (�) , we obtain an induction homomorphism,

indG
H : KH

q (pt;A
 Cl(g=h)) ! KG
q (pt;A) :

An H -invariant complex structure on g=h defines a spinor module S , hence a
Morita trivialization C 'S Cl(g=h) . In this case the induction map simplifies
to a map

indG
H : KH

0 (pt;A) = R( bH)�1 ! KG
0 (pt;A) = R( bG)�1

known as holomorphic induction.

For other examples of calculations of twisted K -groups, see [6, Section 8].

3. THE DIXMIER-DOUADY BUNDLE OVER G

For the rest of this paper, G will denote a compact, simple, simply con-
nected Lie group, acting on itself by conjugation. Then H3

G(G) is canonically
isomorphic to Z . Hence there exists a G -Dixmier-Douady bundle A ! G ,
unique up to Morita isomorphism, such that DDG(G;A) corresponds to the
generator 1 2 Z . Any two bundles A;A0 ! G representing the generator
are related by a G -equivariant Morita isomorphism, unique up to equivalence
(since H2

G(G) = 0). The quickest construction of A is as an associated bundleA = PeG�LeG K(H) ;
where PeG is the space of based paths in G , LeG = LG\PeG the based loop
group, and H a representation of the standard central extension LG of LG
where the central circle acts with weight �1. The construction given in this
section is essentially just a slow-paced version of this model for A , avoiding
some infinite-dimensional technicalities. Our strategy is to give first a direct
construction of the family of central extensions of the centralizers Gg � G ,
corresponding to their action on A .
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3.1 PULL-BACK TO THE MAXIMAL TORUS

Let T � G be a maximal torus of G , with Lie algebra t . Consider the
map

(8) H3
G(G) ! H3

T(T)

obtained by first restricting the action to T and then pulling back to T . We will
compute the image of the generator of H3

G(G) under this map. Denote by Λ � t
the integral lattice (i.e. the kernel of exp: t! T ). Recall that the basic inner
product B on the Lie algebra g is the unique invariant inner product, with
the property that the smallest length of a non-zero element � 2 Λ equals

p
2.

One of the key properties of B is that it restricts to an integer-valued bilinear
form on Λ . That is, Bjt 2 Λ�
Λ� where Λ� = Hom(Λ;Z) � t� is the (real)
weight lattice.

PROPOSITION 3.1. The map (8) is injective, and takes the generator of
H3

G(G) to the element

(9) �Bjt 2 Λ� 
 Λ� �= H2
T (pt)
 H1(T) � H3

T(T)

given by minus the basic inner product.

Proof. Since HG(G) and HT (T) have no torsion in degree � 3, we may
pass to real coefficients, and hence work with Cartan’s equivariant de Rham
model Ωp

G(M) = L2i+j=p(Sig� 
 Ω j(M))G for the equivariant cohomology
HG(M;R) of a G -manifold, with differential (dG�)(�) = d�(�) � �(�M)�(�) ,
where �M is the vector field defined by � 2 g . Note that H3

T(T;R) =t�
H1(T)�H3(T;R) since the T -action on T is trivial. Let �L; �R 2 Ω1(G; g)
be the left-, right-invariant Maurer-Cartan forms. The generator of H3

G(G) is
represented by an equivariant de Rham form,

(10) �G(�) = 1
12

B(�L; [�L; �L])� 1
2

B(�L + �R; �) :
Its pull-back to T is ��T�G(�) = �B(�T ; �) , where �T 2 Ω1(T; t) the Maurer-
Cartan form for T . Thus��T[�G] = [B[(�T )] 2 t� 
 H1(T;R) � H3

T (T;R) :
The identification H1(T;R) �= t� takes [B[(�T )] to Bjt 2 t� 
 t� .
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3.2 THE FAMILY OF CENTRAL EXTENSIONS bT (t)

As discussed in Section 2.2, any element of H2
T (pt) 
 H1(T) is realized

as the holonomy of a family of central extensions. For any � 2 Λ� let
T ! U(1); t 7! t� be the corresponding homomorphism. Let the lattice Λ
act on bT = T � U(1) as

Λ� bT ! bT ; � : (h; z) = (h; h�B[(�)z) :
Then the holonomy of the family

(11) t�Λ bT ! t=Λ = T

is the element Bjt . The action of the Weyl group W = N(T)=T on T lifts to
an action on this family, by

(12) w : [(�; h; z)] = [(w�;wh; z)] :
Let bT (t) be the fiber of (11) over t 2 T . The choice of � with exp � = t
defines a trivialization

(13) T ! bT (t) ; h 7! [(�; h; 1)] 2 t�Λ bT :
Shifting � by � 2 Λ changes the trivialization by the homomorphism
T ! U(1), h 7! h�B[(�) .

3.3 SIMPLICIAL DESCRIPTION

It will be useful to have the following equivalent description of the bundle
(11). Let t+ � t be the choice of a closed Weyl chamber, and let ∆ � t+ be the
corresponding closed Weyl alcove. Recall that ∆ labels the W -orbits in T , in
the sense that every orbit contains a unique point in exp(∆) . Label the vertices
of ∆ by 0; : : : ; l = rank(G) , in such a way that the label 0 corresponds to the
origin. For every non-empty subset I � f0; : : : ; lg let ∆I denote the closed
simplex spanned by the vertices in I , and let WI � W denote the subgroup
fixing exp(∆I) � T . Then the maps W=WI � ∆I ! T; (wWI ; �) 7! w exp �
define an isomorphism

(14) T �=a
I

W=WI � ∆I

Æ�
using the identifications

(15) (x; �IJ(�)) � (�J
I (x); �) ; J � I :

Here �IJ : ∆J ,! ∆I is the natural inclusion, giving rise to an inclusion WI ,! WJ

of Lie groups and hence to the projection �J
I : W=WI ! W=WJ .
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Let �I : WI ! Λ be defined by w∆I = ∆I � �I(w) . It is a group cocycle,�I(uv) = �I(u)+u��I(v) , and �JjWI = �I for J � I . We thus obtain compatible
actions of wI on bT = T � U(1) :

(16) w : (h; z) = (wh; h�B[(�I (w�1))z) :
LEMMA 3.2. The isomorphism (14) extends to an isomorphism of the

family (11) of central extensions,

(17)
[
t2T

bT t = t�Λ bT �=a
I

(W �WI
bT)� ∆I

Æ� :
Proof. The maps bT�∆I ! t�Λ bT; (h; z; �) 7! [(�; h; z)] are WI -equivariant,

by the calculation (for � 2 ∆I; w 2 WI )w : [(�; h; z)] = [(w�;wh; z)] = [(� � �I(w);wh; z)]= [(�;wh; (wh)B[(�I(w))z)] = [(�;wh; h�B[(�I(w�1))z)] :
They hence extend to W -equivariant maps (W �WI

bT)� ∆I ! t�Λ bT , which
glue to the desired isomorphism.

3.4 THE CENTRALIZERS GI AND THEIR CENTRAL EXTENSIONS

For any g 2 G , we denote by Gg its centralizer. For any given I , the
centralizer Gexp � for � in the interior of ∆I is independent of the choice
of � , and will be denoted by GI . Equivalently, GI is the closed subgroup
of G fixing exp ∆I . Each GI is a connected subgroup containing T , and we
have WI = NGI (T)=T . For J � I we have GI � GJ . The description (14) of
the maximal torus extends to the group G :

(18) G �=a
I

G=GI � ∆I

Æ�
using the equivalence relations (15) for the natural maps �J

I : G=GI ! G=GJ

for J � I . In this section, we generalize (17) to define a G -equivariant
collection of central extensions,[g2G

bGg �=a
I

(G�GI
bGI)� ∆I

Æ� :
(Of course, this is no longer a fiber bundle.) Our construction of A ! G will
realize bGg as the opposite of the central extension, defined by action of Gg
on the fiber Ag .
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LEMMA 3.3. There are distinguished central extensions

1 ! U(1) ! bGI ! GI ! 1 ;
together with lifts bi J

I : bGI ,! bGJ of the inclusions i J
I : GI ,! GJ for J � I ,

such that

(a) bGf0;:::;lg = bT ,

(b) the lifted inclusions satisfy the coherence condition bi K
I = bi K

J Æbi J
I for

K � J � I ,

(c) the WI -action on bT � bGI (cf. (16)) is induced by the conjugation action
of NGI (T) .

