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Hilbert’s 13th problem for algebraic groups

Zinovy Reichstein

Abstract. The algebraic form of Hilbert’s 13th problem asks for the resolvent degree RD.n/ of
the general polynomial f .x/ D xn C a1xn�1 C � � � C an of degree n, where a1; : : : ; an are
independent variables. The resolvent degree is the minimal integer d such that every root of
f .x/ can be obtained in a finite number of steps, starting with C.a1; : : : ; an/ and adjoining
algebraic functions in 6 d variables at each step. Recently Farb and Wolfson defined the
resolvent degree RDk.G/ for every finite group G and any base field k of characteristic 0.
In this setting RD.n/ D RDC.Sn/, where Sn denotes the symmetric group. In this paper we
extend their definition of RDk.G/ to an arbitrary algebraic group G over an arbitrary field k.
We investigate the dependency of this quantity on k and show that RDk.G/ 6 5 for any field k
and any connected group G. The question whether RDk.G/ can be bigger than 1 for any field k
and any algebraic group G over k (not necessarily connected) remains open.
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1. Introduction

The algebraic forms of Hilbert’s 13th problem asks for the resolvent degree RD.n/,
which is the smallest integer d such that a root of the general polynomial

f .x/ D xn C a1x
n�1
C � � � C an

can be expressed as a composition of algebraic functions of at most d variables with
complex coefficients. It is known that RD.n/ D 1 when n 6 5, and that 1 6 RD.n/ 6
n � ˛.n/, where ˛.n/ is an unbounded but very slow growing function of n. Clas-
sical upper bounds of this form have been recently sharpened by Wolfson [51],
Sutherland [45] and Heberle–Sutherland [25]. On the other hand, it is not known
whether RD.n/ > 1 for any n > 6. For a brief informal introduction to Hilbert’s 13th
problem, see [34, Section 1]. For a more detailed discussion, see [17, 20].
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Farb and Wolfson [20] defined the resolvent degree RDk.G/ for every finite group
G over an arbitrary base field k of characteristic 0. In this setting RD.n/ D RDC.Sn/,
and it is not known whether RDk.G/ can ever be > 1.

In this paper we extend their definition of RDk.G/ to an arbitrary algebraic group
G (not necessarily finite, affine or smooth) defined over an arbitrary field k. Our
definition proceeds in three steps. First we define the level of a finite field extension
(Definition 4.1), then the resolvent degree of a functor (Definition 7.3), then the
resolvent degree of an algebraic group (Definition 10.1). Our first main result is the
following.

Theorem 1.1. Let G be a connected algebraic group over a field k. Then:

(a) RDk.G/ 6 5.
(b) Moreover, if G has no simple components of type E8, then RDk.G/ 6 1.

Note that Theorem 1.1 was announced (in a weaker form and without proof) in
Section 8 of my survey [34]. We will also investigate the dependence of RDk.G/ on
the base field k. Our main results in this direction are Theorems 1.2 and 1.3 below.

Theorem 1.2. Let G be an algebraic group defined over k. Then RDk.G/ D
RDk0.Gk0/ for any field extension k0=k.

The case where k0 is algebraic over k is fairly straightforward (see Proposi-
tion 8.3 (b)); the main point here is that the extension k0=k can be arbitrary. In particular,
if G is defined over Z, when Theorem 1.2 tells us that RDk0.Gk0/ D RDk.Gk/ for any
two fields k and k0 of the same characteristic. In arbitrary characteristic, we prove the
following.

Theorem 1.3. Let G be a smooth affine group scheme over Z. Denote the connected
component of G by G0. Assume that G0 is split reductive and G=G0 is finite over Z.
Let k be a field of characteristic 0. Then RDk.Gk/ > RDk0.Gk0/ for any other
field k0.

Theorem 1.3 bears a resemblance to [5, Theorem 2.4] and [35, Theorem 1.5],
which assert analogous inequalities for essential dimension. The proofs in [5] and [35]
study the behavior of essential dimension under specialization, and here we take a
similar approach. In particular, Proposition 5.1, which underlies the proofs of both
Theorems 1.2 and 1.3, resembles [35, Theorem 1.2]. Note, however, that this analogy
is not perfect. The results we obtain for resolvent degree in this paper are stronger.
Analogous results for essential dimension in [5] and [35] require additional assumptions.
If we replace resolvent degree by essential dimension, then Theorem 1.3 will fail even
in the case, where G is an abstract finite group; see [5, Example 3.1]. Similarly,
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Proposition 5.1 will fail if we replace the level by the essential dimension; see [35,
Lemma 9.1 (c)].

We also remark that both Theorems 1.2 and 1.3 apply in the classical setting of
Hilbert’s 13th problem, whereG is the symmetric group Sn (or any other abstract finite
group), viewed as a group scheme over Z.

A key role in our proof of Theorem 1.1 (b) will be played by a theorem of Tits, which
asserts that if G is a simple group over k of any type other than E8 and T ! Spec.K/
is aG-torsor, then T can be “split by radicals,” i.e., T splits over some radical extension
ofK; see Section 16. Tits asked whether the same is true for simple groups of type E8.
Using the arguments in Section 16, one readily sees that a positive answer to this
question would imply the following.

Conjecture 1.4. RDk.G/ 6 1 for any connected algebraic group G over any field k.

Theorem 1.1 (a) (or more precisely, Proposition 16.1 (a)) may thus be viewed as a
partial answer to Tits’ question. Note that it is not known whether RDk.G/ can be > 1
for any field k and any algebraic group G defined over k (not necessarily connected).

The remainder of this paper is structured as follows. Sections 2 and 3 are devoted
to preliminary material on essential dimension of finite-dimensional algebras and
field extensions. Section 4 defines the level of a finite field extension and explores its
elementary properties. Section 5 studies how the level changes under specialization.
Section 6 introduces the level d closure of a field. The resolvent degree of a functor
is introduced in Section 7. This notion parallels the notion of essential dimension of
a functor, due to Merkurjev, Berhuy and Favi [1] but the type of functor we allow is
more restrictive. Much of the work towards proving Theorems 1.1–1.3 is, in fact, done
in the general setting of functors in Sections 8 and 9. Section 10 introduces the notion
of resolvent degree of an algebraic group. In Section 11 we study the resolvent degree
of infinitesimal groups and abelian varieties. The proof of Theorem 1.2 is completed
in Section 12, the proof of Theorem 1.3 in Section 13, and the proof of Theorem 1.1 in
Sections 14–16. In the last section we show that Conjecture 1.4 follows from a positive
answer to a long-standing open question of Serre (Question 17.1).

The main focus of this paper is on the aspects of the subject which have not been
previously investigated: resolvent degree of connected groups and dependence of
resolvent degree on the base field. However, many of the preliminary results overlap
with existing literature and some have classical roots. In particular, Section 4 overlaps
with [20, Section 2], Section 10 with [20, Section 3]. Section 6 elaborates on the
short note of Arnold and Shimura [6, pp. 45–46]; there is also some overlap between
Section 14 and [51, Section 4]. I have tried to indicate these connections throughout the
paper. I have also included independent characteristic-free proofs for most background
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results, with the goal of making the exposition largely self-contained. The arguments
in this paper are mostly algebraic and valuation-theoretic, with only a few exceptions
(e.g., in Section 14). I have not included references to classical literature; an interested
reader can find them in [20] or [51, Appendix B].

2. Preliminaries on finite-dimensional algebras

LetK be a field andA be finite-dimensionalK-algebra. We will say thatA descends
to a subfieldK0 ofK if there exists aK0-algebra A0 such that A'K A0 ˝K0 K. Here
'K stands for isomorphism of algebras over K. We will sometimes say that A=K
descends to A0=K0.

Lemma 2.1. Let k � K be a field extension, A be a finite-dimensional K-algebra,
and S a finite subset of A. Then there exist an intermediate subfield k � K0 � K and
a finite-dimensional K0-algebra A0 over K0 such that:
� K0 finitely generated over k.
� A=K descends to A0=K0, i.e., A is K-isomorphic to A0 ˝K0 K. In particular, we

may identify A0 with a K0-subalgebra of A.
� S � A0.

Proof. Choose a K-vector space basis b1; : : : ; bn in A. Write bi � bj D
Pn
hD1 c

h
ij bh

for every i , j D 1; : : : ; n and s D
Pn
hD1 ˛

h
s bh for every s 2 S . Let

K0 D k
�
chij ; ˛

h
s j i; j; h D 1; : : : ; n and s 2 S

�
and A0 be the K0-subalgebra of A generated by b1; : : : ; bn. Then one readily sees that
K0 is finitely generated over k, the natural map A0 ˝K0 K ! A is an isomorphism
over K, and S � A0.

Definition 2.2. LetK be a field containing k and A be a finite-dimensionalK-algebra.
The essential dimension edk.A=K/ is the minimal value of the transcendence degree
trdegk.K0/, where the minimum is taken over all intermediate fields k � K0 � K
such that A=K descends to K0.

Lemma 2.3. LetK be a field containing k andA a finite-dimensionalK-algebra. Then
edk.A=K/ <1. Moreover, A=K descends to some A0=K0 such that K0 is finitely
generated over k and edk.A=K/ D edk.A0=K0/ D trdegk.K0/.

Proof. Descend A=K to A1=K1 so that d D trdegk.K1/ is the smallest possible, i.e.,
d D edk.A=K/. Note that a priori d is a non-negative integer or1. By Lemma 2.1,
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A1=K1 further descends to A0=K0, where k � K0 � K1 and K0 is finitely gener-
ated over k. By the minimality of d , edk.A=K/ D edk.A1=K1/ D edk.A0=K0/ D
trdegk.K0/ D d . Moreover, since K0 is finitely generated over k, d <1.

Lemma 2.4. Let k � k0 �K be fields and A be a finite-dimensionalK-algebra. Then:
(a) edk0.A=K/ 6 edk.A=K/.
(b) If k0 is algebraic over k, then edk0.A=K/ D edk.A=K/.
(c) There exists an intermediate field k � l0 � k0 such that l0 is finitely generated

over k and edl.A=K/ D edk0.A=K/ for any l0 � l � k0.

Proof. (a) SupposeA descends to a subfieldK0�K containing k such that trdegk.K0/
is as small as possible, i.e., trdegk.K0/ D edk.A=K/. Then A also descends to
k0K0, where the compositum is taken in K. Now edk0.A=K/ 6 trdegk0.k0K0/ 6
trdegk.K0/ D edk.A=K/.

(b) In view of part (a), it suffices to show that edk.A=K/ 6 edk0.A=K/. Indeed,
A descends to some intermediate field k0 � K 00 � K such that trdegk0.K 00/ D
edk0.A=K/. If k0 is algebraic over k, then edk.A=K/ 6 trdegk.K 00/D trdegk0.K0/D
edk0.A=K/.

(c) By Lemma 2.3, A=K descends to some A0=K0 such that k0 � K0 � K,
edk0.A=K/ D edk0.A0=K0/ D trdegk0.K0/ and K0 is generated by finitely many
elements over k0, say K0 D k0.a1; : : : ; am/.

Let x1; : : : ; xm be independent variables over k0. For each subset I D ¹i1; : : : ; irº �
¹1; 2; : : : ; mº, such that the elements ai1 ; : : : ; air are algebraically dependent
over k0, choose a polynomial 0 ¤ pI .xi1 ; : : : ; xir / 2 k

0Œxi1 ; : : : ; xir � such that
pI .ai1 ; : : : ; air / D 0. Now choose an intermediate field k � l0 � k0 such that l0
is generated (over k) by the coefficients of the polynomials pI for every such I . With
this choice of l0, any subset of ¹a1; : : : ; amº which is algebraically dependent over k0

remains algebraically dependent in l0. In other words, trdegl0.K0/ D trdegk0.K0/ and
thus

(1) edl0.A=K/ 6 trdegl0.K0/ D trdegk0.K0/ D edk0.A=K/:

By part (a), edl0.A=K/> edl.A=K/> edk0.A=K/ for any intermediate field l0� l�k0.
Now (1) tells us that both of these inequalities are, in fact, equalities, as desired.

3. Preliminaries on field extensions

We will be particularly interested in the case where the finite-dimensionalK-algebra
A is itself a field. In this case we will usually use the letter L in place of A and write
edk.L=K/ in place of edk.A=K/.



Z. Reichstein 6

Lemma 3.1. Let k � K � L be field extensions such that ŒL W K� <1.

(a) If Ksep is the separable closure of K in L, then edk.Ksep=K/ 6 edk.L=K/ and
edk.L=Ksep/ 6 edk.L=K/.

(b) If L is separable overK, and Lnorm is the normal closure of L, then edk.L=K/D
edk.Lnorm=K/.

(c) SupposeK � E � L is an intermediate extension. If E is separable overK, then
edk.E=K/ 6 edk.L=K/.

Proof. (a) Suppose L=K descends to L0=K0. Denote the separable closure of K0
inL0 by .K0/sep. ThenKsep=K descends toKsep

0 =K0,L=Ksep descends toL0=.K0/sep

and part (a) follows.
(b) is proved in [7, Lemma 2.3].
(c) In view of part (a), it suffices to show that edk.E=K/ 6 edk.Ksep=K/. In other

words, we may replace L by Ksep and thus assume without loss of generality that L
is separable over K. By (b), we may further replace L by its normal closure over K
and thus assume that L is Galois over K. Then E D LH , where H is a subgroup
of G D Gal.L=K/. By [7, Lemma 2.2], L=K descends to some L0=K0, where
k � K0 � K, trdegk.K0/ D edk.L=K/, and L0 is a G-invariant subfield of L. Then
E=K descends to LH0 =K0. This tells us that edk.E=K/ 6 trdegk.K0/ D edk.L=K/,
as desired.

We will say that a field extensionL=K is simple if ŒL WK� <1 andL is generated
by one element over K. In other words, L ' KŒx�=.f .x//, where f .x/ 2 KŒx� is
an irreducible polynomial over K. By the primitive element theorem, every finite
separable extension is simple.

Lemma 3.2. Suppose a field extension L=K of finite degree descends to L0=K0. Then
L=K is simple if and only if L0=K0 is simple.

Proof. One direction is obvious: if L0 D K0.a/ is simple, then L D K.a/ is also
simple.

To prove the converse, assume thatL=K is simple and set nD ŒL WK�D ŒL0 WK0�.
If K0 is a finite field, then so is L0. In this case L0=K0 is separable and hence, simple.
Thus, we may assume thatK0 is infinite. It suffices to show thatL0 contains an element
of degree n over K0. View L0 as the set of K0-points of the n-dimensional affine
space An, and L as the set of K-points of An.

LetX �An be the subscheme of An determined by the condition that for x 2AnK0 ,
1;x; : : : ; xn�1 are linearly dependent. More precisely, suppose b1; : : : ; bn is aK0-basis
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of L0. For simplicity, let us assume that b1 D 1. Write

(2) bibj D

nX
hD1

chij bh;

where the structure constants chij lie in K0. Set x D x1b1 C � � � C xnbn, where
x1; : : : ; xn are independent variables. Using formulas (2), for every i > 0 we can
express xi in the form xi D pi;1b1 C � � � C pi;nbn, where each pi;j is a polynomial in
x1; : : : ; xn with coefficients in K0. We now define X to be the hypersurface in AnK0
cut out by the polynomial

det

0BBB@
p1;1 p1;2 � � � p1;n

p2;1 p2;2 � � � p2;n
:::

:::
: : :

:::

pm;1 pm;2 � � � pm;n

1CCCA D 0:
For any field extension F=K0, an F -point .˛1; : : : ; ˛n/ 2 X.F / represents an element
x D ˛1b1 C � � � C ˛nbn of L0 ˝K0 F such that 1; x; : : : ; xn�1 are linearly dependent
over F .

