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THE HESSE PENCIL OF PLANE CUBIC CURVES

by Michela ARTEBANI ) and Igor DOLGACHEV )

ABSTRACT. This is a survey of the classical geometry of the Hesse configuration
of 12 lines in the projective plane with relation to the inflection points of a plane cubic
curve. We also study two K3 surfaces with Picard number 20 which arise naturally
in connection with this configuration.

1. INTRODUCTION

In this paper we discuss some old and new results about the widely known

Hesse configuration of 9 points and 12 lines in the projective plane P2(k) :

each point lies on 4 lines and each line contains 3 points, giving an abstract

configuration (123 94) . Through most of the paper we will assume that k is

the field of complex numbers C although the configuration can be defined

over any field containing three cubic roots of unity. The Hesse configuration

can be realized by the 9 inflection points of a nonsingular projective plane

curve of degree 3. This discovery is attributed to C. Maclaurin (1698–1746)

(see [46], p. 384), however the configuration 1 ) is named after O. Hesse who

was the first to study its properties in [24], [25]. In particular, he proved that

the nine inflection points of a plane cubic curve form one orbit with respect

to the projective group of the plane and can be taken as common inflection

) The first author was supported in part by PRIN 2005: Spazi di moduli e teoria di Lie,
Indam (GNSAGA), and by NSERC Discovery Grant of Noriko Yui at Queen’s University, Canada.

) The second author was supported in part by NSF grant 0245203.
1 ) Not to be confused with another Hesse configuration (124 163) , also related to plane cubic

curves, see [15].
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points of a pencil of cubic curves generated by the curve and its Hessian

curve. In appropriate projective coordinates the Hesse pencil is given by the

equation

(x3 y3 z3) xyz 0

The pencil was classically known as the syzygetic pencil 2 ) of cubic curves

(see [9], p. 230 or [16], p. 274), the name attributed to L. Cremona. We do

not know who is responsible for renaming the pencil, but apparently the new

terminology is widely accepted in modern literature (see, for example, [4]).

Recently Hesse pencils have become popular among number-theorists in

connection with computational problems in the arithmetic of elliptic curves

(see, for example, [51]), and also among theoretical physicists, for example in

connection with homological mirror symmetry for elliptic curves (see [56]).

FIGURE 1

The Hesse pencil

The group of projective automorphisms which transform the Hesse pencil

into itself is a group G216 of order 216 isomorphic to the group of affine

transformations with determinant 1 of the projective plane over the field F3 .

2 ) The term “syzygy” was used in astronomy to describe the alignment of three celestial
bodies along a straight line. Sylvester adopted this word to express a linear relation between the
covariants of a form. We will see later that the pencil contains the Hesse covariant of each of
its members.
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This group was discovered in 1878 by C. Jordan [31], who called it the

Hessian group. Its invariants were described in 1889 by H. Maschke [36].

A detailed historical account and the first figure of the Hesse pencil can be

found in [21].

The projective action of the Hessian group comes from a linear action of a

complex reflection group G216 of order 648 (no. 25 in the Shephard-Todd list

[48]) whose set of reflection hyperplanes consists of the 12 inflection lines

of the Hesse configuration. The algebra of invariant polynomials of the group

G216 is freely generated by three polynomials of degrees 6, 9, 12 (see [36]). An

invariant polynomial of degree 6 defines a nonsingular plane sextic curve C6 .

The double cover of the plane branched along the sextic curve C6 is a K3

surface X on which G216 acts as a group of automorphisms. Its subgroup

H F23 Q8 , where Q8 is the Sylow 2-subgroup of SL(2 F3) isomorphic to

the quaternion group of order 8, acts on the surface as a group of symplectic

automorphisms. In fact, the group F23 Q8 can be found in Mukai’s list [41]

of finite groups which can be realized as maximal finite groups of symplectic

automorphisms of a complex K3 surface.

The linear system of plane sextics with double points at 8 inflection

points of a plane cubic is of projective dimension 3. The stabilizer H of

the ninth remaining inflection point in G216 is isomorphic to SL(2 F3) and

acts on this space by projective transformations. There is a unique invariant

sextic C6 for this action, having cuspidal singularities at the inflection points.

The double cover of the plane branched along C6 is birational to another

K3 surface X and the action of H can be lifted to X . We show that

X is birationally isomorphic to the quotient of X by the subgroup F23
and that the induced action of the quotient group G216 F

2
3 SL(2 F3)

coincides with the action of H on X . Both K3 surfaces X and X are

singular in the sense of Shioda, i.e. the subgroup of algebraic cycles in

the second cohomology group is of maximal possible rank, equal to 20.

We compute the intersection form defined by the cup-product on these

subgroups.

The invariant sextic C6 cuts out a set of 18 points on each nonsingular

member of the pencil. We explain its geometric meaning, a result which we

were unable to find in the classical literature.

It is a pleasure to thank Bert van Geemen who kindly provided us with

his informal notes on this topic and made many useful comments on our

manuscript. We thank Noam Elkies and Matthias Schuett for their help in the

proof of Theorem 7.10. We are also indebted to Thierry Vust for his numerous

suggestions for improving the exposition of the paper.



238 M. ARTEBANI AND I. DOLGACHEV

2. THE HESSE PENCIL

Let k be an algebraically closed field of characteristic different from 3

and E be a nonsingular cubic in the projective plane P2(k) defined by a

homogeneous equation F(x y z) 0 of degree 3. The Hessian curve He(E)

of E is the plane cubic curve defined by the equation He(F) 0 , where

He(F) is the determinant of the matrix of the second partial derivatives of F .

The nine points in E He(E) are the inflection points of E . Fixing one of

the inflection points p0 defines a commutative group law on E with p0

equal to the zero : p q is the unique point r such that p0 r and the third

point of intersection in p q E lie on a line. It follows from this definition

of the group law that each inflection point is a 3-torsion point and that the

group E[3] of 3-torsion points on E is isomorphic to (Z 3Z)2 . Any line p q

through two inflection points intersects E at another inflection point r such

that p q r form a coset with respect to some subgroup of E[3] . Since we

have 4 subgroups of order 3 in (Z 3Z)2 we find 12 lines, each containing 3

inflection points. They are called the inflection lines (or the Maclaurin lines

[16]) of E . Since each element in (Z 3Z)2 is contained in 4 cosets, we see

that each inflection point is contained in four inflection lines. This gives the

famous Hesse configuration (123 94) of 12 lines and 9 points in the projective

plane. It is easy to see that this configuration is independent of the choice of

the point p0 .

The Hesse pencil is the one-dimensional linear system of plane cubic

curves given by

(1) Et0 t1 : t0(x
3 y3 z3) t1xyz 0 (t0 t1) P1

We use the affine parameter t1 t0 and denote E1 by E ; the curve

xyz 0 is denoted by E . Since the pencil is generated by the Fermat cubic

E0 and its Hessian, its nine base points are in the Hesse configuration. In fact,

they are the inflection points of any smooth curve in the pencil. In coordinates

they are :

p0 (0 1 1) p1 (0 1 ) p2 (0 1 2)

p3 (1 0 1) p4 (1 0 2) p5 (1 0 )

p6 (1 1 0) p7 (1 0) p8 (1 2 0)

where denotes a primitive third root of 1.

If we fix the group law by choosing the point p0 to be the zero point, then

the set of inflection points is the group of 3-torsion points of each member
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of the Hesse pencil. Hence we can define an isomorphism

: E [3]p0 (Z 3Z)2

by sending the point p1 (0 1 ) to (1 0) and the point p3 (1 0 1)

to (0 1) . Under this isomorphism we can identify the nine base points with

elements of (Z 3Z)2 as follows :

(2)

p0 p1 p2

p3 p4 p5
p6 p7 p8

(0 0) (1 0) (2 0)

(0 1) (1 1) (2 1)

(0 2) (1 2) (2 2) .

It is now easy to see that any triple of base points which represents a row, a

column, or a term in the expansion of the determinant of matrix (2) spans an

inflection line (cf. [38], p. 335).

The existence of an isomorphism not depending on the member of

the pencil can be interpreted by saying that the Hesse pencil is a family of

elliptic curves together with a 3-level structure (i.e. a basis in the subgroup

of 3-torsion points). In fact, in the following lemma we will prove that any

smooth plane cubic is projectively isomorphic to a member of the Hesse

pencil. It follows (see [4]) that its parameter space can be naturally identified

with a smooth compactification of the fine moduli space 1(3) of elliptic

curves with a 3-level structure (when k C this is the modular curve X(3)

of principal level 3).

LEMMA 2.1. Any nonsingular cubic in P2(k) is projectively equivalent to

a member of the Hesse pencil, i.e. it admits a Hesse 3 ) canonical form :

x3 y3 z3 xyz 0

Proof. We will follow the arguments from [55]. Let E be a nonsingular

plane cubic. Given two inflection tangent lines for E we can choose projective

coordinates such that their equations are x 0 and y 0. Then it is easy to

see that the equation of E can be written in the form

(3) F(x y z) xy(ax by cz) dz3 0

where ax by cz 0 is a third inflection tangent line. Suppose c 0,

then ab 0 since otherwise the curve would be singular. Since a binary form

of degree 3 with no multiple roots can be reduced, by a linear change of

variables, to the form x3 y3 , the equation takes the form x3 y3 dz3 0.

