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THE PLANAR ROOK ALGEBRA AND PASCAL’S TRIANGLE

by Daniel FLATH, Tom HALVERSON and Kathryn HERBIG � )

Surely the best known recursively defined integers are the binomial
coefficients

�n
k

� = �n�1
k�1

� + �n�1
k

�
appearing in Pascal’s triangle. They admit

many interpretations, the most familiar of which are

1. Algebraic : Expansion of (x+ y)n with recursion

(x+ y)n = (x+ y)n�1(x+ y) :
2. Combinatorial : Number of subsets of [1; n] = f1; 2; : : : ; ng with recursion

[1; n] = [1; n� 1] [ fng :
In this paper we propose a linear algebra interpretation rooted in represen-

tation theory. We construct natural vector spaces V n
k with dim V n

k = �n
k

�
and

direct sum decompositions V n
k = V n�1

k�1 � V n�1
k . The vector spaces are natural

in the sense that the V n
k are the spaces of all the distinct irreducible represen-

tations of an algebra CPn , the planar rook algebra. The direct sums describe
decomposition upon restriction arising from an embedding CPn�1 ! CPn .
Even the multiplicative structure of the binomial coefficients arises from the
representation theory of the planar rook algebras, as we discover upon de-
composition of tensor product representations.

The planar rook algebra is an example of a “diagram algebra”, which
for our purposes is a finite-dimensional algebra with a basis given by a
collection of diagrams and multiplication described combinatorially by diagram
concatenation. When the basis diagrams can be drawn without edge crossings,� ) Halverson and Herbig were supported in part by National Science Foundation Grant
DMS-0100975.

Achevé de composer le 5 juin 2009 à 10 : 23



78 D. FLATH, T. HALVERSON AND K. HERBIG

we get a planar algebra. There is a growing theory of planar algebras initiated
by V. Jones (see [Jo]) that uses a more refined definition of planarity than
what we give here.

The main goal of this paper is to work out the combinatorial representation
theory of the planar rook algebra CPn and to show that it is governed by the
theory of binomial coefficients. The following are the main results :

1. A classification of the irreducible CPn -modules (Theorems 2.1 and 3.2).
2. An explicit decomposition of the regular representation of CPn into a

direct sum of irreducibles (Theorem 3.2).
3. A computation of the Bratteli diagram for the tower of algebras

CP0 � CP1 � CP2 � : : : (Section 4).
4. A computation of the character table for CPn .

1. THE PLANAR ROOK MONOID

Let Rn denote the set of n� n matrices with entries from f0; 1g having
at most one 1 in each row and in each column. For example,

R2 = ��0 0
0 0

� ;�1 0
0 0

� ;�0 1
0 0

� ;�0 0
1 0

� ;�0 0
0 1

� ;�1 0
0 1

� ;�0 1
1 0

�� :
We call these “rook matrices”, since the 1s correspond to the possible
placement of non-attacking rooks on an n � n chessboard. The rank of a
rook matrix is the number of 1s in the matrix, and so to construct a rook
matrix of rank k , we choose k rows and k columns in

�n
k

�2
ways and then

we place the 1s in k! ways. Thus the cardinality of Rn is given byjRn j = nX
k=0

�
n
k

�2

k! :
We let R0 = f?g . There is no known closed formula for the sequencejRn j , n � 0, which begins 1; 2; 7; 34; 209; 1546; 13327; : : : (see [OEIS,
A002720]). The set Rn contains the identity matrix and is closed under
matrix multiplication, so Rn is a monoid (a set with an associative binary
operation and an identity, but where elements are not necessarily invertible).
The invertible matrices in Rn are the permutation matrices (having rank n ) ;
they form a subgroup isomorphic to the symmetric group Sn � Rn .
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THE PLANAR ROOK ALGEBRA 79

We associate each element of Rn with a rook diagram, which is a graph
on two rows of n vertices, such that vertex i in the top row is connected to
vertex j in the bottom row if and only if the corresponding matrix has a 1
in the (i; j) -position. For example in R6 we have