In particular, X.K0/ is the set of elements of L0 of degree 6 n � 1 over K0 and
X.K/ is the set of elements of L of degree 6 n � 1 over K. We know that L=K is
simple; hence, X ¨ An. That is, U D An nX is a non-empty Zariski open subscheme
of An defined over K0. Since K0 is an infinite field, we conclude that U.K0/ ¤ ;. In
other words, L0=K0 is simple, as claimed.

Lemma 3.3. Let k � K � L be fields such that L=K is simple. Assume K 0=K is
another field extension (not necessarily finite), and L0 D K 0L be a compositum of K 0

and L over K. Then edk.L0=K 0/ 6 edk.L=K/.

Note that Lemma 3.3 is immediate from the definition of edk.L=K/ in the
case, where L0 ' L˝K K

0 or equivalently, ŒL0 W K 0� D ŒL W K�. The only (slight)
complication arises from the fact that ŒL0 W K 0� may be smaller than ŒL W K�.

Proof. Set nD ŒL WK� and d D edk.L=K/. ThenL=K descends to some intermediate
field k � K0 � K such that trdegk.K0/ D d . That is, there exists a field extension
L0=K0 such that L 'K L0 ˝K0 K, where 'K0 denotes an isomorphism of fields
over K0.

By Lemma 3.2, L0=K0 is simple. That is, L0 'K0 K0Œx�=.f .x//, where f .x/ 2
K0Œx� is a polynomial of degree n, irreducible over K0. Then L 'K KŒx�=.f .x//.
Now let f .x/ D f1.x/ : : : fr.x/ be an irreducible decomposition of f .x/ over K 0.
A compositum L0 of L and K 0 is isomorphic to K 0Œx�=.fi .x// for some i , say,
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L0 'K0 K
0Œx�=.f1.x//. Denote the degree of f1.x/ by n1 D ŒL0 W K 0� and the roots

of f1 in the algebraic closure of K by ˛1; : : : ; ˛n1 . Since each ˛i is a root of
f .x/ 2 K0Œx�, each ˛i algebraic over K0. Hence, the coefficients of f1.x/, being
elementary symmetric polynomials in ˛1; : : : ; ˛n1 , are also algebraic over K0. This
shows that f1.x/ 2 K

alg
0 Œx�, where Kalg

0 is the algebraic closure of K0 in K. In other
words, L0=K 0 descends to Kalg

0 . Consequently,

edk.L0=K 0/ 6 trdegk
�
K

alg
0

�
D trdegk.K0/ D d D edk.L=K/;

as desired.

Lemma 3.4. Let k � K � L be fields such that ŒL W K� < 1. Then there exist
intermediate extensions K D K.0/ � K.1/ � � � � � K.r/ D L such that K.i/=K.i�1/

is simple and edk.K.i/=K.i�1// 6 edk.L=K/ for every i D 1; : : : ; r .

Proof. Set d D edk.L=K/. By definition, L=K descends to L0=K0, where k �
K0 � K and trdegk.K0/ D d . Let ˛1; : : : ; ˛r be generators for L0 over K0 and set
K
.i/
0 D K0.˛1; : : : ; ˛i / and K.i/ D K.˛1; : : : ; ˛i /. We obtain the following diagram:

K D K.0/
� �
!K.1/

� �
!� � �

� �
!K.r/ D L

K0 D K
.0/
0
� �
!K

.1/
0
� �
!� � �

� �
!K

.r/
0 D L0:

By our construction, the extension K.i/=K.i�1/ is simple for each i D 1; : : : ; r .
Moreover,

edk
�
K.i/=Ki�1

�
6 trdegk

�
K
.i�1/
0

�
D d

because K.i/=K.i�1/ descends to K.i/0 =K
.i�1/
0 for each i .

4. The level of a finite field extension

We now define the level of a field extension, following Dixmier [17, Section 2].

Definition 4.1. Let k be a base field, K be a field containing k, and L=K be a field
extension of finite degree. I will say that L=K is of level 6 d if there exists a diagram
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of field extensions

(3)

Km

L
:::

K2

K1

K0 K

such that ŒKi W Ki�1� <1 and edk.Ki=Ki�1/ 6 d for every i D 1; : : : ;m. The level
of L=K is the smallest such d ; I will denote it by levk.L=K/.

Remarks 4.2. (1) The same notion was introduced by Brauer [2] (in characteris-
tic 0) under the name of resolvent degree. In this paper we will reserve the term
“resolvent degree” for the resolvent degree of an object of a functor; see Defini-
tion 7.3. If L=K is a finite separable extension, then we may view L=K as an
object of the functor of étale algebras, and the two notions coincide; see Exam-
ple 7.5.

(2) (Cf. [20, Lemma 2.5.3].) If k �K �L0 �L and ŒL WK� <1, then levk.L0=K/6
levk.L=K/. Indeed, any tower (3) showing that levk.L=K/ 6 d also shows that
levk.L0=K/ 6 d .

(3) (Cf. [20, Lemma 2.5.1].) Taking m D 1 and K1 D L in (3), we see that
levk.L=K/ 6 edk.L=K/.

(4) We may assume without loss of generality that each extension Ki=Ki�1 in
the tower (3) is simple. Indeed, by Lemma 3.4, we may replace Ki=Ki�1
by a sequence of simple extensions without increasing the essential dimen-
sion.

(5) Definition 4.1 formalizes the classical notion of composition of algebraic func-
tions. If K is a field of rational functions on some algebraic variety X defined
over k, then it is natural to think of K1 as being generated by algebraic
(multi-valued) functions on X in 6 edk.K1=K/ variables, and Ki as being
generated by compositions of i algebraic functions on X in 6 levk.L=K/ vari-
ables.
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(6) No examples where levk.L=K/ > 1 are known.

Lemma 4.3. Assume that k � k0 � K � L are fields and ŒL W K� <1. Then:
(a) (Cf. [20, Lemma 2.5.2].) levk.L=K/ > levk0.L=K/.
(b) Moreover, equality holds if k0 is algebraic over k.
(c) Furthermore, there exists an intermediate field k � l0 � k0 such that l0 is finitely

generated over k and levl.L=K/ D levk0.L=K/ for every field l between l0
and k0.

Proof. Choose a tower K D K0 � K1 � � � � � Km, as in Definition 4.1, and apply
parts (a), (b) and (c) of Lemma 2.4, respectively, to each intermediate extension
Ki=Ki�1. In part (c), let li=k be a finitely generated field extension obtained by
applying Lemma 2.4 (c) to Ki=Ki�1. Now set l0 to be the compositum of l1; : : : ; lm
in k0 over k.

Lemma 4.4 (cf. [20, Lemma 2.5.3]). Assume that k � K � L are fields and
ŒL W K� <1 and let K � K 0 be another field extension (not necessarily finite). Then

levk.K 0L=K 0/ 6 levk.L=K/:

Here K 0L denotes an arbitrary compositum of K 0 and L over K.

Proof. Set d D levk.L=K/ and choose a tower K D K0 � K1 � � � � � Km as
in Definition 4.1. By Remark 4.2 (4) we may assume that each intermediate extension
Ki=Ki�1 is simple. Now consider the tower

K 0 D K 00 � K
0
1 � � � � � K

0
m:

Here K 0m D K 0Km is some compositum of K 0 and Km, and for i D 0; : : : ; m � 1,
K 0i D K 0Ki is the compositum of K 0 and Ki in K 0m. Since K � L � Km, K 0L
embeds into K 0Km over K. Since Ki=Ki�1 is simple, Lemma 3.3 tells us that
edk.K 0i=K

0
i�1/ 6 d . We conclude that levk.K 0L=K 0/ 6 d .

Lemma 4.5. Assume that k�K �L are fields and ŒL WK�<1. Then levk.L=K/D 0
if and only if L embeds in a compositum xkK over k. In particular, if k is algebraically
closed, then levk.L=K/ D 0 if and only if L D K.

Proof. The second assertion is an immediate consequence of the first.
To prove the first assertion, suppose L � xkK. In other words, L=K is generated

by elements ˛1; : : : ; ˛m 2 L which are algebraic over k. Consider the tower of simple
extensions

k D k0 � k1 � � � � � km;
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where ki D k.˛1; : : : ; ˛s/. Since trdegk.ki /D 0, we have edk.ki=ki�1/D 0 for every
i D 1; : : : ; m. Now consider the tower

K D k0K � k1K � � � � � kmK D L:

By Lemma 3.3, edk.kiK=ki�1K/ 6 edk.ki=ki�1/ D 0. Thus, levk.L=K/ D 0.
Conversely, suppose levk.L=K/ D 0. Then there exists a tower (3) of field

extensions such thatL�Km (overK) and edk.Ki=Ki�1/D 0 for each i . Consequently,
Ki is generated over Ki�1 by elements that are algebraic over k. This implies that Km
embeds in xkK over K, and hence, so does L.

Recall that a finite field extension L=K is called radical if there exists a tower (3)
such that Ki D Ki�1.�/, where �ni 2 K for some ni > 1, i D 1; : : : ; m.

Lemma 4.6. LetK be a field containing k andL=K be a finite field extension. Assume
that L=K is
(a) solvable,
(b) radical, or
(c) purely inseparable.
Then levk.L=K/ 6 1.

Proof. By definitionL=K is solvable if there exists a towerK DK0 �K1 � � � � �Km,
as in (3), such that L embeds intoKm overK andKi is of the formKi�1.�i / for each
i D 1; : : : ; m, where �i is a root of a polynomial of the form

(i) xni � ai or

(ii) xni � x � ai

for some positive integer ni and ai 2 Ki�1.

Note that (i) covers the case, where �i is a root of unity (ai D 1), and (ii) is only
needed when ni D char.k/ > 0. In both cases Ki D k.�/Ki�1 and thus

edk.Ki=Ki�1/ 6 edk.k.�/=k.ai // 6 1:

Here the first inequality follows from Lemma 3.3. The second inequality is obvious,
since trdegk.k.ai // 6 1. Thus, levk.L=K/ 6 1. This proves (a).

(b) is proved by the same argument, except that case (ii) does not occur.
(c) follows from (b) because every purely inseparable extension is radical.

Lemma 4.7 (cf. [20, Lemma 2.7]). Let K be a field containing k and L=K and M=L
be field extensions of finite degree. If levk.L=K/ 6 d and levk.M=L/ 6 d , then

levk.M=K/ 6 d:
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Proof. Choose a towerKDK0�K1� � � � �Km forL=K as in (3), and a similar tower
L D L0 � L1 � � � � � Ln for M=L. That is, L embeds into Km over K, M embeds
into Ln over L, edk.Ki=Ki�1/ 6 d and edk.Lj =Lj�1/ 6 d for every i D 1; : : : ; m
and j D 1; : : : ; n. By Remark 4.2 (4) we may assume that all intermediate extensions
Ki=Ki�1 andLj =Lj�1 are simple. Let xK be an algebraic closure ofK. Fix embeddings
Km ,! xK and Ln ,! xK and consider the tower of simple extensions

K0 � K1 � � � � � Km D KmL0 � KmL1 � � � � � KmLn;

whereKmLi is the compositum ofKm andLi in xK. Clearly,M � Ln �KmLn. Thus,
it suffices to show that

(i) edk.Ki=Ki�1/ 6 d for every i D 1; : : : ; m and

(ii) edk.KmLj =KmLj�1/ 6 d for every j D 1; : : : ; n.

(i) follows from our choice of the tower K0 � K1 � � � � � Km. On the other hand, by
Lemma 3.3, edk.KmLj =KmLj�1/ 6 edk.Lj =Lj�1/, and by our choice of the tower
L0 � L1 � � � � Ln, edk.Lj =Lj�1/ 6 d for every j D 1; : : : ; n. This proves (ii).

Lemma 4.8 (cf. [20, Lemma 2.11]). Let k � K � L be fields. Assume that the field
extension L=K is finite and separable. Denote the normal closure of L over K by
Lnorm. Then levk.L=K/ D levk.Lnorm=K/.

Proof. By Remark 4.2 (2), levk.L=K/ 6 levk.Lnorm=K/. We will thus focus on
proving the opposite inequality.

Set d D lev.L=K/. By the primitive element theorem, L 'K KŒx�=f .x/ for
some irreducible polynomial f .x/ 2 KŒx�. Then f .x/ splits into a product of linear
factors over Lnorm. Denote its roots in Lnorm by ˛1; : : : ; ˛n. Set Li D K.˛1; : : : ; ˛i /;
in particular, L0 D K. We claim that levk.Li=Li�1/ 6 d for each i D 1; : : : ; n. If
we can prove this claim, then applying Lemma 4.7 recursively, we obtain the desired
inequality

levk.Lnorm=K/ D levk.Ln=K/ 6 d D levk.L=K/:

It thus remains to prove the claim. Since Li is a composite of Li�1 and K.˛i / 'K L
for each i , Lemma 4.4 tells us that

levk.Li=Li�1/ D lev.Li�1K.˛i /=Li�1/ 6 levk.K.˛i /=K/ D levk.L=K/ D d;

as claimed.

Proposition 4.9 (cf. [20, Lemma 2.12]). Let k �K � L be fields, where ŒL WK� <1.
Assume that levk.L=K/ 6 d . Then the tower

K D K0 � � � � � Km
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of field extensions in Definition 4.1 can be chosen to have the following additional
properties.

(a) Each field extension Ki=KiC1 is simple and either separable or purely insepara-
ble.

(b) If Ki=Ki�1 is separable, then it is Galois.
(c) If Ki=Ki�1 is Galois, then Gal.Ki=Ki�1/ is a finite simple group.

Proof. We will start with a tower K D K0 � K1 � � � � � Km of Definition 4.1. By
Remark 4.2 (4), we may assume that each intermediate extension Ki=Ki�1 is simple.
We will now modify this tower in three steps (a), (b) and (c), so that it acquires properties
(a), (b), and (c) from the statement of the proposition, respectively. At each stage m
may increase and the fields Ki may change, but every Ki=Ki�1 will remain simple,
the largest field Km will either get larger or stay the same (and in particular, it will
continue to contain L), and the maximal value of edk.Ki=Ki�1/ will not increase (so
that it will remain 6 d ).

(a) LetKsep
i�1 be the separable closure ofKi�1 inKi . IfKi=Ki�1 is neither separable

nor purely inseparable, i.e.,Ki�1 ¨K
sep
i�1 ¨Ki , we insertKsep

i�1 betweenKi�1 andKi .
Note that Ki=K

sep
i�1 is simple because Ki=Ki�1 is, and Ksep

i�1=Ki�1 is simple by the
primitive element theorem. Now relabelK0;K1; : : : to absorb the newly inserted fields.
By our construction eachKi=Ki�1 is simple and either separable or purely inseparable.
The maximal value of edk.Ki=Ki�1/ does not increase by Lemma 3.1 (a).