3 ) Called the second canonical form in [47], the first one being the Weierstrass form.
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After scaling the coordinate z , we arrive at a Hesse equation. So we may

assume that c 0 and, after scaling the coordinate z , that c 3. Let be a

primitive 3rd root of unity and define new coordinates u by the formulae

ax z u 2 by z 2u

Then

abF(x y z) ( u 2 z)( 2u z)( u z) dz3

u3 3 (d 1)z3 3u z 0

Since the curve is nonsingular we have d 1. Therefore, after scaling the

coordinate z , we get a Hesse equation for E :

x3 y3 z3 xyz 0

Assume additionally that the characteristic of the field k is not equal to 2.

Recall that a plane nonsingular cubic also admits the Weierstrass canonical

form

y2z x3 axz2 bz3 4a3 27b2 0

Projecting from the point p0 we exhibit each curve of the Hesse pencil as a

double cover of P1 branched at 4 points. By a standard procedure, this allows

one to compute the Weierstrass form of any curve from the Hesse pencil :

(4) y2z x3 A(t0 t1) xz
2 B(t0 t1) z

3

where

A(t0 t1) 12u1(u
3
0 u31)(5)

B(t0 t1) 2(u60 20u30u
3
1 8u61)

and (t0 t1) (u0 6u1) . The discriminant of the cubic curve given by (4) is

! 4A3 27B2 2233u30(u
3
0 8u31)

3

its zeros describe the singular members of the pencil. The zeros of the

binary form A(t0 t1) define the curves from the Hesse pencil which admit

an automorphism of order 6 with a fixed point (equianharmonic cubics). For

example, the Fermat curve E0 : x
3 y3 z3 0 is one of them. The zeros of

the binary form B(t0 t1) define the curves from the Hesse pencil which admit

an automorphism of order 4 with a fixed point (harmonic cubics). The map

j : P1 P1 (t0 t1) (4A3 4A3 27B2)
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coincides (up to a scalar factor) with the map assigning to the elliptic curve

E its j -invariant, which distinguishes the projective equivalence classes of

cubic curves.

The Hesse pencil naturally defines a rational map

P2 P1 (x y z) (xyz x3 y3 z3)

which is not defined at the nine base points. Let

: S(3) P2

be the blowing up of the base points. This is a rational surface such that the

composition of rational maps S(3) P2 P1 is a regular map

(6) : S(3) P1

whose fibres are isomorphic to the members of the Hesse pencil. The map

defines a structure of a minimal elliptic surface on S(3) . Here and later we

refer to [5], [18], [39] or [10] for the theory of elliptic fibrations on algebraic

surfaces. The surface S(3) is a special case of an elliptic modular surface

S(n) of level n (see [4], [49]), isomorphic to the universal family of elliptic

curves with an n -level.

There are four singular members in the Hesse pencil, each is the union of

three lines :

E : xyz 0

E 3 : (x y z)(x y 2z)(x 2y z) 0

E 3 : (x y z)(x 2y 2z)(x y z) 0

E 3 2 : (x 2y z)(x y z)(x y 2z) 0

We will call these singular members the triangles and denote them by

T1 T4 , respectively. The singular points of the triangles will be called

the vertices of the triangles. They are

(7)

0 (1 0 0) 1 (0 1 0) 2 (0 0 1)

3 (1 1 1) 4 (1 2) 5 (1 2 )

6 ( 1 1) 7 (1 1) 8 (1 1 )

9 ( 2 1 1) 10 (1 2 1) 11 (1 1 2)

The 12 lines forming the triangles are the inflection lines of the Hesse

configuration. If we fix a point pi as the origin in the group law of a

nonsingular member of the pencil, then the side of a triangle Ti passing

through pi contains 3 base points forming a subgroup of order 3, while

the other sides of Ti contain the cosets with respect to this subgroup. The

triangles obviously give four singular fibres of Kodaira’s type I3 of the elliptic

fibration .
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REMARK 2.2. The Hesse pencil makes sense over a field of any charac-

teristic. It is popular in number-theory and cryptography for finding explicit

algorithms to compute the number of points of an elliptic curve over a finite

field of characteristic 3 (see [22], [51]). We are grateful to Kristian Ranestad

for this comment.

The proof of the existence of a Hesse equation for an elliptic curve E over

a field of characteristic 3 goes through if we assume that E is an ordinary

elliptic curve with rational 3-torsion points. We find equation (3) and check

that it defines a nonsingular curve only if abc 0. By scaling the variables

we may assume that a b 1, c 1. Next we use the variable change

z u x y to transform the equation to the Hesse form

xyu d(u x y)3 xyu d(u3 x3 y3) 0

The Hesse pencil (1) in characteristic 3 has two singular members : (x y z)3

0 and xyz 0. It has three base points (1 1 0) (0 1 1) (1 0 1) , each

of multiplicity 3, which are the inflection points of all nonsingular members of

the pencil. Blowing up the base points, including infinitely near base points,

we get a rational elliptic surface. It has two singular fibres of Kodaira’s types

IV and I2 . The fibre of type IV has the invariant of wild ramification

equal to 1. This gives an example of a rational elliptic surface in characteristic

3 with finite Mordell-Weil group of sections (these surfaces are classified in

[35]). The Mordell-Weil group of our surface is of order 3.

The Hesse configuration of 12 lines with 9 points of multiplicity 4 can

also be defined over a finite field of 9 elements (see [26], Lemma 20.3.7).

It is formed by four reducible members of a pencil of cuspidal cubics with

9 base points. The blow-up of the base points defines a rational quasi-elliptic

surface in characteristic 3 with 4 singular fibres of Kodaira’s type III .

3. THE HESSIAN AND THE CAYLEYAN OF A PLANE CUBIC

The first polar of a plane curve E with equation F 0 with respect to a

point q (a b c) P2 is the curve Pq(E) defined by aFx bFy cFz 0.

It is easy to see that the Hessian curve He(E) of a plane cubic E coincides

with the locus of points q such that the polar conic Pq(E) 0 is reducible.

If E is a member of the Hesse pencil, we find that He(E ) is the member

E ( ) of the Hesse pencil, where

(8) ( )
108 3

3 2
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Let pi (a b c) be one of the base points of the Hesse pencil. By computing

the polar Ppi (E ) we find that it is equal to the union of the inflection tangent

line Tpi (E ) to the curve at the point pi and the line Li : ax by cz 0.

The lines L0 L8 are called the harmonic polars. It follows easily from

the known properties of the first polars (which can be checked directly in

our case) that the line Li intersects the curve E at 3 points qj such that

the tangent to the curve at qj contains pi . Together with pi they form the

group of 2-torsion points in the group law on the curve in which the origin

is chosen to be the point pi .

The harmonic polars, considered as points in the dual plane P̌2 , give the

set of base points of a Hesse pencil in P̌2 . Its inflection lines are the lines

dual to the vertices of the inflection triangles given in (7). If we identify the

plane with its dual by means of the quadratic form x2 y2 z2 , the equation

of the dual Hesse pencil coincides with the equation of the original pencil. For

any nonsingular member of the Hesse pencil its nine tangents at the inflection

points, considered as points in the dual plane, determine uniquely a member

of the dual Hesse pencil.

REMARK 3.1. In the theory of line arrangements, the Hesse pencil defines

two different arrangements (see [6] and [27]). The Hesse arrangement consists

of 12 lines (the inflection lines), it has 9 points of multiplicity 4 (the base

points) and no other multiple points. The second arrangement is the dual of

the Hesse arrangement, denoted by A03(3) . It consists of 9 lines (the harmonic

polars) and has 12 multiple points of multiplicity 3. Together these two

arrangements form an abstract configuration (123 94) which is a special case

of a modular configuration (see [15]). In [27] Hirzebruch constructs certain

finite covers of the plane with abelian Galois groups ramified over the lines

of the Hesse configuration or its dual configuration. One of them, for each

configuration, is a surface of general type with universal cover isomorphic to

a complex ball.

PROPOSITION 3.2. Let E be a nonsingular member of the Hesse pencil.

Let Li E q1 q2 q3 and let E
j
j 1 2 3 , be the curve from the

Hesse pencil whose tangent at pi contains qj . Then He(E ) E if and only

if 1 2 3 .

Proof. It is a straightforward computation. Because of the symmetry of

the Hesse configuration, it is enough to consider the case when i 0, i.e.

pi (0 1 1) . We have that L0 : y z 0 and L0 E is equal to the set
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of points qj (1 yj yj) satisfying 1 2y3j y2j 0. The line p0 qj has the

equation 2yjx y z 0. The curve E from the Hesse pencil is tangent

to this line at the point (0 1 1) if and only if ( 3 3) ( 2yj 1 1) , i.e.

yj 6. Thus

1 2y3j

y2j

108 3

3 2

Comparing with formula (8), we see that ( ) . This proves the

assertion.