Proof. Recall that �1(GI) = Λ=ΛI , where ΛI is the co-root lattice of GI

[8, Theorem (7.1)]. But� 2 ΛI; t 2 exp(∆I) ) tB[(�) = 1

(see [28, Proposition 5.4]). Hence, for any given t 2 exp(∆I) , there is a
homomorphism%t;I : �1(GI) = Λ=ΛI ! U(1) ; �+ ΛI 7! t�B[(�) :
We therefore obtain a family of central extensions bGI;(t) = fGI ��1(GI ) U(1)
parametrized by the points of exp(∆I) . Since exp(∆I) �= ∆I is contractible,
we may use the flat connection on the family of central extensions (cf.
Section 2.2) to identify all bGI;(t) . The resulting bGI has the desired properties.
In particular, if J � I and t 2 exp(∆J) � exp(∆I) , the homomorphism %t;I
is given by the inclusion �1(GI) ! �1(GJ) followed by %t;J . This defines
an inclusion bGI;(t) ,! bGJ;(t) , compatible with the flat connection and (hence)
satisfying the coherence condition. Fix � 2 ∆ with expT � = t . The inclusion
of bT = T � U(1) into bGI

�= bGI;(t) is explicitly given as

(19) i I : (expT �; z) 7! [(expeGI
�; e�2�p�1B(�;�)z)] ;

for � 2 t; z 2 U(1). If g 2 NGI (T) lifts w 2 WI , we haveg : [(expeGI
�; e�2�p�1B(�;�)z)] = [(expeGI

(w : �); e�2�p�1B(�;�)z)]= i I(expT (w : �); e�2�p�1B(�;��w :�)z))= i I(w : (expT �; z)) ;
proving that i I is equivariant for the actions of WI and NGI (T) .
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REMARKS 3.4. (i) The central extension bGI admits a trivialization if and
only if the affine span of B[(∆I) � t� contains a point in the weight lattice, Λ� .
In particular, this is the case whenever 0 2 I . If G is of type An or Cn , then
all bGI are isomorphic to trivial extensions.

(ii) The choice of any t 2 exp(∆I) gives a trivialization bgI
�= bgI;(t) = gI�R ,

by the definition of bGI;(t) as a quotient of eGI � U(1).

3.5 CONSTRUCTION OF THE DIXMIER-DOUADY BUNDLE A ! G

Our construction of the Dixmier-Douady bundle A ! G involves a suitable
Hilbert space H .

LEMMA 3.5. There exists a Hilbert space H , equipped with unitary
representations of the central extensions bGI such that

(i) the central U(1) acts with weight �1 , and

(ii) for J � I the action of bGJ restricts to the action of bGI .

One can construct such an H using the theory of affine Lie algebras. LetL(g) = gC
C[z; z�1] be the loop algebra associated to g . For all roots � of
G , let e� 2 gC be the corresponding root vector. Then gC

I is spanned by tC
together with the root vectors e� such that h�; �i 2 Z for � 2 ∆I . The map
jI : gC

I ! L(g) given by � 7! � 
 1 for � 2 tC and

e� 7! e� 
 zh�;�i
for h�; �i 2 Z is an injective Lie algebra homomorphism (independent of � ).
Consider the standard central extension bL(g) = L(g)� C , with bracket

[�1 
 f1 + s1; �2 
 f2 + s2] = ([�1; �2]
 f1 f2)+ B(�1; �2) Res( f1df2)  :
Its restriction to constant loops is canonically trivial, thus btC is embedded
in L(gC) by the map (�; s) 7! � + s . The inclusions jI lift to inclusionsbjI : bgI ,! bL(g) extending the given inclusion of btC . To see this, take � 2 ∆I

(defining a trivialization gI
�= gI;(exp �) = gI � R ). Then the desired lift readsbjI;� : bgC

I;(exp �) ! bL(g) ; bjI;�(�; s) = jI(�)+ (s+ B(�; �))  :
By the theory of affine Lie algebras [20], there exists a unitarizable Lg -module
where the central element  acts as �1. Unitarizibility means in particular
that the bt-action exponentiates to a unitary bT -action, and hence all bgI -actions
exponentiate to unitary bGI -actions.
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With H as in the lemma, put AI = G �GI K(H) . For J � I , the
map �J

I : G=GI ! G=GJ is covered by a homomorphism of Dixmier-Douady
bundles, AI ! AJ . Hence we may define a G -Dixmier-Douady bundle,

(20) A =a
I

(AI � ∆I)=�
with identifications similar to those in (18). By construction, the central
extension of GI defined by the restriction Ajexp(∆I ) coincides with the opposite
of bGI . Hence, the family of central extensions defined by the action of
T on AjT is the opposite of the family bT (t) . We saw that the class in
H2

T(pt) 
 H1(T) � H3
T (T) is the class defined by �Bt , and hence coincides

with the image of the generator of H3
G(G) �= Z . It follows that DDG(A) is a

generator of H3
G(G) .

4. CONJUGACY CLASSES

As is well known, coadjoint orbits O � g� carry a distinguished invariant
complex structure, hence a Spinc -structure. If O admits a pre-quantum line
bundle L ! O (i.e. a line bundle with curvature equal to the symplectic form),
one may twist the original Spinc -structure by this line bundle. The resulting
equivariant index is the irreducible representation parametrized by O . In this
section, we will describe a similar picture for conjugacy classes C � G .

4.1 PULL-BACK TO CONJUGACY CLASSES

Given � 2 ∆ , define a G -equivariant map

Ψ : G=T ! G ; gT 7! Adg(exp �) :
The pull-back Ψ�A admits a canonical Morita trivialization, defined by the
Hilbert space bundle G�T H . More generally, for any l 2 Z and any weight� 2 Λ� there is a Morita trivialization,

(21) C 'E Ψ�Al ; E = G�T (Hl 
 C�) ;
where C� is the 1-dimensional T -representation of weight � . Equivariant
Dixmier-Douady bundles over G , together with Morita trivializations of their
pull-backs by Ψ , are classified by the relative cohomology group H3

G(Ψ) .
(See Appendix A.) The map Ψ =: Ψ1 is equivariantly homotopic to the
constant map Ψ0 : gT 7! e , by the homotopy Ψt(gT) = exp(t Adg(�)) . Hence
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H3
G(Ψ) = H3

G(Ψ0) = H2
G(G=T)�H3

G(G) . Identifying H2
G(G=T) = H2

T (pt) = Λ�
and H3

G(G) = Z , we obtain an isomorphism

H3
G(Ψ) = Λ� � Z :

The element (�; l) 2 H3
G(Ψ) is realized by the Morita trivialization (21).

Now let C be the conjugacy class of exp(�) , and Φ : C ! G the inclusion.
Let � : G=T ! C be the G -invariant projection such that Ψ = Φ Æ � . We
obtain a map of long exact sequences in relative cohomology,� � � ��! 0 ��! H2

G(C) ��! H3
G(Φ) ��! H3

G(G) ��! H3
G(C) ��! � � �??y ??y ??y ??y= ??y� � � ��! 0 ��! H2

G(G=T) ��! H3
G(Ψ) ��! H3

G(G) ��! 0 ��! � � �
From the identifications

H2
G(C) = Hom(Gexp �;U(1)) and H2

G(G=T) = Hom(T;U(1)) ;
it is evident that the second vertical map is injective. Hence the 5-Lemma
implies that the map H3

G(Φ) ! H3
G(Ψ) is injective. Hence we obtain an

injective map,

H3
G(Φ) ! H3

G(Ψ) = Λ� � Z :
By a parallel discussion with real coefficients, there is an injective map
H3

G(Φ;R) ! H3
G(Ψ;R) = t� � R .

4.2 PRE-QUANTIZATION OF CONJUGACY CLASSES

We return to Cartan’s de Rham model for H•
G(M;R) (cf. the proof of

Proposition 3.1) with �G 2 Ω3
G(G) representing the generator of H3

G(G) .
The conjugacy class C carries a unique invariant 2-form ! 2 Ω2(C)G � Ω2

G(C)
with the property [1, 18] that

(22) dG! = Φ��G :
The triple (C; !;Φ) is an example of a quasi-Hamiltonian G -space in
the terminology of [1]. Equation (22) together with dG�G = 0 say that
(!; �G) 2 Ω3

G(Φ) is a relative equivariant cocycle. Let [(!; �G)] be its class
in H3

G(Φ;R) .
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LEMMA 4.1. The inclusion H3
G(Φ;R) ! t� � R takes the class [(!; �G)]

to the element (B[(�); 1) .

