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ON A THEOREM OF RENÉ THOM IN GÉOMÉTRIE FINIE

by Marc CHAPERON and Daniel MEYER )

ABSTRACT. We study generalisations of the following fact : a generic compact
curve in the plane intersects every straight line in a finite number of points ; moreover,
for each such curve, this number is bounded. Our results develop the first part of René
Thom’s 1968 paper on Géométrie finie (“finite geometry”).

INTRODUCTION

In his article [21], Thom defines the k-degree degk A of a subset A of R
N

to be the supremum over all affine k -planes H of the number of intersections

of H with A . For example, the k -degree of an n -dimensional algebraic subset

A of Rn k is finite, at most equal to the algebraic degree of A as an affine

variety, unless A contains some affine subspace of positive dimension 1 ).

He then sketches a proof of the following result :

THEOREM (Thom). Let V be a compact smooth manifold of dimension n.

There exists a dense open subset in C (V R
n k) such that, for all f ,

the k-degree of f (V) is finite.

Oddly enough, the present paper provides, it seems, the first complete

proof (and a somewhat better statement, Theorem 1.1). It is essentially an

illustration of Thom’s beautiful and now classical ideas founding singularity

) Expanded version of a previous text by the second author.
1 ) In the second part of his paper, Thom sketches a deep converse, established later by

W. F. Pohl [18] : for each positive integer m , a compact connected real C4 submanifold A of

CPn k which meets almost every complex projective k -plane in exactly m points is either
complex algebraic of complex dimension n , or the image of the real projective subspace

RP2n CP2n CPn k under a complex projective transformation.
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theory [10]; the piece of the puzzle that was missing in [21] is a basic but

apparently not so widely known version of a theorem of Tougeron going back

to the same period [23] and leading to a precise local formulation of Thom’s

theorem, which is stated as Theorem 3.1 and proved in the first part of the

present article.

In the second part, the same ideas first yield the following “dual” version

of Thom’s theorem (better stated as Theorem 5.1) :

THEOREM. Let B be a metrisable, separable k-dimensional manifold.

(i) The Whitney-open subset of C (Rn k B) consisting of all proper maps

contains a dense open subset such that, for every , the k-degree

of 1(b) is finite for all b B.

(ii) Given a point 0 B, the Whitney-open subset of C (Rn k B) consisting

of those maps for which 1(0) is compact contains a dense open

subset 0 such that, for every 0 , the k-degree of
1(0) is finite.

As before, this follows from a more precise local statement, Theorem 5.2.

After its proof, we show that the estimates provided are sharp for k 1, and

then give an idea of the geometry hidden behind algebra in low dimensions.

Sections 6 and 7 deal with extensions to differential geometry, where the

affine k -planes are replaced by geodesics or, more generally, by the leaves of

what we call a texture — expressing, we hope, the essence of the problem.

A slight generalisation of Thom’s transversality lemma in jet spaces (in the

easy case where ‘transversality’ means ‘non-intersection’) is needed, whose

proof in Section 8 might introduce non-specialists to such matters.

NOTATION, CONVENTIONS AND DEFINITIONS. We consider only C metris-

able, separable, finite-dimensional manifolds. Given two manifolds M N , we

denote by Js(M N) (s N ) the manifold of s-th order jets of maps f : M N

and by jsf (x) Js(M N) the s-th order jet of f at x M . We endow

C (M N) with the Whitney C topology, generated by the open subsets

U : f : jsf (M) U when U varies among the open subsets of Js(M N)

and s in N . It has the Baire property [13, 8].

A subset of C (M N) has codimension greater than c N when,

for every (metrisable, separable) manifold ! of dimension c , there exists a

residual subset of C (! M N) consisting of maps f! : ( x) f (x) such

that every f lies off . To put it smoothly, (Baire-)almost every smooth
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family f C (M N) depending on c parameters avoids . In that

case, we shall say that C (M N) is c-large.

The subset has infinite codimension when it has codimension greater

than c for every c , in which case we shall say that C (M N) is huge.

Thus, a subset of C (M N) is huge when it is c -large for every c .

I. THOM’S THEOREM

1. STATEMENT OF THE RESULT ; THE LOCAL k -DEGREE

Here is the version we shall prove :

THEOREM 1.1. Let V be a compact manifold of dimension n. There exists

in C (V R
n k) a huge open subset such that, for all f , the k-degree

of f (V) is finite.

The very definition of a huge subset yields a generalisation (in which

openness will follow at once from our proof of the theorem) :

COROLLARY 1.2. Let V be a compact manifold of dimension n and !

a manifold. There exists in C (! V R
n k) a huge open subset consisting of

maps f! : ( x) f (x) such that the k-degree of f (V) is finite for all ! .

The proof of Theorem 1.1 is based upon Thom’s transversality lemma, but

this is not a mere affair of transversality in multijet spaces, as the degree of

f (V) is not a bounded function of f : indeed, for each integer m , there

are embeddings f of the unit circle S1 into the plane R2 whose image has

no degenerate flat points (and therefore, as we shall see, has finite 1-degree)

and contains the part of the graph y sin x obtained for 0 x m .

Hence it meets the x -axis transversally at m 1 points, an open condition in

C (S1 R2) .

The following key idea is again in Thom’s article [21] : for each continuous

map f of a topological space V into Rn k and each a V , we define the

local k -degree of f at a to be

degk a( f ) : inf
U
degk f (U)

where the infimum is taken over all open neighbourhoods U of a in V . The

local k -degree of a subset A of Rn k at a A is the local k -degree at a of

the inclusion map A R
n k .
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LEMMA 1.3. For each continuous map f of a compact space V into

R
n k , the k-degree of f (V) is finite if and only if the local k -degree of f

at every point is. Therefore, the k-degree of a compact subset A of Rn k is

finite if and only if its local k -degree at every point is.

Proof. If the local k -degree of f at every point is finite, then V admits

a finite covering by open subsets U such that degk f (U) is finite. For

each affine k -plane H R
n k , as every point of f (V) H belongs to

some f (U) with U , we have # ( f (V) H) U # ( f (U) H)

U degk f (U) , hence degk f (V) U degk f (U) . The “only if”

part is obvious.

Thus, Theorem 1.1 will follow if we can prove that there is a huge open

subset of C (V R
n k) consisting of maps f whose local k -degree at

every point a is finite.

Denoting by G(k n k) the Grassmann manifold of all k -planes H through

the origin in Rn k and by pH : R
n k

R
n k H the canonical projection, we

clearly have

(1.1) degk a( f ) inf
U
sup
H b

# ( pH f ) 1(b) U

where the infimum is taken over all open neighbourhoods U of a in V and

the supremum over all H G(k n k) and b R
n k H (of course, equality

holds when f is injective).

To make the problem amenable to transversality arguments in jet spaces,

we now introduce a more algebraic bound for the right-hand side of (1.1).