Let E be a smooth plane cubic curve which is not equianharmonic. Then

He(E) is smooth and, for any q He(E) , the polar conic Pq(E) has one

isolated singular point sq . In fact, sq lies on He(E) and the map q sq is

a fixed point free involution on He(E) (see, for example, [14]). If we fix a

group law on He(E) with zero at pi , then the map q sq is the translation

by a non-trivial 2-torsion point . In the previous proposition this 2-torsion

point is one of the intersection points of the harmonic polar Li with He(E)

such that E is tangent to the line connecting this point with the inflection

point pi .

The quotient He(E) is isomorphic to the cubic curve in the dual

plane P̌2 parametrizing the lines q sq . This curve is classically known as the

Cayleyan curve of E . One can show that the Cayleyan curve also parametrizes

the line components of reducible polar conics of E . In fact, the line q sq is

a component of the polar conic Pa(E) , where a is the intersection point of

the tangents of He(E) at q and sq .

PROPOSITION 3.3. If E E is a member of the Hesse pencil, then its

Cayleyan curve Ca(E ) is the member of the dual Hesse pencil corresponding

to the parameter

(9) ( )
54 3

9

Proof. To see this, following [9], p. 245, we write the equation of the

polar conic Pq(E6 ) with respect to a point q (u ) :

u(x2 2 yz) (y2 2 xz) (z2 2 xy) 0

It is a reducible conic if the equation decomposes into linear factors, say

u(x2 2 yz) (y2 2 xz) (z2 2 xy) (ax by cz)( x y z)
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This happens if and only if

u 2 2

2 2 u

2 2 u

a a b a c

a b b c b

a c c b c

Considering this as a system of linear equations in the variables u a b c

we get the condition of solvability as the vanishing of the determinant

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2 0 0 0

0 2 0 0

0 0 2 0

( 3 3 3) (1 4 3) 0

If we take ( ) as the coordinates in the dual plane, this equation

represents the equation of the Cayleyan curve because the line x y z

is an irreducible component of a singular polar conic. Setting 6, we

get (9).

Note that the Cayleyan curve Ca(E ) He(E ) comes with a

distinguished nontrivial 2-torsion point, which is the image of the nontrivial

coset of 2-torsion points on He(E ) . This shows that Ca(E ) He(E ) for a

uniquely defined member E of the dual Hesse pencil. The map : P1 P1 ,

gives an isomorphism between the spaces of parameters of the Hesse

pencil and of its dual pencil such that ( ( )) ( ) . One checks that

( 18 ) ( )

REMARK 3.4. The Hesse pencil in the dual plane should not be confused

with the (non-linear) pencil of the dual curves of members of the Hesse pencil.

The dual curve of a nonsingular member Em Em0 3m1 of the Hesse pencil

is a plane curve of degree 6 with 9 cusps given by the equation

(10) m40(X
6
0 X61 X62) m0(2m

3
0 32m31)(X

3
0X

3
1 X30X

3
2 X32X

3
1)

24m20m
2
1X0X1X2(X

3
0 X31 X32 ) (24m30m1 48m41)X

2
0X

2
1X

2
2 0

This equation defines a surface V in P1 P̌2 of bi-degree (4 6) , the universal

family of the pencil. The projection to the first factor has fibres isomorphic

to the dual curves of the members of the Hesse pencil, where the dual of a

triangle becomes a triangle taken with multiplicity 2. The base points pi of
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the Hesse pencil define 9 lines pi in the dual plane and each of the 9 cusps

of an irreducible member from (10) lies on one of these lines. The unique

cubic passing through the nine cusps is the Cayleyan curve of the dual cubic.

If (m x) V , then the curve Em has the line x (dual to x ) as its tangent

line. For a general point x , there will be 4 curves in the Hesse pencil tangent

to this line, in fact the degree of the second projection V P̌2 is equal

to 4. Each line pi lies in the branch locus of this map and its preimage in

V has an irreducible component pi contained in the ramification locus. The

surface V is singular along the curves pi and at the points corresponding to

the vertices of the double triangles. One can show that a nonsingular minimal

relative model of the elliptic surface V P1 is a rational elliptic surface

isomorphic to S(3) . Thus, the dual of the Hesse pencil is the original Hesse

pencil in disguise.

REMARK 3.5. The iterations of the maps : P1 P1 and : P1 P1

given by (8) and (9) were studied in [28]. They give interesting examples

of complex dynamics in one complex variable. The critical points of are

the four equianharmonic cubics and its critical values correspond to the four

triangles. Note that the set of triangles is invariant under this map. The set

of critical points of is the set of triangles and it coincides with the set

of critical values. The equianharmonic cubics are mapped to critical points.

This shows that both maps are critically finite maps in the sense of Thurston

(see [37]).

4. THE HESSIAN GROUP

The Hessian group is the subgroup G216 of Aut(P2) PGL(3 C)

preserving the Hesse pencil 4 ). The Hessian group acts on the space P1 of

parameters of the Hesse pencil, hence defines a homomorphism

(11) : G216 Aut(P1)

Its kernel K is generated by the transformations

0(x y z) (x z y)

1(x y z) (y z x)

2(x y z) (x y 2z)

4 ) Not to be confused with the Hesse group isomorphic to Sp(6 F2) which is related to the
28 bitangents of a plane quartic.
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and contains a normal subgroup of index 2

" 1 2 (Z 3Z)2

If we use the group law with zero p0 on a nonsingular member of the pencil,

then 1 induces the translation by the 3-torsion point p3 and 2 that by the

point p1 .

The image of the homomorphism (11) is clearly contained in a finite

subgroup of Aut(P1) isomorphic to the permutation group S4 . Note that it

leaves invariant the zeros of the binary forms A(t0 t1) , B(t0 t1) from (5). It

is known that the group S4 acts on P
1 as an octahedral group, with orbits

of cardinalities 24 12 8 6, so it cannot leave invariant the zeros of a binary

form of degree 4. However, its subgroup A4 acts as a tetrahedral group with

orbits of cardinalities 12 6 4 4. This suggests that the image of (11) is indeed

isomorphic to A4 . In order to see that it is, it suffices to exhibit transformations

from G216 which are mapped to generators of A4 of orders 2 and 3. They

are

3

1 1 1

1 2

1 2
4

1 0 0

0 0

0 0

The group generated by 0 3 4 is a central extension of degree two of

A4 . It is isomorphic to the binary tetrahedral group and to the group SL(2 F3) .

Note that 2
3 0 so

G216 1 2 3 4

It is clear that the order of G216 is equal to the order of K multiplied by

that of A4 , making it equal to 216. Hence the notation.

PROPOSITION 4.1. The Hessian group G216 is isomorphic to the semi-direct

product

" SL(2 F3)

where SL(2 F3) acts on " (Z 3Z)2 via the natural linear representation.

The Hessian group clearly acts on the set of nine points pi , giving a

natural homomorphism from G216 to Aff2(3) , the affine group of F
2
3 . In fact,

the Hessian group is the subgroup of index 2 of Aff2(3) of transformations

with linear part of determinant equal to 1. In this action the group G216 is

realized as a 2-transitive subgroup of the permutation group S9 on 0 1 8

generated by permutations

T (031)(475)(682) and U (147)(285)
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(see [11], 7.7). The stabilizer subgroup of the point p0 is generated by U

and TUT 1 (354)(678) , and coincides with 3 4 .

REMARK 4.2. The group Aff2(3) of order 432 that contains G216 as a

subgroup of order 2 is isomorphic to the Galois group of the equation of

degree 9 defining the first coordinates of the inflection points of a cubic with

general coefficients in the affine plane [13], [55].

The Hessian group G216 , considered as a subgroup of PGL(3 C) , admits

two different extensions to a subgroup of GL(3 C) generated by complex

reflections. The first group G216 is of order 648 and is generated by reflections

of order 3 (no. 25 in Shephard-Todd’s list [48]). The second group G216 is of

order 1296 and is generated by reflections of order 3 and reflections of order

2 (no. 26 in Shephard-Todd’s list). The images of the reflection hyperplanes

of G216 in the projective plane are the inflection lines, while the images of

the reflection hyperplanes of G216 are the inflection lines and the harmonic

polars.

The algebra of invariants of G216 is generated by three polynomials of

degrees 6, 9 and 12 (see [36], [52]) :

#6 x6 y6 z6 10(x3y3 x3z3 y3z3)

#9 (x3 y3)(x3 z3)(y3 z3)

#12 (x3 y3 z3)[(x3 y3 z3)3 216x3y3z3]

Note that the curve #9 0 is the union of the nine harmonic polars Li and

that the curve #12 0 is the union of the four equianharmonic members of

the pencil. The union of the 12 inflection lines is obviously invariant with

respect to G216 , however the corresponding polynomial #12 of degree 12 is

not an invariant but a relative invariant (i.e. the elements of G216 transform

the polynomial to a constant multiple).

