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ELLIPTIC DEDEKIND DOMAINS REVISITED

by Pete L. CLARK )

ABSTRACT. We give an affirmative answer to a 1976 question of M. Rosen : every
abelian group is isomorphic to the class group of an elliptic Dedekind domain R . We
can choose R to be the integral closure of a PID in a quadratic field extension. In
particular, this yields new and — we feel — simpler proofs of theorems of L. Claborn
and C. R. Leedham-Green.

1. INTRODUCTION

Terminology : For a scheme X , PicX denotes the Picard group of

isomorphism classes of line bundles on X . In the case X SpecR , we

write simply Pic(R) . When R is a Dedekind domain, Pic(R) is the ideal class

group of R .

A celebrated 1966 theorem of Luther Claborn asserts that for any abelian

group A whatsoever, there exists a Dedekind domain R whose ideal class

group Pic(R) is isomorphic to A [3]. A different proof was given in 1972

by C. R. Leedham-Green [9], which shows that R may be taken to be the

integral closure of a PID in a quadratic field extension. Claborn’s proof requires

familiarity with the divisor class group of a Krull domain. Leedham-Green’s

proof is more elementary — in his own words, it is “based on a naive

geometrical construction” — but is quite intricate.
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Work of M. Rosen takes a completely different approach, based on the

following facts :

FACT I. For an elliptic curve E over a field k , the standard affine ring

R k[E] is a Dedekind domain with Pic(R) isomorphic to the Mordell-Weil

group E(k) .

FACT II. With R k[E] as above, for any subgroup H Pic(R) , there

exists an overring RH of R such that Pic(RH) Pic(R) H.

From these two facts it follows that any abelian group which is isomorphic

to a quotient group of a Mordell-Weil group is the class group of some

Dedekind domain. Rosen calls a Dedekind domain arising as an overring of

the standard affine ring of some elliptic curve elliptic.

In [11], Rosen shows that any finitely generated abelian group is the class

group of the coordinate of some (not necessarily standard) affine elliptic curve

over some number field k . In [12], Rosen uses Serre’s open image theorem

to show that every countably generated abelian group is the class group of an

elliptic Dedekind domain. His method does not work for uncountable groups,

and accordingly he asks whether every abelian group is the class group of an

elliptic Dedekind domain.

Our main result gives an affirmative answer to this question.

MAIN THEOREM. Let A be any abelian group.

a) There is an elliptic Dedekind domain R with Pic(R) A.

b) We can take R to be the integral closure of a PID in a quadratic field

extension.

Our construction is inspired by Rosen’s work and follows his general

strategy in that it uses Facts I and II above to reduce to the problem of

constructing a free abelian group of arbitrary rank as a quotient of some

Mordell-Weil group. But there are also several differences. First, we construct

arbitrary free abelian groups as Mordell-Weil groups, whereas Rosen constructs

a free abelian group of countable rank as the quotient of a Mordell-Weil group

by its torsion subgroup. Second, whereas Rosen’s construction takes k to be

the maximal multiquadratic extension of Q , ours does not 1 ). Our field k is a

1 ) Nor could it, of course : the group of rational points of an elliptic curve over a countable
field must be countable.
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transfinitely iterated function field, and accordingly we make no use of Serre’s

open image theorem nor of any other deep arithmetic facts.

The proof of the Main Theorem occupies little more than a single page.

However, our goal is to maximize the audience that can read and appreciate

the argument rather than to minimize its length. To this end, we have included

in §2 some expository material on class groups of overrings of Dedekind

domains. We also discuss Dedekind domains in which every ideal class can

be represented by at least one prime ideal — we call such a domain replete —

as well as a weaker property that suffices for our applications. Our Theorem 14

on the repleteness and weak repleteness of elliptic Dedekind domains may

be new. The proof of the Main Theorem is in §3.

2. PRELIMINARIES

We wish to recall some results concerning the effect of passage to an

overring on the class group, and on the connection between class groups of

affine curves and the Jacobians of their projective completions. We could not

resist mentioning a few interesting results which are closely related to these

topics but not needed for the proof of the Main Theorem. For such results we

explicitly state that they are not needed in the sequel, and we give references

rather than proofs.

