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TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS

by Mélanie RACZEK and Jean-Pierre TIGNOL � )

The configuration of inflection points on a nonsingular cubic curve in
the complex projective plane has a well-known remarkable feature : a line
through any two of the nine inflection points passes through a third inflection
point. Therefore the inflection points and the 12 lines through them form a
tactical configuration (94; 123) , which is the configuration of points and lines
of the affine plane over the field with 3 elements ([3, p. 295], [7, p. 242]).
This property was used by Hesse to show that the inflection points of a
ternary cubic over the rationals are defined over a solvable extension, see
[11, §110]. As a result, any ternary cubic can be brought to a normal form
x3

1 + x3
2 + x3

3 � 3�x1x2x3 over a solvable extension of the base field 1 ). The
purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic
different from 3, by Fs a separable closure of F and by Γ = Gal(Fs=F) its
Galois group. Let V be a 3-dimensional F -vector space and let f 2 S3(V�)
be a cubic form on V . Assume that f has no singular zero in the projective
plane PV (Fs) . Then the set I( f ) � PV (Fs) of inflection points has 9 elements.
There are 12 lines in PV (Fs) that contain three points of I( f ) ; they are
called inflectional lines. Their set L( f ) is partitioned into four 3-element
subsets T0; T1; T2; T3 called inflectional triangles, which have the property
that each inflection point is incident to exactly one line of each triangle.
Let T( f ) = fT0;T1;T2;T3g . There is a canonical map L( f ) ! T( f ) , which
carries every inflectional line to the unique triangle that contains it. The Galois� ) The second author is partially supported by the Fund for Scientific Research F.R.S.–FNRS
(Belgium).

1 ) We are grateful to the erudite anonymous referee who pointed out that the normal form of
cubics was obtained by Hesse in [5, §20, Aufgabe 2] before he proved (in [6]) that the equation
of inflection points is solvable by radicals.
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140 M. RACZEK AND J.-P. TIGNOL

group Γ acts on I( f ) , hence also on L( f ) and T( f ) , and the canonical mapL( f ) ! T( f ) is a triple covering of Γ -sets, in the terminology of [9, §2.2].
Galois theory associates to the Γ -set L( f ) a 12-dimensional étale F -algebra
L( f ) , which is a cubic étale extension of the 4-dimensional étale F -algebra
T( f ) associated to T( f ) . We show in §4 that if one of the inflectional triangles,
say T0 , is defined over F , hence preserved under the Γ -action, then there
are decompositions

T( f ) ' F � N ; L( f ) ' K �M ;
where N and K are cubic étale F -algebras whose corresponding Γ -sets areX(N) = fT1;T2;T3g and X(K) = T0 respectively, and M is a 9-dimensional
étale F -algebra containing N , associated to K and a unit a 2 K� . One can
then identify the vector space V with K in such a way that

(0.1) f (X) = TK(a�1X3)� 3�NK(X) for some � 2 F ,

where TK and NK are the trace and the norm of the F -algebra K . Conversely,
if f can be reduced to the form (0.1), then one of the inflectional triangles is
defined over F , and X(K) is isomorphic to the set of lines of the triangle.
Note that the (generalized) Hesse normal form

a1 x3
1 + a2 x3

2 + a3 x3
3 � 3� x1x2x3

is the particular case of (0.1) where K = F � F � F (i.e., the Γ -action onX(K) is trivial) and a = (a�1
1 ; a�1

2 ; a�1
3 ) . As an application, we show that the

form TK(X3) can be reduced over F to a generalized Hesse normal form
if and only if K has the form F[ 3

p
d] for some d 2 F� , see Example 4.4.

The 9-dimensional étale F -algebra M associated to a cubic étale F -algebra
K and a unit a 2 K� was first defined by Markus Rost in relation with
Morley’s theorem. We are grateful to Markus for allowing us to quote from
his private notes [10] in §2.

For background information on cubic curves, we refer to [3], Chapter 11
of [7], or [2].

1. ÉTALE ALGEBRAS OVER A FIELD

An étale F -algebra is a finite-dimensional commutative F -algebra A such
that A
F Fs ' Fs � � � � �Fs ; see [1, Ch. 5, §6] or [8, §18] for various other
characterizations of étale F -algebras. For any étale F -algebra A , we denote byX(A) the set of F -algebra homomorphisms A ! Fs . This is a finite set with
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TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS 141

cardinality jX(A)j = dimF A . Composition with automorphisms of Fs endowsX(A) with a Γ -set structure, and X is a contravariant functor that defines an
anti-equivalence of categories between the category EtF of étale F -algebras
and the category SetΓ of finite Γ -sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F -algebra A . The
group G acts faithfully on the Γ -set X(A) .