The algebra of invariants of the second complex reflection group G216 is

generated by #6 #12 and a polynomial of degree 18,

#18 (x3 y3 z3)6 540x3y3z3(x3 y3 z3)3 5832x6y6z6

The curve #18 0 is the union of the six harmonic cubics in the pencil.

Later we will give a geometric meaning to the 18 intersection points of the

curve defined by #6 0 with nonsingular members of the pencil.

A third natural linear extension of the group G216 is the preimage G216
of the group under the projection SL(3 C) PGL(3 C) . This is a group of

order 648 isomorphic to the central extension 3G216 of G216 , but it is not
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isomorphic to G216 . The preimage of the subgroup " in 3G216 is a non-abelian

group of order 27 isomorphic to the Heisenberg group 3(3) of unipotent

3 3-matrices with entries in F3 . The group G216 is then isomorphic to the

semi-direct product 3(3) SL(2 F3) and is generated by 1 , 2 ,
1

2 3 ,

e2 i 9
4 considered as linear transformations.

REMARK 4.3. Classical geometers used to define a projective transforma-

tion as a pair consisting of a nondegenerate quadric in the projective space

and a nondegenerate quadric in the dual projective space. If Pn P(V) ,

then the first quadric is given by a quadratic form on V which defines a

linear map : V V . The second quadric defines a linear map V V

and the composition with the first one is a linear map V V . In [21]

the Hessian group is given by a set of 36 conics which are identified

with conics in the dual plane P̌2 by means of an isomorphism P2 P̌2

defined by the conic x20 x21 x22 0. These conics are the polars of

four equianharmonic cubics in the pencil with respect to the 12 vertices of

the inflection triangles. The 12 of them which are double lines have to be

omitted.

It is known that the simple group G PSp(4 F3) of order 25,920 has two

maximal subgroups of index 40. One of them is isomorphic to the complex

reflection group G216 of order 648. It has the following beautiful realization

in terms of complex reflection groups in dimensions 4 and 5.

It is known that the group Z 3Z Sp(4 F3) is isomorphic to a complex

reflection group in C4 with 40 reflection hyperplanes of order 3 (no. 32 in

Shephard-Todd’s list [48]). This defines a projective representation of G in P3

and the stabilizer subgroups of the reflection projective planes are isomorphic

to G216 . The reflection planes cut out on each fixed reflection plane the

extended Hesse configuration of 12 inflection lines and 9 harmonic polars

([36], p. 334).

It is also known that the group Z 2Z G Sp(4 F3) is isomorphic to

a complex reflection group in C5 with 45 reflection hyperplanes of order 2

(no. 33 in Shephard-Todd’s list [48]). This defines a projective representation

of G in P4 . The algebra of invariant polynomials with respect to the complex

reflection group Z 2Z G was computed by Burkhardt [8]. The smallest

degree invariant is of degree 4. Its zero locus in P4 is the famous Burkhardt

quartic hypersurface with 45 nodes where 12 reflection hyperplanes meet.

There are 40 planes forming one orbit, each containing 9 nodes. Each such
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plane contains 12 lines cut out by the reflection hyperplanes. They form the

Hesse configuration with the 9 points equal to the set of base points of the

Hesse pencil.

One can find an excellent exposition of the results of Maschke and

Burkhardt in [29]. There is also a beautiful interpretation of the geom-

etry of the two complex reflection groups in terms of the moduli space

2(3) of principally polarized abelian surfaces with some 3-level structure

(see [17], [20]). For example, one can identify 2(3) with an open subset

of the Burkhardt quartic whose complement is equal to the union of the

40 planes.

5. THE QUOTIENT PLANE

Consider the blowing up : S(3) P2 of the base points pi of the

Hesse pencil and the elliptic fibration (6) :

: S(3) P1 (x y z) (xyz x3 y3 z3)

The action of the group " on P2 lifts to an action on S(3) . Fixing one section

of (i.e. one point pi ), the group " is identified with the Mordell-Weil group

of the elliptic surface and its action with the translation action. Let

: S(3) " P1 : S(3) " P2 "

be the morphisms induced by and , respectively.

PROPOSITION 5.1. The quotient surfaces P2 " and S(3) " have 4 singular

points of type A2 given by the orbits of the vertices (7). The minimal resolution

of singularities are isomorphic to a Del Pezzo surface S of degree 1 and to

S(3) , respectively. Up to these resolutions, is isomorphic to and is

the blowing up of S in one point, the " -orbit of the points pi .

Proof. The group " preserves each singular member of the Hesse pencil

and any of its subgroups of order 3 leaves invariant the vertices of one of

the triangles. Without loss of generality we may assume that the triangle is

xyz 0. Then the subgroup of " stabilizing its vertices is generated by the

transformation 2 , which acts locally at the point y z 0 by the formula
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(y z) ( y 2z) . It follows that the orbits of the vertices give 4 singular points

of type A2 in P
2 " and S(3) " , locally given by the equation u 3 0.

Let E be an elliptic curve with a group law and let [n] : E E be the

map x nx . It is known that this map is a surjective map of algebraic groups

with kernel equal to the group of n -torsion points. Its degree is n2 if n is

coprime to the characteristic. In our case the quotient map by " acts on each

member of the Hesse pencil as the map [3] . This implies that the quotient of

the surface S(3) by the group " is isomorphic to S(3) over the open subset

U P1 !(t0 t1) 0 .

The map : S(3) " P1 induced by the map has four singular

fibres. Each fibre is an irreducible rational curve with a double point which

is a singular point of the surface of type A2 . Let : S(3) S(3) " be a

minimal resolution of the four singular points of S(3) " . The composition

: S(3) P1 is an elliptic surface isomorphic to : S(3) P1 over the

open subset U of the base P1 . Moreover, and have singular fibres

of the same types, thus S(3) is a minimal elliptic surface. Since it is known

that a birational isomorphism of minimal elliptic surfaces is an isomorphism,

this implies that is isomorphic to .

The minimal resolution S of P2 " contains a pencil of cubic curves

intersecting in one point q0 , the orbit of the points pi . Hence it easily follows

(see for example [10]) that S is isomorphic to a Del Pezzo surface of degree

one and is the blowing up of the point q0 .

Let : S(3) P2 be the contraction of the 9 sections E0 E8 of the

elliptic fibration to the points q0 q8 in P
2 , the base points of the

Hesse pencil in the second copy of P2 .

By Proposition 5.1 the following diagram is commutative :

(12)

S(3)
r

S(3) " S(3)

P2
p

P2 " S P2

Here p is the quotient map by " , is a minimal resolution of singularities

of the orbit space P2 " , is the blow-up of the point q0 on S , and is the

blow-up of q1 q8 (see the notation in the proof of Proposition 5.1).
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PROPOSITION 5.2. The curves Bi p 1( ( (Ei))) i 1 8 , are plane

cubic curves with equations

B1 : x3 y3 2z3 0 B5 : x3 2y3 z3 0

B2 : x2y y2z z2x 0 B6 : x2z y2x z2y 0

B3 : x2y 2y2z z2x 0 B7 : x2z y2x 2z2y 0

B4 : x2y y2z 2z2x 0 B8 : x2z 2y2x z2y 0

The union of the eight cubics Bi cuts out on each nonsingular member of the

Hesse pencil the set of points of order 9 in the group law with the point p0

as the origin.

Each of them has one of the triangles of the Hesse pencil as inflection

triangle and is inscribed and circumscribed to the other three triangles (i.e.

is tangent to one side of the triangle at each vertex).

Proof. Recall that the sections E1 E8 on S(3) are non-trivial

3-torsion sections (the zero section is equal to E0 ). The preimage Bi of

Ei under the map r 1 cuts out on each nonsingular fibre the " -orbit of a

point of order 9. Thus the image Bi of Bi in P
2 is a plane cubic cutting out

the " -orbit of a point of order 9 on each nonsingular member of the Hesse

pencil.

Let E be a nonsingular member of the Hesse pencil. Take a point p E

and let q p be the intersection of E with the tangent line at p . Let r q

be the intersection of E with the tangent line at q . Finally, let s r be the

intersection of E with the tangent line at r . It follows from the definition of

the group law that we have 2p q 2q r 2r s 0. This immediately

implies that 9p 0 if and only if p s (this explains why the classical

authors called a point of order 9 a coincidence point). The triangle formed

by the lines p q , q r , r p is inscribed and circumscribed to E . Following

Halphen [23], we will use this observation to find the locus of points of

order 9.

The tangent line of E at p (x0 y0 z0) has the equation

(x20 ty0z0)x (y20 tx0z0)y (z20 tx0y0)z 0

where we assume that E E3t . The point q (x0 y0
2z0) lies on E because

(x0 y0 z0) E ; it also lies on the tangent line at p if p (x0 y0 z0) satisfies

the equation

(13) B1 : x
3 y3 2z3 0

If p satisfies this equation, then q also satisfies it, hence r (x0
2y0 z0)

lies on the tangent at q and again satisfies (13). If we repeat this procedure
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we return to the original point p . Hence we see that any point in B1 E is

a point of order 9. Now we apply the elements of the Hessian group to the

curve B1 in order to get the remaining cubic curves B2 B8 . Notice that

the stabilizer of B1 in the Hessian group is generated by " and 4 . It is a

Sylow 3-subgroup of the Hessian group isomorphic to a semi-direct product

" Z 3Z .