•

•

•

•

•

•

•

•

•

•

•

•..................................................................................................................................................................... ................................................ $
0BBBBBB�

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCCA :
Matrix multiplication is accomplished on diagrams d1 and d2 by placing
d1 above d2 and identifying the vertices in the bottom row of d1 with the
corresponding vertices in the top row of d2 (i.e., connecting the dots). For
example,

d1 = •
•

•
•

•
•

•
•

•
•.................................................................................................................................................................. ......................................................

d2 = •
•

•
•

•
•

•
•

•
•....................................... .............................................................................. =

•
•

•
•

•
•

•
•

•
•.............................................................................. = d1d2

is the diagrammatic representation of the matrix product,0BBBB�
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

1CCCCA
0BBBB�

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

1CCCCA =
0BBBB�

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCA :
We say that an element of Rn is planar if its diagram can be drawn

(keeping inside of the rectangle formed by its vertices) without any edge
crossings. We let Pn � Rn denote the set of planar elements of Rn . Our R6

example is not planar. In the multiplication example above, the diagram d2

is planar and d1 is not. Below are a few more examples of elements in P5

(of rank 4, 2, 0, and 5, respectively). The fourth diagram is the identity in
P5 � R5 , and the third corresponds to the matrix of all 0s.

•
•

•
•

•
•

•
•

•
•................................. .............................................................................. ................................. •

•
•
•

•
•

•
•

•
•....................................... ...................................................... •

•
•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. ................................. = id :

It is easy to see (by drawing diagrams) that the product of two planar rook
diagrams is again planar, so Pn also forms a submonoid of Rn . The only
invertible (rank n ) planar rook diagram is the identity id .

To construct a planar rook diagram of rank k , we choose k vertices from
each row. Then there is exactly one non-crossing way to connect them. Thus

Achevé de composer le 5 juin 2009 à 10 : 23
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there are
�n

k

�2
planar rook diagrams of rank k , and the number of planar rook

diagrams is jPn j = nX
k=0

�
n
k

�2 = �2n
n

� ;
where we will let P0 = f?g . The last equality above is a well-known binomial
identity. To see it in this setting, choose any n of the 2n vertices in the rook
diagram. Let k be the number of these chosen vertices that are in the top
row (thus there are n� k in the bottom row). Connect (in the one and only
non-crossing way) the k chosen chosen vertices from the top row to the k
not chosen vertices from the bottom row.

The algebraic properties of the rook monoid are studied in [So], [Gr], [Re],
and [Ha]. The planar rook monoid appears in [Re] as the order preserving
“partial permutations” of f1; 2; : : : ; ng , and some combinatorics of Pn arise
in [HL].

2. PLANAR ROOK DIAGRAMS ACTING ON SETS

In this section, we construct
�n

k

�
-dimensional vector spaces V n

k , for
0 � k � n , and we will define a natural action (as linear transformations) of
Pn on these vector spaces. In this way, we can homomorphically represent
multiplication in Pn by multiplication of

�n
k

�� �n
k

�
matrices. Furthermore, we

show that these matrix representations are all different, are irreducible, and
include all the irreducible representations of Pn .

For a planar rook diagram d , let � (d) and �(d) denote the vertices in
the top and bottom rows of d , respectively, that are incident to an edge. For
example,

if d = •
•

•
•

•
•

•
•

•
•.............................................................................. ....................................... then � (d) = f2; 3; 4g and �(d) = f1; 2; 5g :

The sets � (d) and �(d) uniquely determine d since there is only one planar
way to connect the vertices by edges. We can view d as a 1-1 function with
domain �(d) and codomain � (d) . So, in our example, d(1) = 2, d(2) = 3,
and d(5) = 4.