PROPOSITION 1.1. If G acts freely (i.e., without fixed points) on X(A) , then

H1(G;A�) = 1 :
Proof. The G -action on X(A) maps each Γ -orbit on a Γ -orbit, since the

actions of G and Γ commute. We may thus decompose X(A) into a disjoint
union X(A) = X1

` : : :` Xn ;
where each Xi is a union of Γ -orbits permuted by G . Using the anti-
equivalence between EtF and SetΓ , we obtain a corresponding decomposition
of A into a direct product of étale F -algebras

A = A1 � � � � � An :
The G -action preserves each Ai , hence

H1(G;A�) = H1(G;A�1 )� � � � � H1(G;A�n ) :
It therefore suffices to prove that H1(G;A�) = 1 when G acts transitively
on the Γ -orbits in X(A) . These Γ -orbits are in one-to-one correspondence
with the primitive idempotents of A . Let e be one of these idempotents and
let H � G be the subgroup of automorphisms that leave e fixed. Let also
B = eA . The map g 
 b 7! g(b) for g 2 G and b 2 B induces isomorphisms
of G -modules

A = Z[G]
Z[H] B ; A� = Z[G]
Z[H] B� ;
hence the Eckmann–Faddeev–Shapiro lemma (see for instance [4, Prop. (6.2),
p. 73]) yields an isomorphism

H1(G;A�) ' H1(H;B�) :
Now, B is a field and each element h 2 H restricts to an automorphism
of B . Let � 2 X(A) be such that �(e) = 1, hence �(x) = �(ex) for all x 2 A .
If h 2 H restricts to the identity on B then

e h(x) = h(ex) = ex for all x 2 A ,
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142 M. RACZEK AND J.-P. TIGNOL

and hence ��h(x)
� = �(x) for all x 2 A .

It follows that h leaves � fixed, hence h = 1 since G acts freely on X(A) .
Therefore H embeds injectively in the group of automorphisms of B . Hilbert’s
Theorem 90 then yields H1(H;B�) = 1, see [8, (29.2)].

2. MORLEY ALGEBRAS

Let K be an étale F -algebra of dimension 3. To every unit a 2 K� we
associate an étale F -algebra M(K; a) of dimension 9 by a construction due
to Markus Rost [10], which will be crucial for the description of the Γ -action
on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let D be the discriminant algebra of K (see [8, p. 291]) ;
this is a 2-dimensional étale F -algebra such that K 
F D is the S3 -Galois
closure of K , see [8, §18.C]. We thus have F -algebra automorphisms �; �
of K 
F D such that�jD = IdD ; �jK = IdK ; �3 = �2 = IdK
D ; and �� = �2� :
We identify each element x 2 K with its image x
 1 in K 
F D and denote
its norm by NK(x) .

Now, fix an element a 2 K� . Let s , t be indeterminates and consider the
quotient F -algebra

A = K 
F D[s; t]Æ�s3 � �2(a)�(a)�1; t3 � NK(a)
� :

Since the characteristic is different from 3, every F -algebra homomorphism
K 
F D ! Fs extends in 9 different ways to A , so A is an étale F -algebra.
Abusing notation, we also denote by s and t the images in A of the
indeterminates. Straightforward computations show that � and � extend to
automorphisms of A by letting�(s) = st�2(a)�1 ; �(t) = t ; �(s) = s�1 ; �(t) = t ;
and that the extended �; � satisfy �3 = �2 = IdA and �� = �2� , so they
generate a group G of automorphisms of A isomorphic to the symmetric
group S3 . The subalgebra of A fixed under G is called the Morley F -algebra
associated with K and a . It is denoted by M(K; a) .
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TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS 143

Since G acts freely on X(K 
F D) , it also acts freely on X(A) , hence

dimF M(K; a) = 9 :
It readily follows from the definition that M(K; a) contains the 3-dimensional
étale F -algebra

N(K; a) = F[t] ; with t3 = NK(a) .

Clearly, if a0 = �k3a for some � 2 F� and k 2 K� , then there
is an isomorphism M(K; a0) ' M(K; a) induced by s0 7! s�2(k)�(k)�1 ,
t0 7! t�NK(k) .