(b) If K1=K0 is purely inseparable, do nothing. If K1=K0 is separable, replace
K1 by its normal closure Knorm

1 and Ki by Knorm
1 Ki for each i > 2. All newly

created extensions Knorm
1 =K0 and Knorm

1 Ki=K
norm
1 Ki�1 (i > 2), remain simple and

either separable or purely inseparable. Moreover, for every i > 2, edk.Knorm
1 =K0/ D

edk.K1=K0/ by Lemma 3.1 (b) and edk.Knorm
1 Ki=K

norm
1 Ki�1/ 6 edk.Ki=Ki�1/ by

Lemma 3.3.
Now relabel K0; K1; : : : and do the same for the extension K2=K1. That is,

if K2=K1 is purely inseparable, then do nothing. If K2=K1 is separable, replace
K2 by its normal closure Knorm

2 , and Ki by Knorm
2 Ki for every i > 3. Proceed

recursively: do the same thing for the extensionK3=K2, then (after suitably modifying
K3; : : : ; Km) for the extension K4=K3, etc. When all of these modifications are
completed, the resulting tower K D K0 � K1 � � � � � Km will have properties (a)
and (b).

(c) If Ki=Ki�1 is purely inseparable, do nothing. If it is Galois and G D

Gal.Ki=Ki�1/ is simple, again do nothing. If not – say if G has a proper normal
subgroupN – insertKNi betweenKi�1 andKi . By Lemma 3.1 (c), edk.Ki=KNi / and
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edk.KNi =Ki�1/ are both 6 edk.Ki=Ki�1/. Thus, the maximal value of edk.Ki=Ki�1/
does not increase. Proceeding recursively, we arrive at a tower of field extensions sat-
isfying (a), (b) and (c).

5. Extensions of valued fields

Throughout this section we will assume the following:

(1) k � K � L are fields and ŒL W K� <1.

(2) K and L are complete relative to a discrete valuation �WL� ! Z.

(3) We will denote the residue fields of k, K and L by k� , K� and L� , respectively.

Note that we do not require k to be complete. Our goal is to compare levk.L=K/ to
levk� .L�=K�/. Our main result is as follows.

Proposition 5.1. levk� .L�=K�/ 6 max¹levk.L=K/; 1º.

Our proof of Proposition 5.1 will rely on the following lemma comparing the
essential dimensions of L=K and L�=K� .

Lemma 5.2. In addition to notational conventions (1), (2), (3), assume that L=K is a
Galois extension, and the Galois group H D Gal.L=K/ is a finite simple group.

(a) Then one of the following holds.
(i) L=K is totally ramified and L� is purely inseparable over K�; or
(ii) L=K is totally unramified and L�=K� is anH -Galois extension, where the

H -action on L� is induced from the H -action on L.
(b) Moreover, if H is non-abelian and L=K is totally unramified, then

edk� .L�=K�/ 6 edk.L=K/:

Proof of Lemma 5.2. (a) Since K is complete, � is the unique valuation of L lying
over �jK� ; see [38, Proposition II.2.3 and Corollary II.2.2]. Thus, � remains invariant
under the action ofH , and this action descends toL� . In other words, the decomposition
groupD�.L=K/ is all ofH . LetKun=K be the largest unramified subextension ofL=K;
it exists by [38, Corollary 3 to Theorem III.5.3]. Clearly Kun is invariant under the
action ofH . Hence, Gal.L=Kun/ is a normal subgroup ofH . SinceH is simple, there
are only two possibilities: either

(i) Kun D K, i.e., L=K is totally ramified; or

(ii) Kun D L, i.e., L=K is unramified.
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In case (i),L� is purely inseparable overK� by [38, Corollary 3 to Theorem III.5.3].
In case (ii), the natural homomorphism

H D D�.L=K/! Aut.L�=K�/

is, in fact, an isomorphism of finite groups; see [38, Theorem III.5.3]. On the other
hand, since L=K is unramified, ŒL� W K� � D ŒL W K� D jH j. This tells us that L� is
Galois over K� with Galois group H .

(b) Now assume that H is a non-abelian simple group, and we are in case (ii). Set
d D edk.L=K/. By definition, L=K descends to L0=K0, where k � K0 � K and
trdegk.K0/ D d . By [7, Lemma 2.2], we may assume that L0 is invariant under H .
Recall that L D L0 ˝K0 K. Since H acts faithfully on L and trivially on K, it
acts faithfully on L0. The valuation � restricts to an H -invariant discrete valuation
on L0, and the H -action on L0 descends to an H -action on the residue field .L0/� .
Note however that a priori L0 and K0 may not be complete, and L0=K0 may be
ramified.

We claim that H acts faithfully of .L0/� . Let us assume for a moment that
this claim has been established. Then L�=K� descends to .L0/�=.K0/� , where
.K0/� denotes the residue field of K0. Indeed, the image of the natural map
.L0/� ˝.K0/� K� ! L� is surjective by the Galois correspondence, and hence, is
an isomorphism, because Œ.L0/� W .K0/� � D jH j D ŒL� W K� �. We thus conclude,
that

edk� .L�=K�/ 6 trdegk� .K0/� 6 trdegk.K0/ D d;

as desired. Here the second inequality follows from [5, Lemma 2.1], which is a special
case of Abhyankar’s lemma.

It remains to prove the claim. For each d > 0, letL>d
0 D ¹a 2L

� j �.a/> dº [ ¹0º.
In particular, L>0

0 is the valuation ring of � in L0, L>1
0 is the maximal ideal,

and L>0
0 =L>1

0 is, by definition, the residue field .L0/� . Let Id be the kernel of
the H -action on L>0

0 =L>dC1
0 . Then I0 � I1 � I2 � � � � is a decreasing sequence

of normal subgroups of H . Since H is simple, each Id is either all of H or 1.
Our goal is to show that I0 D 1. Assume the contrary: I0 D H . Consider two
possibilities.

� char..L0/�/ D 0. In this case I0 D H is a cyclic group; see [38, Corollary IV.2.2]
or [5, Lemma 2.2 (a)]. This contradicts our assumption that H is non-abelian.

� char..L0/�/ D p > 0. In this case I0 D H is of the form P Ë C , where P
is a p-group and C is a cyclic group of order prime to p; see [38, Corol-
lary IV.2.4]. Once again, this contradicts our assumption that H is simple and
non-abelian.
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This completes the proof of the claim and thus of Lemma 5.2.

Proof of Proposition 5.1. Let d D levk.L=K/. By Definition 4.1 there exists a tower

K D K0 � K1 � � � � � Km

of finite field extensions, where L embeds in Km over K and edk.Ki=Ki�1/ 6 d for
each i D 1; : : : ;m. SinceK is complete, so areK1; : : : ;Km; see [38, Proposition II.2.3].
By Proposition 4.9 we may assume that each KiC1=Ki is simple and either purely
inseparable or Galois with Gal.KiC1=Ki / a finite simple group. Passing to residue
fields, we obtain a tower

K� D .K0/� � .K1/� � � � � � .Km/�

such that L� embeds into .Km/� over k� . In view of Lemma 4.7 it now suffices to
show that

(4) levk� ..Ki /�=.Ki�1/�/ 6 max¹d; 1º for each i D 1; : : : ; m:

If Ki=Ki�1 is purely inseparable, then .Ki /�=.Ki�1/� is again purely inseparable.
By Lemma 4.6 (c), levk� ..Ki /�=.Ki�1/�/ 6 1, and (4) holds.

From now on we may assume thatKi=Ki�1 is Galois, andH D Gal.Ki=Ki�1/ is
a simple group. By Lemma 5.2 (a), L=K is either totally ramified or unramified.

If L=K is totally ramified, then .Ki /�=.Ki�1/� is again purely inseparable, so that
levk� ..Ki /�=.Ki�1/�/ 6 1, and (4) holds, as above.

Note also that ifH is abelian, then by Lemma 4.6 (a), levk� ..Ki /�=.Ki�1/�/ 6 1,
and once again, (4) holds.

We may thus assume that H is simple and non-abelian and L=K is unramified. In
this case

levk� ..Ki /�=.Ki�1/�/ 6 edk� ..Ki /�=.Ki�1/�/ 6 edk.Ki=Ki�1/ 6 d;

and once again, (4) follows. Here the first inequality is given by Remark 4.2 (3) and
the second by Lemma 5.2 (b).

6. The level d closure of a field

Definition 6.1. Let K be a field containing k, xK be an algebraic closure of K
and d > 1 be an integer. We define the level d closure K.d/ of K in xK to be the
compositum of all intermediate extensions K � L � xK such that ŒL W K� <1 and
levk.L=K/ 6 d . Clearly K.1/ � K.2/ � K.3/ � � � � . Up to isomorphism (over K)
the level d closure K.d/ depends only on K and not on the choice of xK. We will say
that K is closed at level d if K D K.d/, i.e., if K has no non-trivial extensions of
level 6 d .
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Remark 6.2. If d D 0, then K.0/ D xkK, where xk denotes the algebraic closure
of k and the compositum is taken in xK. In particular, K is closed at level 0
if and only if K contains an algebraic closure of k. This follows directly from
Lemma 4.5.

In the case, where k is an algebraically closed field and K D k.x1; : : : ; xn/ is a
purely transcendental extension, Definition 6.1 appeared in the short note of Arnold
and Shimura in [6, pp. 45–46]. In this section we will explore the properties of level d
closure. Our main result is Proposition 6.3 below. I assume that Arnold and Shimura
had something like Proposition 6.3 in mind, through I have not encountered any explicit
statements along these lines in the literature.

Proposition 6.3. Let k � K � E be fields and d > 0 be an integer.

(a) Consider an intermediate field K � L � xK such that ŒL W K� < 1. Then
levk.L=K/ 6 d if and only if L � K.d/.

(b) K.d/ � E.d/. Moreover, if E is a finite extension of K and levk.E=K/6 d , then
equality holds, K.d/ D E.d/.

(c) E.d/ D
S
E
.d/
f:g: , where the union is taken over the intermediate fields K �

Ef:g: � E with Ef:g: finitely generated over K.
(d) .K.d//.n/ D K.n/ for every n > d . In particular, K.d/ is closed at level d .

Our proof of Proposition 6.3 will rely on the following lemma.

Lemma 6.4. Let k � K � L be field extensions such that ŒL W K� <1. Then L=K
descends to some L0=K 0, where K 0 is finitely generated over k and levk.L0=K 0/ D
levk.L=K/.

Proof. Set d D levk.L=K/ and choose a tower K D K0 � K1 � � � � � Km of
field extensions such that L embeds into Km over K, ŒKi W Ki�1� < 1, and
edk.Ki=Ki�1/ 6 d for each i , as in Definition 4.1. By Remark 4.2 (4), we may
assume that each intermediate extension Ki=Ki�1 is simple.

By Lemma 2.3, Ki=Ki�1 descends to some Ei=Fi�1, where Ei � Ki , k �
Fi�1 � Ki�1, Fi�1 is finitely generated over k and trdegk.Fi�1/ D edk.Ei=Fi�1/ D
edk.Ki=Ki�1/ 6 d . Let Gi�1 be a finite set of generators for Fi�1 over k. By
Lemma 3.2, Ei=Fi�1 is simple, say, Ei D Fi�1.˛i /.

Similarly, by Lemma 2.1, the field extension L=K descends to E 0=F 0, where the
intermediate field k � F 0 � K is finitely generated over k. Let H be a finite set of
generators for F 0 over k and B be an F 0-vector space basis for E 0. These notations are
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summarized in the diagram below, where ,! indicates descent.

Km

E 0
� �
!L

:::

Ki Ei?
_

 Fi�1.˛i /

Ki�1 Fi�1? _ 

:::

F 0
� �
!K0 K

By Lemma 2.1,Km=K descends to someK 0m=K 0 such that k �K 0 �K,K 0 is finitely
generated over k and K 0m contains the finite subset

G0 [ � � � [Gm�1 [ ¹˛1; : : : ; ˛mº [H [ B

of Km. Consider the tower

(5) K 0 D K 00 � K
0
1 � � � � � K

0
m;

where K 0i D K 0m \ Ki for each i . Note that K 0i�1 contains k and Gi�1 and
hence, k.Gi�1/ D Fi�1. Moreover, since K 0i contains K 0i�1 and ˛i , it also contains
Fi�1.˛i / D Ei .

Since Km=K descends to K 0m=K 0, we have

(6)
ŒK 0m W K

0
m�1� � ŒK

0
m�1 W K

0
m�2� � � � ŒK

0
1 W K

0
0� D ŒK

0
m W K

0�;

ŒKm W K� D ŒKm W Km�1� � ŒKm�1 W Km�2� � � � ŒK1 W K0�:

On the other hand, since ˛i 2 K 0i has degree ŒEi W Fi�1� D ŒKi W Ki�1� over Ki�1,
it has degree > ŒKi W Ki�1� over K 0i�1. Thus, ŒK 0i W K

0
i�1� > ŒKi W Ki�1� for each i .

In view of (6), we conclude that ŒK 0i W K
0
i�1� D ŒKi W Ki�1� for each i . In other words,

Ki=Ki�1 descends to K 0i=K
0
i�1 which, in turn, descends to Ei=Fi�1. Thus,

edk.K 0i=K
0
i�1/ 6 edk.Ei=Fi�1/ D trdegk.Fi�1/ 6 d:



Hilbert’s 13th problem for algebraic groups 19

Finally, note that K 0 D K 00 contains H and thus K 0 contains k.H/ D F 0. Set
L0 D K 0m \ L. Since K 0m contains B , this tells us that L=K descends to L0=K 0. By
our construction, L0 D K 0m \ L embeds into K 0m over K 0. The tower (5) now shows
that levk.L0=K 0/ 6 d , as desired.

Proof of Proposition 6.3. (a) If levk.L=K/ 6 d , then L � K.d/ by the definition
ofK.d/. Conversely, ifL�K.d/ and ŒL WK�<1, thenL is contained in a compositum
L1L2 : : : Ln of finitely many finite extensions Li=K such that levk.Li=K/ 6 d for
each i . Using Lemmas 4.4 and 4.7 recursively, we see that

levk.L=K/ 6 lev.L1 : : : Ln=K/ 6 d:

(b) Recall that K.d/ is generated by finite extensions L=K of level 6 d . In order
to prove that K.d/ � E.d/ it suffices to show that every such L is contained in E.d/.
This follows from the inequality levk.LE=E/ 6 levk.L=K/ of Lemma 4.4.

Now suppose E is a finite extension of K and levk.E=K/ 6 d . We want to prove
that in this case E.d/ � K.d/. It suffices to show that every finite extension M=E of
level 6 d lies in K.d/, i.e., levk.M=K/ 6 d . This follows from Lemma 4.7.

(c) Set U D
S
E
.d/
f:g: . By part (b), E.d/f:g: � E

.d/ for each finitely generated field
K � Ef:g: � E. Hence, U � E.d/. To prove the opposite inclusion, we proceed in
four steps.

Step 1: We reduce to the case, where K D k. Indeed, every intermediate field
k � E0 � E such that E0 is finitely generated over k lies in E1 D KE0 which is
finitely generated over K. By part (b), E.d/0 � E

.d/
1 � U . Thus,[

E
.d/
0 � U � E.d/

where the first union is over finitely generated subextensions k � E0 � E. If we know
that

S
E
.d/
0 equals E.d/, then both of these inclusions are equalities, and in particular,

U D E.d/, as desired. This shows that we may assume without loss of generality that
K D k. We will do so for the remainder of the proof of part (c).

Step 2: We claim that U is a subfield of E.d/. Indeed, suppose x1 2 E.d/1 and
x2 2 E

.d/
2 , where k � Ei � E andEi is finitely generated over k for i D 1; 2. Assume

x1 ¤ 0. We want to show that x1 ˙ x2, x1 � x2 and x�11 all lie in U . Indeed, the
composite E3 D E1E2 of E1 and E2 in E is also finitely generated over k. Hence,
E
.d/
3 is contained in U . By part (b), x1 2 E.d/1 � E

.d/
3 and x2 2 E.d/2 � E

.d/
3 . We

conclude that x1 ˙ x2, x1 � x2 and x�11 2 E
.d/
3 � U , as desired.