2. MULTIPLICITIES

DEFINITION. Given two n -dimensional manifolds M N , let a a(M)

be the real algebra of all smooth germs (M a) R and let a a(M) :

f a : f (a) 0 denote its maximal ideal. The multiplicity (F) of a

smooth germ F : (M a) (N b) is the codimension in a , as a real vector

subspace, of the ideal aF b generated by the germs F : F with

b . For every integer d , the multiplicity of the d -jet Fd j dF(a) is

(see below) the codimension (Fd) in a of the ideal aF b
d 1
a as

a real vector subspace, hence

(2.1) 1 (F0) (Fd) (Fd 1) (F)
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For each chart germ : (M a) (Rn 0) , the map : f f 1 of a onto

: 0(R
n) is an isomorphism of algebras and therefore sends the maximal

ideal a onto : 0(R
n) . Given chart germs : (M a) (Rn 0) and

: (N b) (Rn 0) , it follows that, for each smooth germ F : (M a) (N b) ,

the smooth germ G F 1 satisfies (G) (F) and (Gd) (Fd)

for every d . Now,

– since the mean value formula implies that is generated by the germs

of the coordinate maps, the ideal G is generated by the components

of G ;

– for integer d , as Taylor’s formula implies that the ideal d 1 , generated

by the monomials of degree d 1, is the set of all germs f with

j df (0) 0, the d -th order jet j df (0) of each f can be identified to

the image of f in d 1 .

It follows that (Gd) is determined by Gd j dG(0) and, therefore, that (Fd)

is determined by Fd j dF(a) .

The multiplicity a(F) of F C (M N) at a M is the multiplicity of

the germ of F at a .

The following result will play an essential role in our arguments (as its

proof is short, we give it even though it can be found, e.g., in [5]) :

PROPOSITION 2.1. For each positive integer m and every smooth germ

F : (Rn 0) (Rn 0) , the inequality (Fm) m implies that (F) (Fd 1)

for some integer d with 1 d m. Thus, by (2.1), the inequalities (Fm) m

and (F) m are equivalent.

Proof. For (Fm) m , we have 1 (F0) (Fm) m by (2.1)

and therefore, for some d 1 m , (Fd) (Fd 1) or, in other words,

F d 1 F d , that is

(2.2) d F d 1

We claim that this implies

(2.3) d F

hence F F d and (F) (Fd 1) .

Indeed, denoting by x1 xn the germs of the coordinate maps, (2.2)

implies that every monomial x with d can be written x R

with F and R d 1 . Therefore, the ’s belong to d and,

by Nakayama’s lemma, they generate it over , as the monomials x with

d do and have the same projections into d d 1 , yielding (2.3).
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Recall that a subset S of a manifold is stratified when it is the disjoint

union of finitely many submanifolds called strata, the smallest codimension

of which is the codimension of S . For example, every algebraic subset of a

finite-dimensional real vector space admits a canonical stratification [25, 5, 4].

Apart from Thom’s transversality lemma, the key result used in the sequel is

the following variant of a theorem of Tougeron :

THEOREM (Tougeron). For each positive integer n and every positive

integer m, denoting by Jm(n n) the 2n-codimensional vector subspace of

Jm(Rn Rn) consisting of those Fm jmF(0) such that F(0) 0 , the set

"m(n) of all jmF(0) Jm(n n) with (F) m is a non-empty algebraic

subset, whose codimension

cn(m) : dim Jm(n n) dim"m(n)

tends to infinity when m .

Proof. Proposition 2.1 implies that "m(n) is the set of those Fm Jm(n n)

which satisfy (Fm) m . It contains 0 since codim m 1 m 1. The

reason why it is algebraic is that it is the set of those F Fm jmF(0) in

Jm(n n) such that, denoting by F1 Fn the components of F , the linear

map F : jma1(0) jman(0) jm(a1F1 anFn)(0) of (
m 1)n

into m 1 has corank greater than m . Thus, "m(n) is the inverse image

under the linear map F F of the algebraic set of all linear maps

( m 1)n m 1 with corank greater than m .

To see that cn(m) when m , first notice that, denoting by
m : J (n n) Jm(n n) the canonical projection j F(0) jmF(0) , one has

(2.4) " (n) ( m) 1 "m(n)

for all positive integers m with m : indeed, if the smooth map germ

F : (Rn 0) (Rn 0) satisfies Fm "m(n) , i.e. (Fm) m , Proposition 2.1

yields (F) (Fm) , hence, by (2.1), (F ) (Fm) m , i.e.

F " (n) .

As m is a submersion, the codimension of the right-hand side of (2.4)

is cn(m) . Therefore, (2.4) implies that cn(m) is a non-decreasing function of

m and all we have to prove is the following

LEMMA. For each positive integer m, there exists an integer m with

cn( ) cn(m) .
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Given m , let H : (Rn 0) (Rn 0) be the smooth germ given by

H(x) : (xm 1
1 xm 1

n ) . As every x with nm 1 must satisfy

j m 1 for some j , we have

(2.5) nm 1 H m 1

hence m (H) . We claim that the lemma holds for (H) .

If such were not the case, the highest dimensional stratum S of " (n) and

the highest dimensional stratum Sm of "m(n) would have the same codimension

cn(m) , and so would (
m) 1(Sm) . Therefore it would follow from (2.4) that

S ( m) 1(Sm) is a non-empty open subset of ( m) 1(Sm) .

Now, given a smooth map germ F : (Rn 0) (Rn 0) satisfying

F S ( m) 1(Sm) , the second inclusion in (2.5) yields Fm sHm Fm

and therefore F sH ( m) 1(Sm) for every s R ; if S ( m) 1(Sm)

were open in ( m) 1(Sm) , it would contain F sH for all small enough s ,

whereas we shall now see that there are only finitely many real numbers s

with F sH " (n) .

It is enough to show that the set T of those t R which satisfy

(1 t)F tH " (n) is finite, as F t
1 t

H and (1 t)F tH have

the same multiplicity for t 1. Now, T is algebraic, being the inverse image

of " (n) under the affine map t (1 t)F tH , and it does not contain

1 since we have (H ) (H) by (2.1) ; hence, it is indeed finite.

REMARKS. Stratifications make the proof shorter than in [5], where the

theorem is stated a little differently though all the ingredients are present.

If n 1, both Proposition 2.1 and Tougeron’s theorem are evident since

(F) is the supremum of the integers d such that j d 1F(0) 0, implying

that "m(n) 0 and cn(m) m .

The codimension cn(m) does not seem as easy to compute in general

because of moduli : the multiplicity of a jet is the codimension of its orbit for

contact equivalence (Mather’s -equivalence, called V -equivalence in [12])

but, for n 1, there may exist continuous families of such orbits with the

same codimension, making cn(m) smaller — less than m , to begin with.

We refer to [12], [8] or [5] for a proof of the following consequence of

the Malgrange preparation theorem :

PROPOSITION 2.2. If a smooth map F between manifolds M N of the

same positive dimension has multiplicity at a M , then its local degree

at a is at most : there exists an open neighbourhood U1 of a such that,

for every y N , the subset F 1(y) U1 contains at most points.
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COROLLARY 2.3. Let F! : (u x) Fu(x) be a smooth map of ! V

into B, where ! V B are three manifolds with dimV dimB 0 . If Fu0
has multiplicity at a , there exist open neighbourhoods Y of a in V and U

of u0 in ! such that, for every y B and every u U , the subset F 1
u (y) Y

contains at most points.

Proof. Setting F(u x) : u Fu(x) , one has (u0 a)(F) a(Fu0 ) : in-

deed, one may assume that (! u0) (Rc 0) and (V a) (B Fu0 (a)) (Rn 0)

since the problem is local. Setting : 0(R
c n) and : 0(R

c n) , the

ideal F of contains the ideal generated by u1 uc ; hence, its

codimension is the dimension of ( ) ( F ) , which is isomorphic to

F0 as u(x) 0(x) u1
1

0 1 !(tu x) dt uc
1

0 c !(tu x) dt for

all ! , for example the components of F! .

