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ON THE DANILOV-GIZATULLIN ISOMORPHISM THEOREM

by Hubert FLENNER, Shulim KALIMAN and Mikhail ZAIDENBERG )

ABSTRACT. A Danilov-Gizatullin surface is a normal affine surface V !d S ,
which is a complement to an ample section S in a Hirzebruch surface !d . By a
surprising result due to Danilov and Gizatullin [DaGi], V depends only on n S 2

and neither on d nor on S . In this note we provide a new and simple proof of this
Isomorphism Theorem.

1. THE DANILOV-GIZATULLIN THEOREM

By definition, a Danilov-Gizatullin surface is the complement V !d S

of an ample section S in a Hirzebruch surface !d , d 0. In particular

n : S2 d . The purpose of this note is to give a short proof of the

following result of Danilov and Gizatullin [DaGi, Theorem 5.8.1].

THEOREM 1.1. The isomorphism type of Vn !d S depends only on n.

In particular, it depends neither on d nor on the choice of the section S.

For other proofs we refer the reader to [DaGi] and [CNR, Corollary 4.8].

In the forthcoming paper [FKZ2 , Theorem 1.0.5] we extend the Isomorphism

Theorem 1.1 to a larger class of affine surfaces. However, the proof of this

latter result is much harder.

) This research was done during a visit of the first and second authors at the Institut Fourier,
Grenoble and of all three authors at the Max-Planck-Institute of Mathematics, Bonn. They thank
these institutions for their generous support and excellent working conditions.
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2. PROOF OF THE DANILOV-GIZATULLIN THEOREM

2.1 EXTENDED DIVISORS OF DANILOV-GIZATULLIN SURFACES

Let as before V !d S be a Danilov-Gizatullin surface, where S is an

ample section in a Hirzebruch surface !d , d 0 with n : S2 d . Picking

a point, say A S , and performing a sequence of n blowups at A and its

infinitesimally near points on S leads to a new SNC completion 1 ) (V D)

of V . The new boundary D C0 C1 Cn forms a zigzag, i.e. a linear

chain of rational curves with weights C20 0, C21 1 and C2i 2 for

i 2 n . Here C0 S is the proper transform of S . The linear system

C0 on V defines a P1 -fibration "0 : V P
1 for which C0 is a fiber and

C1 is a section. Choosing an appropriate affine coordinate on P
1

A
1

we may suppose that " 1
0 ( ) C0 and that "

1
0 (0) contains the subchain

C2 Cn of D . The reduced curve Dext " 1
0 (0) C0 C1 is called

the extended divisor of the completion (V D) of V . The following lemma

appears implicitly in the proof of Proposition 1 in [Gi] (cf. also [FKZ1 ]). To

make this note self-contained we provide a short argument.

LEMMA 2.1. (a) For every a 0 the fiber " 1
0 (a) is reduced and

isomorphic to P1 .

(b) Dext " 1
0 (0) C0 C1 is an SNC divisor with dual graph

(2.1) Dext :
0

C0

1

C1

2

C2

2

Cs

1 s F1

2

Cn

1 F0

for some s with 2 s n.

Proof. (a) follows easily from the fact that the affine surface V V D

does not contain complete curves.

To deduce (b), we note first that V has Picard number n 2, since V is

obtained from !d by a sequence of n blowups. Since C1 C2 1, the part

" 1
0 (0) C2 of the fiber "

1
0 (0) can be blown down to a smooth point. Since

C21 1, after this contraction we arrive at the Hirzebruch surface !1 , which

has Picard number 2. Hence the fiber " 1
0 (0) consists of n 1 components.

1 ) SNC stands for ‘simple normal crossings’, as in [FKZ1 ].
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In other words, " 1
0 (0) contains, besides the chain C2 Cn , exactly

two further components F0 and F1 called feathers [FKZ 1 ]. These are disjoint

smooth rational curves, which meet the chain C2 Cn transversally at

two distinct smooth points. Indeed, " 1
0 (0) is an SNC divisor without cycles

and the affine surface V does not contain complete curves. In particular,

(F0 F1) D is a union of two disjoint smooth curves on V , isomorphic

to A1 .