Step 3: U contains E. This is because U contains k.x/ for every x 2 E.

Step 4: We will now complete the proof of the desired inclusion E.d/ � U .
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Indeed, it suffices to show that U contains every finite extension L=E such that
levk.L=E/ 6 d . Recall that by Lemma 6.4, L=E descends to L0=E0 for some
field k � E0 � E such that E0 is finitely generated over k and levk.L0=E0/ D
levk.L=E/ 6 d . Thus, L0 � E.d/0 � U . Since U is a subfield of xE containing both
E and L0, it contains L D EL0.

This completes the proof of Step 4 and thus of part (c).

(d) Part (b) tells us thatK.n/ � .K.d//.n/ D .K.n//.n/. Thus, it suffices to show that
.K.n//.n/ D K.n/, i.e., that K.n/ is closed at level n. In other words, we may assume
without loss of generality that n D d .

Let E D K.d/. We want to show that E.d/ D K.d/. By part (c), it suffices to show
that L.d/ D K.d/ for every intermediate extension K � L � E D K.d/, where L
is finitely generated (or equivalently, finite) over K. Since K � L � K.d/, part (a)
tells us that levk.L=K/ 6 d . The desired equality, L.d/ D K.d/, is now given by the
second assertion in part (b).

Corollary 6.5. Suppose K 2 Fieldsk is closed at level d > 1. Then K is perfect and
solvably closed.

Proof. Suppose L=K is a solvable or purely inseparable extension. Our goal is to
show that K D L. Indeed, by Lemma 4.6, levk.L=K/ 6 1. By Proposition 6.3 (a),
K � L � K.d/. Since K is closed at level d , K.d/ D K and thus K D L.

Remark 6.6. Let G be a finite group of resolvent degree 1. (For the definition of the
resolvent degree of a group, see Section 10.) Then Proposition 6.3 (a) tells us that if K
is closed at level d > 1, then K does not admit a Galois extensions L=K with Galois
group G. In particular, there do not exist Galois extensions L=K with Galois group
A5 or PSL2.F7/; see Example 14.3.

7. The resolvent degree of a functor

Essential dimension can be defined for a broader class of objects, beyond finite
field extensions. The following definition is due to Merkurjev, Berhuy and Favi [1].
Let k be a base field, and F W Fieldsk ! Sets be a functor from the category of field
extensions K=k to the category of sets. All functors in this paper will be assumed
to be covariant. We think of F as specifying the type of object we are considering,
and F .K/ as the set of objects of this type defined over K. Given a field extension
k � K � K 0, we think of the natural map F .K/! F .K 0/ as base change. The image
of ˛ 2 F .K/ under this map will be denoted by ˛K0 .
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Definition 7.1. Any object ˛ 2F .K/ in the image of the natural map F .K0/!F .K/

is said to descend toK0. The essential dimension edk.˛/ is defined as the minimal value
of trdegk.K0/, where the minimum is taken over all intermediate fields k � K0 � K
such that ˛ descends to K0.

Example 7.2. Consider the functor AlgW Fieldsk ! Sets, where Alg.K/ is the set
of isomorphism classes of finite-dimensional K-algebras. Here the natural map
Alg.K/! Alg.K 0/ takes aK-algebra A to theK 0-algebraK 0˝K A. LetK 2 Fieldsk
and A be a finite-dimensional K-algebra. If we view A as an object in F .K/, then
edk.A/ given by Definition 7.1 is the same as edk.A=K/ given by Definition 2.2.

Our goal now is to define the resolvent degree of a functor F in a similar manner
(but under more restrictive assumptions on F ). Let F be a covariant functor from the
category Fieldsk of field extensions K=k to

the category Sets0 of sets with a marked element:

We will denote the marked element in F .K/ by 1 and will refer to it as being “split.”
We will say that a field extension L=K splits an object ˛ 2 F .K/ if ˛L D 1. Let us
assume that

(7) for every field K=k and every ˛ 2 F .K/,
˛ can be split by a field extension L=K of finite degree.

Note that this is a strong condition on F ; in particular, it implies that F .K/ D ¹1º

whenever K is algebraically closed.

Definition 7.3. Let F WFieldsk ! Sets0 be a functor satisfying condition (7), K=k be
a field extension and ˛ 2 F .K/.

(a) The resolvent degree RDk.˛/ is the minimal integer d > 0 such that ˛ is split
by a finite field extension L=K of level d (or equivalently, of level 6 d ).

(b) The resolvent degree RDk.F / of the functor F is the maximal value of RDk.˛/,
as K ranges over all fields containing k and ˛ ranges over F .K/.

Remarks 7.4. (1) Note that the level levk.L=K/ plays a similar role in Definition 7.3
to the role played by the transcendence degree trdegk.K0/ in Definition 7.1.

(2) Condition (7) ensures that RDk.˛/ is finite for every K 2 Fieldsk and every
˛ 2 F .K/. On the other hand, RDk.F / can a priori be infinite, even though no
examples where RDk.F / > 1 are known.

Example 7.5. Consider the functor ÉtnWFieldsk! Sets0, where Ét.K/ is the set of iso-
morphism classes of n-dimensional étale algebras L=K. Recall that an n-dimensional
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étale algebra L is a direct product of the form L D L1 � � � � � Lr , where each Li is a
finite separable field extension of K and ŒL1 W K�C � � � C ŒLr W K� D n. The marked
element in Étn.K/ is the split algebra K �K � � � � �K (n times).

(a) If L=K is a separable field extension of degree n, and ŒL� is its class in Étn.K/,
then RDk.ŒL�/ D levk.L=K/.

(b) (Cf. [20, Lemma 2.6].) More generally, if L D L1 � � � � � Lr is a direct product
of separable extensions of K as above, and ŒL� is its class in Étn.K/, then
RDk.ŒL�/ D maxiD1;:::;r levk.Li=K/.

(c) RDk.Ét/Dmax levk.L=K/, where the maximum is taken over all separable field
extensions L=K of degree 6 n.

Proof. (a) By the primitive element theorem,L'K KŒx�=.f .x//, where f .x/ 2KŒx�
is an irreducible separable polynomial of degree n. A field extension L0=K splits ŒL� if
and only if f .x/ splits as a product of linear factors over L0. Equivalently, L0 splits L
if and only if L0 contains the normal closure Lnorm of L over K. By Remark 4.2 (2),

RDk.ŒL�/ D min¹levk.L0=K/ j Lnorm
� L0º D levk.Lnorm=K/:

On the other hand, by Lemma 4.8, levk.Lnorm=K/ D levk.L=K/.

(b) A field extensionL0=K splits ŒL� if and only if it splits each ŒLi � 2 ÉtŒLi WK�.K/.
Hence, by part (a), RDk.ŒL�/ > maxiD1;:::;r RDk.ŒLi �/ D maxiD1;:::;r levk.Li=K/.
To prove the opposite inequality, take L0 to be the compositum of Li over K. Then L0

splits ŒL�. Moreover, combining Lemmas 4.4 and 4.7, we obtain

RDk.ŒL�/ 6 levk.L0=K/ 6 max
iD1;:::;r

levk.Li=K/:

(c) is an immediate consequence of (b).

Lemma 7.6. Let F W Fieldsk ! Sets0 be a functor satisfying condition (7), K=k be a
field extension and ˛ 2 F .K/. Then:
(a) RDk.˛K0/ 6 RDk.˛/ for any field K 0 containing K.
(b) RDk.˛/ 6 edk.˛/.
(c) RDk.F / 6 edk.F /.

Proof. (a) If ˛ is split by a finite extension L=K such that levk.L=K/ D d , then ˛K0
is split by the finite extension K 0L=K 0 of level levk.K 0L=K 0/ 6 d ; see Lemma 4.4.

(b) Set d D edk.˛/. Then ˛ descends to ˛0 2 F .K0/ for some intermediate field
k � K0 � K such that trdegk.K0/ D d . Since F satisfies condition (7), ˛0 is split by
some finite extension L0=K0. Now

RDk.˛/ 6 RDk.˛0/ 6 levk.L0=K0/ 6 edk.L0=K0/ 6 d;
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as desired. Here the first inequality follows from part (a), the second from the
definition of RDk.˛0/, the third from Remark 4.2 (3), and the fourth from the fact that
trdegk.K0/ D d .

(c) is an immediate consequence of (b).

Lemma 7.7. Let k � k0 � K be field extensions, Let F WFieldsk ! Sets0 be a functor
satisfying condition (7) and ˛ 2 F .K/. Then:
(a) RDk.˛/ > RDk0.˛/.
(b) Moreover, equality holds if k0 is algebraic over k.
(c) Furthermore, there exists an intermediate field k � l0 � k0 such that l0 is finitely

generated over k and RDl.˛/ D RDk0.˛/ for every field l between l0 and k0.

Proof. For every finite extension L=K splitting ˛, we have levk.L=K/ > levk0.L=K/.
Moreover, equality holds if k0 is algebraic over k; see Lemma 4.3. This proves (a)
and (b).

For part (c), choose a splitting extension L=K such that d D levk0.L=K/ assumes
its minimal possible value, d D RDk0.˛/. Now choose l0 as in Lemma 4.3 (c). Then
for any intermediate field l0 � l � k0,

RDl.˛/ 6 levl.L=K/ D levk0.L=K/ D d D RDk0.˛/:

Combining this inequality with the inequality of part (a), we conclude that RDl.˛/ D
RDk0.˛/.

Lemma 7.8. If k is algebraically closed, then RDk.˛/ > 0 for any K 2 Fieldsk and
any 1 ¤ ˛ 2 F .K/. In particular, RDk.F / D 0 if and only if F is the trivial functor,
i.e., if and only if F .K/ D 1 for every K 2 Fieldsk .

Proof. Immediate from Lemma 4.5 and our standing assumption that F satisfies
condition (7).

Lemma 7.9. Let F1;F2;F3 be functors Fieldsk ! Sets0 satisfying (7).
(a) Suppose F1 ! F2 ! F3 is an exact sequence.1 Then

RDk.F2/ 6 max¹RDk.F1/;RDk.F3/º:

(b) If a morphism F1! F2 of functors has trivial kernel, then RDk.F1/ 6 RDk.F2/.
(c) If a morphism F2 ! F3 of functors is surjective, then RDk.F3/ 6 RDk.F2/.

1This means that F1.K/! F2.K/! F3.K/ is an exact sequence in Sets0 for every fieldK=k.
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(d) If 1! F1 ! F2 ! F3 ! 1 is a short exact sequence, then

RD.F2/ D max¹RDk.F1/;RDk.F3/º:

In particular, RDk.F1 � F3/ D max¹RDk.F1/;RDk.F3/º.

Proof. (a) Suppose ˛ 2 F2.K/ for some field K=k. Denote the image of ˛ in F3.K/

by ˇ. After passing to an extension L=K of level 6 RD.F3/, we may assume that ˇ is
split. Hence, ˛L 2 F2.L/ is the image of some 
 2 F1.L/. A further extension L0=L
of level 6 RD.F1/ splits 
 . Thus, the composite extension K � L � L0 splits ˛, i.e.,
˛L0 D 1. We conclude that

RDk.˛/ 6 levk.L0=K/
6 max

®
levk.L=K/; levk.L0=L/

¯
6 max

®
RDk.F1/;RDk.F3/

¯
;

where the inequality in the middle follows from Lemma 4.7. Taking the maxi-
mum over all fields K=k and all objects ˛ 2 F2.K/, we conclude that RD.F2/ 6
max¹RDk.F1/;RDk.F3/º.

(b) and (c): Apply part (a) to the exact sequences 1! F1! F2 and F2! F3! 1,
respectively.

(d) For the first assertion combine the inequalities of (a), (b) and (c). The second
assertion is a special case of the first with F3 D F1 � F2.

Proposition 7.10. Let A be a diagonalizable group (i.e., a closed subgroup of the split
torus Gd

m) defined over k. Then the functor H 2.�; A/ satisfies condition (7) and

RDk.H 2.�; A// 6 1:

Proof. First, let us consider the special case, where A D Gm. Recall that H 2.K;Gm/

is in a natural (functorial) bijection with the Brauer group Br.K/. Thus, it suffices
to show that every central simple algebra A over every F 2 Fieldsk can be split by
a solvable extension of K. By the primary decomposition theorem we may assume
without loss of generality that the index of A is a prime power, pr . If char.k/ ¤ p,
then the Merkurjev–Suslin theorem tells us that A can be split by a solvable extension
of K; see [23, Corollary 2.5.9]. If p D char.k/, then by a theorem of Albert [23,
Theorem 9.1.8], A is Brauer-equivalent to a cyclic algebra and thus can be split by a
cyclic (and hence, once again, solvable) field extension of K. This completes the proof
in the case where A D Gm.

If A D �n, then H 2.�; �n/ ' nBr.K/, where nBr.K/ is the n-torsion subgroup
of Br.K/, and the same argument applies.

In general, we write A as a direct product A1 �k � � � �k Ar , where each Ai is
k-isomorphic to Gm or �n for some integer n. Then H 2.�; A/ D H 2.�; A1/ � � � � �

H 2.�; Ar/, and the desired conclusion follows from Lemma 7.9 (d).
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Remark 7.11. IfA¤ 1 in Proposition 7.10, then equality holds: RDk.H 2.�;A//D 1.
To prove this, we readily reduce to the case, where A D �n for some n > 2. In

this case, assume the contrary. Then for every K 2 Fieldsk , every ˛ 2 H 2.K; �n/

can be split by a finite extension L=K of level 0. In particular, by Remark 6.2, if K
contains xk, then K is closed at level 0, i.e., there are no non-trivial finite extensions
L=K of level 0 and thus H 2.K;�n/ D 1. On the other hand, it is well known that if
K D xk.x; y/, where x and y are variables, the symbol algebra .x; y/n represents a
non-trivial class in H 2.K;�n/, a contradiction.

Remark 7.12. Using the norm residue isomorphism theorem (formerly known as the
Bloch–Kato conjecture) in place of the Merkurjev–Suslin theorem, one shows in the
same manner that RDk.Hd .�; �n// 6 1 for every n > 1 not divisible by char.k/ and
every d > 1, and that equality holds when n > 2.

8. Functors preserving direct limits

In this section we will assume that our functor F W Fieldsk ! Sets0 respects direct
limits. Examples include Galois cohomology functors H 1.�; G/, where G is an
algebraic group over k, as well as Hd .�; G/ for every d > 2, if G is abelian. For
such functors F the study of resolvent degree can be facilitated by using the notion of
level d closure of field introduced in Section 6.

Proposition 8.1. Assume that a functor F WFieldsk ! Sets0 satisfies condition (7) and
respects direct limits. Let K 2 Fieldsk and ˛ 2 F .K/. Then:

(a) RDk.˛/ 6 d if and only if ˛ splits over K.d/, i.e., ˛K.d/ D 1.
(b) RDk.F / 6 d if and only if F .K/ D 1 for every field K closed at level d .
(c) Suppose RDk.˛K.d// 6 m. Then RDk.˛/ 6 max¹d;mº.
(d) Suppose RDk.ˇ/ 6 m for every field E 2 Fieldsk closed at level d and every

ˇ 2 F .E/. Then RDk.F / 6 max¹d;mº.