2.1 BASIC DEFINITIONS

For a Dedekind domain R , let !(R) be the set of all nonzero prime ideals ;

we typically speak of elements of !(R) as simply “primes”. Consider the map

" : !(R) Pic(R) [ ]

Since the group Frac(R) of fractional ideals of R is free abelian with !(R)

as a basis, " uniquely extends to a homomorphism Frac(R) Pic(R) , which

is surjective, and whose kernel is the subgroup Prin(R) of principal fractional

ideals.

If R and S are Dedekind domains, by a morphism of Dedekind domains

we mean an injective ring homomorphism : R S . If I is a fractional ideal

of R , then the push-forward I Frac(R) IS induces a homomorphism

from Frac(R) to Frac(S) , denoted . Since the push-forward of a principal

fractional ideal remains principal, factors through to a homomorphism

: Pic(R) Pic(S) . For an ideal J of S , we denote by (J) the ideal J R

of R .
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2.2 OVERRINGS

If R is an integral domain with field of fractions K , an overring of R is

a ring S intermediate between R and K , i.e., R S K .

LEMMA 1. Let : R S, where R is a Dedekind domain and S is an

overring.

a) For any !(S) , S R R .

b) S is itself a Dedekind domain.

c) : !(S) !(R) .

d) For all !(S) , ( ) .

Proof. a) Put R . Since is a nonzero prime ideal in the

overring S of R , there exist nonzero elements x y R such that x
y

.

Then 0 x y( x
y
) , so is a nonzero prime ideal of R . Thus S contains

the DVR R and is properly contained in its fraction field, so S R .

b) By the Krull-Akizuki Theorem [10, Thm. 11.7], S is a one-dimensional

Noetherian domain; and by part a) the localization of S at every prime is a

DVR, hence S is integrally closed and thus a Dedekind domain.

c) From part a), we have that there is no other prime of S with

( ) , since localizations at distinct primes in a Dedekind ring are

distinct DVRs.

d) First,

( ( ))S S S

By part c), ( ( )) is not divisible by any prime other than , so ( ) .

COROLLARY 2. Let S be an overring of the Dedekind domain R. The

prime ideals of S are identified, via , with the prime ideals of R such

that S S .

We can explicitly describe all overrings of a Dedekind domain R . For an

arbitrary subset W !(R) , put RW : W R , the intersection taking place

in the fraction field K . For the sake of simplifying some later formulas, we

also define

RW R!(R) W

Evidently RW is an overring of R , hence is itself a Dedekind domain.

Conversely :
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THEOREM 3. Let R be a Dedekind domain with fraction field K , and let

R S K be an overring. Let W be the set of all primes of R such that

S S . Then

S RW
W

R

Proof. Not needed in the sequel ; see e.g. [8, Cor. 6.12].

The reader may be more used to thinking about generating overrings by

localization : if R is a domain and T R a multiplicatively closed set, then

R[T 1] is an overring of R . Probably the reader knows that every overring of

Z is obtained by localization; in fact this is true for overrings of any PID R .

For this it suffices to exhibit R[ x
y
] as R[1

z
] . The key point here 2 ) is that since

R is a UFD we may assume that x and y are relatively prime, and then there

exist a b R with ax by 1, so that 1
y

ax by

y
a x

y
b

y

y
R[ x

y
] .

But in general, not all overrings are realizable by localization :

THEOREM 4. Let R be a Noetherian domain, and consider the following

properties :

(i) Every overring of R is integrally closed.

(ii) Every overring of R is obtained by localizing at a multiplicative subset.

Then (i) holds if and only if R is a Dedekind domain, and (ii) holds if and

only if R is a Dedekind domain with torsion class group.

Proof. Not needed in the sequel ; see [5] or [6].

The following result explains the importance of overrings in the study of

class groups of Dedekind domains.

THEOREM 5 (Claborn [2]). Let R be a Dedekind domain, and S RW

be an overring of R. There exists a short exact sequence

0 H Pic(R) Pic(S) 0

where H "(W) is the subgroup generated by classes of primes with

S S.

Proof. Since 1!(S) , is surjective on prime ideals ; a fortiori

the induced map on class groups is surjective. Clearly each prime with

2 ) The fact that there is no ring strictly intermediate between a DVR and its fraction field,
which was used in the proof of Lemma 1, is an (even) easier special case.
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S S lies in the kernel. Conversely, suppose I is a fractional ideal of R

in the kernel of , so that there exists x in the fraction field with IS xS .