Proof. Let ht : Ω•
G(G) ! Ω•�1

G (G=T) be the homotopy operator defined
by homotopy Ψt . Thus d Æ ht + ht Æ d = Ψ�

t �Ψ�
0 . Then

Ω•
G(Ψt) ! Ω•

G(Ψ0) ; (�; �) 7! (�� ht(�); �)

is an isomorphism of chain complexes, inducing the isomorphism H•
G(Ψt;R) !

H•
G(Ψ0;R) . In particular, the isomorphism H3

G(Ψ1;R) ! H•
G(Ψ0;R) takes

[(!; �G)] to [(! � h�1�G; �G)] .

The family of maps Ψt is a composition of the map f : G=T ! g ,gT 7! Adg(�) with the family of maps g ! G , � 7! exp(t�) . Let
jt : Ω•

G(G) ! Ω•�1(g) be the homotopy operator for the second family of
maps. Then ht = f � Æ jt . By [28], we have j1�G = $G , where $G 2 Ω2

G(g)
is of the form $G(�)j� = $j� �B(�; �) . It follows that the image of [(!; �G)]
under the map to t� � R is (B[(�); 1) .

As a special case of pre-quantization of group-valued moment maps [2],
we define :

DEFINITION 4.2. A level k 2 Z pre-quantization of a conjugacy class C
is a lift of the class k [(!; �G)] 2 H3

G(Φ;R) to an integral class.

By the long exact sequence in relative cohomology, if C admits a level k
pre-quantization, then the latter is unique (since H2

G(C) has no torsion).

PROPOSITION 4.3. The conjugacy class C of the element exp � with � 2 ∆
admits a pre-quantization at level k if and only if (B[(k�); k) 2 Λ� � Z .

Proof. According to the lemma, k [(!; �G)] maps to (B[(k�); k) 2 t��R .
Since all maps in the commutative diagram

H3
G(Φ) ����! Λ� � Z??y ??y

H3
G(Φ;R) ����! t� � R

are injective, it follows that k [(!; �G)] is integral if and only if
(B[(k�); k) 2 Λ� � Z .
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Geometrically, a level k pre-quantization is given by a G -equivariant
Morita trivialization of Φ�Ak . This can be seen explicitly, as follows.

LEMMA 4.4. Let � 2 ∆I , and suppose that B[(k�) 2 Λ� . Then the k th

power of the central extension of GI admits a unique trivialization GI ! bG(k)
I

extending the map

(23) T ! bT (k) = T � U(1) ; h 7! (h; hB[(k�)) :
Proof. By GI -equivariance, a trivialization GI ! bG(k)

I is uniquely deter-
mined by its restriction to T . For existence, recall that t = exp � determines
an identification bGI

�= bGI;(t) = eGI ��1(GI ) U(1), using the homomorphism%t;I : �1(GI) = Λ=ΛI ! U(1), �+ΛI 7! t�B[(�) . The powers bG(l)
are obtained

similarly, using the l th powers of the homomorphism %t;I . Since B[(k�) is a
weight, we have

(%t;I)k(�+ ΛI) = e�2�p�1B(k�;�) = 1 :
This defines a trivialization,bG(k)

I
�= bG(k)

I;(t) = GI � U(1) :
By (19), this trivialization intertwines the standard inclusion bT (k) ! bG(k)

I with
the map bT = T � U(1) ! GI � U(1) ; (h; z) 7! (h; h�B[(k�)z) :
The composition of this map with (23) is h 7! (h; 1) , as required.

Let Φ : C ,! G be the conjugacy class of t = exp � , and let I be the
unique index set such that � lies in the relative interior of ∆I . If C is pre-
quantizable at level k , so that B[(k�) 2 Λ� , the lemma defines a trivialization
of G(k)

I . Hence, its action on Hk descends to an action of GI , and the Hilbert
bundle E = G�GI Hk defines a Morita trivialization of Φ�Ak .

PROPOSITION 4.5. The relative Dixmier-Douady class DDG(Ak; E) 2 H3
G(Φ)

(cf. Appendix A) is an integral lift of the class k[(!; �G)] 2 H3
G(G; C;R) .

Proof. We have to show that the image of DDG(A; E) in H3
G(Ψ) = Λ��Z

is (B[(k�); k) . But this follows from the discussion in the last section, since
the pull-back of E under the map � : G=T ! C is��E = G�T (Hk 
 CB[(k�)) :
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4.3 THE h_-TH POWER OF THE DIXMIER-DOUADY BUNDLE

For any coadjoint orbit O � g� , the compatible complex structure defines
a G -invariant Spinc -structure, i.e. Morita trivialization of Cl(TO) . We show
that similarly, for all conjugacy classes C � G , there is a distinguished Morita
isomorphism between Cl(TC) and Ah_ jC , where h_ is the dual Coxeter
number. That is, conjugacy classes carry a canonical ‘twisted Spinc -structure’.
There are examples of conjugacy classes that do not admit Spinc -structures,
let alone almost complex structures.

EXAMPLE 4.6. The simplest example of a conjugacy class not admitting an
almost complex structure is the conjugacy class C �= Spin(5)= Spin(4) �= S4 of
the group Spin(5) . (Its image in SO(5) is the conjugacy class of the matrix
with entries (�1;�1;�1;�1; 1) down the diagonal.) Similarly, the group
G = Spin(9) has a conjugacy class G=H with H = (SU(2)�Spin(6))=Z2 that
does not admit a Spinc -structure. Indeed, if such a Spinc -structure existed it
could be made G -equivariant (since G is simply connected), hence it would
give an H -invariant Spinc -structure on g=h . Since H is semi-simple, this
is equivalent to the condition that the half-sum of positive roots of H is a
weight of H . But by explicit calculation, one checks that this is not the case.
I thank Reyer Sjamaar for discussion of these and similar examples.

We will need some further notation. Let S0 = f�1; : : : ; �lg , l = rank(G) ,
be a set of simple roots for g , relative to our choice of fundamental Weyl
chamber. We denote by �0 = ��max minus the highest root, and letS = S0 [ f�0g = f�0; : : : ; �lg :
Thus ∆ � t+ is the l -simplex cut out by the inequalities h�i; �i + Æi;0 � 0
for i = 0; : : : ; l , and t+ is cut out by the inequalities with i > 0. The roots
of GI are those roots � of G for which h�; �i 2 Z for � 2 ∆I , and a set of
simple roots is SI = f�i 2 S j i =2 Ig :
That is, the Dynkin diagram of GI is obtained from the extended Dynkin
diagram of G by removing the vertices labeled by i 2 I . Let � be the
half-sum of positive roots of G , let �℄ = B℄(�) with B℄ = (B[)�1 , and leth_ = 1+ h�max; �℄i
be the dual Coxeter number.
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THEOREM 4.7. For any conjugacy class Φ : C ,! G, there is a distin-
guished G-equivariant Morita isomorphism Cl(TC) ' Φ�Ah_ .