Proof. (a) Suppose RDk.˛/6 d . Then ˛ splits over a finite extensionL ofK such that
levk.L=K/6 d . By definition ofK.d/,L embeds intoK.d/ overK. Hence, ˛K.d/ D 1.
Conversely, suppose ˛ splits over K.d/. Since F respects direct limits, ˛ splits over
some subextension K � L � K.d/ such that ŒL W K� <1. By Proposition 6.3 (a),
levk.L=K/ 6 d . Thus, RDk.˛/ 6 d .

(b) Suppose RDk.F / 6 d and K 2 Fieldsk is closed at level d . By part (a), any
˛ 2 F .K/ splits over K.d/. By Proposition 6.3 (d), K.d/ D K and thus ˛ D 1. This
shows that F .K/ D 1.
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Conversely, assume F .K/ D 1 whenever K 2 Fieldsk is closed at level d . Let F
be an arbitrary field containing k and ˛ 2 F .F /. By our assumption (withK D F .d/),
˛F .d/ D 1. Since F respects direct limits, ˛E D 1 for some F � E � F .d/, where E
is finitely generated over F , i.e., ŒE W F � <1. By Proposition 6.3 (a), levk.E=F / 6 d .
Hence, RDk.˛/ 6 d .

(c) Let n D max¹d;mº. In view of part (a), our goal is to show that ˛K.n/ D 1. Set
E D K.d/. By Proposition 6.3 (d), E is closed at level d and E.n/ D K.n/. By our
assumption, RDk.˛E / 6 m. By part (a), ˛E .m/ D 1. Since E.m/ � E.n/, we conclude
that ˛K.n/ D ˛E .n/ D 1.

(d) is an immediate consequence of (c).

Definition 8.2. Let F W Fieldsk ! Sets0 be a functor. For any field k0 containing k,
we define Fk0 WFieldsk0 ! Sets0 to be the restriction of F to Fieldsk0 . In other words,
Fk0.K/ is only defined if K contains k0, and for such K, Fk0.K/ D F .K/.

Proposition 8.3. Assume that a functor F WFieldsk ! Sets0 satisfies condition (7).
(a) If k0=k is a field extension, then the functor Fk0 also satisfies condition (7) and

RDk.F / > RDk0.Fk0/.
(b) Moreover, if k0=k is an algebraic field extension and F respects direct limits,

then RDk.F / D RDk0.Fk0/.

Proof. Let K 2 Fieldsk and ˛ 2 F .K/.
(a) The first assertion is obvious from Definition 8.2. To prove the second assertion,

it suffices to show that

(8) RDk.˛/ > RDk.˛k0K/ > RDk0.˛k0K/;

where k0K is a compositum of k0 and K. Indeed, the maximal value of the left-hand
side over allK 2 Fieldsk and all ˛ 2 F .K/ is RDk.F /, whereas the maximal value of
the right-hand side is RDk0.Fk0/. The first inequality in (8) follows from Lemma 7.6 (a)
and the second from Lemma 7.7 (a).

(b) Here it suffices to show that

(9) RDk.˛/ D RDk.˛k0K/ D RDk0.˛k0K/:

The second equality follows from Lemma 7.7 (b). To prove the first inequality, it suffices
to show that

(10) K.d/ D .k0K/.d/

for every d > 0. Indeed, if we can prove this, then ˛ is split byK.d/ if and only if ˛k0K
is split by .k0K/.d/, and the desired equality follows from Proposition 8.1 (a).
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To prove (10), note that by Remark 6.2, K � k0K � K.0/. By Proposition 6.3,

K.d/ � .k0K/.d/ � .K.0//.d/ D K.d/;

and (10) follows.

Example 8.4. Let ÉtnWFieldsk ! Sets0 be the functor of n-dimensional étale algebras
introduced in Example 7.5. If d > RDk.Étn/, and K 2 Fieldsk is closed at level d ,
then every polynomial of degree 6 n splits into a product of linear factors over K.

Proof. If n D 1, the assertion is vacuous, so we may assume that n > 2. One readily
checks that the functor .Étn/xk is non-trivial for any n > 2. Hence,

RDk.Étn/ > RDxk
�
.Étn/xk

�
> 1;

where xk denotes an algebraic closure of k, the first inequality follows from Proposi-
tion 8.3 (a), and the second from Lemma 7.8. Thus, d > 1. By Corollary 6.5, K is
perfect.

It remains to show that there does not exist an irreducible polynomial f .x/ 2 KŒx�
of degree m for any 2 6 m 6 n. Indeed, assume the contrary. Then

E D KŒx�=.f .x// �K � � � � �K„ ƒ‚ …
n�m times

is a non-split étale algebra of degree n. On the other hand, Étn.K/ D 1 by Proposi-
tion 8.1 (b), i.e., every étale algebra of degree n over K is split, a contradiction.

Remark 8.5. Proposition 8.3 (b) may fail if

(a) the functor F is not required to respect direct limits or if

(b) the field k0 is not required to be algebraic over k.

Proof. Our counterexamples in parts (a) and (b) will both rely on the following
construction. Let F W Fieldsk ! Sets0 be a functor and ƒ be a collection of fields
K � Fieldsk closed under inclusion. That is, if L 2 ƒ and K � L, then K 2 ƒ. Set
F ƒWFieldsk ! Sets0 by

F ƒ.K/ D

´
F .K/; if K 2 ƒ;
¹1º; if K … ƒ:

If K � L is a field extension, the natural map F ƒ.K/! F ƒ.L/ is defined to be the
same as the natural map F .K/! F .L/ if L 2 ƒ and to be the trivial map (sending
every element of F .K/ to 1) if L … ƒ. It is easy to see that F ƒ is well defined.
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Moreover, if F satisfies condition (7), then so does F ƒ. Informally, we think of F ƒ

as a truncation of F .
The starting point for both parts is a functor F WFieldsk! Sets0k which satisfies (7),

respects direct limits, and such that RDk.F / > 1. There are many examples of such
functors, e.g., F D H 2.�;Gm/; see Remark 7.11. Choose a field K 2 Fieldsk and an
object ˛ 2 F .K/ such that RDk.˛/ > 1. Since F respects direct limits, ˛ descends to
˛0 2 F .K0/ for some intermediate field k �K0 �K such thatK0 is finitely generated
over k. By Lemma 7.6 (a), RDk.˛0/ > RDk.˛/ > 1. After replacing K by K0 and ˛
by ˛0, we may assume that K is finitely generated over k.

(a) Consider the truncated functor F ƒ, where

ƒ D ¹K=k j K is finitely generated over kº:

Note that RDk.˛/ > 1 whether we view ˛ as an object in F or F ƒ. On the other
hand, if the algebraic closure xk is not finitely generated over k (e.g., if k D Q), then
no field containing xk can be finitely generated over k. This tells us that the truncated
functor F ƒ

xk
is the trivial functor and consequently, RDxk.F

ƒ
xk
/ D 0. We conclude that

Proposition 8.3 (b) fails for F ƒ if k0 D xk.
(b) Set m D trdegk.K/ and consider the truncated functor F ƒ, where

ƒ D ¹K=k j trdegk.K/ 6 mº:

The functor F ƒ continues to satisfy condition (7) and to respect direct limits. If
trdegk.k0/ > m, then F ƒ

k0
is trivial and thus RDk0.F ƒ/ D 0. On the other hand,

RDk.˛/> 1whether we view ˛ as an object in F or F ƒ. In summary, RDk.F ƒ/> 1,
RDk0.F ƒ

k0
/ D 0, and Proposition 8.3 (b) fails for F ƒ.

9. Change of base field

As we saw in Remark 8.5 (b), Proposition 8.3 (b) fails if k0 is not assumed to be
algebraic over k. In this section we will show that under an additional condition on the
functor F , the equality of Proposition 8.3 (b) can be (largely) salvaged for an arbitrary
field extension k0=k. The condition we will impose on F is as follows:

(11) The natural map F .E/! F
�
E..t//

�
has trivial kernel
for every perfect field E containing k:

Note that this is almost the same as condition (*) considered by Merkurjev in [29,
Section 3]. The only difference is that condition (*) requires injectivity of the map (11)
for every field E, not necessarily perfect. As is pointed out in [29], this condition is
natural and is often satisfied.
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Proposition 9.1. Assume that a functor F W Fieldsk ! Sets0 satisfies conditions (7)
and (11) and respects direct limits. Then

RDk0.Fk0/ 6 RDk.F / 6 max¹RDk0.Fk0/; 1º

for any field extension k0=k.

The remainder of this section will be devoted to proving Proposition 9.1. We begin
with the following lemma.

Lemma 9.2. Assume that a functor F W Fieldsk ! Sets0 satisfies condition (7) and
respects direct limits. Let k0=k be a field extension,K 2 Fieldsk and ˛ 2 F .K/. Then
there exists an intermediate field k � l � k0 such that l is finitely generated over k
and RDl.˛lK/ D RDk0.˛k0K/. Here k0K is some compositum of k0 and K over k.
The compositum lK is taken in k0K.

Proof. For any intermediate field k � l � k0, we have

RDl.˛lK/ > RDl.˛k0K/ > RDk0.˛k0K/I

see (8). Our goal is to show that the opposite inequality holds for a suitably chosen
intermediate field k � l � k0, where l is finitely generated over k.

Set d D RDk0.˛k0K/. By Lemma 7.7 (c) there exists an intermediate extension
k � l0 � k

0 such that l0 is finitely generated over k, and d D RDl.˛k0K/ for any
intermediate field l0 � l � k0. After replacing k by l0 and ˛ by ˛l0K , we may
assume without loss of generality that k D l0. In particular, d D RDk.˛k0K/. By
Proposition 8.1 (a), ˛ splits over .k0K/.d/. Since F preserves direct limits, ˛ splits
over L.d/ for some intermediate extension K � L � k0K such that L is finitely
generated overK. Any suchL is contained in lK for some intermediate field k � l � k0,
where l is finitely generated over k. Thus, ˛ splits over .lK/.d/. By Proposition 8.1 (a)
this implies that RDl.˛lK/ 6 d , as claimed.

Proof of Proposition 9.1. The first inequality RDk0.Fk0/ 6 RDk.F / is proved in
Proposition 8.3 (a). We will thus focus on proving the second inequality. Let K be a
field containing k and ˛ 2 F .K/. Our goal is to show that

(12) RDk.˛/ 6 max¹RDk0.˛k0K/; 1º:

If we can prove this, then taking the maximum over allK 2 Fieldsk and all ˛ 2 F .K/,
we will obtain the desired inequality RDk.F / 6 max¹RDk0.Fk0/; 1º.

We begin by reducing to the case where k0 is finitely generated over k. Indeed,
choose l as in Lemma 9.2. That is, l is finitely generated over k and RDl.˛lK/ D
RDk0.˛k0K/. For the purpose of proving (12) we may now replace k0 by l .
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From now on we will assume k0 is finitely generated over k. Choose a transcendence
basis t1; : : : ; tn for k0=k and set ki D k.t1; : : : ; ti /, so that k0 is algebraic over kn. By (9),

RDkn.˛knK/ D RDkn.˛k0K/ D RDk0.˛k0K/:

Thus, we may further replace k0 by kn. It remains to show that

(13) RDk.˛/ 6 max¹RDk.t/.˛K.t//; 1º;

where t is a variable. Indeed, applying this inequality recursively, we readily
deduce (12):

RDk.˛/ 6 max¹RDk1.˛k1K/; 1º 6 � � � 6 max¹RDkn.˛knK/; 1º:

(Recall that here k0 D kn.)
The remainder of the proof will be devoted to establishing the inequality (13). First

observe that we may assume without loss of generality that K is closed at level 1.
Indeed, let K.1/ be the level 1 closure of K. By Proposition 8.1 (c),

RDk.˛/ 6 max¹RDk.˛K.1//; 1º

and by Lemma 7.6 (a),

RDk.t/.˛K.1/.t// 6 RDk.t/.˛K.t//;

where K.1/ is the level 1 closure of K. These inequalities show that in the course
of proving (13), we may replace K by K.1/ and ˛ by ˛K.1/ . In other words, for the
purpose of proving (13), we may assume that K is closed at level 1. In particular, we
may assume that K is a perfect field; see Corollary 6.5.

We now proceed with the proof of (13) under the assumption that K is a perfect
field. First we observe that by Lemma 7.6 (a), RDk.t/.˛K..t/// 6 RDk.t/.˛K.t//. Thus,
we only need to show that

RDk.˛/ 6 max¹RDk.t/.˛K..t///; 1º:

Set d D RDk.t/.˛K..t///. By definition there exists a finite field extension L=K..t//
such that ˛L D 1 and levk.t/.L=K..t/// D d .

The field K..t// carries a natural discrete valuation �WK..t//� ! Z with uni-
formizer t , trivial on K. Lift � to a discrete valuation L� ! 1

e
Z, where e is the

ramification index. By abuse of notation I will continue to denote this lifted valuation
by �. I will denote the residue field of L relative to this valuation by L� .
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Note that since K..t// is complete with respect to �, so is L; see [38, Proposi-
tion II.2.3]. Moreover, since K is perfect, so is L� . Note also that we are in equal
characteristic situation here:

char.L�/ D char.K/ D char.k/ D char.k.t// D char.K..t/// D char.L/:

By the Cohen structure theorem [13, Theorem 15], the local ring of � inL is isomorphic
to the power series ringL� ŒŒs�� in one variable overL� ; cf. also [38, Section II.4]. Hence,
L is isomorphic to the field of Laurent series L�..s//. Since ˛L D 1 and L� is perfect,
the natural map

F .L�/! F .L�..s/// D F .L/

has trivial kernel, by our assumption (11). We conclude that ˛L� D 1. In other words,
L�=K is a splitting extension for ˛. By Proposition 5.1,

RDk.˛/ 6 levk.L�=K/ 6 max¹levk.L=K..t///; 1º D max¹d; 1º;

whereK is the residue field ofK..t//. This completes the proof of Proposition 9.1.

10. The resolvent degree of an algebraic group

Let G be an algebraic group over k, not necessarily affine, smooth or connected.
Of particular interest to us will be the functor H 1.�; G/ whose objects over K are
isomorphism classes ofG-torsors over Spec.K/. Here torsors are assumed to be locally
trivial in the flat (fppf) topology. IfG is smooth over k, this is equivalent to being trivial
in the étale topology; see [31, Remark 4.8 (a)]. For every field K containing k, the set
H 1.K;G/ has a marked element, represented by the split G-torsor GK ! Spec.K/,
where GK D G �Spec.k/ Spec.K/. The functor H 1.�; G/ satisfies condition (7).

Definition 10.1. Define edk.G/ D edk.H 1.�; G// and RDk.G/ D RDk.H 1.�; G//.

The essential dimension edk.G/ of an algebraic groupG=k has been much studied;
for an overview, see [30,33,34]. If G is an abstract finite group (viewed as an algebraic
group over k) and char.k/ D 0, our definition of RDk.G/ above coincides with the
definition given by Farb and Wolfson [20]. To the best of my knowledge, RDk.G/ has
not been previously investigated for other algebraic groups G=k.

In view of Proposition 8.3 (b), passing from G to Gxk does not change the resolvent
degree. Thus from now on we will assume that k is algebraically closed.

Example 10.2. The functor Étn introduced in Example 7.5 is isomorphic toH 1.�;Sn/
and thus RDk.Étn/ D RDk.Sn/. By Example 7.5,

RDk.Sn/ D max levk.L=K/:
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The algebraic form of Hilbert’s 13th problem asks for the value of RD.n/ D RDC.Sn/.