Then xI 1S S , so that xI 1 is a product of primes with S S .

Thus one can realize certain quotients of the Picard group of R by passing

to a suitable overring S . In general however, not every subgroup of Pic(R) is

generated by classes of prime ideals. This brings us to the next section.

2.3 REPLETE DEDEKIND RINGS

We say that a Dedekind domain R is replete if the map " is surjective,

i.e., if every ideal class is represented by a prime ideal.

PROPOSITION 6. Let R be a replete domain, and let H Pic(R) be any

subgroup. Then there exists an overring S of R such that Pic(S) Pic(R) H.

Proof. Indeed, if R is replete, then H is generated by a set W of

prime ideals of R . Then take S to be the overring RW !(R) W R . By

Theorem 5, Pic(RW ) Pic(R) H .

For the proof of Proposition 6 to go through, it suffices that R have the

property that any subgroup H of Pic(R) is generated by classes of prime

ideals. Let us call a domain with this property weakly replete.

COROLLARY 7. An overring of a weakly replete domain is weakly replete.

Proof. This follows easily from Theorem 5.

EXAMPLES. Trivially, a PID is replete. The repleteness of the ring of

integers in a global field is a weak version of the Chebotarev Density Theorem.

We will see in §2 4 that the standard affine ring of an elliptic curve is weakly

replete but not necessarily replete. Examples of domains which are not weakly

replete seem harder to come by. In [4], Claborn exhibits for each n Z

a Dedekind domain Rn whose class group is cyclic of order n and such

that [ ] [ ] for all !(Rn) , as well as a Dedekind domain R with

Pic(R) Z such that for all !(R) , [ ] 1 .

A repletion of a Dedekind domain R is a replete Dedekind domain S

together with an injective ring homomorphism : R S , such that

: Pic(R) Pic(S) .
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THEOREM 8 (Claborn). For a Dedekind domain R, let R1 denote

the localization of R[t] at the multiplicative set generated by all monic

polynomials. Then R1 is Dedekind and the composite map : R R[t] R1

is a repletion.

Proof. Not needed in the sequel ; see [1, Cor. 2.5].

COROLLARY 9 (Claborn). For any Dedekind domain R, and any subgroup

H Pic(R) , there exist a Dedekind domain S and a homomorphism of

Dedekind domains : R S making the following sequence exact :

0 H Pic(R) Pic(S) 0

Thus every quotient group of Pic(R) is the class group of some Dedekind

domain.

Proof. This follows immediately from Theorem 8 and Proposition 6.

2.4 AFFINE DOMAINS, GEOMETRIC DOMAINS, AND ELLIPTIC DOMAINS

Let k be a field. To a pair (C O) , where C k is a complete, nonsingular

geometrically integral curve and O C(k) is a rational point, we attach the

rational function field k(C) and standard affine ring k[Co] , the subring of k(C)

consisting of all functions which are regular on all points except (possibly) O .

Note that k[Co] is the coordinate ring of the affine algebraic curve Co C O .

The ring k[Co] is a nonsingular Noetherian domain of dimension one, i.e., a

Dedekind domain. Consider the map which sends a degree 0 divisor P nP[P]

on C to the divisor P O nP[P] (of degree nO ) on Co . Upon quotienting

out by principal divisors, this gives an isomorphism

(1) J(C)(k) Pic0(C) Pic(k[Co])

where J(C) is the Jacobian of C . Thus the class group of a standard affine

domain is canonically isomorphic to the group of k -rational points on a certain

(Jacobian) abelian variety.

When C E has genus one, the automorphism group acts transitively

on the set of k -rational points, so the affine curve Eo is independent of the

choice of O . In this case, we simplify the notation k[Eo] to k[E] .

The following special case of (1) is already interesting :

COROLLARY 10. For an elliptic curve E k , the following are equivalent :

(i) The standard affine ring k[E] is a PID.

(ii) E has trivial Mordell-Weil group : E(k) 0 .
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Later we shall exhibit E k such that E(k) 0 , i.e., “elliptic PID’s” exist !

In general, let us say that a Dedekind domain R is affine if it is of the form

k[Co] for some nonsingular, geometrically integral affine curve Co over a

field k . Write C for the nonsingular projective model of Co . As long as

C Co contains at least one k -rational point, a well-known argument using

Riemann-Roch shows that the affine domain k[Co] is an overring of some

standard affine domain.