Let us go back to the proof of Theorem 1.1. With the notation of (1.1),

Corollary 2.3 yields

LEMMA 2.4. Given positive integers n k and an n-dimensional mani-

fold V , the following inequality holds for all f C (V R
n k) and a V :

degk a( f ) sup
H G(k n k)

a( pH f ) : k a( f )

Proof. Recall that the Stiefel manifold St(n n k) is the set of those

u (u1 un) (Rn k)n such that ui uj 1 if i j and ui uj 0

for i j , where the dot stands for the standard scalar product of Rn k . For

(u y) St(n n k) R
n k , we let u y : (u1 y un y) R

n .

Given a positive integer m , we should prove that f C (V R
n k) satisfies

degk a( f ) m if we have a( pH f ) m for all H G(k n k) or,

equivalently (taking an orthogonal basis u St(n n k) of H ), a(u f ) m

for all u St(n n k) .

Then, for u0 St(n n k) , the hypotheses of Corollary 2.3 are satisfied with

! : St(n n k) , B : R
n and Fu(x) : u f (x) , : a(u0 f ) m . It follows

that there exist open neighbourhoods Yu0 V and Uu0 St(n n k) of a

and u0 respectively such that, for (y u) R
n Uu0 , the equation u f (x) y

has at most m solutions x Yu0 . In other words, for every u Uu0 , the

subset f (Yu0 ) meets every affine k -plane orthogonal to the linear span of u

in at most m points. Now, as St(n n k) is compact, we can choose values

u1 up of u0 so that Uu1 Uup is a covering of St(n n k) . Setting

Y : Yu1 Yup , we do obtain degk a( f ) degk f (Y) m .
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3. LOCAL VERSION AND PROOF OF THEOREM 1.1

For all integers n 1 and p 0, with the notation of Tougeron’s theorem,

we let

mn(p) : min m : cn(m) p

which equals p 1 if n 1 since c1(m) m . The following local version

of Theorem 1.1 provides universal bounds for the local degree :

THEOREM 3.1. For all positive integers n k and each n-dimensional

manifold V , there exists an increasing sequence ( c)c N of dense open subsets

of C (V R
n k) such that each c is c-large and consists of maps f whose

local k -degree at every point is at most mn(kn n c) (in particular, if n 1 ,

the local k -degree of f at every point is at most k 2 c). Thus, the open

set : c c is huge and every element of has finite local k -degree at

every point of V .

This implies Theorem 1.1. For compact V , by Lemma 1.3, every f

has finite k -degree.

The proof of Theorem 3.1 uses the following consequence of Tougeron’s

theorem :

LEMMA 3.2. Let n k be two positive integers. For every n-dimensional

manifold V and every positive integer m, the set "m(V R
n k) of all

jmf (a) Jm(V R
n k) with k a( f ) m is a closed stratified set whose

codimension, being at least cn(m) nk , tends to infinity when m .

Postponing the proof of this lemma until Section 4, let us first deduce

Theorem 3.1 from

THOM’S TRANSVERSALITY LEMMA IN JET SPACES (EASY CASE). Given

manifolds M N , an integer m and a closed stratified subset " of Jm(M N)

whose codimension is greater than the dimension of M , the set of those

f C (M N) such that jmf (M) " is open and dense 2 ).

As the condition jmf (M) " reads jmf (M) Jm(M N) " , openness

follows from the definition of the Whitney topology.

2 ) A particular case of Lemma 7.4 hereafter, proved in Section 8.



338 M. CHAPERON AND D. MEYER

Proof of Theorem 3.1. For each c N , if m mn(kn n c) , we have

codim"m(V R
n k) n c by Lemma 3.2 and the definition of m . Hence,

for each c -dimensional manifold ! , the set of those f! : ( x) f (x) in

C (! V R
n k) which satisfy jmf (a) "m(V R

n k) (i.e. k a( f ) m )

for all ( a) is open and dense : this follows from the transversality lemma

with M ! V and N R
n k , taking for " the set of all jmf!( x) with

jmf (x) "m(V R
n k) (which is closed, stratified and of codimension greater

than n c since the map jmf!( x) jmf (x) is a smooth submersion).

It follows that, for each integer c , we can define c to be the set of those

f C (V R
n k) such that jmf (V) "m(V R

n k) with m mn(kn n c) ,

hence degk a( f ) k a( f ) mn(kn n c) for all a V by Lemma 2.4.

REMARKS. The more general case of Thom’s transversality lemma in jet

spaces ([20, 13, 8, 12] and Section 8 hereafter) implies that, generically, j mf

is transversal to "m(V R
n k) even for n cn(m) kn . Thus, the closed set

( jmf ) 1 "m(V R
n k) of those a V which satisfy k a( f ) m , admits

the stratification whose strata are the inverse images under jmf of the strata

of "m(V R
n k) . When n and k are not too large, such stratifications can be

defined explicitly in geometric terms (see the remarks at the end of Section 5).

If n 1, we may [15] assume V R or R Z , and the condition

k a( f ) m means that, for some u S
k , the function t u f (t) (scalar

product) has multiplicity greater than m at a , i.e. u d j

dt j
f (a)

1 j m
0.

EXAMPLE. If n k 1 and f 0 , we have k a( f ) 3 for all a .

When the parametrised plane curve f is an immersion, which is generically

the case, this does mean that it has no degenerate flat points. However, as we

wish the subsets c to be as large as possible, some maps f in our set 0

are not immersions, e.g. f (t) (t2 t3) .

4. PROOF OF LEMMA 3.2

Given open subsets U R
n and V R

p , each jmf (x) Jm(U V) can be

written jmf (x) x f (x) (D jf (x))1 j m ; thus, denoting by Jm(n p) the space

of polynomial maps P : (Rn 0) (Rp 0) of degree at most m (which may be

identified to jmP(0) as in Tougeron’s theorem), setting X : (X X

times

) and

identifying (D jf (x))1 j m to the element X
1
1!
D1f (x)X1 1

m!
Dmf (x)Xm

of Jm(n p) , we can see that Jm(U V) U V Jm(n p) .
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By definition, "m(V R
n k) is the set of those jmf (a) Jm(V R

n k) which

satisfy a( pH f ) m for some H in G(k n k) ; thus (taking an orthonormal

basis u St(n n k) of the orthogonal H of H ), it is the projection of

the set "m(V R
n k) of all u jmf (a) St(n n k) Jm(V R

n k) with

a(u f ) m .

Hence, for each chart of V , the image of "m(V R
n k) Jm(dom R

n k)

under the chart #m
id : j

mf (a) jm( f 1) (a) of Jm(V R
n k) is the

projection into Jm(Im R
n k) of the set "mk (Im ) of those u jmf (a) in

St(n n k) Jm(Im R
n k) such that the point jm(u f )(a) of Jm(Im R

n)

Im R
n Jm(n n) lies in Im R

n "m(n) .

Now, the map s : u jmf (a) jm(u f )(a) is a submersion of the space

St(n n k) Jm(Im R
n k) onto Jm(Im R

n) whose restriction to each

fibre of the projection St(n n k) Jm(Im R
n k) u jmf (a) a f (a)

onto J0(Im R
n k) is the polynomial submersion (u P)

s
u P of

St(n n k) Jm(n n k) onto Jm(n n) . Thus, "mk (Im ) is the product of

J0(Im R
n k) by the algebraic subset s 1 "m(n) of (Rn k)n Jm(n n k) .