Now consider a subset S = fs1; : : : ; skg of order k chosen from the setf1; 2; : : : ; ng . If d 2 Pn and if S is a subset of the domain �(d) of d , then
we can define an action of d on S by d(S) = fd(s1); d(s2); : : : ; d(sk)g . Notice
that d(S) and S have the same cardinality.
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THE PLANAR ROOK ALGEBRA 81

There are 2n subsets of f1; 2; : : : ; ng , and we define a vector space V n

over C with dimension 2n having a basis fvSg labeled by these subsets
S � f1; : : : ; ng . Thus

(2.1) V n = C -span
�

vS

�� S � f1; : : : ; ng	 :
We define an action of Pn on V n as follows. For d 2 Pn and S � f1; : : : ; ng ,
define

(2.2) dvS = (vd(S) if S � �(d) ,

0 otherwise :
This defines an action of d on the basis of V n which we then extend linearly

to all of V n . To illustrate with some examples, if we again let d = •
•

•
•

•
•

•
•

•
•........................................................................ .................................... ,

then dvf1;2;5g = vf2;3;4g , dvf2;5g = vf3;4g , and dvf1;2;3g = 0.
It follows from diagram multiplication that (d1d2)vS = d1(d2(vS)) . This

means that V n is a “module” for Pn . The map from Pn to the set End(V n)
of linear transformations on V n is an injective monoid homomorphism.

For 0 � k � n consider the subspace of V n spanned by subsets of
cardinality k ,

(2.3) V n
k = C-span

�
vS

�� S � f1; : : : ; ng and jSj = k
	 :

Since the action of Pn preserves the size of the subset (or sends it to the
zero vector) we see that the V n

k are Pn -invariant submodules. The following
theorem describes the structure of V n as a module for Pn .

THEOREM 2.1. For all n � 0 and 0 � k � n, we have

(a) V n
k is a Pn -module, and the V n

k are non-isomorphic for different k .

(b) V n
k is irreducible (it contains no proper, nonzero Pn -invariant subspaces).

(c) V n decomposes as

V n �= nL
k=0

V n
k ;

where each irreducible module appears with multiplicity 1 .

Proof. (a) The fact that V n
k is a module follows from the discussion

preceding the theorem. Since the dimensions of these modules are binomial
coefficients, the only possible isomorphism could occur between V n

k and V n
n�k .

The element of the form �` = •
•

•
•

•
•

•
•

•
•.......................... .......................... .......................... ; which has ` vertical edges, acts by

zero on V n
k , with k > ` . So the set of these �` , 0 � ` � n , will distinguish

the V n
k from one another.
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82 D. FLATH, T. HALVERSON AND K. HERBIG

(b) To show that V n
k is irreducible, suppose that W � V n

k is a
Pn -invariant subspace, and that 0 6= w 2 W . We expand w in the basis asw = PjSj=k �S vS , with �S 2 C . Since w 6= 0, there must be at least one�S 6= 0. Let d 2 Pn be the unique planar diagram with � (d) = �(d) = S .
Then dw = �SvS , so vS 2 W . Now let S0 be any other subset of order k and
let d0 2 Pn be the unique planar diagram with �(d0) = S and � (d0) = S0 .
Then, d0vS = vd0(S) = vS0 , so vS0 2 W . This shows that all the basis vectors
of V n

k must be in W and so W = V n
k .

(c) The fact that V n decomposes as stated follows immediately from the
fact that each vS appears in exactly one of the V n

k . In Section 3 we will
prove that these are all of the irreducible representations by showing that these
are the only representations that show up in the regular representation of Pn

acting on itself by multiplication.

Let P0 = f?g and view P0 � P1 � P2 � : : : by placing a vertical edge
on the right of each diagram in Pn�1 , i.e., an edge that connects the n th

vertex in each row. For example,

•
•

•
•

•
•

•
•

•
•........................................................................ ................................. !