Since " 1
0 (0) C2 can be blown down to a smooth point and C2i 2

for i 2, at least one of these feathers, say F0 , must be a ( 1)-curve. We

claim that F0 cannot meet a component Cr with 3 r n 1. Indeed,

otherwise the contraction of F0 Cr Cr 1 would result in C
2
r 1 0 without

the total fiber over 0 being irreducible, which is impossible. Hence F0 meets

either C2 or Cn .

If F0 meets C2 then F0 C2 Cn is contractible to a smooth

point. Thus the image of F1 will become a smooth fiber of the contracted

surface. This is only possible if F1 is a ( 1)-curve attached to Cn . Hence

after interchanging F0 and F1 the divisor Dext is as in (2.1) with s 2.

Therefore we may assume for the rest of the proof that F0 is attached at

Cn and F1 at Cs , where 2 s n . Contracting the chain F0 C2 Cn

within the fiber " 1
0 (0) yields an irreducible fiber F1 with (F1)

2 0. This

determines the index s in a unique way, namely s 1 F21 .

2.2 JUMPING FEATHERS

The construction in 2.1 depends on the initial choice of the point A S .

In particular, the extended divisor Dext Dext(A) and the integer s s(A)

depend on A . The aim of this subsection is to show that s(A) 2 for a

general choice of A S .

2.2. Let F0 F0(A) and F1 F1(A) denote the images of the feathers

F0 F0(A) and F1 F1(A) , respectively, in the Hirzebruch surface !d under

the blowdown : V !d of the chain C1 Cn . These images meet

each other and the original section S (C0) at the point A and satisfy

(2.2) F
2

0 0 F0 F1 F0 S 1 F
2

1 n 2s 2 F1 S n s 1

where s s(A) . Hence F0 F0(A) is the fiber through A of the canonical

projection : !d P
1 and F1 F1(A) is a section of . The sections S
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and F1 meet only at A , where they can be tangent (osculating). We define

(2.3) s0 s(A0) min
A S

s(A) l F1(A0)
2 1 and m F1(A0) S

Concerning the next proposition, see for example Lemma 7 and the

subsequent Remark in [Gi], or Proposition 4.8.11 in [DaGi, II]. Our proof is

based essentially on the same idea.

PROPOSITION 2.3. (a) s(A) s0 for a general point A S, and

(b) s0 2 .

Proof. For a general point A S and an arbitrary point A S we have

F1(A) F1(A ) kF0 for some k 0. Hence F1(A)
2 F1(A )

2 2k

F1(A )
2 . Using (2.2) it follows that

s(A) 1 F1(A)
2 s(A ) 1 F1(A )

2

Thus s(A) s0 for all points A in a Zariski open subset S0 S , which

implies (a).

To deduce (b) we note that by (2.3),

l n 2s0 3 n s0 1 m

with equality if and only if s0 2. Thus it is enough to show that l m .

Restriction to S yields

(2.4) F1(A) S m[A] Div(S) for all A S0

Consider the linear systems

F1(A0) P
l and S(m) P

m

on !d and S P
1 , respectively, and the linear map

: Pl P
m F F S

The set of divisors

#m m[A] A S

represents a rational normal curve of degree m in Pm S(m) . In view of

(2.4) the linear subspace (Pl) contains #m . Since the curve #m is linearly

non-degenerate, we have (Pl) P
m and so l m , as desired.



ON THE DANILOV-GIZATULLIN ISOMORPHISM THEOREM 279

2.3 ELEMENTARY SHIFTS

We consider as before a completion V V D of a Danilov-Gizatullin

surface V as in 2.1.

2.4. Choosing A generically, according to Proposition 2.3 we may suppose

in the sequel that s s(A) 2 and F20 F21 1.

By (2.1) in Lemma 2.1, blowing down in V the feathers F0 , F1 and then

the chain C3 Cn yields the Hirzebruch surface !1 , in which C0 and

C2 become fibers and C1 a section. Reversing this contraction, the above

completion V can be obtained from !1 by a sequence of blowups as follows.