It follows that the trivialisations u jmf (a) u #m
id u jmf (a) of the

fibre bundle St(n n k) Jm(V R
n k) J0(V R

n k) make "m(V R
n k) into

a locally trivial bundle with algebraic fibre s 1 "m(n) and the vector bundle

charts #m
id of J

m(V R
n k) J0(V R

n k) make "m(V R
n k) into a locally

trivial bundle whose fibre is the image of s 1 "m(n) under the projection of

(Rn k)n Jm(n n k) onto Jm(n n k) , which image is semi-algebraic by

the Tarski-Seidenberg theorem [4].

Therefore, the following result, which belongs to the toolkit of singularity

theory [25, 14, 7], provides "m(V R
n k) with a stratification by smooth

bundles over J0(V R
n k) :

PROPOSITION 4.1. Let P M be a smooth fibration whose fibre F is

(smooth) semi-algebraic in a finite-dimensional vector space E , and let "

be a subset of P with the following property : there exist a nonempty semi-

algebraic subset B F of E , a covering of M by open subsets and, for

each U , a smooth trivialisation #U of over U , sending " 1(U)

onto U B. Then, " admits a stratification by smooth submanifolds, each of

which is a smooth subbundle of P.

Proof. Call a point a B regular when it has an open neighbourhood

U in E such that B U is a C submanifold. Thus, the set of all regular

points of B is an open subset of B and a C submanifold, and so is the

union Reg(B) of its connected components of maximal dimension.
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It can be proved [25, 11, 14, 6] that the submanifold Reg(B) is nonempty,

analytic and that, denoting its dimension by dimB , its complement SingB :

B Reg(B) is semi-algebraic and satisfies 3 ) dimSingB dimB . Hence, B is

the disjoint union of finitely many nonempty analytic submanifolds, namely

the nonempty terms of the sequence Reg(B) Reg(SingB) Reg(Sing SingB)

This stratification 4 ) is canonical, meaning that it is invariant by C diffeo-

morphisms preserving B .

For U U1 , the smooth diffeomorphism #U1 # 1
U of (U U1) F

onto itself is of the form (x y) x hx(y) . Each hx extends to a smooth

diffeomorphism between open subsets of E containing F , implying that

hx preserves each stratum of B since it preserves B . Thus, for each

stratum S of B , the formulae #U S 1(U) : U S define a smooth

subbundle S of P , and the submanifolds S obviously form a stratification

of " .

The codimension of "m(V R
n k) equals at least the codimension cn(m)

of s 1 "m(n) , minus the dimension of St(n n k) . This estimate can be

improved by recalling that the multiplicity of s(u P) u P depends only on

the linear span of u1 un , implying that the fibre of "
m(V R

n k) is the

projection of an algebraic subset of G(n n k) Jm(n n k) with codimension

cn(m) , hence codim"m(V R
n k) cn(m) nk .

Finally, "m(V R
n k) is closed since its fibre is the image of the closed

subset s 1 "m(n) under the projection of St(n n k) Jm(n n k) onto

Jm(n n k) . This projection is proper since St(n n k) is compact.

REMARK. The Tarski-Seidenberg theorem is necessary only if the “black

box” in the proof of Theorem 1.1 is Thom’s transversality lemma in jet

spaces. The easy case (see Lemma 8.1 hereafter) of Thom’s elementary

transversality lemma [19] could have been used instead to prove that, for

almost every f! C (! V R
n k) , the map (u x) jm(u f )(x) of

St(n n k) ! V into Jm(V R
n) takes its values off jmF(a) Jm(V R

n) :

a(F) m , which is an algebraic subbundle with fibre "m(n) of the bundle

Jm(V R
n) J0(V R

n) . Theorem 7.1 hereafter has to be proved in this

fashion.

3 ) With the usual convention that dim d for every d Z .
4 ) With little effort [14], it can be refined into another canonical stratification satisfying

Whitney’s conditions (A) and (B), but this is not needed in the present paper.
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II. RELATED RESULTS AND NOTIONS

5. A DUAL VERSION OF THOM’S THEOREM

Here are analogues of Theorems 1.1 and 3.1 for inverse images :

THEOREM 5.1. Given a k-dimensional manifold B and a point of B, which

we name 0 , let and 0 be the open subsets of C (Rn k B) consisting

respectively of all proper maps and of those maps for which 1(0) is

compact. Then :

(i) There is a huge open subset 0 of 0 such that, for 0 , the

k-degree of 1(0) is finite.

(ii) Similarly, there exists a huge open subset of such that, for ,

the k-degree of 1(b) is finite for all b B.

THEOREM 5.2. For all positive integers n k , every k-dimensional manifold

B and every point of B, which we name 0 , there exist two increasing sequences

( 0 c)c N and ( c)c N of dense open subsets of C (Rn k B) such that :

(i) Each 0 c is c-large and consists of maps such that the local k -degree

of 1(0) at every point is at most mk(kn n c) . In particular, if k 1 ,

the local k -degree of 1(0) at every point is at most 2n 1 c.

(ii) Each c is c-large and consists of maps such that, for every b B, the

local k -degree of 1(b) at each of its points is at most mk(kn k n c) .

In particular, if k 1 , the local k -degree of 1(b) at every point is at

most 2n 2 c.

Thus, the open subsets : c c and 0 : c 0 c are huge and, for

0 (resp. ), the subset 1(0) (resp. every 1(b) ) has finite local

k -degree at every point.

REMARK. In these two statements and their analogues, the point 0 B

could be replaced by a compact submanifold of codimension k in a higher-

dimensional manifold, at the expense of a few additional technicalities.

Theorem 5.1 follows from Theorem 5.2. Indeed, for 0 : 0 0

(resp. : ), Lemma 1.3 and (i) (resp. (ii)) do imply that 1(0)

(resp. every 1(b) ) has finite k -degree.
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Proof of Theorem 5.2. The following analogue of Lemma 2.4 is a particular

case of Lemma 7.2 :

LEMMA 5.3. Given positive integers n k and a k-dimensional manifold B,

the inequality

degk a
1(b) sup

H G(k n k)
a( a H) : k a(

1)

holds for all C (Rn k B) , b B and a 1(b) .

Now comes the analogue of Lemma 3.2 :

LEMMA 5.4. Let n k be two positive integers. For every k-dimensional

manifold B and every positive integer m, the set "m(Rn k B) of all jets

jm (a) Jm(Rn k B) with k a(
1) m is a closed stratified subset whose

codimension is at least ck(m) nk and therefore tends to infinity when

m . Moreover, given a point 0 B, the intersection "m(Rn k B)0

of "m(Rn k B) with jm (a) : (a) 0 is a stratified set of codimension at

least ck(m) nk k .

Proof. The set "m(Rn k B) consists of all jm (a) Jm(Rn k B) which

satisfy a( a H) m for some H in G(k n k) . In other words (taking

an orthonormal basis u of H and setting u (t1 tk) : tj uj ), we

see that "m(Rn k B) is the projection of the set "m(Rn k B) of those

u jm (a) St(k n k) Jm(Rn k B) such that 0 (a u ) m . Hence,

for each chart of B , the chart #m
id : jm (a) jm( )(a) of Jm(Rn k B)

sends "m(Rn k B) Jm(Rn k dom ) onto the projection into Jm(Rn k Im )

of the set "mn (Im ) of those u jm (a) in St(k n k) Jm(Rn k Im ) such

that the point jm (a u ) (0) of Jm0 (R
k Im ) Im Jm(k k) lies in

Im "m(k) .