•
•

•
•

•
•

•
•

•
•

•
•........................................................................ ................................. ................................. :

It is natural to look at the restriction of the action of Pn on V n
k to the

submonoid Pn�1 . To this end, we construct the following subspaces of V n
k :

V n
k;n = C-span

�
vS

�� jSj = k; n 2 S
	 ;bV n

k;n = C-span
�

vS

�� jSj = k; n =2 S
	 :

If d 2 Pn�1 , then by the way we embed Pn�1 into Pn , we have n 2 � (d)
and n 2 �(d) . Thus it is always the case that for a subset S � f1; : : : ; ng , we
have n 2 d(S) if and only if n 2 S . This means that under the action defined
in (2.2), the subspaces V n

k;n and bV n
k;n are Pn�1 -invariant.

From the point of view of Pn�1 , we see that

V n
k;n �= V n�1

k�1 and bV n
k;n �= V n�1

k ;
since, in the first case, we are simply ignoring the element n , and in the second
case, the basis vectors already are of the form vS with S � f1; : : : ; n � 1g .
Thus, the vector space V n

k is irreducible under the Pn action, but it breaks
up into the following direct sum of irreducible Pn�1 -invariant subspaces,

(2.4) V n
k
�= V n�1

k�1 � V n�1
k ;

where we drop the V n�1
k�1 if k = 0 and drop the V n�1

k if k = n .

L’Enseignement Mathématique, t. 55 (2009)



THE PLANAR ROOK ALGEBRA 83

3. THE PLANAR ROOK ALGEBRA

In this section we let Pn act on itself by multiplication; this is called the
regular representation of Pn .

The Artin-Wedderburn theory of semisimple algebras (see for example
[CR, Ch. IV] or [HR, Sec. 5]) states that if the regular representation of an
algebra decomposes into a direct sum of irreducible modules, then (1) every
irreducible module of the algebra is isomorphic to a summand of the regular
representation and (2) every module of the algebra is isomorphic to a direct
sum of irreducible modules. With this motivation, we construct an algebra
associated to Pn , the planar rook algebra, and show explicitly that its regular
representation reduces into a direct sum of modules each isomorphic to one
of the V n

k .
We define CPn to be the C -vector space with a basis given by the elements

of Pn . That is,

CPn = C-span
�

d
�� d 2 Pn

	 = nX
d2Pn

�d d
��� �d 2 C

o :
This is the vector space of all (formal) linear combinations of planar rook
diagrams, and it has dimension equal to the cardinality jPn j = �2n

n

�
. This

complex vector space CPn is also equipped with a multiplication given by
extending linearly the multiplication of diagrams in Pn . This makes CPn an
algebra over C which we call the planar rook algebra.

It is interesting to notice that the diagram associated to the zero matrix,

•
•

•
•

•
•

•
•

•
•

•
• , is a basis element in this vector space, whereas the 0 vector is the

linear combination with all the �d = 0.
Since CPn is spanned by planar rook diagrams, an element d 2 Pn acts

naturally on the vector space CPn by multiplication on the left. That is, if
d 2 Pn and v =Pb2Pn

�bb 2 CPn we have

dv = d
�X

b2Pn

�b b
� =X

b2Pn

�b db :
Multiplication of planar rook diagrams has the property that rank does not

go up, i.e.,
rank(d1d2) � min

�
rank(d1); rank(d2)

� :
Thus if we let Xn

k be the span of the diagrams with rank less than or equal
to k , we have a tower of Pn -invariant subspaces Xn

0 � Xn
1 � � � � � Xn

n .
These Xn

k are not irreducible and they do not decompose the space CPn into
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84 D. FLATH, T. HALVERSON AND K. HERBIG

Pn -invariant subspaces. To accomplish such a decomposition, we first need to
change to a different but closely related basis.