To check the last assertion it is enough, using the G216 -action, to consider

one of the curves Bi . For example, we see that the triangle T1 of equation

xyz 0 is an inflection triangle of the curve B1 and that the triangles T2 T3 T4

are inscribed and circumscribed to B1 . More precisely we have the following

configuration :

i) Bi and Bi 4 have Ti as a common inflection triangle and they intersect

in the 9 vertices of the other triangles;

ii) Bi and Bj , i j , i j 4, intersect in the 3 vertices of a triangle Tk

and are tangent in the 3 vertices of T with k i j ;

iii) Bi and Bj 4 , i j , i j 4, intersect similarly with k and

interchanged.

For example, B1 and B2 intersect in the vertices of T3 and are tangent

in the vertices of T4 , while B1 and B6 intersect transversally on T4 and are

tangent on T3 .

We will call the cubics Bi the Halphen cubics. Observe that the element 0

from the Hessian group sends Bi to Bi 4 . We will call the pairs (Bi Bi Bi 4)

the pairs of Halphen cubics and we will denote by qi qi qi 4 the

corresponding pairs of points in P2 .

It can easily be checked that the projective transformations 3 4 act on

the Halphen cubics as follows (with an obvious notation) :

3 : (121 2 )(434 3 ) 4 : (243)(2 4 3 )

REMARK 5.3. The linear representation of " on the space of homoge-

neous cubic polynomials decomposes into the sum of one-dimensional eigen-

subspaces. The cubic polynomials defining Bi together with the polynomials

xyz x3 y3 z3 form a basis of eigenvectors. Moreover, note that the cubics

Bi are equianharmonic cubics. In fact, they are all projectively equivalent to

B1 , which is obviously isomorphic to the Fermat cubic. We refer to [2], [3]

where the Halphen cubics play a role in the construction of bielliptic surfaces

in P4 .



254 M. ARTEBANI AND I. DOLGACHEV

REMARK 5.4. According to G. Halphen [23], the rational map

1 p : P2 P2

can be given explicitly by

(x y z) (P2P3P4 P2P3P4 xyz P1P1)

where Pi Pi are the polynomials defining Bi Bi as in Proposition 5.2. His

paper [23], besides many other interesting results, describes the locus of

m -torsion points of nonsingular members of the Hesse pencil (see [19] for a

modern treatment of this problem).

REMARK 5.5. In characteristic 3 the cyclic group of projective transfor-

mations generated by 1 acts on nonsingular members of the Hesse pencil as

translation by 3-torsion points with the zero point taken to be (1 1 0) . The

polynomials

(X Y Z W) (x2y y2z z2x xy2 yz2 zx2 x3 y3 z3 xyz)

are invariant with respect to 1 and map P
2 onto a cubic surface in P3 given

by the equation (see [22], (3.1))

(14) X3 Y3 Z2W XYZ

Among the singular points of the cubic surface, (0 0 0 1) is a rational double

point of type E
(1)
6 in Artin’s notation [1]. The image of the member E of the

Hesse pencil is the plane section Z W 0. Substituting in equation (14),

we find that the image of this pencil of plane sections under the projection

from the singular point is the Hesse pencil. The parameter of the original

pencil and the new parameter are related by 3 .

6. THE 8-CUSPIDAL SEXTIC

Let C6 be the sextic curve with equation #6 0, where #6 is the

degree six invariant of the Hessian group. This is a smooth curve and one

immediately verifies that it does not contain the vertices of the inflection

triangles T1 T4 given in (7) or the base points of the Hesse pencil.

This shows that the preimage C6
1(C6) of C6 in the surface S(3) is

isomorphic to C6 and that the group " acts on C6 freely. The orbit space

C6 " is a smooth curve of genus 2 in S(3) " which does not pass through

the singular points and does not contain the orbit of the section 1(p0) . Its
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preimage under is a smooth curve C6 of genus 2 in S(3) that intersects

a general fibre of the Hesse pencil at 2 points. Observe that the curve C6 is

tangent to each Halphen cubic Bi Bi at a " -orbit of 9 points. In fact, it is

enough to check that C6 is tangent to one of them, say B1 , at some point.

We have

x6 y6 z6 10(x3y3 x3z3 y3z3)

(x3 y3 z3)2 12(x3y3 x3z3 y3z3)

3(x3 y3 z3)2 4(x3 y3 2z3)(x3 2y3 z3)

This shows that the curves B1 and B1 are tangent to C6 at the points where

C6 intersects the curve E0 : x
3 y3 z3 0. The map : S(3) P2 blows

down the curves Ei , i 1 8, to the base points q1 q8 , of the Hesse

pencil. Hence the image C6 of C6 in P
2 is a curve of degree 6 with cusps

at the points q1 q8 .

PROPOSITION 6.1. The 8 -cuspidal sextic C6 is projectively equivalent to

the sextic curve defined by the polynomial

#6(x y z) (x3 y3 z3)2 36y3z3 24(z4y2 z2y4) 12(z5y zy5) 12x3(z2y zy2)

Proof. In an appropriate coordinate system the points qi have the same

coordinates as the pi ’s. By using the action of the group " , we may assume that

the sextic has cusps at p1 p8 . Let V be the vector space of homogeneous

polynomials of degree 6 vanishing at p1 p8 with multiplicity 2. If S

is the blowing-up of q1 q8 and KS is its canonical bundle, then P(V)

can be identified with the linear system 2KS . It is known that the linear

system 2KS is of dimension 3 (see [12]) and defines a regular map of

degree 2 from S to P3 with the image a singular quadric.

A basis of V can be found by considering the product of six lines among

the 12 inflection lines. In this way one finds the following sextic polynomials

A1 yz(x y z)(x y z)(x 2y z)(x y 2z)(15)

A2 yz(x y 2z)(x 2y z)(x y z)(x y z)

A3 yz(x 2y z)(x y 2z)(x y 2z)(x 2y z)

A4 (x y 2z)(x 2y z)(x y z)

(x y z)(x 2y z)(x y 2z)

A polynomial P(x y z) defining the curve C6 is invariant with respect to

the linear representation of the binary tetrahedral group T SL(2 F3) in V .
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This representation decomposes into the direct sum of the 3-dimensional

representation isomorphic to the second symmetric power of the standard

representation of 2 A4 in C
2 and a one-dimensional representation spanned

by P(x y z) . Applying 4 we find that

(A1 A2 A3 A4) ( 2A2
2A3

2A1 A4)

Thus P(x y z) (A1
2A2 A3) A4 for some constants . Now we

apply 3 and find such that P(x y z) is invariant. A simple computation

gives the equation of C6 .

REMARK 6.2. The geometry of the surface S , the blow-up of P2 at

q1 q8 , is well-known. We now present several birational models of this

surface and relations between them.

The surface S is a Del Pezzo surface of degree 1 and admits a birational

morphism : S S onto a surface in the weighted projective space

P(1 1 2 3) given by an equation

(16) u23 u32 A(u0 u1)u2 B(u0 u1) 0

where (u0 u1 u2 u3) have weights 1 1 2 3 (see [12]). The morphism is an

isomorphism outside of the union of the 8 lines 1 8 which correspond

to factors of the polynomials A1 A4 from (15). In fact, the map is a

resolution of indeterminacy points of the rational map : P2 P(1 1 2 3) .

It is given by the formulae

(x y z) (u0 u1 u2 u3) ( xyz x3 y3 z3 #6(x y z) P9(x y z))

where P9(x y z) 0 is the union of the line 0 : y z 0 and the 8 lines

1 8 . Explicitly,

P9(x y z) yz(y z)(x6 x3(2y3 3y2z 3yz2 2z3) (y3 yz z2)3

Up to some constant factors, the polynomials A B are the same as in (5).

The 8 lines are blown down to singular points of the surface.

The composition of with the projection (u0 u1 u2 u3) (u20 u0u1 u
2
1 u2)

gives the rational map P2 P3 defined by

(x y z) (u0 u1 u2 u3) (x2y2z2 xyz(x3 y3 z3) (x3 y3 z3)2 #6)

This is a 2 A4 -equivariant map of degree 2 onto the quadric cone u0u2 u21 0.

The ramification curve is the line y z 0 and the branch curve is the

intersection of the quadric cone and a cubic surface. This is a curve W of

degree 6 with 4 ordinary cuspidal singularities lying on the hyperplane u3 0.
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Consider the rational map 1 p : P2 P2 from diagram (12).