EXAMPLE 2.2. Let K = F � F � F and a = (a1; a2; a3) 2 K� . Then
D ' F � F , so K 
F D ' F6 . We index the primitive idempotents of K 
D
by the elements in G , so that the G -action on the primitive idempotents
(e� )�2G is given by �(e� ) = e�� for �; � 2 G .

We identify K with a subalgebra of K 
 D by

(x1; x2; x3) = x1(eId + e�)+ x2(e� + e��)+ x3(e�2 + e��2 )

for x1; x2; x3 2 F . Then A ' F6[s; t] where

s3 = �2(a)�(a)
= a2

a3
eId + a3

a1
e� + a1

a2
e�2 + a3

a2
e� + a2

a1
e�� + a1

a3
e�2�

and
t3 = a1a2a3 :

Let r =P�2G � (s) e� 2 M(K; a) . Then r3 = a2
a3

and M(K; a) = F[r; t] . Note

that
�

r2t
a2

�3 = a1
a3

, so

M(K; a) ' F
h

3

r
a1

a3
; 3

r
a2

a3

i
and N(K; a) ' F[ 3

p
a1a2a3] :

EXAMPLE 2.3. Let K be an arbitrary cubic étale F -algebra and let a = 1.
Let F[!] be the quadratic étale F -algebra with !2+!+1 = 0. By the Chinese
Remainder Theorem we have

N(K; 1) = F[t]=(t3 � 1) ' F � F[!] :
The corresponding orthogonal idempotents in N(K; 1) are

e1 = 1
3 (1+ t + t2) and e2 = 1

3 (2� t � t2) :
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144 M. RACZEK AND J.-P. TIGNOL

Let A1 = e1A and A2 = e2A , so A = A1 �A2 and the G -action preserves A1

and A2 . Let

e11 = 1
3 (1+ s+ s2) e1 2 A1 ;"1 = 1
3 (1+ s+ s2) e2 2 A2 ; e12 = 1

3 (2� s� s2) e1 2 A1 ;"2 = 1
3 (1+ st + s2t2) e2 2 A2 ;"3 = 1

3 (1+ st2 + s2t) e2 2 A2 :
These elements are pairwise orthogonal idempotents, and we have

e1 = e11 + e12 ; e2 = "1 + "2 + "3 :
The G -action fixes e11 and e12 , while�("1) = "2 ; �("2) = "3 ; �("3) = "1 ;�("1) = "1 ; �("2) = "3 ; �("3) = "2 :
We have e1t = e1 and e11s = e11 , hence e11A ' K 
D and e11M(K; 1) ' F .
On the other hand, e12s is a primitive cube root of unity in e12M(K; 1) . It is
fixed under � and �(e12s) = e12s�1 . Therefore we have

e12A ' K 
 D
 F[!] and e12M(K; 1) ' (D
 F[!])� ;
where � acts non-trivially on D and F[!] . The quadratic étale algebra
(D 
 F[!])� is the composite of D and F[!] in the group of quadratic
étale F -algebras, see [9, Prop. 3.11]. It is denoted by D � F[!] . Finally,
we have an isomorphism K 
 F[!] ' e2M(K; 1) by mapping x 2 K to
x"1 + �(x) "2 + �2(x) "3 and ! to e2 t , so

M(K; 1) ' F � (D � F[!])� (K 
 F[!]) :
Under this isomorphism, the inclusion N(K; 1) ,! M(K; 1) is the map

F � F[!] ! F � (D � F[!])� (K 
 F[!]) ; (x; y) 7! (x; x; y) :
In particular, if F contains a cube root of unity, then F[!] ' F � F and

M(K; 1) ' F � D� K � K :
The inclusion N(K; 1) ,! M(K; 1) is then given by

F � F � F ! F � D� K � K ; (x; y; z) 7! (x; x; y; z) :
Details are left to the reader.
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TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS 145

In the rest of this section, we show how the Γ -set X�M(K; a)
�

can be
characterized as the fibre of a certain (ramified) covering of the projective
plane.

Viewing K as an F -vector space, we may consider the projective plane
PK , whose points over the separable closure Fs are

PK(Fs) = fx � F�s j x 2 K 
F Fs; x 6= 0g :
Let

(2.1) � : PK(Fs) ! PK(Fs) ; x � F�s 7! x3 � F�s for x 2 K 
 Fs , x 6= 0.