If d1; d2 2 Pn we say that d1 � d2 if the edges of the diagram
d1 are a subset of the edges of the diagram d2 . If d1 � d2 , we letjd2 n d1 j = rank(d2) � rank(d1) , or the number of edges in d2 minus the
number of edges in d1 . Now define

(3.1) xd =X
d0�d

(�1)jdnd0jd0 :
For example, if d =

•
•

•
•

•
•

•
•

•
•........................................................................ ................................. then

xd = •
•

•
•

•
•

•
•

•
•........................................................................ ................................. �

•
•

•
•

•
•

•
•

•
•.................................... ................................. �

•
•

•
•

•
•

•
•

•
•.................................... ................................. �

•
•

•
•

•
•

•
•

•
•........................................................................ +

•
•

•
•

•
•

•
•

•
•................................. +

•
•

•
•

•
•

•
•

•
•.................................... +

•
•

•
•

•
•

•
•

•
•.................................... �

•
•

•
•

•
•

•
•

•
• :

Under any ordering on the planar rook diagrams that extends the partial
ordering given by rank (i.e., a comes before b if rank(a) < rank(b) ), the
transition matrix from the basis fd j d 2 Png to the set fxd j d 2 Png is upper
triangular with 1s on the diagonal. Thus fxd j d 2 Png is also a basis for CPn .

This change of basis was necessary in order to obtain the conclusion
“dxa = 0 otherwise” in (3.2) below. Notice how close this statement is
to (2.2). We are now realizing the subset action inside of CPn .

PROPOSITION 3.1. Let a; d 2 Pn . Then

(3.2) dxa = (xda if � (a) � �(d) ,

0 otherwise :
Proof. If � (a) � �(d) then multiplication on the left (or top) by d on

any d0 � a simply rearranges the top vertices of d0 to their corresponding
position in da , and the result follows by the definition of xda .

If � (a) * �(d) , then let i 2 � (a) such that i =2 �(d) . Consider the
diagram pi , which is the same as the identity element id except that the edge
connecting the i th vertex in each row is removed. For example, in P5 , we
have p4 = •

•
•
•

•
•

•
•

•
•.......................... .......................... .......................... .......................... : Then dpi = d , since i =2 �(d) , and

pixa =X
d0�a

(�1)jand0jpid
0 = X

d0�a
i2� (d0)

(�1)jand0jpid
0 + X

d0�a
i=2� (d0)(�1)jand0jpid

0 :
Now, if i =2 � (d0) then pid0 = d0 , and if i 2 � (d0) then pid0 is the same
diagram as d0 except with the edge connected to the i th vertex (in the top
row of d0 ) removed. There is a bijection between fd0 � d j i 2 � (d0)g and
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THE PLANAR ROOK ALGEBRA 85fd0 � d j i =2 � (d0)g given by removing the edge connected to the i th vertex

(equivalently, multiplying by pi ). This bijection changes the sign (�1)jand0j ,
so the two summations displayed above cancel one another giving pixa = 0.
Thus dxa = dpixa = 0.

For diagrams a and d we have rank(a) = rank(da) if and only if� (a) � �(d) . Thus from (3.2), we see that dxa = 0 unless rank(a) = rank(da) .
It follows that the subspace

W n;k = C -span
�

xa

�� rank(a) = k
	

is a Pn -invariant subspace of CPn . Notice that the action of d on xa in
(3.2) does not change the bottom row �(a) . That is, �(a) = �(da) when� (a) � �(d) . Thus, if we let

W n;k
T = C -span

�
xa

�� rank(a) = k; �(a) = T
	 ;

then for each such T , we have that W n;k
T is a Pn -invariant subspace of W n;k

and for any subset U with jUj = jT j = k , we have

(3.3) W n;k
T
�= W n;k

U
�= V n

k as Pn -invariant subspaces of CPn :
The last isomorphism comes from the fact that the action of d 2 Pn on xa

in (3.2) is the same as the action of d on vS in (2.2), where S = � (a) .
For subsets S; T of f1; : : : ; ng with jSj = jT j , we define

xS;T = xd ; where d is the unique planar rook diagram
with � (d) = S and �(d) = T:

For example, the diagram in the example after equation (3.1) is denoted
xf2;3;4g;f1;2;4g . In this notation, the isomorphism in (3.3) is given explicitly on
basis elements by xS;T $ xS;U $ vS .