It follows from the description of the maps in the diagram that the preimage of

the Hesse pencil is a Hesse pencil, the preimage of the curve C6 is the curve

C6 , and the preimage of the union of the lines 0 1 8 is the union of

harmonic polars. This shows that the composition : P2 P(1 1 2 3)

can be given by the formulae

(x y z) (xyz x3 y3 z3 #6(x y z) #9(x y z))

where #9(x y z) is the invariant of degree 9 for the group G216 given in §4.

This agrees with a remark of van Geemen in [53] that the polynomials

xyz , x3 y3 z3 , #6(x y z) , and #9(x y z) satisfy the same relation (16)

as the polynomials xyz , x3 y3 z3 , #6(x y z) , and P9(x y z) . Using the

standard techniques of invariant theory of finite groups one can show that the

polynomials xyz , x3 y3 z3 , #6(x y z) , and #9(x y z) generate the algebra

of invariants of the Heisenberg group 3(3) , the preimage of " in SL(3 F3) .

The equations of S with respect to different sets of generators were given

in [7] and [54].

Finally, we explain the geometric meaning of the intersection points of the

sextic curve C6 with a nonsingular member E of the Hesse pencil. This set

of intersection points is invariant with respect to the translation group " and

the involution 0 , thus its image in C6 C6 " consists of two points on the

curve E . These points lie on the line through the point p0 because they differ

by the negation involution 0 on E in the group law with the zero point p0 .

PROPOSITION 6.3. The curves C6 and E intersect at two points p q

outside the base points p1 p8 . These points lie on a line through p0
which is the tangent line to the Hessian cubic He(E ) at p0 . The 18 points

in C6 E are the union of the two " -orbits of p and q.

Proof. This is checked by a straightforward computation. By using

MAPLE$ we find that the curves C6 , E and the tangent line to E ( )

at p0 have two intersection points.

7. A K3 SURFACE WITH AN ACTION OF G216

In the previous sections we introduced two plane sextics, C6 and C6 ,

which are naturally related to the Hesse configuration. The double cover of

P2 branched along any of these curves is known to be birationally isomorphic
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to a K3 surface, i.e. a simply connected compact complex surface with trivial

canonical bundle. This follows from the formula for the canonical sheaf of a

double cover f : Y P2 of the projective plane branched along a plane curve

of degree 2d

Y f ( P2 P2(d))

and the fact that the singular points of Y are rational double points, i.e. they

can be characterized by the condition ( Y ) X , where : X Y is a

minimal resolution of singularities.

In the following sections we will study the geometry of the K3 surfaces

associated to C6 and C6 ; in particular we will show how the symmetries

of the Hesse configuration can be lifted to the two surfaces. We start by

presenting some basic properties of K3 surfaces and their automorphisms

(see for example [5] and [40]).

Since the canonical bundle is trivial, the vector space %2(X) of holomorphic

2-forms on a K3 surface X is one-dimensional. Moreover, the cohomology

group L H2(X Z) is known to be a free abelian group of rank 22. The

cup-product equips L with a structure of a quadratic lattice, i.e. a free

abelian group together with an integral quadratic form. The quadratic form is

unimodular and its signature is (3 19) . The sublattice SX L generated by

the fundamental cocycles of algebraic curves on X is called the Picard lattice

and has signature equal to (1 k) . Its orthogonal complement TX in L is the

transcendental lattice of X .

Any automorphism of X clearly acts on %2(X) and also induces an

isometry on L which preserves SX and TX . An automorphism that acts

identically on %2(X) is called symplectic. We recall here a result proved in [43].

THEOREM 7.1. Let be an automorphism of finite order on a K3

surface X .

i) If is symplectic then acts trivially on TX and its fixed locus is

a finite union of points. The quotient surface X ( ) is birational to a K3

surface.

ii) If is not symplectic then acts on %2(X) as the multiplication by

a primitive r -th root of unity and its eigenvalues on TX C are the primitive

r -th roots of unity. Moreover, if the fixed locus is not empty, then the quotient

X ( ) is a rational surface.

Let q : X P2 be the double cover branched along C6 . We now prove

that the action of the Hessian group on the projective plane lifts to an action



THE HESSE PENCIL OF PLANE CUBIC CURVES 259

on X . We denote by Q8 the 2-Sylow subgroup of SL(2 F3) , isomorphic to

the quaternion group.

PROPOSITION 7.2. The Hessian group G216 is isomorphic to a group

of automorphisms of the K3 surface X . Under this isomorphism, any

automorphism in the normal subgroup H72 " Q8 is symplectic.

Proof. The double cover q : X P2 branched along the curve C6 can

be defined by the equation

2 #6(x y z) 0

considered as a weighted homogeneous polynomial with weights (1 1 1 3) .

Thus we can consider X as a hypersurface of degree 6 in the weighted

projective space P(1 1 1 3) .

Let G216 be the preimage of G216 in SL(3 C) considered in Section 4 and

let i ( i 1 4) be the lifts of the generators i in G216 . It is checked

immediately that the generators 1 2 3 leave the polynomial #6 invariant

and 4 multiplies #6 by
2 . Thus the group G216 acts on X by the formula

i(x y z ) ( i (x y z) ) for i 4 4(x y z ) ( 4(x y z) )

The kernel of G216 G216 is generated by the scalar matrix ( ) , which

acts as the identity transformation on X . Then it is clear that the induced

action of G216 on X is faithful.

The subgroup H72 of G216 is generated by the transformations 1 , 2 , 3 ,

4 3
1

4 . To check that it acts symplectically on X we recall that the space

of holomorphic 2-forms on a hypersurface F(x0 xn) of degree d in Pn

is generated by the residues of the meromorphic n -forms on Pn of the type

P

F

n

i 0

( 1)ixi dx1 dxi dxn

where P is a homogeneous polynomial of degree d n 1. This is easily

generalized to the case of hypersurfaces in a weighted projective space

P(q0 qn) . In this case the generating forms are

P

F

n

i 0

( 1)iqi xi dx1 dxi dxn

where degP d q0 qn .
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In our case d q0 q1 q2 q3 6, hence there is only one form, up

to proportionality. It is given by

x dy dz d y dx dz d z dx dy d 3 dx dy dz
2 #6(x y z)

It is straightforward to check that the generators of H72 leave this form

invariant (cf. [41], p. 193).

REMARK 7.3. The action of " Q8 appears as Example 0.4 in the paper

of S. Mukai [41] containing the classification of maximal finite groups of

symplectic automorphisms of complex K3 surfaces.

Let Pi Pi ( i 1 4) be the polynomials defining the cubics Bi Bi 4

as given in Section 5 and Fi be the equations of the equianharmonic cubics

in the Hesse pencil :

Fi(x y z) x3 y3 z3 ixyz (i 1 4)

where 1 0 and i 6 2 i for i 2 3 4 (see Section 2).

PROPOSITION 7.4. The K3 surface X is isomorphic to the hypersurface

of bidegree (2 3) in P1 P2 with equation

(17) u2Pi(x y z)
2Pi(x y z) 3u Fi(x y z) 0

for any i 1 4 .

Proof. As noticed in the previous section we can write

#6 det
2P1 3F1

3F1 2P1
3F21 4P1P1

The K3 surface Y given by the bihomogeneous equation of bidegree (2 3)

in P1 P2

(18) u2P1(x y z)
2P1(x y z) 3u F1(x y z) 0

is a double cover of P2 with respect to the projection to the second factor

and its branch curve is defined by #6 0. Thus Y is isomorphic to the K3

surface X . By acting on equation (18) with the Hessian group G216 we find

analogous equations for X in P1 P2 in terms of the polynomials Pi Pi and

Fi for i 2 3 4.
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An important tool for understanding the geometry of K3 surfaces is the

study of their elliptic fibrations. We recall that the fibration is called jacobian

if it has a section.

PROPOSITION 7.5. The K3 surface X has 4 pairs of elliptic fibrations

i i : X P1 (i 1 4)

with the following properties :

a) i and i are exchanged by the covering involution of q and G216 acts

transitively on 1 4 ;

b) the j -invariant of any smooth fibre of i or i is equal to zero;

c) each fibration has 6 reducible fibres of Kodaira’s type IV , i.e. the union

of three smooth rational curves intersecting at one point. The singular points

in the reducible fibres of i and i are mapped by q to the vertices of the

triangle Ti ;

d) each fibration is jacobian.

Proof. Consider the equations (17) for X in P1 P2 . The projections on

the first factor i : X P1 , i 1 4 are elliptic fibrations on X since

the fibre over a generic point (u ) is a smooth plane cubic. A second set

of elliptic fibrations on X is given by i i , where is the covering

involution of q . Since all these fibrations are equivalent modulo the group

generated by and G216 , it will be enough to prove properties b), c) and d)

for 1 .

The fibre of 1 over a point (u ) is isomorphic to the plane cubic defined

by equation (18). This equation can be also written in the form

(u2 2 3u )x3 ( u2 2 2 3u )y3 ( 2u2 2 3u )z3 0

Hence it is clear that all smooth fibres of 1 are isomorphic to a Fermat cubic

i.e. they are equianharmonic cubics. This system of plane cubics contains

exactly 6 singular members corresponding to the vanishing of the coefficients

at x3 , y3 and z3 . Each of them is equal to the union of three lines meeting

at one point and defines six singular fibres of type IV of the elliptic fibration

1 . The singular points of these reducible fibres are the inverse images of the

vertices 0 , 1 , 2 of the triangle T1 under the map q (see (7) in Section 2).