Now, the map s : u jm (a) jm (a u ) (0) is a submersion of

St(n n k) Jm(Rn k Im ) onto Im Jm(k k) whose restriction to each

fibre of the projection of St(n n k) Jm(Rn k Im ) onto J0(Rn k Im ) is

the polynomial submersion (u P)
s1

P u of St(k n k) Jm(n k k) onto

Jm(k k) . Thus, "mn (Im ) is the product of J0(Rn k Im ) by the algebraic

fibre s 1
1 "m(k) (Rn k)k Jm(n k k) . As in the proof of Lemma 3.2,

it follows that "m(Rn k B) is a sub-bundle of Jm(Rn k B) J0(Rn k B)

whose fibre is the semi-algebraic projection of s 1
1 "m(k) into Jm(n k k) .

Applying Proposition 4.1, we do get a stratification of "m(Rn k B) .
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For P Jm(n k k) , the multiplicity 0(P u ) depends only on the linear

span of u . Hence, the codimension of "m(Rn k B) (which is closed for the

same reason as in the proof of Lemma 3.2) is at most the codimension ck(m)

of s 1
1 "m(k) minus the dimension nk of G(k n k) .

Proof of the theorem. As in the proof of Theorem 3.1, it follows from

Thom’s transversality lemma, Lemma 5.4 and the definition of the Whitney

topology that we can take for c the set of those C (Rn k B) such

that, setting m : mk(kn n k c) , the map jm takes its values in the

complement of "m(Rn k B) , and apply Lemma 5.3 to conclude. Similarly,

we can take for 0 c the set of those C (Rn k B) such that, setting

m : mk(kn n c) , the map jm takes its values in the complement of

"m(Rn k B)0 .

REMARKS. The choice 0 : 0 would be good enough for

Theorem 5.1. However, a sharp bound for the generic local k -degree of

a given fibre of is an interesting additional piece of information.

For example, if k 1, the bound 2n 1 for the local degree is realised

for n 1 by the polynomial map : Rn 1
R given by

(x1 xn 1 y z) y y2 2 xj (y2 xj) x2nj z :

it belongs to 0 because its (algebraic) degree is 2n 1 and the hypersurface

S 1(0) does not contain any line (on such a line, absurdly, y should

be constant as well as every xj ) ;

it satisfies deg1 0
1(0) 2n 1 since S has 2n 1 intersection

points with lines (x z) constant in every neighbourhood of the origin :

indeed, if we fix Z and mutually distinct positive X1 Xn 1 and set

Gt(Y) Y Y2 2 Xj (Y2 Xj) t X2nj Z , then G0 has 2n 1

simple real roots ; hence, by the implicit function theorem, for t small

enough, Gt has 2n 1 real roots Yj(t) depending analytically on t ; thus, for

0 small enough, the polynomial ( 2X y 4nZ) 2n 1G 2n 1( 1y)

in y has the 2n 1 real roots Yj(
2n 1) .

Even for n k cn(m) kn or cn(m) kn k , the map jm is transversal

to "m(Rn k B) or "m(Rn k B)0 , yielding a stratification of the whole of R
n k

or 1(0) . For example, if k 1, we may assume B R or R Z and the

condition 1 a(
1) m means exactly that, for some u S

n , the function

t (a tu) has multiplicity greater than m at 0, i.e. D j (a)u j 0 for

1 j m . Thus, the conditions (a) 0 and 1 a(
1) m mean that

m(a u) : (D j (a)u j)0 j m 0 for some u S
n , and Thom’s elementary
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transversality lemma can be used to prove that the set (m) of those such

that 0 R
m 1 is a regular value of m is open and dense (this follows from

Lemma 8.2 hereafter) ; for m 2n 1, a regular value is a non-value since

dim(Rn 1
S
n) m 1, hence (2n 1)

0 0 . For m 2n and (m) , the

subset Sm : ( m) 1(0) is a (2n m) -dimensional submanifold of Rn 1
S
n ,

whose projection into Rn 1 is the set Sm of those a in the hypersurface

S : 1(0) at which 1 a(
1) m . If 0 is a regular value of (i.e. if

lies in the open and dense subset (0) ), then S is smooth and Sm is the set

of those a at which S has contact of order at least m with some affine line,

hence S1 S0 S .

EXAMPLE. If n 2 and k 1, then, generically, S is a smooth surface

in R3 in which S4 is a set of isolated points and S3 is a (singular) curve,

called the flecnodal curve. The surface S2 just introduced can project badly,

as S2 consists of those a S at which there exists an asymptotic direction

and therefore splits into three parts : the open set S2 0 of those a S at which

there are two simple asymptotic directions (hyperbolic points), the parabolic

curve S2 1 , consisting of those points at which there is one double asymptotic

direction, and a set S2 2 of isolated flat points, at which every tangent direction

is asymptotic (implying that S2 is very badly projected).

The following figures correspond to (x y z) : 1
5
y5 x( y3 y2 y x) z ,

which can easily be shown to satisfy all the above transversality conditions.

In that case, S4 0 and it is an exercise to verify that deg1 0
1(0) 5.

FIGURE 1 FIGURE 2

-2 -1 1 2

-3

-2

-1

1

2

FIGURE 3

Figure 1 represents the surface S near the origin, marked as a dot ; the curve

is a section of S by a vertical plane close to x 0 . Figure 2 shows

the flecnodal curve S3 . Figure 3 shows the flecnodal and parabolic curves,
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projected in the (x y) -plane : there are two “godrons” [22, 24], i.e. parabolic

points on the flecnodal curve. See also [1, 9, 17].

Of course, such explicit stratifications become more and more intricate

when the (co)dimension increases, though the theory does imply the existence

of some good stratification(s).

6. A RIEMANNIAN EXTENSION

If k 1, since the lines in Rn 1 are its Euclidean geodesics, one can

try to replace Rn 1 by a Riemannian manifold and lines by geodesics. As

geodesics have an unfortunate tendency not to be properly embedded (think

of the irrational lines in the flat 2-torus T2 ), the definition of the local degree

has to be modified :

DEFINITION. Let W be a manifold endowed with a linear connection, e.g.

Riemannian. For each continuous map f of a topological space V into W

and each a V , the local 1 -degree of f at a is

deg1 a f : inf
U U1

sup
L

# f (U) L

where the infimum is taken over all open neighbourhoods U of a in V and

all open neighbourhoods U1 of f (a) in W , and the supremum is over all

— connected — geodesics L of U1 . The local 1 -degree of a subset A of W

at a A is the local 1-degree at a of the inclusion map A W .

We can now state a generalisation of Theorem 5.2 for k 1, a corollary

of Theorem 7.1 in the sequel :

THEOREM 6.1. Under the hypotheses of the definition, if W has dimension

n 1 , n 0 , then, for every smooth curve B and every point of B, which

we name 0 , there exist two increasing sequences ( 0 c)c N and ( c)c N of

dense open subsets of C (W B) such that :

(i) Each 0 c is c-large and consists of maps such that the local 1 -degree

of 1(0) at every point is at most 2n 1 c.