Inside of W n;k we have found
�n

k

�
copies of the Pn -invariant subspaces

W n;k
T (one for each choice of T ), and each of these is isomorphic to V n

k . Thus
we have explicitly constructed the decompositions in part (a) of the following
theorem. Part (b) follows from the fact that every irreducible module must
appear as a component in the regular representation.

THEOREM 3.2.

(a) The decomposition of CPn into Pn -invariant subspaces is given by

CPn = nL
k=0

W n;k = nL
k=0

LjT j=k
W n;k

T
�= nL

k=0

�n
k

�
V n

k :
(b) The set fVn

k j 0 � k � ng is a complete set of irreducible CPn -modules.

Achevé de composer le 5 juin 2009 à 10 : 23
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In the previous theorem, the modules W n;k are the “isotypic components”
which consist of a sum of all of the irreducible subspaces that are isomorphic
to V n

k . Notice also that the dimension and the multiplicity of V n
k in CPn

is
�n

k

�
. Finally, since the irreducible modules that appear in CPn are exactly

the V n
k , we know that these form a complete set of irreducible modules as

claimed in Theorem 2.1.

PROPOSITION 3.3. For subsets S; T;U;V of f1; : : : ; ng with jSj = jT j
and jUj = jV j we have

xS;T xU;V = (xS;V if T = U ,

0 if T 6= U .

Proof. If T 6= U , then there exists i 2 T with i =2 U or i 2 U with i =2 T .
The same argument as in Proposition 3.1 shows that xS;T xU;V = 0. If T = U
then let a; b 2 Pn be the diagrams such that xS;T = xa and xU;V = xb . By (3.2)
we have that axb = xab and a0xb = 0 for every a0 � a with a0 6= a . So by
the definition of xa we see that xaxb = xab .

Proposition 3.3 tells us that the xS;T behave just like the matrix units
Ei;j which have a 1 in row i and column j and 0 everywhere else. This
correspondence reveals the structure of the planar rook algebra, given in the
following corollary.

COROLLARY 3.4. CPn
�= nL

k=0
Mat

��n
k

�; �n
k

��
, where Mat(m;m) is the

algebra of all m� m complex matrices.

4. THE BRATTELI DIAGRAM IS PASCAL’S TRIANGLE

The binomial coefficients have appeared in a very natural way throughout
the representation theory of Pn . For example, by comparing dimensions on
both sides of the decomposition of V n in Theorem 2.1, we get

(4.1) 2n = nX
k=0

�
n
k

� :
By computing dimensions on both sides of the decomposition of CPn in
Theorem 3.2, we have
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(4.2)

�
2n
n

� = nX
k=0

�
n
k

�2 :
By comparing dimensions of the decomposition of V n

k into irreducible modules
for Pn�1 in (2.4), we get

(4.3)

�
n
k

� = �n� 1
k � 1

�+ �n� 1
k

� :
These are well-known binomial identities. For a beautiful discussion of
combinatorial proofs of binomial identities such as these, see [BQ]. We can
view the work in this article as representation-theoretic interpretations of these
binomial identities.

Pascal’s triangle itself arises naturally through the representation theory
of Pn . The Bratteli diagram (see for example [GHJ]) for the tower
P0 � P1 � P2 � : : : is the infinite rooted graph whose vertices are the
irreducible representations V n

k and whose edges correspond to the restric-
tion rules from Pn to Pn�1 . Specifically, there is an edge from V n

k to V n�1`
if and only if V n�1` appears as a summand when V n

k is viewed as a module
for Pn�1 . According to the rules in (2.4) we get the Bratteli diagram shown
in Figure 1. The dimensions of these modules give Pascal’s triangle.