This proves assertions b) and c).

It remains to show that the elliptic fibration 1 has a section. We thank

N. Elkies for explicitly finding such a section. It is given by

(x y z) (1 )u d0 (1 )u d2 (1 )u d1

where (d0 d1 d2) i 3(
3
4 1

3
2) .
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REMARK 7.6. Consider the map

P2 P2 (x y z) (x3 y3 z3)

The image of the curve C6 is a conic T and the preimages of the tangent

lines to T are plane cubics that are everywhere tangent to C6 . The map

induces a degree 9 morphism from X to P1 P1 isomorphic to the double

cover of P2 branched along T . The projections to the two factors give the

fibrations 1 and 1 .

Note that each family of everywhere tangent cubics to C6 corresponds to

an even theta characteristic on C6 with h0( ) 2 .

Let : Y P1 be a jacobian elliptic fibration on a K3 surface Y . The

fibre of over the generic point is an elliptic curve Y over the field of

rational functions K of P1 . The choice of a section E of fixes a K -rational

point on Y and hence allows one to find a birational model of Y given by

a Weierstrass equation y2 x3 ax b 0, where a b K . The construction

of the Weierstrass model can be “globalized” to obtain the following birational

model of Y (see [10]).

PROPOSITION 7.7. There exists a birational morphism f : Y W , where

W is a hypersurface in the weighted projective space P(1 1 4 6) given by

an equation of degree 12

y2 x3 A(u )x B(u ) 0

with A(u ) B(u ) binary forms of degrees 8 and 12 respectively. Moreover :

1. The image of the section E is the point p (0 0 1 1) W . The

projection (u x y) (u ) from p gives an elliptic fibration : W P1

on the blow-up W of W with center at p. It has a section defined by the

exceptional curve E of the blow-up.

2. The map f extends to a birational morphism f : Y W over P1

which maps E onto E and blows down irreducible components of fibres of

which are disjoint from E to singular points of W .

3. Each singular point of W is a rational double point of type

An Dn E6 E7 or E8 . A singular point of type An corresponds to a fibre

of of Kodaira type In 1 , III (if n 1 ), or IV (if n 2 ). A singular

point of type Dn corresponds to a fibre of type In 4 . A singular point of type

E6 E7 E8 corresponds to a fibre of type IV III II respectively.
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The elliptic surface W is determined uniquely, up to isomorphism, by

the elliptic fibration on Y . It is called the Weierstrass model of the elliptic

fibration .

It is easy to find the Weierstrass model of the elliptic fibration 1 : X P1

on our surface X .

LEMMA 7.8. The Weierstrass model of the elliptic fibration 1 is given

by the equation

y2 x3 (u6 6)2 0

Proof. We know from Proposition 7.5 that the j -invariant of a general

fibre of 1 is equal to zero. This implies that the coefficient A(u ) in the

Weierstrass equation is equal to zero. We also know that the fibration has

6 singular fibres of type IV over the zeros of the polynomial

(u2 2 3u )( u2 2 2 3u )( 2u2 2 3u ) u6 6

Since each of the fibres is of Kodaira type IV , the singularity of W over a root

of u6 6 must be a rational double point of type A3 , locally isomorphic to

the singularity y2 x3 z2 . This easily implies that the binary form B(u ) is

equal to (u6 6)2 up to a scalar factor which does not affect the isomorphism

class of the surface.

LEMMA 7.9. Let Y be a K3 surface with Picard number 20 having a

non-symplectic automorphism of order 3 . Then the intersection matrix of TY

with respect a suitable basis is given by

(19) A2( m)
2m m

m 2m

for some m Z , m 0 .

Proof. Let f be a non-symplectic automorphism of order 3 on Y .

By Theorem 7.1 ii), f acts on TY C with eigenvalues 2 . Let x TY ,

x 0, then

0 (x f (x) (f )2(x) f (x)) 2(x f (x)) x2

Note that x2 2m for some positive integer m because the lattice TY is even

and positive definite. Then the intersection matrix of TY with respect to the

basis x f (x) is A2( m) . See also Lemma 2.8 in [45].
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The proof of the following theorem follows a suggestion of M. Schuett.

THEOREM 7.10. The intersection matrix of the transcendental lattice of

the K3 surface X with respect to a suitable basis is

A2( 6)
12 6

6 12

Proof. Consider the automorphism of order 6 of X that acts on

the Weierstrass model by the formula (u x y) ( u 2x 3y) , where

e i 3 . It is easy to see that acts freely outside the union of the two

nonsingular fibres F0 F over the points (u ) (1 0) and (0 1) . The action

of the cyclic group G on each of the fibres is an automorphism of

order 6 such that G has one fixed point, 3 has 4 fixed points and 2

has 3 fixed points.

Let X G be the orbit space. The images F0 and F of F0 and F

in X G are smooth rational curves and X G has 3 singular points on each

of these curves, of types A5 A3 and A2 . A minimal resolution of X G is

a K3 surface Y . The elliptic fibration 1 on X defines an elliptic fibration

: Y P1 with two fibres of type II , equal to preimages of F0 and F

on Y , and one fibre of type IV , the orbit of the six singular fibres of 1 .

It is easy to compute the Picard lattice SY of Y . Its sublattice generated

by irreducible components of fibres and a section of is isomorphic to

U E8 E8 A2 , where U is generated by a general fibre and a section.

It follows from the Shioda-Tate formula in [49] that this sublattice coincides

with SY and that the discriminant of its quadratic form is equal to 3. Since

the transcendental lattice TY is equal to the orthogonal complement of SY in

the unimodular lattice L H2(X Z) , this easily implies that TY is a rank 2

positive definite even lattice with discriminant equal to 3. There is only one

isomorphism class of such a lattice and it is given by A2( 1) .

The transcendental lattices of the surfaces X and Y are related in the

following way. By Proposition 5 of [50], there is an isomorphism of abelian

groups (TY ) Q (TX)
G Q , defined by taking the inverse transform

of transcendental cycles under the rational map X Y . Since G acts

symplectically on X , we have (TX)
G TX . Under this map the intersection

form is multiplied by the degree of the map, equal to 6. This implies that

TX has rank two and contains TY (6) A2( 6) as a sublattice of finite index.

Note that the automorphism 4(x y z ) (x y z ) of X clearly fixes

the curve x 0 pointwise. Hence 4 is non-symplectic by Theorem 7.1. It

follows from Lemma 7.9 and the previous remarks that TX A2( m) . Hence
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we only need to determine the integer m . As we saw above, TX contains a

sublattice isomorphic to A2( 6) , hence m 1 2 3 6 . We now exclude all

possibilities except the last one.

The K3 surface with TY A2( 1) was studied in [44], in particular all

jacobian elliptic fibrations on Y are classified in Theorem 3.1. Since none

of these fibrations has the same configuration of singular fibres as 1 (see

Proposition 7.5), this excludes the case m 1.

The K3 surface with TY A2( 2) is isomorphic to the Kummer surface

from Theorem 8.6 below. All its jacobian fibrations are described in [44],

Theorem 3.1 (Table 1.1) and, as in the previous case, none of them has

6 fibres of type IV . This excludes the case m 2.

Finally, a direct computation shows that A2( 3) does not contain a

sublattice isomorphic to A2( 6) . In fact, since the equation x2 y2 xy 2

has no integral solutions, then A2( 3) does not contain any element with

self-intersection 12. This completes the proof of our theorem.

We conclude this section by giving another model for the surface X .

PROPOSITION 7.11. The K3 surface X is birational to the double cover

of P2 branched along a sextic with 8 nodes which admits a group of linear

automorphisms isomorphic to A4 .

Proof. The lift 0 of the involution 0 to the cover X 2

#6(x y z) 0 given by 0(x y z ) (x z y ) is a non-symplectic

involution. The fixed locus of 0 is the genus two curve L0 which is the

double cover of the harmonic polar L0 y z 0 branched along L0 C6 .

The quotient surface R X ( 0) is a Del Pezzo surface of degree 1, the

double cover of P2 ( 0) Q , where Q is the quadratic cone with vertex

equal to the orbit of the fixed point p0 (0 1 1) of 0 . We denote by B

the image of L0 in R .