We show in Theorem 2.6 below that there is an isomorphism of Γ -setsX�M(K; a)
� ' ��1(a � F�s ) for a 2 K� .

In view of the anti-equivalence between EtF and SetΓ , this result characterizes
the Morley algebra M(K; a) up to isomorphism.

Until the end of this section, we fix a 2 K� and denote M(K; a) simply
by M . We identify K 
M with the subalgebra of A fixed under � .

LEMMA 2.4. There exists u 2 (K 
M)� such that s = �2(u)�(u)�1 .

Proof. Define a map c : G ! A� by

c(Id) = c(�2�) = 1 ; c(�) = c(�) = s ; c(�2) = c(��) = �2(s)�1 :
Computation shows that s�(s)�2(s) = 1, and it follows that c is a 1-cocycle.
Proposition 1.1 yields an element v 2 A� such that c(� ) = v� (v)�1 for all� 2 G ; in particular, we have

s = v�(v)�1 = v�(v)�1 :
Let u = �2(v)�1 . The equations above yield

s = �2(u)�(u)�1 and �(u) = u :
Therefore u 2 K 
M , and this element satisfies the condition.

LEMMA 2.5. The set ��1(a � F�s ) has 9 elements if it is non-empty.

Proof. Suppose x0 2 K
Fs is such that x3
0 �F�s = a �F�s . Then the map

y � F�s 7! x0y � F�s defines a bijection between ��1(1 � F�s ) and ��1(a � F�s ) ,
so it suffices to show that

����1(1 � F�s )
�� = 9. Identify K
Fs = Fs�Fs�Fs ,

and let ! 2 F�s be a primitive cube root of unity. To simplify notation, write
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146 M. RACZEK AND J.-P. TIGNOL

(z1 : z2 : z3) = (z1; z2; z3) � F�s for z1; z2; z3 2 Fs . It is easy to check that��1(1 � F�s ) consists of the following elements :

(1 : 1 : 1) ; (1 : ! : !2) ; (1 : !2 : !) ;
(1 : 1 : !) ; (1 : ! : 1) ; (! : 1 : 1) ;
(1 : 1 : !2) ; (1 : !2 : 1) ; (!2 : 1 : 1) :

Each � 2 X(M) extends uniquely to a K -algebra homomorphismb� : K 
F M ! K 
F Fs :
THEOREM 2.6 (Rost). Let u 2 (K 
M)� be such that �2(u)�(u)�1 = s .

The map � 7! b�(u) � F�s defines an isomorphism of Γ -sets

Φ : X(M)
��! ��1(a � F�s ) :

Proof. If u 2 (K 
M)� satisfies �2(u)�(u)�1 = s , then�2(u3)�(u3)�1 = s3 = �2(a)�(a)�1 ;
so a�1u3 is fixed under � , hence a�1u3 2 M� . Therefore a�1b�(u)3 2 F�s ,
hence b�(u) � F�s lies in ��1(a � F�s ) .

Note that the map Φ does not depend on the choice of u : indeed, u is
determined uniquely up to a factor in M� , and for m 2 M� we haveb�(um) = b�(u) �(m) , so b�(um) � F�s = b�(u) � F�s .

It is clear from the definition that the map Φ is Γ -equivariant. SincejX(M)j = ����1(a � F�s )
�� = 9, it suffices to show that Φ is injective to

complete the proof. Extending scalars, we may assume that K ' F � F � F ,
and use the notation of Example 2.2. Then, up to a factor in M� , we have

u = �2�(s) eId + �(s) e� + e�2 + �(s) e� + e�� + �2�(s) e�2�= r2t
a2

(eId + e�)+ r(e� + e�2�)+ (e�2 + e��)= �
r2t
a2
; r; 1� 2 K 
M = M �M �M :

If �; � 2 X(M) satisfy b�(u) � F�s = b�(u) � F�s , then �� r2t
a2

� = �� r2t
a2

�
and�(r) = �(r) . Since M is generated by r and t , it follows that � = � .
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REMARK 2.7. As pointed out by Rost [10], the map � factors through

W(Fs) = f(�; x) � F�s j �3 = NK(x)g � PF�K(Fs) :

we have � = �1 Æ �2 , where�2 : PK(Fs) ! W(Fs) ; x � F�s 7! (NK(x); x3) � F�s
and �1 : W(Fs) ! PK(Fs) ; (�; x) � F�s 7! x � F�s :
There is a commutative diagramX�M(K; a)

� Φ����! PK(Fs)X(i)