Proof. Let � 2 ∆ be the unique point of the alcove corresponding with
exp � 2 C , and I the index set such that � 2 int(∆I) . Thus C = G=GI and
Cl(TC) = G�GI Cl(g?I ) , where g?I is the orthogonal complement of gI in g .
By construction, Φ�Ah_ = G�GI K(Hh_ ) . Hence it is our task to construct
a GI -equivariant Morita isomorphism

Cl(g?I ) ' K(Hh_ ) :
Let bG0

I be the central extension of GI defined by its action on Cl(g?I ) . It fits
into a pull-back diagram, bG0

I ����! Spinc(g?I )??y ??y
GI ����! SO(g?I ) :

Equivalently, bG0
I = eGI ��1(GI ) U(1) where eGI is the universal covering group,

and the homomorphism �1(GI) ! U(1) is defined by the commutative diagram

1 ����! �1(GI) ����! eGI ����! GI ����! 1??y ??y ??y
1 ����! U(1) ����! Spinc(g?I ) ����! SO(g?I ) ����! 1 :

Let ΛI be the co-root lattice of GI , so that �1(GI) = Λ=ΛI . By a direct
calculation (cf. Sternberg [40, Section 9.2]), the homomorphism �1(GI) ! U(1)
is

(24) �1(GI) = Λ=ΛI ! U(1); � 7! e2�p�1h���I;�i = �1 ;
where � is the half-sum of positive roots of G , and �I is the half-sum of
positive roots of GI , relative to the given system SI of simple roots. Let

(25) �I = 1h_ (�� �I) ; �℄I = B℄(�I) :
The element �℄I is contained in the the interior of the face ∆I (see e.g. [30]).
Hence, the homomorphism (24) is just the �h_-th power of the homomorphism%t;I ; t = exp �℄I in the definition of bGI;(t) �= bGI . That is, we have identifiedbG0

I = bG(�h_)
I :
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Recall that bGI acts with weight �h_ on Hh_ , or equivalently bG�h_
I

acts with weight 1. Hence, if SI is any spinor module over Cl(g?I ) , the
Cl(g?I )�K(Hh_ ) -bimodule

Hom(Hh_ ; SI)

is GI -equivariant, and gives the desired Morita isomorphism Cl(g?I ) ' K(Hh_ ) .
An explicit spinor module SI for Cl(g?I ) is constructed as follows. Letn+ � gC and nI;+ � gC

I be the sum of root spaces for positive roots of
G and GI , respectively. (Here positivity is defined by the respective setsS0;SI of simple roots.) Then S = V n+ is a spinor module for Cl(t?) , andSI = V nI;+ is a spinor module for Cl(gI \ t?) . (Cf. [40, Section 9.2].) We
define

(26) SI = HomCl(gI\t?)(SI ; S) :
The spinor modules S , SI are T -equivariant, since they are constructed

using T -invariant complex structures on t?; gI\t? . Hence SI is T -equivariant
as well.

PROPOSITION 4.8. Let C be the conjugacy class of exp � , � 2 ∆ . The pull-
back of Cl(TC) under the projection map� : G=T ! C; gT 7! Adg(exp(�))

admits a canonical G-equivariant Morita trivialization

(27) C ' �� Cl(TC) :
Proof. Let I be the index set such that GI is the stabilizer of exp � .

We have �� Cl(TC) = Cl(��TC) = G �T Cl(g?I ) . Hence we need a
T -equivariant Morita trivialization of Cl(g?I ) , and this is provided by SI .

If the conjugacy class C is pre-quantized at level k , the Morita equivalences
Cl(TC) ' Φ�Ah_ and C ' Φ�Ak , combine to a Morita isomorphism

(28) Cl(TC) ' Φ�Ak+h_ :
Recall that Ψ = Φ Æ � : G=T ! G . The composition of the Morita isomor-
phisms (27) and Cl(TC) ' Φ�Ah_ is the Morita trivialization C ' Ψ�Ah_
defined by the bundle G �T Hh_ . It is thus labeled by (0; h_) 2 Λ� � Z .
Hence, in the pre-quantized case, the composition of (27) and (28) is the
Morita trivialization of Ψ�Ak+h_ parametrized by (B[(k�); k+ h_) 2 Λ��Z .
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4.4 FREED-HOPKINS-TELEMAN

The twisted equivariant K -homology group

KG
• (G;Ak+h_)

carries a ring structure, with product given by the cross-product for G � G ,
followed by push-forward under group multiplication Mult : G � G ! G .
Indeed, since Mult� x = pr�1 x+ pr�2 x for all x 2 H3

G(G;Z) , there is a Morita
isomorphism,

pr�1 Ak+h_
 pr�2 Ak+h_ ' Mult�Ak+h_ :
The Morita bimodule is unique up to equivalence since H2

G(G � G) = 0.
It defines a product structure

KG
• (Mult) : KG

• (G;Ak+h_)
 KG
• (G;Ak+h_) ! KG

• (G;Ak+h_) ;
given by the cross product

KG
• (G;Ak+h_)
 KG

• (G;Ak+h_) ! KG
• (G� G; pr�1 Ak+h_
 pr�2 Ak+h_)

followed by KG
• (Mult) . The product is commutative and associative, again

since the relevant Morita bimodules are unique up to equivalence. (For non-
simply connected groups G , the existence of a ring structure on the twisted
K -homology is a much more subtle matter [42].)

The inclusion � : feg ,! G of the group unit induces a ring homomorphism

(29) KG
• (�) : R(G) = KG

• (pt) ! KG
• (G;Ak+h_) :

THEOREM 4.9 (Freed-Hopkins-Teleman). For all non-negative integers
k � 0 the ring homomorphism (29) is onto, with kernel the level k fusion
ideal Ik(G) � R(G) . That is, KG

1 (G;Ak+h_) = 0 , while KG
0 (G;Ak+h_) is

canonically isomorphic to the level k fusion ring, Rk(G) = R(G)=Ik(G) .

We will explain a proof of this theorem in Section 5. The ring Rk(G)
may be defined as the ring of level k projective representations of the loop
group LG or, in finite-dimensional terms (cf. [3]) :

Let
Λ�

k = Λ� \ B[(k∆)

be the set of level k weights. Identify R(G) with the ring of characters of G .
Then Rk(G) = R(G)=Ik(G) , where Ik(G) is the vanishing ideal of the set of
elements ft� 2 T; � 2 Λ�

kg , where

t� = exp
�
B℄� � + �

k + h_ �� :
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It turns out that as an additive group, Rk(G) is freely generated by the images
of irreducible characters �� for � 2 Λ�

k . Thus Rk(G) = Z[Λ�
k ] additively.

REMARK 4.10. If G has type ADE (so that all roots have equal length),
the lattice B℄(Λ�) � t is identified with the set of elements � 2 t with
exp � 2 Z(G) , the center of G . Hence the ideal Ik(G) may be characterized,
in this case, as the vanishing ideal of the set of all g 2 Greg such thatgk+h_ 2 Z(G) .

REMARK 4.11. Freed-Hopkins-Teleman compute twisted K -homology
groups of G for arbitrary compact groups, not necessarily simply connected.
The case of simple, simply connected groups considered here is considerably
easier than the general case.

REMARK 4.12. It is also very interesting to consider the non-equivariant
twisted K -homology rings K•(G;Ak+h_) . These are studied in the work of
V. Braun [7] and C. L. Douglas [12].

4.5 QUANTIZATION OF CONJUGACY CLASSES

Suppose Φ : C ,! G is the conjugacy class of exp � , � 2 ∆ , pre-quantized
at level k � 0. Thus � := B[(k�) is a weight. The Morita isomorphism (28)
defines a push-forward map in K -homology,

(30) KG
0 (Φ) : KG

0 (C;Cl(TC)) ! KG
0 (G;Ak+h_) ;

where Φ : C ,! G is the inclusion.

THEOREM 4.13. The push-forward map (30) takes the fundamental class
[C] 2 KG

0 (C;Cl(TC)) to the equivalence class of the character �� in
Rk(G) = R(G)=Ik(G) .

Proof. Let � : G=T ! C and Ψ = ΦÆ� : G=T ! G be as in Section 4.1.
The Morita trivializations

C ' Cl(T(G=T)) ; C ' �� Cl(TC)

defined by G�T S resp. G�T SI (cf. Proposition 4.8) define a push-forward
map

KG
0 (�) : KG

0

�
G=T;Cl(T(G=T))

� �= KG
0 (G=T) ! KG

0 (C;Cl(TC))

with KG
0 (�)([G=T]) = [C] . Hence

KG
0 (Φ)([C]) = KG

0 (Ψ)([G=T]) :
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Recall now that Ψ = Ψ1 is equivariantly homotopic to the constant map Ψ0

onto e 2 G . That is, the diagram

G=T
�����! C

p

??y ??yΦ

pt
�����! G

commutes up to a G -equivariant homotopy. As discussed at the end of
Section 4.3, the composition of the Morita isomorphisms C ' �� Cl(TC) and
Cl(TC) ' Φ�Ak+h_ (see Equations (27) and (28)) is the Morita trivialization,

Ψ�Ak+h_ �= K
�
G�T (C� 
Hk+h_)

� :
On the other hand, ��Ak+h_ = K(Hk+h_) by construction of A , hence

Ψ�
0Ak+h_ �= p�K(Hk+h_ ) = K(G�T Hk+h_) :

The two Morita isomorphisms are thus related by a twist by the line bundle
G�T C� . It follows that KG

0 (Ψ) is the automorphism of K0(G=T) defined by
the class of the line bundle G�T C� , followed by KG

0 (Ψ0) = KG
0 (�) Æ KG

0 (p) .
But KG

0 (p) is just the equivariant index map for G=T . As is well known,
it takes [G=T] , twisted by G �T C� , to the class [V�] 2 KG

0 (pt) of the
irreducible G -representation labeled by � . We conclude that

KG
0 (Ψ)([G=T]) = KG

0 (�)([V�]) :
The identification KG

0 (pt) �= R(G) takes [V�] to the character �� .