Remark 10.3. Recall that the classical definition of RD.n/ is motivated by wanting
to express a root of a general polynomial f .x/ D xn C a1x

n�1 C � � � C an as a
composition of algebraic functions in 6 d variables. This is equivalent to finding
the smallest integer d such that the 0-cycle in A1K given by f .x/ D 0 has an L-point,
for some field extension L=K of level 6 d . If G is an algebraic group over k, K is
a field containing k and T ! Spec.K/ is a G-torsor, then our definition of RDk.T /
retains this flavor. Indeed, saying that T is split by L is equivalent to saying that T has
an L-point.

Remark 10.4 (cf. [20, Lemma 3.2]). LetG be an algebraic group defined over a field k,
K be a field containing k, and ˛WT ! Spec.K/ be aG-torsor. Setting F DH 1.�;G/

in Lemma 7.6, we obtain the inequalities RDk.˛/ 6 edk.˛/ and RDk.G/ 6 edk.G/.

Remark 10.5 (cf. [20, Lemma 3.13]). Let G be a finite group and H be a subgroup.
We will view G and H as algebraic groups over k. The long exact sequence in Galois
cohomology associated to 1! H

i
�! G (see [40, Section I.5.4]) readily show that the

induced morphism i�WH
1.�;H/! H 1.�; G/ has trivial kernel. By Lemma 7.9 (b),

we conclude that RDk.H/ 6 RDk.G/.

Example 10.6 (cf. [20, Corollary 3.4]). If G is a solvable finite group, then
RDk.G/ 6 1. Indeed, every element ofH 1.K;G/ can be split by a solvable extension
L=K, and a solvable extension has level 6 1 by Lemma 4.6 (a). Moreover, if we
further assume that G ¤ 1, then RDk.G/ D 1. This follows from Lemma 7.8 and
Proposition 8.3 (b).

Recall that an algebraic groupG defined over a field k is called special ifH 1.�;G/

is the trivial functor, i.e.,H 1.K;G/ D 1 for every fieldK containing k. This notion is
due to Serre [37]. (Note that [37] is reprinted in [41].)

Lemma 10.7. Let G be an algebraic group over an algebraically closed field k. Then:

(a) G is special if and only if RDk.G/ D 0.
(b) If G is connected and solvable, then RDk.G/ D 0.
(c) If G is the general linear group GLn, the special linear group SLn or the

symplectic group Sp2n, then RDk.G/ D 0 for any n > 1.

Proof. (a) By Lemma 7.8, RDk.G/ D 0 if and only if H 1.�; G/ is the trivial functor,
i.e., if and only if G is special.

(b) Every connected solvable group is special; see [37, Section 4.4 (a)].
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(c) GLn is special by Hilbert’s Theorem 90. For SLn and Sp2n, see [37, Sec-
tion 4.4 (b) and (c)], respectively.

We now record several simple but useful observations about the behavior of
resolvent degree in exact sequences of groups.

Proposition 10.8. Consider a short exact sequence of algebraic groups
(14) 1! A! B ! C ! 1

defined over a field k. Then:
(a) (Cf. [20, Theorem 3.3].) RDk.B/ 6 max¹RDk.A/;RDk.C /º.
(b) (Cf. [20, Theorem 3.3].) If B is isomorphic to the direct product A � C , then

RDk.B/ D max¹RDk.A/;RDk.C /º.
(c) If G is a diagonalizable algebraic group over k, then RDk.G/ 6 1.
(d) Suppose (14) is a central short exact sequence and A is diagonalizable over k.

Then
RDk.B/ 6 max¹RDk.C /; 1º and RDk.C / 6 max¹RDk.B/; 1º:

Proof. (a) follows from Lemma 7.9 (a) applied to the exact sequence of functors
H 1.�; A/! H 1.�; B/! H 1.�; C / induced by (14).

(b) follows from Lemma 7.9 (d), since in this case the functor H 1.�; B/ is
isomorphic to H 1.�; A/ �H 1.�; C /.

(c) Write G as a product G1 � � � � �Gr , where each Gi is isomorphic either to Gm

or �n for some n> 2. By part (b), it suffices to show that RDk.Gi /6 1 for each i . Now
recall that RDk.Gm/D 0 by Lemma 10.7 (b). On the other hand, RDk.�n/6 edk.�n/
by Remark 10.4, and edk.�n/ D 1 for every n > 2; see, e.g., [30, Example 3.5].

(d) To prove the first inequality, combine parts (a) and (c). The second inequality
follows from Lemma 7.9 (a) applied to the exact sequences of functors H 1.�; B/!

H 1.�; C /! H 2.�; A/ induced by (14). Recall that RDk.H 2.�; A// 6 1 by Proposi-
tion 7.10.

Corollary 10.9. Let G be a connected reductive affine algebraic group, T be a split
maximal torus of G, N be the normalizer of T in G, and W D N=T be the Weyl
group. Then

RDk.W / > RDk.N / > RDk.G/:

Proof. By [11, Corollary 5.3] the natural morphism H 1.K; N / ! H 1.K; G/ is
surjective; see also [40, Lemma III.4.3.6]. Hence, RDk.N / D RD.H 1.�; N // >
RDk.H 1.�; G// D RDk.G/ by Lemma 7.9 (c).

The inequality RDk.W /> RDk.N / follows from Proposition 10.8 (a) applied to the
exact sequence 1!T !N !W ! 1. Note that by Lemma 10.7 (b), RDk.T /D 0.
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11. The resolvent degree of an abelian variety

In this section we will assume that the base field k is algebraically closed. This
assumption is harmless in view of Proposition 8.3 (b).

Recall that for every algebraic group G defined over k, there exists a smooth
(i.e., reduced) subgroupGred such thatG.k/DGred.k/; see [15, Exp. VIA, Section 0.2].

Lemma 11.1. Let K be a field containing k and let i WGred ,! G be the natural
inclusion and i�WH 1.K; Gred/ ! H 1.K; G/ be the induced map in cohomology.
Then:
(a) i� is injective.
(b) If K is a perfect field, then i� is bijective.

Proof. Let 
 2 H 1.K;G/. By [40, Section I.5.4, Corollary 2], the fiber of .i�/�1.
/
may be identified with the set of orbits of 
G.K/ in .
G=
Gred/.K/.2 Here 
G

denotes the twist of G by a cocycle representing 
 , and similarly for Gred. Since
the homogeneous space G=Gred is purely inseparable over Spec.k/, the homogeneous
space 
G=
Gred is purely inseparable over Spec.K/. (To see this, pass to a splitting
field of 
 .) Thus, 
G=
Gred can have at most one Spec.K/-point. This shows that
the fiber of .i�/�1.
/ has at most one element, proving (a). If K is perfect, then
the homogeneous space 
G=
Gred has exactly one K-point. In this case the fiber of
.i�/
�1.
/ has exactly one element for every 
 2 H 1.K;Gred/. This proves (b).

Recall that an infinitesimal group is a connected 0-dimensional group. Non-trivial
infinitesimal groups exist only in prime characteristic.

Proposition 11.2. Let G be an algebraic group over k. Then:
(a) RDk.G/ 6 max¹RDk.Gred/; 1º.
(b) If G be an infinitesimal group over k, then RDk.G/ 6 1.
(c) Let G be a 0-dimensional abelian group over k (not necessarily smooth or

connected). Then RDk.G/ 6 1.

Proof. (a) In view of Proposition 8.1 (d), it suffices to show that RDk.˛/ 6 RDk.Gred/

for every field K=k such that K is closed at level 1 and every ˛ 2 H 1.K;G/. Indeed,
every such field K is perfect; see Corollary 6.5. Thus by Lemma 11.1, ˛ is the image
of some ˇ 2H 1.K;Gred/. Every field extension ofK which splits ˇ also splits ˛. This
tells us that

RDk.˛/ 6 RDk.ˇ/ 6 RDk.Gred/;

2In [40] only étale cohomology is considered. The same argument works for flat cohomology.
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as claimed.

(b) If G is infinitesimal, then Gred D 1. Thus, RDk.Gred/ D 0, and RDk.G/ 6 1

by part (a).

(c) Consider the exact sequence 1! G0 ! G ! G=G0 ! 1. The group G0 is
infinitesimal; thus RDk.G0/ 6 1 by part (b). On the other hand, by [15, Exp. VIA,
Proposition 5.5.1], G=G0 is étale. Since k is algebraically closed, this tells us that
G=G0 is constant, i.e., is isomorphic to an abstract finite abelian group, viewed as an
algebraic group over k. In particular, RDk.G=G0/ 6 1 by Example 10.6. Applying
Proposition 10.8 (a) to the exact sequence 1! G0 ! G ! G=G0 ! 1, we obtain
RDk.G/ 6 1.

Proposition 11.3. Let A be an abelian variety over k. Then RDk.A/ 6 1.

Proof. Let K be a field containing k. Recall that H 1.K;A/, the Weil–Châtelet group
ofAK , is torsion; see [28, p. 663]. Thus, it suffices to show that RDk.H 1.�;A/Œd �/6 1

for every integer d > 1. Examining the exact sequence in cohomology associated to

1 !AŒd� !A
�d
!A !1

we conclude that H 1.�; AŒd �/ surjects onto H 1.�; A/Œd �; see [42, Section VIII.2].
(In [42], A is assumed to be an elliptic curve, but the same argument goes through for
an abelian variety of arbitrary dimension.) Lemma 7.9 (c) now tells us that

RDk
�
H 1.�; A/Œd �

�
6 RDk

�
H 1.�; AŒd �/

� def
D RDk.AŒd �/:

Since AŒd� is a 0-dimensional abelian group over k, RDk.AŒd �/ 6 1 by Proposi-
tion 11.2 (c). Thus, RDk.H 1.�; A/Œd �/ 6 1 for every d > 1, as claimed.

12. Proof of Theorem 1.2

Setting F to be the non-abelian cohomology functor H 1.�; G/ in Proposi-
tion 8.3 (b), we obtain RDk.G/ D RDxk.G/ and RDk0.G/ D RD xk0.G xk0/, where xk
is the algebraic closure of k and similarly for k0. After replacing k and k0 by xk and xk0,
we may assume that k and k0 are algebraically closed.

The following two lemmas will allow us to complete the proof by appealing to
Proposition 9.1. Lemma 12.1 tells us that the conditions of Proposition 9.1 are satisfied
by the non-abelian cohomology functor F D H 1.�; G/ and thus

RDk0.Gk0/ 6 RDk.G/ 6 ¹RDk0.Gk0/; 1º:

This yields the desired equality, RDk.G/ D RDk0.Gk0/, assuming RDk0.Gk0/ > 1.
Lemma 12.2 shows that this equality also holds when RDk0.Gk0/ D 0.
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Lemma 12.1. Let k be algebraically closed field and G be an algebraic group over k.
Then the natural mapH 1.E;G/!H 1.E..t//;G/ has trivial kernel for every perfect
field E containing k.

Proof. We begin by reducing the problem to the case where G is smooth. Indeed, let
Gred be the associated smooth group. Consider the following diagram

1 !H 1.E;Gred/

!

!H 1.E;G/

!

!1

1 !H 1.E..t//; Gred/ !H 1.E..t//; G/;

where the bottom row is exact by Lemma 11.1 (a) and the top row is exact by
Lemma 11.1 (b). (Recall that we are assuming E to be perfect.) An easy diagram
chase shows that if the left vertical map has trivial kernel, then so does the right vertical
map. In other words, if the lemma holds for Gred, then it also holds for G. From now
on we will assume that G is smooth.

Now suppose ˛ 2 H 1.E; G/ lies in the kernel of the map H 1.E; G/ !

H 1.E..t//; G/. This means that the G-torsor � WT ! Spec.E/ representing ˛ splits
over Spec.E..t///. In other words, �EŒŒt��WT � Spec.EŒŒt ��/! Spec.EŒŒt ��/ has a sec-
tion sWSpec.E..t///! T � Spec.E..t/// over the generic point of Spec.EŒŒt ��/.

We would like to show that this section extends to all of Spec.EŒŒt ��/. If we manage
to do this, then restricting to the closed point of Spec.EŒŒt ��/ (i.e., setting t D 0), we
obtain an E-point on T . This shows that T is split, i.e., ˛ D ŒT � D 1 in H 1.E;G/, as
desired.

To prove that s can be extended to all of Spec.EŒŒt ��/, it is natural to appeal to
the valuative criterion for properness. If G is proper over Spec.k/ (i.e., the identity
component ofG is an abelian variety), then T is proper over Spec.K/, a desired lifting
exists by the valuative criterion for properness, and the proof is complete. In general,
T is not proper over Spec.K/, so the valuative criterion for properness does not apply.
Nevertheless, we will now see that a variant of this argument still goes through, if we
modify T slightly as follows.

By Chevalley’s structure theorem [12, 14] there exists a unique connected smooth
normal affine k-subgroup N D G0aff of G0 such that the quotient G0=N is an abelian
variety. Since G is smooth and k is an algebraically closed field, N is smooth,
connected and normal in G, and G=N is proper over Spec.k/; see [3, Theorem 4.2
and Remark 4.3].

Let B be a Borel subgroup (i.e., a maximal connected solvable subgroup) of N .
Then the homogeneous space N=B is proper over Spec.k/. Consequently, G=B is
proper overG=N . SinceG=N is proper over Spec.k/, we conclude thatG=B is proper
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over Spec.k/ and hence, T=B is proper over Spec.K/. Now the valuative criterion for
properness tells us that the section

sWSpec
�
E..t//

�
! TSpec.EŒŒt��/ ! .T=B/Spec.EŒŒt��/

extends to Spec.EŒŒt ��/. Restricting to the closed point of Spec.EŒŒt ��/, we obtain an
E-point on T=B . Denote this point by pW Spec.E/ ! T=B . The preimage of this
E-point under the natural map T ! T=B is a B-torsor over Spec.E/. Since B is
connected and solvable, it is special; see Lemma 10.7 (b). Thus, this B-torsor is split,
i.e., has an E-point. This shows that T has an E-point, i.e., T is split over E, as
desired.

Lemma 12.2. Let k � k0 be algebraically closed fields and G be an algebraic group
over k. Then the following conditions are equivalent.
(a) RDk0.Gk0/ D 0;
(b) Gk0 is a special group;
(c) Gk0 is affine, and edk0.Gk0/ D 0;
(d) G is affine, and edk.G/ D 0;
(e) G is a special group;
(f) RDk.G/ D 0.

Proof. (a)” (b) and (e)” (f) by Lemma 10.7 (a).

(b) H) (c): Suppose Gk0 is special, i.e., H 1.�; Gk0/ is the trivial functor. Then
clearly edk0.Gk0/D edk0.H 1.�;Gk0//D 0. Moreover, a special group is affine; see [37,
Theorem 4.1].

(c) ” (d): G is affine if and only if Gk0 is affine. Moreover, since k is
algebraically closed and G is an affine group over k, we have edk.G/ D edk0.Gk0/;
see [4, Proposition 2.14] or [49, Example 4.10].

(d) H) (e) by [30, Proposition 3.16].

(f) H) (a): By Proposition 8.3 (a) with F D H 1.�; G/, RDk.G/ > RDk0.Gk0/.
In particular, if RDk.G/ D 0, then RDk0.Gk0/ D 0.

13. Proof of Theorem 1.3

Our proof of Theorem 1.3 will rely on the following proposition.