??y ??y�2X�N(K; a)
� Φ0����! W(Fs)??y ??y�1X(F)

Φ00����! PK(Fs) ;
where X(i) is the map functorially associated to the inclusion

i : N(K; a) ,! M(K; a)

and Φ00 maps the unique element of X(F) to a � F�s . The induced map Φ0
is an isomorphism of Γ -sets

Φ0 : X�N(K; a)
� ��! ��1

1 (a � F�s ) :
3. INFLECTION POINT CONFIGURATIONS

Let V be a 3-dimensional vector space over F . Let S3(V�) be the
third symmetric power of the dual space V� , i.e., the space of cubic forms
on V . A cubic form f 2 S3(V�) is called triangular if its zero set in the
projective plane PV (Fs) defines a triangle or, equivalently, if there exist linearly
independent linear forms '1; '2; '3 2 V� 
F Fs such that f = '1'2'3 inS3(V� 
 Fs) . The sides of the triangle are the zero sets of '1 , '2 , and '3 ;
they form a 3-element Γ -set S( f ) .
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PROPOSITION 3.1. Let f 2 S3(V�) be a triangular cubic form and let K
be the cubic étale F -algebra such that X(K) ' S( f ) . Then we may identify
the F -vector spaces V and K so as to identify f with a multiple of the norm
form of K ,

f = �NK for some � 2 F� .

In particular, the Γ -action on S( f ) is trivial if and only if f factors into a
product of three independent linear forms in V� .

Proof. Let f = '1'2'3 for some linearly independent linear forms'1; '2; '3 2 V� 
 Fs . Since 
'1

'2


'3 = '1'2'3 for 
 2 Γ , it follows by
unique factorization in S3(V�) that there exist a permutation �
 of f1; 2; 3g
and scalars ��
 (i);
 2 F�s such that
'i = ��
 (i);
'�
 (i) for i = 1, 2, 3 .

Since 
Æ'i = 
(Æ'i) for 
; Æ 2 Γ , we have��
Æ(i);
Æ '�
Æ(i) = 
(��Æ (i);Æ)��
�Æ(i);
 '�
�Æ(i) ;
hence �
Æ = �
�Æ and

(3.1) ��
Æ(i);
Æ = 
(��Æ (i);Æ)��
�Æ(i);
 :
The Γ -set S( f ) is f1; 2; 3g with the Γ -action 
 7! �
 ; therefore we may
identify K with the F -algebra of Γ -equivariant maps

K = Map(f1; 2; 3g;Fs)
Γ :

For 
 2 Γ , define a
 2 Map(f1; 2; 3g;F�s ) = (K 
 Fs)� by

a
(i) = �i;
 :
Clearly, a
 = 1 if 
 fixes '1 , '2 , and '3 ; moreover, by (3.1) we have
a

aÆ = a
Æ for 
; Æ 2 Γ , hence (a
)
2Γ is a continuous 1-cocycle.
By Hilbert’s Theorem 90 [8, (29.2)], we have H1(Γ; (K 
 Fs)�) = 1, hence
there exists b 2 Map(f1; 2; 3g;F�s ) such that a
 = b 
b�1 for all 
 2 Γ . For
i = 1, 2, 3 , let  i = b(i)'i 2 V� 
 Fs . Let also� = �

b(1)b(2)b(3)
��1 :

Computation shows that 
 i =  �
 (i) for 
 2 Γ and i = 1, 2, 3 , and
f = � 1 2 3 in S3(V� 
 Fs) , hence � 2 F� . Define

Θ : V 
 Fs ! Map(f1; 2; 3g;Fs) = K 
 Fs
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by

Θ(x) : i 7!  i(x) for i = 1; 2; 3 and x 2 V 
 Fs .

Since  1;  2;  3 are linearly independent, Θ is an Fs -vector space isomor-
phism. It restricts to an isomorphism of F -vector spaces V

�! K under which
f is identified with �NK .

Now, let I � PV (Fs) be a 9-point set that has the characteristic property of
the set of inflection points of a nonsingular cubic curve : the line through any
two distinct points of I passes through exactly one third point of I . Let L be
the set of lines in PV (Fs) that are incident to three points of I . This set has
12 elements, and I , L form an incidence geometry that is isomorphic to the
affine plane over the field with three elements, see [7, §11.1]. In particular,
there is a partition of L into four subsets T0 , . . . , T3 of three lines, which
we call triangles, with the property that each point of I is incident to one
and only one line of each triangle.