4.6 TWISTED K -HOMOLOGY OF THE CONJUGACY CLASSES

Suppose Φ : C ,! G is an arbitrary conjugacy class (not necessarily
pre-quantized) corresponding to � 2 ∆ . Let I be the index set such that� 2 int(∆I) , thus C = G=GI . Write B = K(H) so that AI = G �GI B .
In 4.3 we constructed a GI -equivariant Morita isomorphism Cl(g?I ) ' Bh_ ,
or equivalently C ' Bh_ 
 Cl(g?I ) , since Cl(g?I ) �= Cl(g?I )opp . We have, by
2.3 (a)–(c),

KG
q (C;Φ�Ak+h_) = KG

q (G=GI ; G�GI Bk+h_ )= KGI
q (pt; Bk+h_
 Cl(g?I ))= KGI
q (pt; Bk) :
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This vanishes for q = 1, and is equal to R( bG(�k)
I )�1 for q = 0. But a

representation of bG(�k)
I , where the central circle acts with weight �1, is the

same as a representation of bGI where the central circle acts with weight k .
Thus

(31) KG
0 (C;Φ�Ak+h_) = KG

0 (G=GI ; G�GI Bk+h_ ) �= R( bGI)k

as R(G) -modules. (The module structure is given by the restriction homo-
morphism R(G) ! R(GI) = R( bGI)0 , which acts on R( bGI) by multiplication.)
If J � I , we have a natural map �J

I : G=GI ! G=GJ covered by a map of
Dixmier-Douady bundles G�GIB ! G�GJB . Hence we obtain a push-forward
map,

(32) KG
0 (�J

I ) : KG
0 (G=GI ; G�GI Bk+h_ ) ! KG

0 (G=GJ ; G�GJ Bk+h_ ) :
The naturality of the maps IG

H (cf. 2.3 (b)) and the definition of indJ
I � indGJ

GI

(cf. 2.3 (c)) gives a commutative diagram,

KGI
0 (pt; Bk+h_
 Cl(g=gI))

indJ
I����! KGJ

0 (pt; Bk+h_
 Cl(g=gJ))??yIGJ
GI

??y=
KGJ

0

�
GJ=GI ; (GJ �GI Bk+h_)
 Cl(g=gJ)

� ����! KGJ
0 (pt; Bk+h_
 Cl(g=gJ))??yIG

GJ

??yIG
GJ

KG
0 (G=GI ;G�GI Bk+h_)

KG
0 (�J

I )����! KG
0 (G=GJ ;G�GJ Bk+h_) :

That is, KG
0 (�J

I ) Æ IG
GI
= IG

GJ
Æ indJ

I . The entries on the top row are identified

with R( bGI)k and R( bGJ)k , and (cf. 2.3 (c)) the map indJ
I is the holomorphic

induction map

(33) indJ
I : R( bGI)k ! R( bGJ)k ;

relative to the complex structure on GJ=GI = bGJ= bGI defined by the collections
of simple roots SJ � SI . To summarize,

PROPOSITION 4.14. The identifications KG
0 (G=GI ;G�GI Bk+h_ ) �= R( bGI)k

intertwine the push-forward maps KG
0 (�J

I ) with the holomorphic induction
maps indJ

I .
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5. COMPUTATION OF KG
• (G;Ak+h_)

The Dixmier-Douady bundle A ! G , as described in (20), may be viewed
as the geometric realization of a co-simplicial Dixmier-Douady bundle, with
non-degenerate p -simplices the bundle

`jIj=p+1AI over
`jIj=p+1 G=GI . This

defines a spectral sequence computing the K -homology group KG
• (G;Ak+h_) ,

in terms of the known K -homology groups KG
• (G=GI ;Ak+h_

I ) = R( bGI)k and
the holomorphic induction maps between these groups. As it turns out, the
spectral sequence collapses at the E2 -stage, and computes the level k fusion
ring.

5.1 THE SPECTRAL SEQUENCE FOR KG
• (G;Ak+h_)

The construction (20) of A ! G as a quotient ofa
I

AI � ∆I !a
I

G=GI � ∆I

may be thought of as the geometric realization of a ‘co-simplicial Dixmier-
Douady bundle’. See [37] and [31] for background on co-simplicial (semi-
simplicial) techniques. Here the G -Dixmier-Douady bundlesajIj=p+1

AI ! ajIj=p+1

G=GI

are the non-degenerate p -simplices ; the full set of p -simplices is a union`
f Af ([p]) !`

f G=Gf ([p]) over all non-decreasing maps

f : [p] = f0; : : : ; pg ! f0; : : : ; lg :
By the theory of co-simplicial spaces (see [37, Section 5]), one obtains a
spectral sequence E1

p;q ) KG
p+q(G;Ak+h_) , where

(34) E1
p;q = LjIj=p+1

KG
q (G=GI ;Ak+h_

I ) :
The differential d1 : E1

p;q ! E1
p�1;q is given on KG

q (G=GI ;Ak+h_
I ) as an

alternating sum,

d1 = pX
r=0

(�1)rKG
q (�ÆrI

I ) :
Here ÆrI is obtained from I by omitting the r th entry : ÆrI = fi0; : : : ;bir; : : : ; ipg
for I = fi0; : : : ; ipg with i0 < � � � < ip . Recall that �J

I : G=GI ! G=GJ are
the natural maps for J � I .
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By mod 2 periodicity of the K -homology, we have E1
p;q = E1

p;q+2 .
Since the groups GI are connected, and since dim G=GI is even, one has
KG

1 (G=GI ;Ak+h_
I ) = 0, thus E1

•;1 = 0. Hence, the E1 -term is described by a
single chain complex (C•; �) , where

Cp = E1
p;0 ; � = d1 :

The map R(G) ! KG
• (G;Ak+h_) defined by the inclusion � : e ,! G may also

be described by the spectral sequence. Think of � as the geometric realization
of a map of co-simplicial manifolds, given as the inclusion of feg = G=Gf0g
into

`l
i=0 G=Gfig . The co-simplicial map gives rises to a morphism of spectral

sequences, eE • ! E• , whereeE 1
p;q = (KG

q (pt;C) if p = 0 ,

0 otherwise .

At the E1 -stage, this boils down to a chain map

(35) R(G) ! C• ;
where R(G) = eE 1

0;0 carries the zero differential. Our goal is to show that the
homology of (C•; �) vanishes in positive degrees, while the induced map in
homology R(G) ! H0(C; �) is onto, with kernel Ik(G) .

5.2 THE INDUCTION MAPS IN TERMS OF WEIGHTS

To get started, we express the chain complex in terms of weights of
representations. Recall that R(T) is isomorphic to the group ring Z[Λ�] .
The restriction map R(G) ! R(T) is injective, and identifies

R(G) �= Z[Λ�]W :
Let us next describe R( bGI)k in terms of weights. Each bGI has maximal torusbT = T � U(1), hence the weight lattice isbΛ� = Λ� � Z � bt� = t� � R :
The simple roots for bGI are (�i; 0) with �i 2 SI , the corresponding co-roots
are

(36) (�_i ; Æi;0) 2 bt = t� R ; �i 2 SI :

Achevé de composer le 18 juin 2009 à 15 : 18
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These define a fundamental Weyl chamber

(37) bt�I;+ = f(�; s) j h�; �_i i+ sÆi;0 � 0; �i 2 SIg :
The elements �I satisfy h�I; �_i i+Æi;0 = 0. Hence, (�; s) 2 bt�I;+ if and only if�� s�I 2 t�I;+ . Let Λ�

I;k � Λ� be the intersection of (37) with Λ��fkg �= Λ� .
Thus

Λ�
I;k = f� 2 Λ� j h�; �_i i+ kÆi;0 � 0; i =2 Ig

labels the irreducible bGI -representations for which the central circle acts with
weight k . The Weyl group WI of GI is also the Weyl group of bGI . Its action onbΛ� preserves the levels Λ��fkg , hence it takes the form w : (�; k) = (w•k�; k)
for a level k -action � 7! w•k� on Λ� . Explicitly,

(38) w•k� = w(� � k�I)+ k�I :
Fix k , and denote by Z[Λ�]WI�as the anti-invariant part for the WI -action� 7! w•k+h_� at the shifted level k+ h_ . Observe that this space is invariant
under the action of Z[Λ�]W . Let

SkI : Z[Λ�] ! Z[Λ�]WI�as ; � 7! Xw2WI

(�1)length(w) w•k+h_�
denote skew-symmetrization relative to the action at level k+h_ . For � 2 Λ�

k ,
let �I� 2 R( bGI)k be the character of the irreducible bGI -representation of
weight (�; k) .