The sequence starts by the blowup with center at a point P3 C2 C1 to create

the next component C3 of the zigzag D . Then we perform subsequent blowups

with centers at points P4 Pn 1 infinitesimally near to P3 , where for each

i 4 n the blowup of Pi Ci 1 Ci 2 creates the next component

Ci of the zigzag. The blowup with center at Pn 1 Cn Cn 1 creates the

feather F0 . Finally we blow up at a point Q C2 C1 different from P3 to

create the feather F1 . In this way we recover the given completion V with

extended divisor Dext as in (2.1), where s 2.

We observe that the sequence P3 Pn 1 Q depends on the original

triplet (!d S A) . It follows that by varying the points P3 Pn 1 Q and

then contracting the chain C1 Cn D C0 on the resulting surface

V , we can obtain all possible Danilov-Gizatullin surfaces

V V D !d S with S2 n and 0 d n 1

Thus to deduce the Danilov-Gizatullin Isomorphism Theorem 1.1 it suffices

to establish the following fact.

PROPOSITION 2.5. The isomorphism type of the affine surface V V D

does not depend on the choice of the blowup centers P3 Pn 1 and Q as

above.

The proof proceeds in several steps.

2.6. First we note that in our construction it suffices to keep track of

only some partial completions rather than of the whole complete surfaces.

We can choose affine coordinates (x y) in !1 (C0 C1) A
2 so that

C2 C1 x 0 , P P3 (0 0) and Q (0 1) . The affine surface V

can be obtained from the affine plane A2 by performing subsequent blowups
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with centers at the points P3 Pn 1 and Q as in 2.4 and then deleting the

curve C2 Cn D (C0 C1) .

With X2 A
2 , for every i 3 n 1 we let Xi denote the result of

the subsequent blowups of A2 with centers P3 Pi . This gives a tower of

blowups

(2.5) V (C0 C1) : Xn 2 Xn 1 Xn X2 A
2

where in the last step the point Q is blown up to create F1 .

2.7. Let us exhibit a special case of this construction. Consider the standard

action

( 1 2) : (x y) ( 1x 2y)

of the 2-torus T (C )2 on the affine plane X2 A
2 . We claim that there is

a unique sequence of points (0 0) P3 Po3 Pn 1 Pon 1 such that the

torus action can be lifted to Xi for i 3 n 1. Indeed, if by induction

the T -action is lifted already to Xi with i 2, then on Ci Ci 1 A
1 the

induced T -action has a unique fixed point Poi 1 . By blowing up this point the

T -action can be lifted further to Xi 1 . Blowing up finally Q (0 1) C2 C1

and deleting C2 Cn we arrive at a unique standard Danilov-Gizatullin

surface Vst Vst(n) .

We note that T acts transitively on (C2 C1) (0 0) . Thus up to

isomorphism, the resulting affine surface Vst does not depend on the choice

of Q .

2.8. Consider now an automorphism h of A2 fixing the y -axis pointwise.

It moves the blowup centers P4 Pn 1 to new positions P4 Pn 1 , while

P3 and Q remain unchanged. It is easily seen that h induces an isomorphism

between V and the resulting new affine surface V . We show in Lemma 2.9

below that by applying a suitable automorphism h , we can choose V to be

the standard surface Vst as in 2.7. This immediately implies Proposition 2.5,

and also Theorem 1.1. More precisely, our h will be composed of elementary

shifts

(2.6) ha t : (x y) (x y axt) where a C and t 0

LEMMA 2.9. By a sequence of elementary shifts as in (2.6) we can

move the blowup centers P4 Pn into the points Po4 Pon so that V is

isomorphic to Vst .



ON THE DANILOV-GIZATULLIN ISOMORPHISM THEOREM 281

Proof. The assertion is obviously true for X2 A
2 . The point P3 (0 0)

being fixed by T , the torus action can be lifted to X3 . The blowup with center

at P3 has a coordinate presentation

(x3 y3) (x y x) or, equivalently, (x y) (x3 x3y3)

where the exceptional curve C3 is given by x3 0 and the proper transform

of C2 by y3 . The action of T in these coordinates is

( 1 2) (x3 y3) ( 1x3
1

1 2 y3)

while the elementary shift ha t can be written as

(2.7) ha t : (x3 y3) (x3 y3 axt 1
3 )

Thus in (x3 y3) -coordinates P
o
4 (0 0) . Furthermore for t 1, the shift ha 1

yields a translation on the axis C3 C2 x3 0 , while ha t with t 2

is the identity on this axis. Applying ha 1 for a suitable a we can move the

point P4 C3 C2 to P
o
4 . Repeating the argument recursively, we can achieve

that Pi Poi for i n 1, as required.