Assume I is stable under the action of Γ , and Γ preserves the triangle T0 .
Let K be the cubic étale F -algebra whose Γ -set X(K) is isomorphic to T0 .
By Proposition 3.1, we may identify V with K in such a way that the union
of the lines in T0 is the zero set of the norm NK .

THEOREM 3.2. There exists a 2 K� such that the Γ -set of vertices of the
triangles T1; T2; T3 is ��1(a � F�s ) , where � : PK(Fs) ! PK(Fs) is defined
in (2.1). The set I is the set of inflection points of the cubics in the pencil
spanned by the forms TK(a�1X3) and NK(X) , and we have isomorphisms of
Γ -sets L ' X(K)

` X�M(K; a)
� ; fT1;T2;T3g ' X�N(K; a)

� :
Proof. Fix an isomorphism K 
 Fs ' Fs � Fs � Fs , and write simply

(x1 : x2 : x3) for (x1; x2; x3) � F�s . The sides of T0 are then the lines with
equation x1 = 0, x2 = 0, and x3 = 0. Let I = fp1; : : : ; p9g . We label the
points so that the incidence relations can be read from the representation of
the affine plane over F3 in Figure 1.

Say the line through p1; p2; p3 is x1 = 0, and the line through p4; p5; p6

is x2 = 0. We can then find u1; u2; u3; v 2 F�s such that

pi = (0 : ui : 1) for i = 1; 2; 3, and p4 = (1 : 0 : v) :
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•

•

•

•

•

•

•

•

•

T0T2

T1T3

p1

p4
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FIGURE 1

Incidence relations on I
Since p7 lies at the intersection of x3 = 0 with the line through p1 and p4 ,
we have

p7 = (1 : �u1v : 0) :
Similarly,

p8 = (1 : �u2v : 0) and p9 = (1 : �u3v : 0) :
Finally, since p5 (resp. p6 ) lies at the intersection of x2 = 0 with the line
through p1 and p8 (resp. p9 ), we have

p5 = (u1 : 0 : u2v) and p6 = (u1 : 0 : u3v) :
Collinearity of the points p2; p6; p7 (resp. p2; p5; p9 ; resp. p3; p6; p8 ) yields

u2
1 = u2u3 ; (resp. u2

2 = u1u3 ; resp. u2
3 = u1u2 ) .
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Therefore
u3

1 = u3
2 = u3

3 = u1u2u3 :
Since u1; u2; u3 are pairwise distinct, it follows that there is a primitive cube
root of unity ! 2 Fs such that

u2 = !u1 and u3 = !2u1 :
Straightforward computations yield the vertices of the triangles T1; T2; T3 :T1 : q1 = (1 : !2u1v : �v) ; q01 = (1 : u1v : �!2v) ; q001 = (!2 : u1v : �v) ;T2 : q2 = (! : u1v : �v) ; q02 = (1 : u1v : �!v) ; q002 = (1 : !u1v : �v) ;T3 : q3 = (1 : !u1v : �!2v) ; q03 = (!2 : !u1v : �v) ; q003 = (1 : u1v : �v) :
Let a0 = (1; u3

1v3;�v3) 2 (K 
 Fs)� . It is readily verified thatfq1; q01; q001 ; q2; q02; q002 ; q3; q03; q003 g = ��1(a0 � F�s ) :
Since I is stable under the action of Γ , the point a0 � F�s is fixed under Γ ,
hence for 
 2 Γ there exists �
 2 F�s such that
(a0) = a0�
 in K 
 Fs .

Then (�
)
2Γ is a continuous 1-cocycle of Γ in F�s . Hilbert’s Theorem 90
yields an element � 2 F�s such that �
 = �
(�)�1 for all 
 2 Γ . Then
for a = a0� we have a0 � F�s = a � F�s and 
(a) = a for all 
 2 Γ , hence
a 2 K� .

The inflection points of the cubics in the pencil spanned by TK(a�1X3)
and NK(X) are the points (x1 : x2 : x3) such that(

x3
1 + (u1v)�3x3

2 � v�3x3
3 = 0 ;

x1x2x3 = 0 :
The solutions of this system are exactly the points p1 , . . . , p9 .