Proposition 13.1. Let D be a discrete valuation ring with fraction field k and residue
field k0. Let G be a smooth affine group scheme over D. Assume that the connected
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component G0 is reductive and the component group G=G0 is finite over D. If
char.k/ D 0 and char.k0/ D p > 0, assume further that the absolute ramification
index of D is 1. Then

RDk0.Gk0/ 6 max¹RDk.Gk/; 1º:

Recall that the absolute ramification index ofD is defined as �.p/, where �Wk�!Z

is the discrete valuation.

Proof. First observe that we may replace D by its completion yD. Indeed, denote the
fraction field of yD by yk. Then k � yk, and the residue field k0 remains unchanged. By
Proposition 8.3 (a), RDyk.Gyk/6 RDk.Gk/. Thus, it suffices to show that RDk0.Gk0/6
max¹RDyk.Gyk/; 1º.

After replacingD by yD, we may assume thatD is complete. Under the assumptions
of the proposition, D D W.k0/; see [38, Sections II.4–5]. Here for any field K0
containing k0 we define W.K0/ to be the ring of power series K0ŒŒt �� if char.k/ D
char.k0/ and the ring of Witt vectors with coefficients in K0 if char.k/ D 0 and
char.k0/ D p > 0; see [38, Section II.6].

Now let K0 be a field containing k0 and � W T0 ! Spec.K0/ be a Gk0-torsor.
Set R D W.K0/. Recall that R is a complete local ring relative to a valuation
�WR! Z with residue field K0, extending the valuation on D. By [16, Exp. XXIV,
Proposition 8.1], the natural map H 1.R;G/! H 1.K0; G/ is bijective. In particular,
there exists a GR-torsor �RW T ! Spec.R/ which restricts to � over the closed
point Spec.K0/ ! Spec.R/. Let K be the field of fractions of R D W.K0/ and
�K W TK ! Spec.K/ be the restriction of � to the generic point of Spec.R/. Our
goal is to show that

(15) RDk0.TK0/ 6 max¹RDk.TK/; 1º:

This inequality tells us that RDk0.TK0/ 6 max¹RDk.Gk/; 1º. Taking the maximum
of the left-hand side over all K0 2 Fieldsk0 and all Gk0-torsors T0 ! Spec.K0/, we
arrive at RDk0.Gk0/ 6 max¹RDk.Gk/; 1º, as desired.

It remains to prove the inequality (15). By the definition of d D RDk.TK/ there
exists a finite field extension L=K such that L splits TK and levk.L=K/ 6 d . The
valuation � extends from K and to L. Once again, by abuse of notation I will continue
to denote this extended valuation by �WL� ! Z. I will also denote the valuation ring
for this valuation by S and the residue field byL0. Now consider the diagram of natural
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morphisms

(16)

TS

!

!TL

H 1.S;GS /
� �
!

!

H 1.L;GL/

TL0 H 1.L0; GL0/:

The horizontal map is injective by [35, Lemma 3.3 (b)]. Note that the assumptions of
Theorem 1.3, that G0 is reductive and G=G0 is finite over D (and hence, over R and
over S ), are used to ensure that [35, Lemma 3.3 (b)] applies.

Since TK splits over Spec.L/, the injectivity of the horizontal map in (16) tells us
that T splits over Spec.S/. Consequently, TK0 splits over Spec.L0/. This tells us that

RDk0.TK0/ 6 levk0.L0=K0/ 6 max¹levk.L=K/; 1º 6 max¹d; 1º;

where the middle inequality is given by Proposition 5.1. This completes the proof of
the inequality (15) and thus of Proposition 13.1.

We now proceed with the proof of Theorem 1.3. If char.k/ D char.k0/, then by
Theorem 1.2, RDk.Gk/D RDF .GF /D RDk0.Gk0/, where F is the prime field. Thus,
we may assume without loss of generality that char.k/ D 0 and char.k0/ D p > 0.
Moreover, we are free to replace k by any field of characteristic 0 and k0 by any field
of characteristic p.

If RDk.Gk/ > 1 for some (and thus every) field of characteristic 0, then the desired
inequality RDk0.Gk0/ 6 RDk.Gk/ readily follows from Proposition 13.1, applied to
the group scheme GD , whereD D W.k0/ D the ring of Witt vectors with coefficients
in k0.

I will treat the case where RDk.Gk/ D 0 separately, as in the previous section.
Once again, we are free to choose k to be any field of characteristic 0 and k0 to be
any field of characteristic p. In particular, we may assume that both k and k0 are
algebraically closed. Now by Lemma 10.7 (a), it suffices to show that if Gk is special,
then Gk0 is special.

Indeed, ifGk is special, thenGk is connected [37, Theorem 4.1]. Hence,G andGk0
are also connected. On the other hand, since k and k0 are algebraically closed, we
may appeal to the classification of special groups over an algebraically closed field
due to Grothendieck [24, Theorem 3]. According to this classification, Gk is special if
and only if its derived subgroup is a direct product G1 � � � � �Gr , where each Gi is a
simply connected simple group of type A or C. This property is encoded into the root
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datum, which is the same for Gk , G, and Gk0 ; see [16, Exp. XXV, Section 1]. (Note
that this is the only step in the proof of Theorem 1.3 which uses the assumption that
G0 is split.) We conclude that Gk is special if and only if Gk0 is special. This finishes
the proof of Theorem 1.3.

Remark 13.2. Our proof of Proposition 13.1 relies on [35, Lemma 3.3 (b)], which
asserts that the horizontal homomorphism in diagram (16) is injective. This lemma
is a variant of the Grothendieck–Serre conjecture over a Henselian discrete valuation
ring. A theorem of Nisnevich [32], establishing the Grothendieck–Serre conjecture
in this context, is a key ingredient in the proof of [35, Lemma 3.3 (b)] and thus of
Proposition 13.1 and Theorem 1.3 in this paper.

14. Upper bounds on the resolvent degree of a group

Consider an action of a linear algebraic group G on an algebraic variety X (not
necessarily connected) defined over a field k. We will say that this action is generically
free if there exists a dense G-invariant open subset U � X such that the scheme-
theoretic stabilizer Gu is trivial for every geometric point u 2 U . In this section we
will prove the following.

Proposition 14.1. Let G be a closed subgroup of PGLnC1 defined over k. Suppose
there exists a G-invariant closed subvariety X of Pn of degree a and dimension b.
(a) (Cf. [51, Proposition 4.11].) If the G-action on X is generically free, then

RDk.G/ 6 max¹b� dim.G/;RDk.Sa/; 1º;

where Sa denotes the symmetric group on a letters.
(b) Suppose there exists aG-invariant quadric hypersurfaceQ� P .V / of rank r such

that dim.Q \X/D b � 1. Assume further the G-action onQ \X is generically
free, and b > b rC1

2
c. Then

RDk.G/ 6 max¹b� 1� dim.G/;RDk.Sa/; 1º:

Remark 14.2. (1) Note that RDk.Sa/ > 1 if a > 2. Thus, for a > 2, the conclusions
of parts (a) and (b) simplify to RDk.G/ 6 max¹b � dim.G/; RDk.Sa/º and
RDk.G/ 6 max¹b� dim.G/� 1;RDk.Sa/º, respectively.

(2) By the rank r of Q we mean the rank of some (and thus any) quadratic form
definingQ. The maximal value of r is nC 1; it is attained whenQ is non-singular.
In particular, the condition that b > b rC1

2
c is automatically satisfied if b > bnC2

2
c.

If X is a hypersurface, i.e., b D n � 1, then it is automatically satisfied whenever
n > 3.
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(3) Note that by Theorem 1.2, RDk.Sa/D RDC.Sa/ for any field k of characteristic 0
and RDk.Sa/6 RDC.Sa/ for any field k of positive characteristic. Thus, RDk.Sa/
can be replaced by RDC.Sa/ in the statement of the proposition.

Example 14.3. (1) If we take X D Pn in part (a), we obtain RDk.G/ 6 n � dim.G/.
In particular, if an abstract finite group G has an n-dimensional faithful projective
representation over k, then RDk.G/ 6 n. (The G-action on Pn is automatically
generically free in this case.) In particular, since the alternating group Aa acts faithfully
on P1 for a 6 5, we obtain RDk.Aa/ 6 1 for every a 6 5. Similarly, since A6 and A7
have complex projective representations of dimension 2 and 3, respectively, we deduce
classical upper bounds RDC.A6/ 6 2 and RDC.A7/ 6 3; see [17, Sections 3 and 4],
[20, Theorem 5.6].

Note also that RDk.Sn/ D RDk.An/ for any n > 3; this follows from Proposi-
tion 10.8 (a) applied to the exact sequence 1! An ! Sn ! Z=2Z! 1.

(2) More generally, the classical upper bound RDk.Sn/ 6 n � 4 for any n > 5 can
be deduced from Proposition 14.1 (b) as follows. Consider the .n� 1/-dimensional
subspace of kn given by x1 C x2 C � � � C xn D 0. The group Sn acts on this space
by permuting the coordinates. This yields an embedding Sn ,! PGLn�2. The desired
inequality now follows from Proposition 14.1 (b), where we take X to be the cubic
hypersurface given by s3 D 0 and Q to be the quadric s2 D 0; see Remark 14.2 (2).
Here si denotes the i th elementary symmetric polynomial in x1; : : : ; xn.

(3) The group G D PSL2.F7/ acts faithfully on the quartic curve X � P2 given
by x3y C y3z C z3x D 0 (the Klein quartic). By Proposition 14.1 (a),

RDC.PSL2.F7// 6 max¹1;RDC.S4/; 1º D 1:

This inequality was known to Felix Klein; for an alternative proof and historical
references, see [19, Proposition 4.13 (2)].

None of the upper bounds in Example 14.3 are new; the point here is that they can
all be deduced from Proposition 14.1 in a uniform way. The remainder of this section
will be devoted to proving Proposition 14.1. We begin with two lemmas.

Lemma 14.4. Let k be a field, K 2 Fieldsk be closed at level d , and ; ¤ X � Pn

be a projective variety of degree 6 a defined over K. If d > max¹RDk.Sa/; 1º,
then:

(a) K-points are dense in X .
(b) Assume further that Q � Pn is a quadric hypersurface of rank r defined over K

and dim.X/ > b rC1
2
c. Then K-points are dense in X \Q.
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Proof. (a) We argue by induction on n. The base case, where n D 1, reduces to the
assertion that every non-constant homogeneous polynomial f .x; y/ 2 KŒx; y� of
degree 6 a splits into a product of linear factors over K. This assertion follows from
Example 8.4. (Recall that RDk.Sn/ D RDk.Étn/; see Example 10.2.)

For the induction step, assume n > 2 and consider the incidence variety

I D ¹.p;L/ 2 X � yPn j p 2 Lº

�1

 

�2

!
X yPn;

where yPn is the dual projective space parametrizing hyperplanes in Pn and �1, �2 are
projections to the first and second factor, respectively. Clearly �1 is surjective; there is
a hyperplane in Pn through every point of X . By the induction assumption, K-points
are dense ��12 .L/ for every L 2 yPn.K/. SinceK-points are dense in yPn, we conclude
that K-points are dense in I . Projecting them to X via �1, we see that K-points are
dense in X , as desired.

(b) Since K is closed at level d > 1, every quadratic form splits over K. That
is, Q is the zero locus of a split quadratic form q.x0; : : : ; xn/ of rank r over K. Let
mD b r

2
c C .nC 1� r/ and Grq.m;nC 1/ be the isotropic Grassmannian of maximal

isotropic subspaces of q. In other words, Grq.m; nC 1/ parametrizes linear subspaces
of (projective) dimension m � 1 which are contained in Q. Since q is split, K-points
are dense in Grq.m; nC 1/. Consider the incidence variety

I D
®
.p;L/ 2 .Q \X/ � Grq.m; nC 1/ j p 2 L

¯
�1

 

�2

!

Q \X Grq.m; nC 1/:

Note that there exists a maximal isotropic subspace through every point of Q;
in particular, �1 is surjective. On the other hand, our assumption that dim.X/ > b rC1

2
c

ensures that dim.L/C dim.X/ D .m � 1/C dim.X/ > n and thus L \ X ¤ ; for
everyL 2Grq.m;nC 1/. This tells us that �2 is surjective. The fiber ��11 .L/DL\X

of a K-rational point L of Grq.m; n C 1/ is a closed subvariety of degree 6 a in
L' Pm�1 defined overK. By part (a),K-points are dense in every such fiber. SinceK-
points are dense in Grq.m;nC 1/, we conclude thatK-points are dense in I . Projecting
them to Q \X via �1, we see that K-points are dense in Q \X as well.

Lemma 14.5. Consider a generically free action of an algebraic group G on an
algebraic variety X defined over a field k. Supposed that K-points are dense in the
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twisted variety TX for every field K containing k, closed at level d and everyG-torsor
T ! Spec.K/. Then RDk.G/ 6 max¹d; dim.X/ � dim.G/º.

Proof. Let K=k be a field closed at level d and T ! Spec.K/ be a G-torsor. By
Proposition 8.1 (c) it suffices to show that

(17) RDk.T / 6 dim.X/ � dim.G/:

After replacing X by a suitable G-invariant union of its irreducible components, we
may assume that G transitively permutes the irreducible components of X . In this
case there exists a G-invariant dense open subvariety U � X , which is the total
space of a G-torsor U ! B . By our assumption TU has a K-point. Equivalently,
there exists a G-equivariant map T ! U defined over k; see, e.g., [18, Proof of
Theorem 1.1 (a) on p. 508]. This implies that edk.T / 6 dim.B/D dim.X/� dim.G/.
The desired inequality (17) now follows from the inequality RDk.T / 6 edk.T / of
Remark 10.4.

Proof of Proposition 14.1. (a) Set d Dmax¹RDk.Sa/;1º. Suppose a fieldK 2 Fieldsk
is closed at level d . By Lemma 14.5 it suffices to show that K-points are dense in TX
for every G-torsor T ! Spec.K/.

Note that the G-equivariant closed immersion X ,! P .V / induces a natural
closed immersion TX ,! TP .V / of K-varieties. Here TP .V / is a Brauer–Severi
variety over K. Since K is closed at level d > 1, every Brauer–Severi variety over
K is split. (This is because the underlying Brauer class in H 2.K;Gm/ has resol-
vent degree 6 1; see Proposition 7.10.) Thus, TX is a closed subvariety of P .V /K .
The degree of TX in P .V /K is a, same as the degree of X in P .V /. (To see this,
pass to xK.) By Lemma 14.4 (a), K-points are dense in TX . The desired inequality,
RD.G/ 6 ¹d; dim.X/ � dim.G/º, now follows from Lemma 14.5.

(b) The argument here is the same as in part (a), with Lemma 14.4 (b) used to show
that K-points are dense in T .Q \X/.

15. Upper bounds on the resolvent degree of some reflection groups

The purpose of this section is to prove the following.

Proposition 15.1. Let W be Weyl group of the simple Lie algebra (or equivalently,
a simple algebraic group) of type Ei . Here i D 6, 7 or 8. Let k be an arbitrary field.
Then RDk.W / 6 i � 3.
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The inequality RDk.W / 6 5, where W is the Weyl group of E8, will play
an important role in the proof of Theorem 1.1. We will only supply a proof of
Proposition 15.1 in this case (for i D 8). The other two inequalities (where i D 6

and 7) will not be used in this paper. They are proved by a minor modification of the
same argument; we leave the details as an exercise for the reader.

Note that by Theorem 1.2, RDC.Wi / D RDQ.Wi / D RDk.Wi / for any field k of
characteristic 0. Moreover, by Theorem 1.3, RDk.Wi / 6 RDC.Wi / for any field k of
characteristic p. Thus, for the purpose of proving Theorem 15.1, we may assume that
k D C. This places us into the setting of Springer’s classic paper on complex reflection
groups [43].