THEOREM 11 (Rosen). Let Co C S be a nonsingular, geometrically

integral affine curve over a field k . Let D0(S) be the subgroup of Div(C)

consisting of degree 0 divisors supported on S, and let P(S) be the principal

divisors in D0(S) . Let d be the least positive degree of a divisor supported

on S (note that d 1 if and only if S contains at least one k-rational point),

and let i be the least positive degree of a divisor on C. Then there is an

exact sequence

(2) 0 D0(S) P(S) Pic0(C) Pic(Co) Z(d i) 0

where Z(d i) is a cyclic group of order d i .

Proof. Not needed in the sequel ; see [11].

Rosen remarks that Theorem 11 was, in essence, already known to

F.K. Schmidt in the 1930’s. Nevertheless, one cannot help but feel that it

is not as widely known as it should be. It has many consequences, some

amusing and some important. First :

EXAMPLE. Let k be a field of characteristic different from 2, and

let Co C S be the affine curve with coordinate ring R k[Co]

k[x y] (x2 y2 1) . Here S is a degree 2 divisor consisting of a pair of

points 1 2 which are (resp. are not) each k -rational if 1 is (resp. is

not) a square in k . We conclude :

THEOREM 12. Let k be a field of characteristic different from 2 , and let

R be the Dedekind domain k[x y] (x2 y2 1) . Then :

(i) If 1 is a square in k , then R is a UFD (equivalently, a PID).

(ii) If 1 is not a square in k , then R is not a UFD : rather

Pic(R ) Z 2Z .

In particular, taking k R , the ring R R[cos sin ] of real

trigonometric polynomials is not a UFD. H. F. Trotter in [14] gives an
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appealingly direct proof of this fact by showing that the familiar identity

sin2 (1 cos )(1 cos )

is a non-unique factorization into irreducibles. (Notice that Z 2Z is also the

Picard group of topological R -line bundles on the unit circle !) On the other

hand, taking k C , R C[ei (ei ) 1] is the ring of complex trigonometric

polynomials, which is, in accordance with Theorem 12, a PID.

Using (2) and the fact that every elliptic curve over Q has infinite rank,

Rosen deduces :

THEOREM 13 (Rosen). For any finitely generated abelian group A, there

is a number field k and a (not necessarily standard) affine elliptic curve Eo

over k such that Pic(k[Eo]) A.

The claim that in Theorem 13 we can always take k Q is equivalent

to the existence of elliptic curves E Q of arbitrarily large rank, a notorious

open problem.

A Dedekind domain is geometric if it is an overring of an affine Dedekind

domain. In other words, a geometric Dedekind domain is the ring of all

functions on a complete curve C k which are regular on the complement of

some fixed, but possibly infinite, subset of closed points of C . Finally, an

elliptic Dedekind domain is an overring of the standard affine domain of an

elliptic curve E k .

THEOREM 14. Let E k be an elliptic curve with equation y2 P(x)

x3 Ax B.

a) The standard affine ring k[E] is weakly replete (hence so are all of its

overrings).

b) If k is algebraically closed, k[E] is not replete.

c) Suppose k does not have characteristic 2 and k[E] is not replete. Then

for all x k , there exists y k with y2 P(x) .

Proof. Each point P O on E(k) corresponds to a prime ideal in the

standard affine ring k[E] ; according to the isomorphism of (1), every nontrivial

element of Pic(k[E]) arises in this way. This proves part a). Part b) is similar :

if k is algebraically closed, then by Hilbert’s Nullstellensatz every prime ideal

of k[E] corresponds to a k -valued point P O on E(k) , which under (1)

corresponds to a nontrivial element of the class group. Therefore the trivial
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class is not represented by any prime ideal. Under the hypotheses of part c),

there exists an x k such that the points (x P(x)) form a Galois conjugate

pair. Therefore the divisor (x P(x)) (x P(x)) represents a closed point

on the curve E , in other words a nonzero prime ideal of k[E] . But the

corresponding point on E(k) is (x P(x)) (x P(x)) O .