(ii) Each c is c-large and consists of maps such that, for every b B,

the local 1 -degree of 1(b) at each of its points is at most 2n 2 c.

In particular, the open subsets : c c and 0 : c 0 c are huge

and, for 0 (resp. ), the subset 1(0) (resp. every 1(b) ) has

finite local 1 -degree at every point.
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REMARKS. An easy compactness argument shows that for 0 (resp.

), if 1(0) (resp. 1(b) ) is compact, then it intersects each properly

embedded geodesic L of W in a finite number of points.

For fixed , this number can be unbounded when L varies, even when

every geodesic is properly embedded : if W is the standard flat cylinder T R ,

the geodesics which are embedded lines through ( x) can spiral for quite a

while near the closed geodesic T x . To get an analogue of Theorem 5.1,

we need a stronger hypothesis, obvious from the definition of the local degree :

THEOREM 6.2. Under the hypotheses and with the notation of Theorem 6.1,

assume that there exists a positive integer d with the following property : every

point a of W has a neighbourhood basis a consisting of open subsets U1

such that, for every geodesic L of W , the intersection L U1 is the union

of at most d geodesics of U1 . Then :

(i) Let 0 be the open subset of C (W B) consisting of those for which
1(0) is compact. For all in the huge open subset 0 : 0 0 of

0 , the 1 -degree of
1(0) is finite.

(ii) Let be the open subset of C (W B) consisting of proper maps. For

all in the huge open subset : of , the 1 -degree of 1(b)

is finite for every b B.

This follows at once from Theorem 6.1 and the following analogue of

Lemma 1.3, a particular case of Lemma 7.5 hereafter :

LEMMA 6.3. Under the hypotheses of Theorem 6.2, the 1 -degree of a

compact subset A of W is finite if and only if its local 1 -degree at every

point is.

EXAMPLES. The hypotheses of Theorem 6.2 are satisfied when W is the

standard round sphere 5 ) or a smooth, simply connected, complete Riemannian

manifold with everywhere non-positive curvature. In both cases — as W is

diffeomorphic to Rn 1 in the second situation — every compact hypersurface

of W is the set of zeros of some 0 . Thus, almost every compact smooth

hypersurface of W has finite 1 -degree.

5 ) Or, more generally, a Riemannian manifold all of whose geodesics are closed; this is a
consequence of Wadsley’s theorem : see [3], paragraphs 0.39–0.40 page 9, Theorem A-2 page
214, and Theorem A-32 page 220.
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The reason why we did not take d 1 in the hypothesis of Theorem 6.2

is clear in the case of a three dimensional lens space, for example : it is

obtained as a quotient manifold of S3 by a cyclic subgroup Zd of SO(4)

acting without fixed point. Most closed geodesics are of length 2 . Before

closing, they wind d times around exceptional geodesics of length 2 d .

7. TEXTURES

DEFINITION. Given positive integers n k , a k-texture of corank on a

manifold W of dimension n k is a pair ( p) consisting of :

a smooth k -dimensional foliation of a ( k) -dimensional manifold X

(we denote by Lx the leaf of containing x X ) ;

a proper smooth map p : X W such that, for every leaf L of , denoting

by L the inclusion map (which is an injective immersion), the composed

map p L is an immersion.

The manifold X is the total space of the texture.

X

W

Lx

p

p(L
x
)

x

FIGURE 4

The role of the k -planes in Theorem 5.2 and of the geodesics in

Theorem 6.1 will be played by the k -dimensional immersed manifolds p(L)

(“leaves” of the texture). Locally, the leaves through a W are parametrised

by the fibre p 1(a) .

THE LOCAL ( p) -DEGREE. Let ( p) be a k -texture on a manifold W .

For each continuous map f of a topological space V into W and each a V ,

the local ( p) -degree of f at a is
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deg p a f : inf
U U1

sup
L

# f (U) p(L)

where the infimum is over all open neighbourhoods U of a in V and U1 of

f (a) in W , and the supremum is over all leaves L of the foliation of p 1(U1)

induced by . The local ( p) -degree of a subset A of W at a A is the

local ( p) -degree at a of the inclusion map A W .

FIRST EXAMPLES 6 ). The local k -degree in Rn k is the local ( p) -degree

if p is the canonical projection of X : R
n k

G(k n k) onto Rn k and,

for (a H) X , the leaf L(a H) is (a H) H .

Similarly, in Section 6, the local 1-degree is the local ( p) -degree

defined as follows : if the connection on W is the Levi-Civita connection

of a Riemannian metric, p is the projection of the unit tangent sphere bundle

X STW onto W and the foliation of X whose leaves are the orbits of the

geodesic flow; in the case of a general linear connection, p is the projection

of the projectivised bundle X PTW onto W and the leaves of are the

integral curves of the “geodesic line field”.

Hence, the following result generalises both Theorem 5.2 and Theorem 6.1 :

THEOREM 7.1. Given positive integers n k , a k-texture ( p) of corank

on an (n k) -dimensional manifold W , a k-dimensional manifold B and a

point of B, named 0 , there exist two increasing sequences ( 0 c)c N and

( c)c N of dense open subsets of C (W B) with the following properties :

(i) Each 0 c is c-large and consists of maps such that the local

( p) -degree of 1(0) at every point is at most mk( c) . In particular,

if k 1 , the local k -degree of 1(0) at every point is at most 1 c.

(ii) Each c is c-large and consists of maps such that, for every b B, the

local ( p) -degree of 1(b) at each of its points is at most mk( k c) .

In particular, if k 1 , the local k -degree of 1(b) at every point is at

most 2 c.

Thus, the open subsets : c c and 0 : c 0 c are huge and, for

0 (resp. ), the subset 1(0) (resp. every 1(b) ) has finite local

( p) -degree at every point.

The proof is along the same lines as before, except that Thom’s transver-

sality lemma cannot be applied in the jet spaces Jm(W B) in general (see the

remark following Lemma 7.4). Here is the analogue of Lemma 5.3 :

6 ) More examples are given after the definition of a clean texture.
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LEMMA 7.2. Under the hypotheses of Theorem 7.1, the inequality

deg p a
1(b) sup

x p 1(a)
x( p Lx) : p a(

1)

holds for all b B, C (W B) and a 1(b) .

Proof. We endow W with a Riemannian metric and each leaf L of

with the Riemannian metric induced by the immersion p L , namely

x : Txp( ) p(x) , TxL . The resulting distance on L is denoted by d .

Given a W , since p is proper, there exist a neighbourhood $a of a in

W and a positive number Ra such that, for each x p 1($a) , the restriction

of p Lx to the open ball B (x Ra) of Lx with centre x and radius Ra for d

is an (isometric) embedding. For each positive integer m , setting b : (a) ,

we should prove that the inequality deg p a
1(b) m holds if we have

x( p Lx) m for every x p 1(a) .

Then, for u0 p 1(a) , choosing a plaque family u0 : (X u0) R R
k

of , the hypotheses of Corollary 2.3 are satisfied for open subsets ! of X

and V of Rk satisfying u0(!) 0 V Im u0 , with a : 0 , B : B ,

Fu(y) : p 1
u0 u0(u) (0 y) and therefore : u0 ( p Lu0

) m .

Hence, there are open subsets Uu0 u0 of X (in ! ) and Yu0 0 of Rk (in V )

such that, for each u Uu0 , the equation p 1
u0 u0(u) (0 y) b has

at most m solutions y Yu0 .