LEMMA 5.1. The map �I� 7! SkI(�+ �) extends to an isomorphism

(39) R( bGI)k ! Z[Λ�]WI�as :
Under this isomorphism, the R(G) �= Z[Λ�]W -module structure is given by
multiplication in the group ring. Furthermore, the identification (39) intertwines
the holomorphic induction maps indJ

I : R( bGI)k ! R( bGJ)k for J � I with skew-
symmetrizations

SkJ
I = 1jWIj SkJ : Z[Λ�]WI�as ! Z[Λ�]WJ�as :

Note that the statement involves a shift by � , rather than �I . Thus, even
in the case I = f0; : : : ; lg where GI = T and WI = f1g , �I = 0, the
identification R(bT)k ! Z[Λ�] involves a � -shift.
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Proof. Let Λ�;reg
I;k+h_ be the intersection of Λ� � fk + h_g with int(bt�I;+) .

Since obviously R( bGI)k = Z[Λ�
I;k] , the first part of the lemma amounts to the

assertion that � 2 Λ�
I;k , �+ � 2 Λ�;reg

I;k+h_ :
We have � 2 Λ�

I;k if and only if h�; �_i i + kÆi;0 � 0 for i =2 I . Sinceh�; �_i i+h_Æi;0 = 1 this is equivalent to h�+�; �_i i+ (k+h_)Æi;0 � 1; i =2 I ,
i.e. �+� 2 Λ�;reg

I;k+h_ as claimed. The assertion about the R(G) -module structure

is obvious. Finally, for J � I the holomorphic induction map indJ
I is given

by
indJ

I (�I�) = (�1)length(w) �Jw•k(�+�J)��J

if there exists w 2 WJ with w•k(�+ �J)� �J 2 Λ�
J;k , while indJ

I (�I�) = 0 if
there is no such w . Using (38) together with �I � k�I = �� (k + h_)�I (by
the definition of �I ), this may be re-written in terms of the action at level
k + h_ : w•k(�+ �J)� �J = w•k+h_(�+ �)� � :

By combining this discussion with Proposition 4.14, we have established
a commutative diagram

(40)

KG
0 (G=GJ;Ak+h_

J ) ����!�= R( bGJ)k ����!�= Z[Λ�]WJ�asx??K0(�J
I )

x??indJ
I

x??SkJ
I

KG
0 (G=GI ;Ak+h_

I ) ����!�= R( bGI)k ����!�= Z[Λ�]WI�as :
We can thus re-express the chain complex (C•; �) in terms of weights :

(41) Cp = LjIj=p+1
Z[Λ�]WI�as ; ��I = pX

r=0

(�1)r SkÆrI
I (�I) ;

for �I 2 Z[Λ�]WI�as . The map R(G) ! C0 � C• given by (35) is expressed
as the inclusion of Z[Λ�]W�as , i.e. as the summand corresponding to I = f0g .
By construction, C• is a complex of R(G) -modules, and the map (35) is an
R(G) -module homomorphism.

5.3 FUSION RING

Let us also describe the fusion ring in terms of weights. The subset
B[(k∆) � t� defining the set Λ�

k = Λ� \ B[(k∆) of level k weights is cut out
by the inequalities h�; �_i i+ kÆi;0 � 0 :
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It is a fundamental domain for the level k action � 7! w•k� of the affine
Weyl group, generated by the simple affine reflections� 7! � � (h�; �_i i+ sÆi;0)�i ; i = 0; : : : ; l :
This is consistent with our earlier notation : the level k action of Waff restricts
to the level k action of the subgroup WI , generated by the affine reflections
with i =2 I .

Let Z[[Λ�]] be the Z[Λ�] -module consisting of all functions Λ� ! Z ,
not necessarily of finite support. Let

Skaff : Z[Λ�] ! Z[[Λ�]]Waff�as ; � 7! Xw2Waff

(�1)length(w) w•k+h_�
be skew-symmetrization, using the action at the shifted level k + h_ . The
map � 7! Skaff(� + �) extends to an isomorphism, Z[Λ�

k ] ! Z[[Λ�]]Waff�as .
This identifies

(42) Rk(G) �= Z[[Λ�]]Waff�as

as an Abelian group. For any I we have R(G) = Z[Λ�]W -module homomor-
phisms R( bGI)k ! Rk(G) ,

(43) Z[Λ�]WI�as ! Z[[Λ�]]Waff�as ; �I 7! 1jWI j Skaff �I :
For I = f0g we may use the obvious trivialization bG = G�U(1) to identify

R(G) = R( bG0)k . The following is clear from the description of the quotient
map R(G) ! Rk(G) (see e.g. [3]) :

LEMMA 5.2. The identifications R(G) = Z[Λ�]W�as and (42) intertwine
the quotient map R(G) ! Rk(G) with the skew-symmetrization map,

(44)
1jWj Skaff : Z[Λ]W�as ! Z[[Λ�]]Waff�as :

In particular, (42) is an isomorphism of R(G) �= Z[Λ�]W -modules.

In fact, we could define the ideal Ik(G) � R(G) as the kernel of the
map (44). Let � : C0 ! Rk(G) be the direct sum of the morphisms (43)
for jIj = 1.
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5.4 A RESOLUTION OF THE R(G) -MODULE Rk(G)

THEOREM 5.3. For all k � 0 the chain complex (C•; �) defines a resolution

0 �! Cl
��! � � � ��! C0

��! Rk(G) �! 0

of Rk(G) as an R(G) -module.

The proof will be given below. As mentioned in the introduction, Theo-
rem 5.3 is implicit in the work of Kitchloo-Morava [25].

REMARK 5.4. It turns out that the twisted representations R( bGI)k are
projective modules over R(G) , hence (by the Quillen-Suslin theorem) free
modules over R(G) . That is, (C•; �) is a free resolution of the R(G) -module

Rk(G) . If bG(k)
I

�= GI � U(1), the R(G) module R( bGI)k is isomorphic to
R(GI) , and the claim follows from the Pittie-Steinberg theorem [33, 39]. The
general case requires a mild generalization of the Pittie-Steinberg theorem [29].

REMARK 5.5. Theorem 5.3 implies the Freed-Hopkins-Teleman theo-
rem (1) : By acyclicity of the chain complex C• the spectral sequence Er

collapses at the E2 -term, with

E2
p;q = E1p;q = (Rk(G) if p = 0 and q even ,

0 otherwise .

Since Rk(G) is free Abelian as a Z -module, there are no extension problems
and we conclude that KG

1 (G;Ak+h_) = 0, while

(45) KG
0 (G;Ak+h_) = Rk(G)

as modules over R(G) . This isomorphism takes the ring homomorphism
R(G) ! KG

0 (G;Ak+h_) to the quotient map R(G) ! Rk(G) , hence (45) is
an isomorphism of rings.