V0
0�� �� �� �� ��

V1
0 V1

1�� �� �� ��

V2
0 V2

1 V2
2�� �� ��

V3
0 V3

1 V3
2 V3

3�� ��V4
0 V4

1 V4
2 V4

3 V4
4��

����������

��������
������

���� ��
V5

0 V5
1 V5

2 V5
3 V5

4 V5
5...

...
...

...
...

...

FIGURE 1
The Bratteli diagram for the tower of containments of planar rook monoids

P0 � P1 � P2 � � � � ; counting dimensions gives Pascal’s triangle
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5. THE CHARACTER TABLE IS PASCAL’S TRIANGLE

For each irreducible representation V n
k , its character �n

k is the C -valued
function that gives the trace of the d 2 Pn as a linear transformation on V n

k .
In this section, we show that the table of character values for Pn is given by
the first n rows of Pascal’s triangle. The characters are linearly independent
functions (over C ), so from the character of any finite representation you can
identify the isomorphism class of the representation.

For a planar rook diagram d 2 Pn we say that an edge in d is vertical if
it connects the i th vertex in the top row to the i th vertex in the bottom row
for some 1 � i � n . We also say that a vertex that is not incident to an edge
in d is an isolated vertex. Suppose that d is a diagram such that its i th vertex
in the top row is isolated. As in Section 3, let pi be the diagram obtained
from the identity id by deleting the i th edge. Then pid = d and d0 = dpi has
the property that the i th vertex in both the top and bottom rows is isolated.
For example,

d =
•
•

•
•

•
•

•
•

•
•.................................... .................................... ................................. = •

•
•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. = p3

•
•

•
•

•
•

•
•

•
•.................................... .................................... ................................. = d

and
d =

•
•

•
•

•
•

•
•

•
•.................................... .................................... .................................

p3 = •
•

•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. =

•
•

•
•

•
•

•
•

•
•.................................... ................................. = d0 :

Now, the point of all this is that for any matrix trace Tr we have
Tr(ab) = Tr(ba) , so in this case Tr(d) = Tr(p3d) = Tr(dp3) = Tr(d0) . So by
iterating this process, we see that for any matrix trace we have Tr(d) = Tr(d0) ,
where d0 is the diagram d with all of its non-vertical edges removed.

Furthermore, we can use the following trick to move all of the vertical
edges to the left of the diagram. In the pictures below, we see that d = RLd
and d0 = LdR has the vertical edge moved one position to the left. Furthermore
Tr(d) = Tr(RLd) = Tr(LdR) = Tr(d0) .

d =
•
•

•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. = •

•
•
•

•
•

•
•

•
•................................. ................................. .................................... ................................. = R

•
•

•
•

•
•

•
•

•
•................................. ................................. .................................... ................................. = L

•
•

•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. = d

and

L =
•
•

•
•

•
•

•
•

•
•................................. ................................. .................................... .................................

d =
•
•

•
•

•
•

•
•

•
•................................. ................................. ................................. .................................

R =
•
•

•
•

•
•

•
•

•
•................................. ................................. .................................... ................................. =

•
•

•
•

•
•

•
•

•
•................................. ................................. ................................. ................................. = d0 :

By iterating this process, we see that the character value of d will be the
same as the character value on one of the diagrams,�` =

•

•

•

•

•

• � � �� � � •

•........................................... ........................................... ........................................... ...........................................| {z }` •

•

•

•

•

• � � �� � � •

• ; 0 � ` � n ;
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where ` is the number of vertical edges in d . The set of diagramsf�` j 0 � i � ng is analogous to a set of conjugacy class representatives in
a group in the sense that any trace is completely determined by its value on
one of these diagrams.

In the next theorem, we show that the trace of d 2 Pn on the representation
V n

k is a binomial coefficient. The proof is to count subsets fixed by d .

THEOREM 5.1. For 0 � k � n and d 2 Pn , the value of the irreducible
character is given by �n

k(d) = (�k̀

�
if k � ` ,

0 if k > ` ;
where ` is the number of vertical edges in d .