Now, we may assume that Uu0 is included in p 1($a) and that there

exists a positive number u0 Ra such that, for every u Uu0 , the open ball

B (u u0 ) is contained in
1

u0 u0(u) 0 Yu0 . Thus, for each u Uu0 ,

the equation p(x) b has at most m solutions in the open ball B (u u0)

of Lu .

Choose values u1 u p 1(a) of u0 so that Uu1 Uu is

a covering of p 1(a) . As p is proper (and therefore closed), the subset

V1 : W p X (Uu1 Uu ) is an open neighbourhood of a . Moreover,

we have p 1(V1) Uu1 Uu .

Thus, for each u p 1(V1) , setting : min u1 u , the equation

p(x) b has at most m solutions in the open ball B (u ) of Lu . Now,

if U1 is a small enough open neighbourhood of a in V1 , then, for each

u p 1(U1) , the leaf of the foliation of p
1(U1) induced by is contained

in B (u ) . Taking U U1
1(b) in the definition of the local degree, we

do obtain deg p a
1(b) m .

The following statement will play the role of Lemma 5.4 :
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LEMMA 7.3. Under the hypotheses of Theorem 7.1, for each positive

integer m, the set Jm( B) of all jmf (x) with f : (Lx x) B is a smooth

manifold, in which the subset "m( B) of all jmf (x) with x( f ) m is a

closed stratified subset whose codimension is ck(m) and therefore tends to

infinity when m . Moreover, "m( B)0 : "m( B) jmf (x) : f (x) 0

is a stratified set of codimension ck(m) k .

Proof. We shall see that Jm( B) is a smooth fibre bundle over

J0( B) X B with projection : jmf (a) a f (a) and fibre Jm(k k) ,

admitting "m( B) as a sub-bundle with fibre "m(k) , hence Lemma 7.3 by

Proposition 4.1.

An atlas (#m ) of smooth fibre bundle can be defined as follows : recall

that a plaque family of the foliation is a local chart of X with values

in R R
k such that the leaves of the foliation of dom induced by are

sent onto the intersections of Im with the vertical k -planes b R
k . For

each such and each chart of B , the chart #m is the diffeomorphism

of 1(dom dom ) onto Im Im Jm(k k) given by

#m jmf 1(b c) : b jm f ( 1)b (c)

where ( 1)b(y) :
1(b y) . As multiplicities are invariant by coordinate

changes, each #m clearly sends "m( B) 1(dom dom ) onto

Im Im "m(k) , so that we just have to check that (#m ) is indeed an

atlas of algebraic fibre bundle.

Given plaque families 1 of and charts 1 of B , the map 1
1

is of the form (b c) (b) b(c) ; for (b c) (dom dom 1) , the

transition map #m
1 1

(#m ) 1 , restricted to the fibre of (b c) , induces the

polynomial automorphism

D jf (c)
1 j m

D j( 1
1 f 1

b ) b(c) 1 j m

of Jm(k k) , proving Lemma 7.3.

The following lemma, proved in Section 8, yields Thom’s transversality

lemma in jet spaces (easy case) when p idM and M :

LEMMA 7.4. Given a texture ( p) on a manifold M , a manifold N , an

integer m and a closed stratified subset " of Jm( N) whose codimension

is greater than the dimension of the total space T of the texture, the set of

those f C (M N) which satisfy jm( f p Lt )(t) " for all t T is open

and dense.
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Proof of openness. Write each jmf (x) Jm(M N) under the form

jmx f when it is viewed as an element of the fibre of x for the “source”

projection Jm(M N) M . The set p Jm(M N) of all pairs t jmp(t) f with

t T and f : M p(t) N is a smooth fibre bundle over T for the

projection t jmp(t) f t , whose fibre is the manifold Jm0 (R
d N) of all

jmf (0) Jm(Rd N) , where d : dimM : to each chart of M is associated

its trivialisation t jmp(t) f t jm0 f 1
(p(t)) over p 1(dom ),

where a( ) : a .

Each jm( f p Lt )(t) with t T and f : N p(t) B is determined by

t jmp(t) f , and the map : t jmp(t) f jm( f p Lt )(t) of p Jm(M N) into

Jm( N) is continuous. Now,

– as " is closed, so is 1(") ;

– as p is proper, so is the map p : t jmp(t) f jmf p(t) of p Jm(M N)

into Jm(M N) .

Hence, the image of 1(") under p is a closed subset C . It does follow

that the set of those f C (M N) which satisfy jmf (t) Jm(M N) C for

all t is open.

REMARK. When is not analytic, it does not seem possible to stratify

C and deduce Theorem 7.1 from Thom’s transversality lemma in jet spaces,

as is only C .

PROOF OF THEOREM 7.1. We take for c the set of those C (W B)

such that jm( p Lx )(x) "m( B) for all x X , with m mk( k c) :

! if c 0, the hypotheses of Lemma 7.4 are then satisfied for M W ,

N B and " "m( B) , implying that 0 is open and dense;

! for c 0, if ! is a c -dimensional manifold, the hypotheses of

Lemma 7.4 are satisfied for M ! W , N B , T ! X ,

p( x) : p(x) , taking for new the foliation of T whose leaves are

the subsets ! L with L and for " the set of all jmf!( x) with

jmf (x) "m( B) , where f! denotes a map germ ! Lx ( x) B

[note that jmf!( x) jmf (x) is a submersion Jm( B) Jm( B) ] ; this

guarantees that c is c -large.

Hence, every c satisfies p a(
1) mk( k c) for all a and

we conclude using Lemma 7.2. Similarly, we can take for 0 c the set

of those such that jm( p Lx)(x) "m( B) for all x X , with

m mk( c) .
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THE ( p) -DEGREE. Given a texture ( p) on a manifold W , the

( p) -degree deg p A of a subset A of W is supL # A p(L) , where the

supremum is taken over all leaves L of the foliation .

CLEAN TEXTURES. A texture ( p) on W is clean when there exists an

integer d with the following property : every point a of W has a neighbourhood

basis a consisting of open subsets U1 such that, for every leaf L of , the

number of connected components of L p 1(U1) is at most d .

EXAMPLES. The hypothesis of Theorem 6.2 amounts to assuming that the

geodesic texture is clean.

Given positive integers n k , a natural clean texture on W : G( n k)

is as follows : X is the manifold of all (H K) G( n k) G( k n k)

with H K , the projection p is just (H K) H , and the leaf through

(H0 K0) is the set of all (H K0) X . If 1 , one gets the projective

version of Thom’s (clean) original affine situation, as the leaves of the texture

are the projective k -planes in Pn k .

If we view G( n k) as the homogeneous space G H , where

G O( n k) and H is the subgroup O( n k) consisting of those

G which preserve R 0 , this suggests a larger class of examples

where G is a Lie group, H K are two closed subgroups with H (H K)

compact, W G H and X G H G K is the image — diffeomorphic

to G (H K) — of G under the canonical projection ( H K) , with

L ( ) : ( K) ; thus, the leaves of the texture are the subsets H( K) .

As shown by Figure 4 (p. 347), there are many non-homogeneous examples

in which p is not a fibration.

LEMMA 7.5. Let ( p) be a clean texture on a manifold W . For each

continuous map f of a compact space V into W , the ( p) -degree of f (V)

is finite if and only if the local ( p) -degree of f at every point is. Therefore,

the ( p) -degree of a compact subset A of W is finite if and only if its local

( p) -degree at every point is.