The statement of Theorem 5.3 can be simplified. Indeed, the chain complex
C• breaks up as a direct sum of sub-complexes C•(�); � 2 Λ�

k , given as

Cp(�) = LjIj=p+1
Z[Waff•k+h_�]WI�as :

Similarly the map � : C0 ! Rk(G) splits into a direct sum of maps� : C0(�) ! Z[Waff•k+h_�]Waff�as = (Z for � 2 Λ�;reg
k+h_ ,

0 otherwise .
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66 E. MEINRENKEN

Finally the chain map R(G) ,! C• splits into inclusions of Z[Waff•k+h_�]W�as

as the term corresponding to I = f0g . Clearly, (C•(�); �) depends only on
the open face B[((k + h_)∆J) of B[((k + h_)∆) containing � . Indeed, since
Z[Waff•k+h_�] = Z[Waff=WJ] we have

Cp(J) = LjIj=p+1
Z[Waff=WJ]WI�as :

The differential � is again given by anti-symmetrization as in (41), but with�I now an element of Z[Waff=WJ]WI�as . The map � : C0 ! Rk(G) translates
into the zero map C0(J) ! 0 unless J = f0 : : : ; lg , in which case it becomes
a map � : C0(J) ! Z , given as the direct sum for i = 0; : : : ; l of the maps

Z[Waff]
Wi�as ! Z ; Xw nww 7!X

W

nw(�1)length(w) :
The map R(G) ! C• is again the inclusion of the summand of C0(J)
corresponding to I = f0g . Theorem 5.3 is now reduced to the following
simpler statement :

THEOREM 5.6. The homology H•(J) of the chain complex C•(J) vanishes
in degree p > 0 , while

H0(J) = (0 if J 6= f0; : : : ; lg ;
Z if J = f0; : : : ; lg :

In the second case, the isomorphism is induced by the augmentation map� : C0(J) ! Z .

5.5 PROOF OF THEOREM 5.6

Throughout this section, we consider a given face ∆J of the alcove. We may
think of Waff=WJ as the Waff -orbit of a point in the interior of the face ∆J ,
under the standard action of Waff on t . To be concrete, let us take the point �℄J .
Denote its orbit by

V = Waff : �℄J � t :
We introduce a length function length : V ! Z , defined in terms of the
function on Waff as

length(x) = minflength(w) j w 2 Waff ; x = w : �℄Jg ; x 2 V :
Geometrically, length(x) is the number of affine root hyperplanes in the Stiefel
diagram, crossed by a line segment from any point in the interior of ∆ to the
point x .
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For any I let tI;+ be defined by the inequalities h�i; �i + Æi;0 � 0 for�i 2 SI . (Equivalently, it is the affine cone over ∆ at �℄I .) Then tI;+ is a

fundamental domain for the WI -action. Let V I � V
I � V be the subsets

V I = V \ int(tI;+) ; V
I = V \ tI;+ :

Every WI � Waff -orbit contains a unique point in V
I
. Thus, if x 2 V , we

may choose u 2 WI with u : x 2 V
I
. Then

length(u : x) � length(x) ;
with equality if and only if x 2 V

I
and hence u : x = x .

The elements

(46) �I(x) = SkI(x) ; x 2 V I

form a basis of the Z -module Z[V]WI�as . (Note that if x 2 V
InV I then

SkI(x) = 0.) Let us describe the differential in terms of this basis. ForjIj = p+ 1 and x 2 V I , we have :��I(x) = pX
r=0

(�1)r SkÆrI(x) :
In general, the terms SkÆrI(x) are not standard basis elements, since x need
not lie in VÆrI . Letting ur 2 WÆr I be the unique element such that urx 2 VÆrI ,
we have

(47) ��I(x) = nX
r=0

(�1)r+length(ur)�ÆrI(urx) :
5.5.1 COMPUTATION OF H0(J) . Consider C0(J) = Lp

i=0 Z[V]Wi�as .
For all i; j and all x , the elements Skj(x); Ski(x) are homologous since
they differ by the boundary of Skij(x) 2 C1(J) . Together with Skj(x) =
(�1)length(w) Skj(wx) for w 2 Wj , this implies

Ski(x) � (�1)length(w) Ski(wx)

for w 2 Wj . Since the subgroups Wj generate Waff , this holds in fact for allw 2 Waff . Thus

Skj(w : �℄J ) � Ski(w : �℄J ) � (�1)length(w) Ski(�℄J )

for all i; j , and all w 2 Waff . If J 6= f0; : : : ; lg , the choice of any i =2 J gives
Ski(�℄J ) = 0. This proves that H0(J) = 0. Suppose now that J = f0; : : : ; lg .
The augmentation map C0(J) ! Z is described in terms of the basis by�i(x) 7! (�1)length(x) . It has a right inverse Z ! C0(J); 1 7! �0(�℄0) . Hence the
induced map in homology Z ! H0(J) is injective, but also surjective since
Ski(x) � (�1)length(x) �0(�℄0) . Thus H0(J) = Z in this case.
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5.5.2 COMPUTATION OF Hl(J) . Suppose � 2 Cl(J) = Z[V] . Then �� = 0
if and only if Sk0���bi���l � = 0 for all i . That is, � is invariant under every
reflection �i 2 Waff , hence under the full affine Weyl group Waff . But since �
has finite length this is impossible unless � = 0. This shows that Hl(J) = 0.

5.5.3 COMPUTATION OF Hp(J); 0 < p < l . To simplify notation, we will
write C• instead of C•(J) . (This should of course not be confused with the
chain complex C• considered in previous sections.) Introduce a Z -filtration

0 = F�1C• � F0C• � F1C• � : : : ;
where FNCp is spanned by basis elements (46) with jIj = p + 1 and
length(x) � N . Formula (47) shows that for any basis element �I(x) 2 FNCp ,

(48) ��I(x) =X
r

0
(�1)r�ÆrI(x) mod FN�1Cp�1 ;

where the sum is only over those r for which x 2 VÆrI � V I , i.e. ur = 1 (other
terms lower the filtration degree since length(urx) < length(x) unless x = urx ).
In particular, � preserves the filtration. Define operators hi : Cp ! Cp+1 on
basis elements, as follows :

hi�I(x) = ((�1)r�I[fig(x) if ir�1 < i < ir ;
0 if i = ir, some r .

Note that hi preserves the filtration : hi(FNCp) � FNCp+1 . Let

Ai = id�hi� � �hi :
Then Ai is a chain map, which is homotopic to the identity map.

LEMMA 5.7. Let p > 0 . For any basis element �I(x) 2 FNCp we have
Ai �I(x) 2 FN�1Cp unless i 2 I and x =2 V I�fig . In the latter case,

Ai�I(x) = �I(x) mod FN�1Cp :
Proof. Write I = fi0; : : : ; ipg where i0 < � � � < ip . Using (48) we obtain

(49) hi��I(x) =X
r

0
(�1)rhi�ÆrI(x) mod FN�1Cp ;

summing over indices with x 2 VÆr I � V I . The calculation of Ai�I(x) divides
into two cases :
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CASE 1 : i 2 I . Thus i = is for some index s , and (�1)rhi�ÆrI(x) = 0
unless r = s , in which case one obtains �I(x) . Hence all terms in the sum
(49) vanish, except possibly for the term r = s which appears if and only if
x 2 VÆsI = V I�fig . That is,

hi��I(x) = (�I(x) mod FN�1Cp if x 2 V I�fig ;
0 mod FN�1Cp if x =2 V I�fig :

(using the assumption p > 0). Since hi�I(x) = 0 this shows Ai�I(x) 2 FN�1Cp

unless x =2 V I�fig , in which case Ai�I(x) = �I(x) mod FN�1Cp .

CASE 2 : i =2 I . Exactly one of the terms in �hi�I(x) reproduces �I(x) .
The remaining terms are organized in a sum similar to (47) :�hi�I(x) = �I(x)�X

r

00
(�1)rhi�ÆrI(x) mod FN�1Cp ;

where the sum is over all r such that x 2 V I[fig�firg . But x 2 VÆrI ()
x 2 V I[fig�firg , since

VÆrI = V I[fig�firg \ V I :
Hence the sums

P0
r and

P00
r are just the same. This proves that

Ai �I(x) 2 FN�1Cp .

Consider now the product A := A0 � � �Al . By iterated application of the
lemma, we find that if 0 < p < l , then A�I(x) 2 FN�1Cp (because at least
one index i is not in I ). Thus

A : FNCp ! FN�1Cp

for 0 < p < l . The chain map A is chain homotopic to the identity, since
each of its factors is. Thus, if � 2 FNCp is a cycle,� � A� � � � �AN+1� = 0 :
This proves that Hp(J) = 0 for 0 < p < l , and concludes the proof of
Theorem 5.6.