REMARKS 2.10. 1. The surface Xn 1 as in 2.7 is toric, and the T -action on

Xn 1 stabilizes the chain C2 Cn F0 . There is a 1-parameter subgroup

G of the torus (namely, the stationary subgroup of the point Q (0 1)),

which lifts to Xn 2 and then restricts to Vst Xn 2 (C2 Cn) . Fixing

an isomorphism G C gives a C -action on Vst . As follows from [FKZ2 ,

1.0.6], Vst Vst(n) is the normalization of the surface Wn A
3 with equation

xn 1y (z 1)(z 1)n 1

For n 3 this surface has non-isolated singularities, and is equipped with

the C -action (x y z) ( x n 1y z) . Due to the Danilov-Gizatullin

Isomorphism Theorem 1.1, any Danilov-Gizatullin surface Vn is isomorphic

to the normalization of Wn .

2. However, the specific C -action on Vn obtained in this way is not

unique, as was observed by Peter Russell. According to Proposition 5.14 in

[FKZ1 ], there are in Aut(Vn) exactly n 1 different conjugacy classes of such

actions corresponding to different choices of s 2 n in diagram (2.1).

Let us sketch a construction of these classes which does not rely on DPD-

presentations 2 ) as in [FKZ1 ], but follows a procedure similar to the one used

in the proof above.

2 ) DPD stands for ‘Dolgachev-Pinkham-Demazure’.
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Given s 2 n , starting with X2 !1 P
1 and a chain C0 C1 C2

on !1 as in 2.4 and 2.6, we blow up the point (0 0) C2 creating the feather

F1 , then at the point C2 F1 creating C3 etc., until the component Cs

is created. The standard torus action on !1 lifts to the resulting surface

Xs 1 stabilizing the linear chain F1 C0 Cs . Next we blow up

at a point P Cs (F1 Cs 1) creating a new component Cs 1 , and we

lift the action of the 1-parameter subgroup G StabP(T) to the resulting

surface Xs 2 . Choosing an appropriate isomorphism G C we may

assume that Cs is attractive for the resulting C -action $s on Xs 2 . We

continue blowing up subsequently at the fixed points of this action on the

curves Ci 1 Ci ( i s n ), thereby creating components Cs 2 Cn

and the feather F0 . Finally we arrive at a C -surface V Xn 2 with an

extended divisor as in (2.1). Contracting C1 Cn exhibits the open

part V V D , where D C0 Cn , as a complement to an

ample section in a Hirzebruch surface. Thus V Vn is a Danilov-Gizatullin

surface of index n endowed with a C -action, say $s , such that V is its

equivariant standard completion. Note that the isomorphism class of (V D)

is independent of the choice of the point P Cs (F1 Cs 1) . Indeed

this point can be moved by the T -action yielding conjugated C -actions

on Vn .

Contracting the chain C1 Cn leads to a Hirzebruch surface !d such

that the image of F0 is a fiber of the ruling !d P
1 . Moreover, the image

S of C0 is an ample section with S2 n so that Vn !d S . The image of

F1 is another section with F21 n 2 2s . In particular, if this number is

negative then d 2s 2 n .

One can show that the $s , s 2 n represent all conjugacy classes

of C -actions on Vn . Moreover, inverting the action $s with respect to the

isomorphism t t 1 of C yields the action $n s 2 . Thus after inversion,

if necessary, we may suppose that 2s 2 n so that Vn !d S as above

with d 2s 2 n .

3. As was remarked by Peter Russell, with the exception of Proposition 2.3

our proof is also valid for Danilov-Gizatullin surfaces over an algebraically

closed field of any characteristic p . Moreover Proposition 2.3 holds as

soon as p 0 or p and m are coprime. In particular it follows that the

Isomorphism Theorem holds in the cases p 0 and p n 2. This latter

result was shown already in [DaGi]. However for p 2 and n 56 there

is an infinite number of isomorphism types of Danilov-Gizatullin surfaces;

see [DaGi, §9].
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