Proof. Taking U1 f (a) in the definition of the local ( p) -degree, we

see that the local ( p) -degree of a continuous map f : V W at a V

is finite if and only if there exists an open neighbourhood U of a in V

such that the ( p) -degree of f (U) is finite. We conclude as in the proof of

Lemma 1.3.
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Lemma 7.5 and Theorem 7.1 yield an extension of Theorems 5.1 and 6.2 :

THEOREM 7.6. If the texture of Theorem 7.1 is clean, then, denoting by

and 0 the open subsets of C (W B) consisting respectively of proper

maps and of those for which 1(0) is compact :

(i) For all in the huge open subset 0 : 0 0 of 0 , the ( p) -degree

of 1(0) is finite.

(ii) For all in the huge open subset : of , the ( p) -degree

of 1(b) is finite for every b B.

8. PROOF OF LEMMA 7.4

The following result is (the easy case of) Lemma 3.2 in [13], extracted from

Morlet [16] and expressing the essence of Thom’s original proof [19, 20] :

LEMMA 8.1. Let S be a submanifold (possibly with boundary) of a

manifold P. Let be a topological space and j : C (T P) a mapping,

where T is a manifold whose dimension is less than the codimension of S .

Suppose that for each f there exists a continuous mapping : E ,

where E is a manifold and f (E) , such that the induced mapping

: E T P defined by (e t) j (e) (t) is C1 and a submersion

at every point of 1(S) . Then : j( )(T) S is dense in .

Proof. Given f , take and as in the hypothesis of the lemma.

Then, S : 1(S) is a C1 submanifold of E T whose codimension codim S

is greater than dim T , hence dim S dimE .

Clearly, e E : j (e)(T) S is the image of S under the

projection : E T E and we can apply to S the very easy case

of Sard’s theorem : the image of a locally Lipschitzian map of a manifold

into a higher-dimensional manifold has Lebesgue measure 0, implying that

e E : j (e)(T) S has Lebesgue measure 0 ; in particular, its

complement D : e E : j (e)(T) S is dense. As is continuous,

for every open subset f of , the nonempty open subset 1( ) of E

contains some e D , hence (e) : j( )(T) S .

End of the proof of Lemma 7.4. What follows is essentially the proof

of Proposition 3.3 in [13]. As openness has already been established, setting

j( f )(t) : jm( f p Lt )(t) for f C (M N) and t T , we should prove that
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" : f C (M N) : j( f )(T) "

is dense. Each stratum V of " is the union of an at most countable set V

of compact submanifolds with boundary S whose image under the projection

Jm( N) T N lies in the product p 1(dom S) dom S for local charts

S of M and S of N with values in Rd and Rq respectively. Each S with

S : V V is open since S is closed (see the proof of openness after

Lemma 7.4). As " is the union of all S , the subset " is the intersection

of all the open subsets S with S . Therefore, since is countable and

C (M N) has the Baire property, all we have to prove is that S is dense

in C (M N) for every S .

To that effect, setting : S and : S , we shall apply Lemma 8.1

with : C (M N) , P : Jm( N) and, still, j( f )(t) : jm( f p Lt )(t) .

Let C (dom [0 1]) be a compactly supported function equal to 1 in

a neighbourhood of the image S2 of S under the projection of J
m( N) onto

N , and let C (dom [0 1]) be a compactly supported function equal to

1 in a neighbourhood of the image S1 under p of the image of S under the

projection of Jm( N) onto T .

Denoting by E0 the space of all polynomial maps R
d

R
q of degree at

most m , the space E in Lemma 8.1 will be the open neighbourhood of 0 in

E0 consisting of those e such that f (x) (x) f (x) e (x)

(a) lies in Im for all x supp f 1(supp ) ,

and (b) lies off (S2) for all x S1 f 1 supp(1 ) supp .

The mapping is well-defined — because of (a) — by

(e)(x)
1 f (x) (x) f (x) e (x) if x f (x) dom dom

f (x) otherwise

Continuity is easy to prove [13, 12, 8].

To check that : (e t) jm (e) p Lt (t) is a submersion at every point

(e0 t0) with jm (e0) p Lt0
(t0) S , we should prove that the mapping

e jmt0 (e) p Lt0
into the fibre Jmt0 ( N) is a submersion at e0 .

As x0 : p(t0) S1 and (e0)(x0) S2 , we must have f (x0) dom

(otherwise, f (x0) (e0)(x0) S2 dom , a contradiction) and therefore,

by (b), f (x0) supp(1 ) supp . As f (x0) 0 would yield the

contradiction f (x0) (e0)(x0) S2
1(1) , the point f (x0) must lie in the

interior of 1 ; since x0 lies in the interior of 1 , it follows that

jmt0 (e) p Lt0
jmt0

1 ( f e ) p Lt0
for all e E .
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This implies our result : indeed, p Lt0
is a local diffeomorphism of Lt0

onto a submanifold V x0 and the affine map e jm(x0) ( f 1 e) (V)

of E0 into Jm(x0) (V) Rq is a submersion, the underlying linear map

e jm(x0) e (V) being clearly onto.

If we inject the general Sard theorem into the previous proof via the full

Lemma 3.2 in [13], we get the following generalisation of Lemma 7.4 :

LEMMA 8.2. Given a texture ( p) on a manifold M with total space T ,

a manifold N , an integer m and a stratified subset " of Jm( N) , the set of

those f C (M N) such that the map T t jm( f p Lt )(t) is transversal

to " is residual.

The particular case where ( p) ( M idM) is

THOM’S TRANSVERSALITY LEMMA IN JET SPACES. Given manifolds M N ,

an integer m and a stratified subset " of Jm(M N) , the set of those

f C (M N) such that jmf is transversal to " is residual.
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NOTE DES RÉDACTEURS

Le texte qui suit est extrait d’une lettre de René Thom, datée de Strasbourg,
le 14 décembre 1959, adressée à André Haefliger à l’IAS, Princeton, où celui-ci
entamait un séjour de deux ans comme assistant de Whitney. On voit que Thom
développait déjà à cette époque les idées de son article de 1969 [21].

7 ) Who informed him of the existence of Thom’s paper and communicated to him pages on
géométrie finie extracted from his forthcoming book Géométrie vivante [2].

8 ) Chenciner not only gave some very useful advice on at least three drafts of the present
work : his encouragements and questions also led to the idea of textures.

9 ) Whose help with Tougeron’s theorem was especially precious.
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EXTRAIT D’UNE LETTRE DE RENÉ THOM À ANDRÉ HAEFLIGER

«Pas grand-chose de neuf de mon côté ; j’ai écrit récemment un petit article de
caractère semi-pédagogique sur la théorie des enveloppes (considérée comme application
de la théorie des singularités). Je m’occupe toujours de la conjecture faible; je suis
intéressé en ce moment par la détermination de l’“ordre local” d’une variété plongée
(i.e. le nombre maximum de points en lesquels elle est localement coupée par un plan de
dimension complémentaire). Il me semble probable que toute application différentiable
dont le graphe est d’ordre local fini est “algébroı̈de”, topologiquement équivalente à
une application polynomiale. Ceci impliquerait que toute application analytique réelle
est localement algébroı̈de; qu’en pensez-vous ? »
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