We now proceed with the proof of Proposition 15.1 for i D 8 and k D C. Consider
the natural representationW ,! GL.V /D GL8 where V is a Cartan subalgebra ofE8.
The kernel Z of the corresponding projective representation W ! PGL.V / is the
center of W ; it is a cyclic group of order 2. We will denote the non-trivial element
of Z by z and the image of W in PGL.V / by xW D W=Z.

Recall that the ring of invariants CŒV �W is a polynomial ring over C in 8 variables.
The generators f2, f8, f12, f14, f18, f20, f24 and f30 are called basic invariants; each
fi is a homogeneous G-invariant polynomial of degree i . These basic invariants are
not unique but their degrees are. That is, if CŒV �G is generated by 8 homogeneous
elements g1; : : : ; g8, then the degrees of g1; : : : ; g8 are

(18) 2; 8; 12; 14; 18; 20; 24; 30:

These integers are called the fundamental degrees of W .
Our strategy is to apply Proposition 14.1 (b) with G D xW , X � P .V / D P7 the

hypersurface f8 D 0 and Q � P7 the quadric hypersurface f2 D 0. Denote the affine
cones of Q and X by Qaff and X aff , respectively.

Lemma 15.2. The following statements hold:
(a) W transitively permutes the irreducible components of Q \X (or equivalently,

the irreducible components of Qaff \X aff ).
(b) Each irreducible component of Q \X is of dimension 5.

Lemma 15.3. The action of xW on Q \X is generically free.

Assume for a moment that we have established these two lemmas. Then Proposi-
tion 14.1 (b) tells us that

RDC. xW / 6 max¹dim.X/� 1;RDC.S8/º D max¹5; 4º D 5:

Here I used the fact that RDC.S8/ 6 4; see [20, Theorem 5.6] or Example 14.3 (2).
Applying Proposition 10.8 (a) to the exact sequence 1! Z ! W ! xW ! 1, we
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conclude that

RDC.W / 6 max¹RDC. xW /;RDC.Z/º 6 max¹5; 1º D 5;

as desired. It thus remains to prove Lemmas 15.2 and 15.3.

Proof of Lemma 15.2. The natural inclusion CŒf2; f8; : : : ; f30� D CŒV �W ,! CŒV �

induces the categorical quotient map � WV ! A8 given by � W v! .f2.v/; f8.v/; : : : ;

f30.v//. Note that � is a finite morphism, and the fibers of C-points of A8 are precisely
theW -orbits in V . By definition,Qaff andX aff the preimages of coordinate hyperplanes
H1 and H2 in A8 given by x1 D 0 and x2 D 0, respectively. Both (a) and (b) now
follows from the fact that H1 \H2 ' A6 is irreducible of dimension 6.

Proof of Lemma 15.3. Assume the contrary: the xW -action onQ\X is not generically
free. This means thatQaff \X aff is covered by the union of eigenspaces V.g; �/, where
g ranges over W nZ and � ranges over the roots of unity in C. Here

V.g; �/ D ¹v 2 V j g.v/ D �vº

stands for the �-eigenspace of g, as in [43].
If � is a primitive root of unity of degree d , then dim.V .g; �// 6 a.d/, where a.d/

is the number of fundamental degrees (18) divisible by d ; see [43, Theorem 3.4]. By
inspection we see that a.d/ 6 4 for any d > 3, with equality for d D 3; 4; 6. Thus, the
union of eigenspaces

g2W nZ[
deg.�/>3

V.g; �/

is at most 4-dimensional. Since every irreducible component of Qaff \ X aff is of
dimension 6 (see Lemma 15.2 (b)), Qaff \ X aff is, in fact, covered by the union of
V.g;˙1/ D V g , as g ranges over W nZ. Since V.g;�1/ D V.zg; 1/ for each g, we
conclude that

V non-free
D

[
g2W nZ

V.g; 1/

covers one of the irreducible components ofQaff \X aff. ClearlyV non-free isW -invariant.
By Lemma 15.2 (a), if it covers one irreducible component ofQaff \X aff , it covers all
of them. In other words,

Qaff
\X aff

�

[
1¤g2W

V.g; 1/:

Thus, in order to produce a contradiction, it suffices to exhibit one point v 2 V such
that
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(i) StabW .v/ D ¹1º or equivalently, v … V.g; 1/ for any 1 ¤ g 2 W ; and

(ii) v 2 Qaff \X aff of equivalently, f2.v/ D f8.v/ D 0.

By [43, p. 177, Table 3], W has a regular element of order 3. This means that
V.g; �3/ contains a regular vector v, where �3 is a primitive cube root of unity. Recall
that a vector in V is called regular if it is not contained in any reflecting hyperplane, and
that for any regular vector v, the stabilizer StabW .v/ D ¹1º; see [43, Proposition 4.1].
Moreover, if fd is one of the fundamental invariants, then

fd .v/ D fd .gv/ D fd .�3v/ D �
d
3 fd .v/:

In particular, fd .v/ D 0 when d D 2 and 8. Thus, the regular vector v satisfies condi-
tions (i) and (ii). This completes the proof of Lemma 15.3 and thus of Proposition 15.1
for i D 8.

16. Proof of Theorem 1.1

Once again, by Theorem 1.2, we may replace k by its algebraic closure and thus
assume without loss of generality that k is algebraically closed.

Reduction to the case, where G is smooth. By Proposition 11.2 (a),

RDk.G/ 6 max¹RDk.Gred/; 1º;

where Gred is the underlying smooth group. Thus, in order to prove Theorem 1.1 for G,
it suffices to prove it for Gred.

Reduction to the case, where G is affine. We may now assume that G is smooth.
By Chevalley’s structure theorem [12, 14] there exists a unique connected smooth
normal affine k-subgroup Gaff of G such that the quotient G=Gaff is an abelian variety.
By Proposition 11.3, RDk.G=Gaff/ 6 1. Applying Proposition 10.8 (a) to the exact
sequence 1! Gaff ! G ! G=Gaff ! 1, we obtain RDk.G/ 6 max¹RDk.Gaff/; 1º.
Thus, in order to prove Theorem 1.1 for G, it suffices to prove it for Gaff .

Reduction to the case, where G is semisimple. We may now assume that G is affine.
Let Rad.G/ be the radical of G, i.e., the largest connected solvable normal subgroup
of G. Denote the quotient (semisimple) group by Gss and consider the natural exact
sequence 1! Rad.G/! G ! Gss ! 1. By Lemma 10.7 (b), RDk.Rad.G// D 0.
Proposition 10.8 (a) now tells us that RDk.G/ 6 RDk.Gss/. Thus, in order to prove
Theorem 1.1 for G, it suffices to prove it for Gss.



Hilbert’s 13th problem for algebraic groups 47

Reduction to the case, where G is almost simple. We will now assume that G is
semisimple. ThenG isogenous to the direct product zG D G1 � � � � �Gr of its minimal
connected normal subgroups. That is, there exists a central exact sequence

1! A! zG ! G ! 1;

where A is a finite subgroup of a maximal torus of zG; see [44, Section 9.6.1].
Since we are assuming that k is algebraically closed, this tells us that A is a finite
diagonalizable group. Hence, RDk.A/ 6 1 by Proposition 10.8 (c). The minimal
connected normal subgroups G1; : : : ; Gr are (almost) simple; see [26, Section 27.5].
Proposition 10.8(d) (d) now tells us that it suffices to prove Theorem 1.1 for zG D
G1 � � � � �Gr . Applying Proposition 10.8 (b) recursively, we see that

RDk.G1 � � � � �Gr/ D max¹RDk.G1/; : : : ;RDk.Gr/º:

Thus, in order to prove Theorem 1.1 for G, it suffices to prove it for each (almost)
simple group Gi .

From now on we will assume that G is (almost) simple. To complete the proof of
Theorem 1.1, it remains to establish the following.

Proposition 16.1. Let k be an algebraically closed field and G an almost simple group
defined over k. Then

(a) RDk.G/ 6 5 if G is of type E8, and
(b) RDk.G/ 6 1 if G is of any other type.

Proof. (a) Let G be a simple group of type E8 and let W8 be the Weyl group of G.
Then

RDk.G/ 6 RDk.W8/ 6 5;

where the first inequality is given by Corollary 10.9, and the second by Proposi-
tion 15.1.

(b) Tits [46, Section 2] showed that ifG is a simple group of any type other thanE8,
then G has no non-trivial torsors over any field K, closed under taking radicals. (Note
that [46] is reprinted in [48].) In particular, there are no non-trivial G-torsors over
any field K closed at level 1. By Proposition 8.1 (b) this implies that RDk.G/ 6 1, as
claimed.

For the sake of completeness we will give a short direct proof of part (b),
using the terminology of this paper. We begin with two preliminary observations.
First, recall that since we are working over an algebraically closed field k, every
almost simple algebraic group over k is split and consequently descends to Z. Using
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Theorems 1.2 and 1.3, we may assume without loss of generality that k D C is
the field of complex numbers. This assumption will allow us to avoid some of the
subtle points of the arguments in [46, Section 2] which only come up in prime
characteristic.

Our second preliminary observation is that if G1 and G2 are almost sim-
ple groups of the same type, then they are isogenous and hence, by Proposi-
tion 10.8 (d),

RDC.G1/ 6 max¹RDC.G2/; 1º and RDC.G2/ 6 max¹RDC.G1/; 1º:

Consequently, Proposition 16.1 (b) holds for G1 if and only if it holds for G2. In other
words, it suffices to prove that RDC.G/ 6 1 for one almost simple group G of each
type (other than E8).

G is of type Ar or Cr . Here we can take G to be G D SLrC1 and G D Sp2r , respec-
tively. By Lemma 10.7 (c), RDk.G/ D 0 in both cases.

G is of type Br or Dr . Here we take G to be the special orthogonal group G D SOn,
which is of typeBr if nD 2r C 1 and of typeDr if nD 2r . By [27, (29.29)],H 1.K;G/

can be represented by n-dimensional quadratic forms q of discriminant 1 over K. In
a suitable basis, q.x1; : : : ; xn/ D a1x2 C � � � C anx2n for some a1; : : : ; an. Thus, q
splits over L D K.

p
a1; : : : ;

p
an/. Clearly RDC.L=K/ 6 1, and thus RDC.G/ 6 1,

as claimed.

G is of type G2 and F4. In both cases the only primes dividing jW j are 2

and 3. By Burnside’s theorem, W is solvable.3 Thus, RDk.G/ 6 RDk.W / 6 1,
where the first inequality follows from Corollary 10.9 and the second from Exam-
ple 10.6.

G is a simply connected group of typeE6. By [22, Example 9.12],G has a subgroup S
isomorphic to F4 � �3 such that the map H 1.K; S/ ! H 1.K; G/ is surjective;
see [22, Section 23]. Here F4 denotes the simply connected group of type F4. By
Lemma 7.9 (c), RDC.S/ D RDC H

1.�; S/ > RDC H
1.�; G/ D RDC.G/. Since we

know that RDC.F4/ 6 1,

RDC.G/ 6 RDC.S/ D RDC.F4 � �3/ D max¹RDC.F4/;RDC.�3/º D 1:

G is a simply connected group of type E7. By [22, Example 12.3], G has a sub-
group zS isomorphic to E6 Ì �4 such that the map H 1.K; zS/ ! H 1.K; G/ is

3One can also see this directly, without appealing to Burnside’s theorem.
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surjective; see [22, Section 23]. Here E6 denotes the simply connected group of
type E6. Once again, by Lemma 7.9 (c), RDC. zS/ > RDC.G/. Since we know
that RDC.E6/ 6 1, we conclude that RDC.G/ 6 RDC. zS/ D RDC.E6 Ì �4/ D

max¹RDC.E6/;RDC.�4/º D 1.

This completes the proof of Proposition 16.1 and thus of Theorem 1.1.

Remark 16.2. For simply connected groups G of type G2, F4, E6 and E7, the
inequality RDC.G/ 6 1 of Proposition 16.1 (b) can also be deduced from a theorem
of Garibaldi which asserts that for these groups the Rost invariant H 1.�; G/ !

H 3.�;Z=nGZ.2// has trivial kernel; see [21, Theorem 0.5] or [9].

17. Can the inequality of Theorem 1.1 be strengthened?

Recall that Conjecture 1.4 asserts that the inequality RDk.G/ 6 5 of Theorem 1.1
can be strengthened to RDk.G/ 6 1. In this final section we will show that this
conjecture follows from a positive answer to a long-standing open question of Serre [39,
Question 2] stated below.

Question 17.1. Let K be a field, H be a smooth algebraic group over K, and
T ! Spec.K/ be an H -torsor. Suppose K1; : : : ; Kr are field extensions of K of
degrees d1; : : : ; dr , respectively, such that
� d1; : : : ; dr are relatively prime integers, i.e., gcd.d1; : : : ; dr/ D 1; and
� each Ki splits T , i.e., TKi D 1 in H 1.Ki ;H/.

Then T is split over K.

Note that for r D 1 this is obvious, since in this case the gcd assumption forces
K1 D K. For a detailed discussion of Question 17.1, we refer the reader to [50].

Proposition 17.2. Assume that Question 17.1 has a positive answer in the following
special situation: K is a solvably closed field containing C and H is the split simple
group of type E8 over K. Then RDk.G/ 6 1 for every field k and every connected
algebraic group G over k.

Proof. It suffices to show that, under the assumption of the proposition, the inequality
RDk.E8/ 6 5 of Proposition 16.1 (a) can be strengthened to RDk.E8/ 6 1. If we
can do this, then the argument of Section 16 will go through unchanged to show that
RDk.G/ 6 1 for every field k and every connected algebraic group G over k.

By Theorems 1.2 and 1.3 we may further assume that k D C, as we did in the proof
of Proposition 16.1. By Proposition 8.1 (b) it suffices to show that every E8-torsor
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T ! Spec.K/ is split for every field K 2 FieldsC , closed at level 1 (over C). In fact,
we will show that this is the case whenever K is solvably closed; cf. Corollary 6.5. By
a theorem of Tits [47], T is split by a finite field extension K>7=K such that

the only primes dividing ŒK>7 W K� are 2; 3 and 5I

see also [50]. (Note that this step is valid for every K; we do not use the assumption
that K is solvably closed here.)

Now observe that sinceK is solvably closed, the norm residue isomorphism theorem
tells us thatHd .K;�n/D 1 for every d;n> 1; cf. Remark 7.12. In particular, the class
of T lies in the kernel of the Rost invariant RWH 1.K;E8/! H 3.K;�60/. Theorems
of Chernousov now tell us that

T is split by a finite extension K3=K such that 3 6 j ŒK3 W K�I

and
T is split by a finite extension K5=K such that 5 6 j ŒK5 W K�I

see [8, 10]. Finally, T also lies in the kernel of the Semenov invariant

H 1.�; E8/0 ! H 3.�; �2/;

where H 1.�; E8/0 denote the kernel of the mod 4 Rost invariant, 15R. Consequently,
by [36, Theorem 8.7]

T is split by a finite extension K2=K such that 2 6 j ŒK2 W K�:

In summary, T can be split by finite extensions K2, K3, K5 and K>7 of K whose
degrees are relatively prime. The assumption of the proposition now tells us that T is
split over K, as desired.

Remark 17.3. Note that the Semenov invariant is only defined in characteristic 0. In
prime characteristic our proof of Proposition 17.2 relies on Theorem 1.3.
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