Let b : R P2 be the blowing-down of 8 disjoint ( 1)-curves on R to

points s1 s8 in P
2 . The pencil of cubic curves through the eight points

is the image of the elliptic pencil KR on R . Note that the stabilizer of the

point p0 in the Hessian group is isomorphic to 2 A4 with center equal to ( 0) ,

thus the group A4 acts naturally on R and on the elliptic pencil KR . The

curve B 2KR is an A4 -invariant member of the linear system 2KR

and b(B) is a plane sextic with 8 nodes at the points s1 s8 . Thus we see

that X admits 9 isomorphic models as a double cover of the plane branched

along a 8-nodal sextic with a linear action of A4 .
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REMARK 7.12. In [34] the authors study a K3 surface birationally

isomorphic to the double cover of P2 branched along the union of two triangles

from the Hesse pencil. This surface has transcendental lattice of rank 2 with

intersection matrix 6 0
0 6 and it admits a group of automorphisms isomorphic

to A6 Z 4Z .

8. A K3 SURFACE WITH AN ACTION OF SL(2 F3)

We now study the K3 surface which is birational to the double cover of

P2 branched along the sextic C6 defined by #6 0.

We recall that C6 has 8 cusps in the base points q1 q8 of the Hesse

pencil. The double cover of P2 branched along C6 is locally isomorphic to

z2 x2 y3 0 over each cusp of C6 , hence it has 8 singular points of

type A2 (see [5]). It is known that the minimal resolution of singularities of

this surface is a K3 surface and that the exceptional curve over each singular

point of type A2 is the union of two rational curves intersecting in one point

(see for example [40], §2).

In this section we will study the properties of this K3 surface, which will

be denoted by X .

PROPOSITION 8.1. The K3 surface X is birationally isomorphic to the

quotient of the K3 surface X by the subgroup " of G216 . In particular, the

group SL(2 F3) is isomorphic to a group of automorphisms of X .

Proof. The minimal resolution of the double cover of P2 branched along

C6 can be obtained by first resolving the singularities of C6 through the

morphism : S P2 from diagram (12) and then taking the double cover

q̄ : X S branched over the proper transform C6 of C6 ([5]). Since
1(p(C6)) C6 we have the commutative diagram

(20)

X
r̄

X "
¯

X

q q̄
q

P2
p

P2 " S P2

where q is the double cover branched along C6 , q is the minimal resolution

of the double cover branched along C6 , r̃ and p are the natural quotient

maps, ˜ is a minimal resolution of singularities and the bottom maps are as

in diagram (12). This gives the first statement. The second one follows from

the isomorphism G216 " SL(2 F3) .
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REMARK 8.2. The points in X with nontrivial stabilizer for the action

of " are exactly the 24 preimages by q of the vertices of the triangles in

the Hesse pencil. In fact these points belong to 8 orbits for the action of

" and give 8 singular points of type A2 in the quotient surface X " (see

Proposition 5.1).

We now describe some natural elliptic fibrations on the surface X .

PROPOSITION 8.3. The pencil of lines through each of the cusps of C6
induces a jacobian fibration on X with 3 singular fibres of Kodaira’s type

I6 and one of type I3 (i.e. cycles of 6 and 3 rational curves respectively).

Proof. Let p be a cusp of C6 and hp be the pencil of lines through p .

The generic line in the pencil intersects C6 in p and 4 other distinct points,

hence its preimage in X is an elliptic curve. Thus hp induces an elliptic

fibration h̃p on X .

The pencil hp contains 3 lines through 3 cusps and one line through

2 cusps of C6 , since the cusps of C6 are the base points of the Hesse pencil.

The proper transform of a line containing 3 cusps is a disjoint union of

two smooth rational curves. Together with the preimages of the cusps, the

full preimage of such a line in X gives a fibre of h̃p of Kodaira’s type I6 ,

described by the affine Dynkin diagram A5 . Similarly, the preimage of a line

containing 2 cusps gives a fibre of h̃p of type I3 (in this case the proper

transform of the line does not split). Thus h̃p has three fibres of type I6 and

one of type I3 .

The exceptional divisor over the cusp p splits into two rational curves

e1 e2 on X and each of them intersects each fibre of h̃p in one point, i.e. it

is a section of h̃p .

PROPOSITION 8.4. The elliptic fibrations i i , i 1 4 , on X induce

8 elliptic fibrations i i on X such that

a) i and i are exchanged by the covering involution of q and SL(2 F3)

acts transitively on 1 4 ;

b) the j -invariant of a smooth fibre of the elliptic fibration i or i is

equal to zero;

c) each fibration has two fibres of Kodaira’s type IV (i.e. 7 rational

curves in the configuration described by the affine Dynkin diagram E6 ) and

two of type IV .
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Proof. It will be enough to study the fibration 1 , since all other fibrations

are projectively equivalent to this one by the action of G216 and .

Let 1 2 be the generators of " as in Section 4. The polynomials P1 P1
and F1 are eigenvectors for the action of " (Remark 5.3), hence it is clear

from equation (18) that " preserves the elliptic fibration 1 . In fact, 1 acts on

the basis of the fibration as an order three automorphism and fixes exactly the

two fibres E1 E1 such that q(E1) B1 and q(E1) B1 . The automorphism

2 preserves each fibre of 1 and acts on it as an order 3 automorphism

without fixed points. Hence it follows that the image of the elliptic fibration

1 by the map ˜ 1r̃ in diagram (20) is an elliptic fibration on X . We will

denote it by 1 .

Now statements a), b), c) are easy consequences of the analogous statements

in Proposition 7.5.

According to Proposition 5.2 the cubics B1 and B1 contain the 9 vertices

of the triangles T2 T3 T4 in the Hesse pencil. Hence the fibres E1 E1 each

contain 9 points in the preimage of the 9 vertices by q . It follows from

Remark 8.2 that the images of E1 and E1 in X " each contain 3 singular

points of type A2 . The preimage of one of these fibres in the minimal resolution

X is a fibre of type IV in the elliptic fibration 1 on X (the union of 3

exceptional divisors of type A2 and the proper transform of E1 or E1 ).

It can easily be seen that the 6 singular fibres of 1 of type IV belong

to two orbits for the action of " . In fact, the singular points in each of these

fibres are the preimages by q of the vertices of T1 (see Proposition 7.5). The

image of a singular fibre of type IV in X " is a rational curve containing a

singular point of type A2 and its preimage in X is again a fibre of type IV .

Hence 1 has two fibres of type IV .

REMARK 8.5. It can be proved that the image of any of these fibrations

by the cover q is a one-dimensional family of curves of degree 9 in P2

with 8 triple points in q1 q8 and 3 cusps on C6 . In fact, q sends the

fibre ˜ 1r̃(E1) of 1 to the union of the 6 inflection lines through q1 and

q1 not containing q0 , where the 3 lines through q1 are double. Clearly, the

analogous statement is true for E1 (the lines through p1 are now double).

Hence the image of a fibre of 1 is a plane curve D of degree 9 with 8

triple points at q1 q8 . Moreover, the curve D intersects the sextic C6
in 6 more points and since its inverse image in X has genus one, then D

must also have three cusps at smooth points of C6 which are resolved in the

double cover q .
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THEOREM 8.6. The K3 surface X is birationally isomorphic to the

Kummer surface Kum(E E ) , where E is the elliptic curve with fundamental

periods 1 . Its transcendental lattice has rank 2 and its intersection matrix

with respect to a suitable basis is

A2( 2)
4 2

2 4

Proof. We will consider one of the jacobian fibrations on X described

in Proposition 8.3. Let M be the lattice generated by the two sections

e1 e2 , the components of the 3 singular fibres of type I6 not intersecting

e2 and the components of the fibre of type I3 . The intersection matrix

of M has determinant 22 35 , hence rank M rank SX 20 and

rank TX 2.

The non-symplectic automorphism 4 of order 3 on X induces an

automorphism 4 on X . Recall that 4 fixes the curve R x 0

on X , hence 4 fixes the proper transform of r̃(R) on X . Thus by

Theorem 7.1, 4 is a non-symplectic automorphism of order three on X .

This implies, as in the proof of Theorem 7.10, that the intersection matrix

of TX is of the form (19) with respect to an appropriate choice of

generators ; in particular its discriminant group ATX TX TX is isomorphic

to Z 3Z Z 3mZ .

A direct computation of M shows that the discriminant group AM is

isomorphic to Z 3Z3 Z 6Z2 . Since M is a sublattice of finite index of SX ,

the discriminant group ATX ASX is isomorphic to a quotient of a subgroup

of AM . This implies that m 2.

By Theorem 3.1 (Table 1.1) in [44], the unique K3 surface with

transcendental lattice as in (19) with m 1 has no jacobian elliptic fibration

as in Proposition 8.3. Hence m 2 and by [30], X is isomorphic to the

Kummer surface of the abelian surface E E .

REMARK 8.7. i) In [32] it is proved that all elliptic fibrations on the

Kummer surface Kum(E E ) are jacobian. All these fibrations and their

Mordell-Weil groups are described in [44]. In particular it is proved that the

Mordell-Weil group of the elliptic fibration in Proposition 8.3 is isomorphic

to Z Z 3Z and that those of the 8 elliptic fibrations in Proposition 8.4 are

isomorphic to Z2 Z 3Z (see Theorem 3.1, Table 1.3, No. 19, 30).

ii) The full automorphism group of X has been computed in [33], but the

full automorphism group of X is not known at present.
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