Proof. The elements d 2 Pn permute (or send to 0) the vectors vS which
span V n

k . The vS -vS entry of the matrix of d will be 1 if d(S) = S and 0
otherwise. This tells us that the character �n

k(d) gives the number of fixed
points of d . By our discussion above it suffices to let d = �` . Now, �` will
fix S if and only if S � f1; : : : ; `g . And for vS to be a basis element of V n

k ,
S must be a subset of f1; : : : ; ng with cardinality k . Thus, the trace is the
number of subsets of f1; : : : ; `g of cardinality k , or

�
k̀

�
, as desired.

6. FURTHER THOUGHTS

Here are a few more observations that make fun exercises.
1. Let  n(d) denote the trace of d 2 Pn on the regular representation

CPn . Then by a counting argument  n(d) = �n+`` � , where ` is the number
of vertical edges in d . Using the decomposition of the regular representation
into irreducibles we arrive at the binomial identity

nX
k=0

�
n
k

��n
k(d) = X̀

k=0

�
n
k

��
k̀

� = �n+ `` � :
2. In the xd basis, the irreducible character values are�n

k(xd) = (1 if d has exactly k vertical edges and no other edges ;
0 otherwise :
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3. The center of CPn has a basis given by the elements

z` =X
a

xa ; 0 � ` � n ;
where the sum is over all diagrams a with exactly ` vertical edges and no
other edges.

4. The character ring An of CPn is the algebra with basis given by the
n+ 1 functions �n

k(d) = �k̀

�
(where d has ` vertical edges), for 0 � k � n .

For An these functions have domain 0 � ` � n . Since the irreducible characters
form a basis of this algebra, we can re-express the product of any two characters
in terms of the basis. The structure constants for the character ring come from
the multinomial coefficients in the following polynomial identity (see [Ri,
§1.4]) : �

x
i

��
x
j

� = i+jX
k=max(i;j)� k

i+ j� k; k � i; k � j

��
x
k

� :
In the application to An , the upper limit in the sum is taken to be
k = max(i + j; n) since

�x
k

� = 0 for k > n � x = ` . This gives the
corresponding decomposition of the tensor product (see [CR, §11] for an
explanation of tensor products) V n

i 
V n
j =Lk

� k
i+j�k;k�i;k�j

�
V n

k . This illustrates
that even the multiplicative structure of the binomial coefficients is captured
in the representation theory of Pn .

5. Some of the first examples of diagram algebras are the group algebra
of the symmetric group, with a basis of permutation diagrams, and the Artin
braid group, with a basis of braid diagrams. The Brauer algebra was defined
in the 1930s, and its planar version, the Temperley-Lieb algebra, is important
in statistical mechanics. The papers [CFS], [HR], [GL], and the references
therein, give definitions and examples of these and other diagram algebras.
The planar rook algebra was constructed to be a diagram algebra whose
Bratteli diagram is Pascal’s triangle. A good project is to find algebras whose
Bratteli diagrams match the lattice of other recursively defined integers such
as the Stirling numbers or the trinomial numbers.

6. The planar rook algebra also has representation theoretic importance as
the centralizer algebra of the general linear group G = GL1(C) = Cnf0g . Let
V = V0 � V1 such that V0 and V1 are the 1-dimensional G -modules where
z(v0+ v1) = v0+ zv1 for vi 2 Vi and z 2 G . Then CPn

�= EndG(V
n) , which
is the algebra of all endomorphisms of the tensor product V
n that commute
with G (i.e., CPn is the centralizer of G on V
n ). This is analogous to
classical Schur-Weyl duality, where the group algebra of the symmetric group
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CSn is the centralizer of GLk(C) on W
n , for k � n , where W = Ck is the
representation of GLk(C) by matrix multiplication on column vectors. If we
replace a simple tensor with the subset indexed by the binary string in its
subscripts — for example v1 
 v0 
 v1 
 v1 
 v0 , 10110 , f1; 3; 4g —
then the action on simple tensors is the same as the action of Pn on subsets
in Section 2.
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