Finally, the Γ -set of sides of the triangle T0 is isomorphic to X(K)
by hypothesis, and the map that associates to each side of a triangle its
opposite vertex defines an isomorphism between the set of sides of T1 ,T2; T3 and the set fq1; : : : ; q003 g = ��1(a � F�s ) . By Theorem 2.6, we have��1(a � F�s ) ' X�M(K; a)

�
, henceL ' X(K)

` X�M(K; a)
� :

This isomorphism induces an isomorphismfT1;T2;T3g ' X�N(K; a)
� ;
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which can be made explicit by the following observation : the triangular cubic
forms in the pencil spanned by TK(a�1X3) and NK(X) are the scalar multiples
of NK(X) (whose zero set is the triangle T0 ) and of TK(a�1X3)� 3zNK(X) ,
where z 2 F�s is such that z3 = NK(a�1) . The zero set of the latter form isT1; T2 or T3 depending on the choice of z , and the three values of z are in
one-to-one correspondence with the elements in the fibre of the map �1 in
Remark 2.7.

4. NORMAL FORMS OF TERNARY CUBICS

Let V be a 3-dimensional vector space over F and let f 2 S3(V�) be a
nonsingular cubic form. Recall from the introduction the notation I( f ) (resp.L( f ) , resp. T( f ) ) for the set of inflection points (resp. inflectional lines, resp.
inflectional triangles) of f . The following result is a direct application of
Theorem 3.2 :

COROLLARY 4.1. Let K be a cubic étale F -algebra. The following
conditions are equivalent :

(i) f is isometric to a cubic form TK(a�1X3) � 3�NK(X) for some unit
a 2 K� and some scalar � 2 F ;

(ii) Γ has a fixed point T0 2 T( f ) with T0 ' X(K) (as Γ -sets of 3 elements).

When these conditions hold, we haveL( f ) ' X(K)
` X�M(K; a)

�
and T( f ) ' fT0g` X�N(K; a)

� :
Proof. If f (X) = TK(a�1X3)�3�NK(X) , then computation shows that the

zero set of NK is an inflectional triangle of f . This triangle is clearly preserved
under the Γ -action. Conversely, if T0 2 T( f ) is preserved under the Γ -action
and K is the cubic étale F -algebra such that X(K) ' T0 , Theorem 3.2 yields
an element a 2 K� such that the forms TK(a�1X3) and NK(X) span the
pencil of cubics whose set of inflection points is I( f ) .

Applying Corollary 4.1 in the case where F is a finite field yields a direct
proof of the following result from [7, p. 276] :

COROLLARY 4.2. Suppose F is a finite field with q elements. For any
nonsingular cubic form f , the number of inflectional triangles of f defined
over F is 0 , 1 , or 4 if q � 1 mod 3 ; it is 0 or 2 if q � �1 mod 3 .
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Proof. Since F is finite, the action of Γ on T( f ) factors through a cyclic
group. If there is at least one fixed triangle T0 , then Corollary 4.1 yields a
decomposition T( f ) ' fT0g` X�N(K; a)

� ;
where N(K; a) = F[t] with t3 = NK(a) . If N(K; a) is a field, then it must be
a cyclic extension of F , hence F contains a primitive cube root of unity and
therefore q � 1 mod 3. Similarly, if N(K; a) ' F� F� F , then F contains a
primitive cube root of unity. Thus, if q � �1 mod 3, the Γ -action on T( f )
has either 0 or 2 fixed points. If q � 1 mod 3 then F contains a primitive
cube root of unity and either the polynomial x3 � NK(a) is irreducible or it
splits into linear factors. Therefore the Γ -action on T( f ) has either 0, 1 or
4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale
F -algebra K is the split algebra F � F � F :

COROLLARY 4.3. There is a basis of V in which f takes the generalized
Hesse normal form a1x3

1 + a2x3
2 + a3x3

3 � 3�x1x2x3 for some a1; a2; a3 2 F�
and � 2 F if and only if Γ has a fixed point T0 2 T( f ) and acts trivially
on T0 (viewed as a 3 -element subset of L( f ) ) .