To sum up : since every abelian group A is a quotient of a free abelian

group FA( ) of some rank , and the standard affine domain k[E] attached

to an elliptic curve E k is weakly replete, in order to realize A as the Picard

group of an elliptic Dedekind domain it suffices to find k and E such that

E(k) FA( ) . This we handle in the next section, along with the claim that

the domain can be taken to be the integral closure of a PID in a quadratic

extension.

3. PROOF OF THE MAIN THEOREM

PROPOSITION 15. Let K be a field of characteristic 0 and E K an elliptic

curve. Let K(E) be the function field of E . Then there is a short exact sequence

0 E(K) E(K(E)) EndK(E) 0

Here EndK(E) Za(E) , where a(E) 2 if E has K -rational CM, and

otherwise a(E) 1 . Since EndK(E) is free abelian, we have E(K(E))

E(K) Za(E) .

Proof. E(K(E)) is the group of rational maps from the nonsingular curve

E to the complete variety E (the group law is pointwise addition). But every

rational map from a nonsingular curve to a complete variety is everywhere

defined, so E(K(E)) is the group of all morphisms E E under pointwise

addition. The constant morphisms form a subgroup isomorphic to E(K) , and

every map of curves from E to itself differs by a unique constant from a map

of elliptic curves (E O) (E O) , i.e., an endomorphism of E .

Now take E Q : y
2 y x3 49x 86, so E(Q) 0 [7, Theorem H].

This elliptic curve has nonintegral j -invariant 2
1233

37
, so does not have complex

multiplication. So defining K0 Q and Kn 1 Kn(E Kn ) , Proposition 15 gives

E(Kn)
n

i 1

Z
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Now define K limn Kn ; what can we say about E(K ) ? We have

the following technical result :

LEMMA 16 (“Continuity Lemma”). Let K be a field, (Ki)i I be a directed

system of field extensions of K , and E K an elliptic curve. Then there is a

canonical isomorphism

lim
I
E(Ki) E(lim

I
Ki)

Proof. E.g. by abstract nonsense : this holds for any representable con-

travariant functor from the category of affine K -schemes to the category of

abelian groups.

Therefore E(K ) limn E(Kn) n Z Z , recovering Rosen’s Theorem.

Now given an uncountable set , choose an ordinal of the same

cardinality. We define the field K by transfinite induction : K0 Q , for an

ordinal o , Ko 1 Ko(E Ko) , and for a limit ordinal o , Ko limo o Ko .

By the Continuity Lemma, we have E(Ko) limo o E(Ko ) .

An isomorphism from E(Ko) to o o Z can be built up by transfi-

nite induction as well ; this amounts to the following elementary exercise

(cf. [13, p. 105]) :

FACT. For an abelian group A, the following are equivalent :

(i) A is free abelian.

(ii) A has a well-ordered ascending series with all factors As 1 As infinite

cyclic.

Thus for a given abelian group A Z[ ] H , we have constructed a field k ,

an elliptic curve E k , and an overring R of the affine domain k[E] such that

Pic(R) Z[ ] H A , which proves part a) of the Main Theorem.

As for the second part, let be the automorphism of the function field

k(E) induced by (x y) (x y) , and notice that corresponds to inversion

P P on E(k) Pic(k[E]) . Let S R be the subring of R consisting

of all functions which are fixed by . Then k[E] k[x] is a PID, and S is

an overring of k[x] , hence also a PID. More precisely, S is the overring of

all functions on the projective line which are regular away from the point at

infinity and the x -coordinates of all the elements in H (note that since H is

a subgroup, it is stable under inversion). Finally, to see that R is the integral
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closure of S in the separable quadratic field extension k(E) k(x) , it suffices

to establish the following simple result.

LEMMA 17. Let L K be a finite Galois extension of fields, and S a

Dedekind domain with fraction field L. Suppose that for all Gal(L K) ,

(S) S. Then S is the integral closure of R : S K in L.

Proof. Since S is integrally closed, it certainly contains the integral closure

of R in L . Conversely, for any x S , P(t) Gal(L K) t (x) is a

monic polynomial with coefficients in (S K)[t] satisfied by x .

REMARK. It is possible to avoid the use of an elliptic curve with trivial

Mordell-Weil group : since we are, in general, passing to a quotient anyway,

we can just mod out by E(k) . In fact, at the expense of introducing minor

complications, one can make the argument go through starting with any elliptic

curve E over any field k whatsoever.
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