REMARK 5.8. N. Kitchloo pointed out a more elegant proof of Theo-
rem 5.6, along the lines of Kitchloo-Morava [25]. His argument produces
an inclusion of C•(J) as a direct summand of S• 
Z[WJ] Z , where S• is the
simplicial complex with respect to the Stiefel diagram, and Z[WJ] acts on
Z by the sign representation. The acyclicity of C•(J) then follows from the
WJ -equivariant acyclicity of S• .

Achevé de composer le 18 juin 2009 à 15 : 18
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A. APPENDIX

RELATIVE DIXMIER-DOUADY BUNDLES

For any map f : Y ! X , let cone( f ) be its mapping cone, obtained by
gluing cone(Y) = Y � I=Y � f0g with X by the identification (y; 1) � f (y) .
Let H•( f ) = H•(cone( f )) denote the relative cohomology of f . Equivalently
H•( f ) is the cohomology of the algebraic mapping cone C•( f ) of the
cochain map C•(Y) ! C•(X) , i.e. Cp( f ) = Cp�1(Y)� Cp(X) with differential
d(a; b) = (d a� f �b; dc) . If f is a smooth map of manifolds, the cohomology
H•( f ;R) may be computed using differential forms, replacing the singular
cochains in the above.

The group H2( f ) has a geometric interpretation as isomorphism classes of
relative line bundles, i.e. pairs (L;  Y ) , where L is a Hermitian line bundle
over X , and  Y : Y � C ! f �L is a unitary trivialization of its pull-back
to Y . The class of a relative line bundle is the Chern class of the line bundleeL ! cone( f ) , obtained by gluing cone(Y)� C with L via  Y .

Similarly, H3( f ) is interpreted in terms of relative Dixmier-Douady bundles,
i.e. pairs (A; EY) , where A ! X is a Dixmier-Douady bundle, and EY ! Y
is a Morita trivialization of the pull-back f �A .

Given such a triple, one can construct a Dixmier-Douady bundleeA ! cone( f ) . First stabilize : Let H be a fixed infinite-dimensional Hilbert
space, and K = K(H) = the compact operators. Then E st

Y = EY 
H defines
a Morita trivialization of the pull-back of Ast = A
 K . Since the Hilbert
space bundle E st

Y is stable, it is equivariantly isomorphic to the trivial
bundle Y � H . Define eA by gluing the trivial bundle cone(Y) � K with
f �Ast , using this identification. We define the relative Dixmier-Douady class
DD(A; EY ) := DD(eA) 2 H3( f ) .

Tensor products and opposites of relative Dixmier-Douady bundles are
defined in the obvious way. A Morita trivialization (A; EY ) is a Morita
trivialization C 'EX A together with an isomorphism EY

�= f �EX intertwining
the module structures. From the usual Dixmier-Douady theorem, one deduces
that DD(A; EY) is the obstruction to the existence of a relative Morita
trivialization.

More generally, one can define relative equivariant Dixmier-Douady bun-
dles ; these are classified by an equivariant class DDG(A; EY ;  Y ) 2 H3

G( f ) :=
H3( fG) , where fG : YG ! XG is the induced map of Borel constructions. (For
the stabilization procedure, one replaces H with the stable G -Hilbert space
HG containing all G -representations with infinite multiplicity.)

L’Enseignement Mathématique, t. 55 (2009)



ON THE QUANTIZATION OF CONJUGACY CLASSES 71

B. APPENDIX

REVIEW OF KASPAROV K -HOMOLOGY

In this section we review Kasparov’s definition of K -homology [23, 22]
for C� -algebras. Excellent references for this material are the books by
Higson-Roe [19] and Blackadar [5]. Suppose A is a Z2 -graded C� -algebra,
equipped with an action of a compact Lie group G by automorphisms. An
equivariant Fredholm module over A is a triple x = (H; %;F) , where H is
a G -equivariant Z2 -graded Hilbert space, % : A ! L(H) is a morphism of
Z2 -graded G -C� -algebras, and F 2 L(H) is a G -invariant odd operator such
that for all a 2 A ,

(F2 � I)%(a) � 0 ; (F� � F)%(a) � 0 ; [F; %(a)] � 0 :
Here � denotes equality modulo compact operators. There is an obvious
notion of direct sum of Fredholm modules over A . One defines a semi-group
KG

0 (A) , with generators [x] for each Fredholm module over A , and equivalence
relations

[x]+ [x0] = [x� x0] and [x0] = [x1] ;
provided x0; x1 are related by an ‘operator homotopy’ xt = (H; %;Ft)
(cf. [5, 19]). One then proves that every element in this semi-group has an
additive inverse, so that K0

G(A) is actually a group. More generally, for q � 0
one defines Kq

G(A) = K0
G(A
Cl(Rq)) . This has the mod 2 periodicity property

Kq+2
G (A) = Kq

G(A) , which is then used to extend the definition to all q 2 Z . The
assignment A! Kq

G(A) is a homotopy invariant, contravariant functor, depend-
ing only on the Morita isomorphism class of A . It has the stability property,
Kq

G(A
KG) = Kq
G(A) , where KG are the compact operators on a G -Hilbert-

space HG containing all G -representations with infinite multiplicity. With this
definition, let us now review some basic examples of twisted K -homology
groups KG

q (X;A) = Kq
G(Γ0(X;A)) for Dixmier-Douady bundles A ! X .

EXAMPLE B.1. Let A ! pt be a G -equivariant Dixmier-Douady bundle
over a point. Disregarding the G -action, we have A �= K(E) for some Hilbert
space E . As in Section 2.2 the action G ! Aut(A) defines a central extensionbG of G by U(1) . The group bG acts on E , in such a way that the central
circle acts with weight 1. Let V be a bG -module where the central circle acts
with weight �1. Then the Hilbert space H = V 
 E is a G -module. Letting� : C ! L(H) be the action by scalar multiplication, the triple (H; %; 0) is a
G -equivariant Fredholm module over C(pt) = C . This construction realizes
the isomorphism R( bG)�1 ! KG

0 (pt;A) .
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EXAMPLE B.2. Let M be a compact Riemannian G -manifold, and D
an invariant first order elliptic operator acting on a G -equivariant Z2 -graded
Hermitian vector bundle E = E+� E� . Suppose also that a finite rank
Z2 -graded G -Dixmier-Douady bundle A ! M acts on E , where the
action is equivariant and compatible with the grading. Let H be the space
of L2 -sections of E , with the natural representation % of Γ(M;A) , and
F = D(1 + D2)�1=2 2 L(H) . The commutators of F with elements %(a)
for a 2 Γ(M;A) are pseudo-differential operators of degree �1, hence are
compact. Thus (H; %;F) is an equivariant Fredholm module over Γ(M;A) ,
defining a class in KG

0 (M;A) .

EXAMPLE B.3. [24, p. 114] Let M be a compact Riemannian G -manifold,
and A = Cl(TM) its Clifford bundle. Take E = V T�M , H its space of
L2 -sections, and % the usual action of sections of Γ(M;Cl(TM)) . Let D =
d+ d� be the de Rham-Dirac operator. By B.2 above, we obtain a Fredholm
module (H; %;F) over Γ(M;Cl(TM)) , defining a class [M] 2 KG

0 (M;Cl(TM)) .
This is the Kasparov fundamental class of M . (Actually, Cl(TM) is a Dixmier-
Douady bundle only if dim M is even. If dim M is odd, one can use the
isomorphism KG

0 (M;Cl(TM)) = KG
1 (M;Cl+(TM)) if needed.)

EXAMPLE B.4. Let H be a closed subgroup of G , and B ! pt an
H -Dixmier-Douady bundle of finite rank. As explained in B.1, any class in
KH

0 (pt;Cl(g=h)
 B) is realized by a Fredholm module of the form (E ; %; 0) ,
where E is a Hilbert space of finite dimension. Let bE = G�H E . The action of
Cl(T(G=H)) defines a Dirac operator, which together with the action of IG

H(B)
yields a Fredholm module and hence an element of KG

0 (G=H; IG
H(B)) . This con-

struction realizes the isomorphism KH
0 (pt;B 
 Cl(g=h)) ! KG

0 (G=H; indG
H(B))

if B has finite rank. As remarked in Section 2.1, all H -Dixmier-Douady
bundles over pt are Morita isomorphic to finite rank ones.
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