EXAMPLE 4.4. Let K be a cubic étale F -algebra and let f (X) = TK(X3) .
By Corollary 4.1 we haveL( f ) ' X(K)

` X�M(K; 1)
�

and T( f ) ' fT0g` X�N(K; 1)
� :

The Γ -sets X�M(K; 1)
�

and X�N(K; 1)
�

are determined in Example 2.3 :X�M(K; 1)
� ' X(F)

` X(D � F[!])
` X(K 
 F[!])

and X�N(K; 1)
� ' X(F)

` X(F[!]) :
The map X(i) : X�M(K; 1)

� ! X�N(K; 1)
�

functorially associated to the
inclusion i : N(K; 1) ,! M(K; 1) maps X(F)

`X(D � F[!]) to X(F) andX(K 
 F[!]) to X(F[!]) .
If K ' F � F � F , then f (x1; x2; x3) = x3

1 + x3
2 + x3

3 so f has a Hesse
normal form. If K 6' F � F � F , then the Γ -action on X(K) , hence also
on X(K 
 F[!]) , is nontrivial. Therefore it follows from Corollary 4.3 that
f has a generalized Hesse normal form over F if and only if the Γ -action
on X(D � F[!]) is trivial. This happens if and only if D ' F[!] , which is
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equivalent to K ' F[ 3
p

d] for some d 2 F� , by [8, (18.32)]. Indeed, for
X = x1 + x2

3
p

d + x3
3
p

d2 , computation yields

f (X) = 3(x3
1 + dx3

2 + d2x3
3 + 6dx1x2x3) :

Corollary 4.3 applies in particular when F is the field R of real numbers :

COROLLARY 4.5. Every nonsingular cubic form over R can be reduced
to a generalized Hesse normal form.

Proof. It is clear from the Weierstrass normal form that every nonsingular
cubic over R has three real collinear inflection points, see [3, Prop. 14, p. 305].
The inflectional line through these points is fixed under Γ , hence the Γ -action
on T( f ) has at least one fixed point. The same argument as in Corollary 4.2
then shows that Γ has exactly two fixed points in T( f ) . Let T0 , T1 2 T( f )
be the fixed inflectional triangles. Assume the Γ -action on T0 (viewed as a
3-element set) is not trivial, hence K ' R�C in the notation of Corollary 4.1;
we shall prove that the Γ -action on T1 is trivial. By Corollary 4.1, there is
a unit a = (a1; a2) 2 R� C such thatL( f ) ' X(R� C)

` X�M(R� C; a)
� :

By Theorem 2.6, we have an isomorphism of Γ -sets

Φ : X�M(R� C; a)
� ��! ��1(a � C�) � PR�C(C) :

We identify (R�C)
R C with C�C�C by mapping (r; x)
y to (ry; xy; xy)
for r 2 R and x; y 2 C . Then the Γ -action on PR�C = P3

C is such that the
complex conjugation acts by

(x1 : x2 : x3) 7! (x1 : x3 : x2):
If � 2 R and � 2 C satisfy �3 = a1 and �3 = a2 , and if ! 2 C is
a primitive cube root of unity, then the proof of Lemma 2.5 shows that��1(a � C�) consists of the following elements :

(� : � : �) ; (� : !� : !�) ; (� : !� : !�) ;
(� : � : !�) ; (� : !� : �) ; (!� : � : �) ;
(� : � : !�) ; (� : !� : �) ; (!� : � : �) :

The three points in the first row of this table are fixed under the Γ -action,
whereas the Γ -action interchanges the second and third row. Therefore the
first row corresponds to T1 under Φ , and the proof is complete.
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When the conditions in Corollary 4.1 do not hold, we may still consider
the 4-dimensional étale F -algebra T( f ) such that X�T( f )

� = T( f ) , and the
12-dimensional étale F -algebra L( f ) such that X�L( f )

� = L( f ) , which is a
cubic étale extension of T( f ) . The separability idempotent e 2 T( f )
F T( f )
satisfies e � �T( f )
 T( f )

� ' T( f ) , and hence yields a decomposition

T( f )
F T( f ) ' T( f )� T( f )0

for some cubic algebra T( f )0 over T( f ) . Likewise, multiplication in L( f )
yields an isomorphism

e � �L( f ) 
 T( f )
� ' L( f ) ;

hence
L( f ) 
F T( f ) ' L( f ) � L( f )0

for some cubic algebra L( f )0 over T( f )0 . By functoriality of the construction
of L and T , the cubic form fT( f ) over V 
F T( f ) obtained from f by scalar
extension to T( f ) satisfies

L( fT( f )) ' L( f )
F T( f ) and T( fT( f )) ' T( f )
F T( f ) :
Corollary 4.1 applied to fT( f ) shows that fT( f ) is isometric toTL( f )(a

�1X3)� 3�NL( f )(X)

for some � 2 T( f )� and some a 2 L( f )� such that L( f )0 is a Morley
T( f ) -algebra L( f )0 ' M(L( f ); a) .
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