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ON THE CAUCHY-KOWALEVSKI THEOREM

by Marc CHAPERON

In memory of Adrien Douady

ABSTRACT. After a short review of the basic properties of analytic functions, we
apply the infinite-dimensional theory to get a simple proof of the Cauchy-Kowalevski
theorem, in an infinite-dimensional version which seems to be new.

INTRODUCTION

Most mathematicians no longer teach differential calculus in Banach spaces,

though the theory has proved increasingly useful since Henri Cartan’s first

lectures on the subject [1]. Paradoxically, Cartan himself never included

in his lectures the basic properties of analytic functions in Banach spaces,

which his student Adrien Douady had written down in a simple and aesthetic

way [6] (more references can be found at the end of the present paper).

After a short introduction to this elegant theory, we recall (in the analytic

case) Joel Robbin’s proof of the existence theorem for differential equations

via the implicit function theorem in Banach spaces [14] and explain how to

adapt it to get the Cauchy-Kowalevski theorem.
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The painless proof casts some light on the reason why this result is true

only in the analytic category. Throughout the paper, E F denote two Banach

spaces over K R or C .

1. ANALYTIC FUNCTIONS IN ARBITRARY DIMENSION

POWER SERIES. We let L0(E F) L0s (E F) F and, for each positive

integer n , we endow the space Ln(E F) of continuous n -linear maps

an : E
n F with its standard norm an : sup x1 xn 1 an(x1 xn) ,

which makes it into a Banach space. Denoting by Lns (E F) the closed subspace

consisting of symmetric n -linear maps, we associate to each an Lns (E F) the

homogeneous polynomials E x anx Lns (E F) , 0 n , defined

as follows : for x x 1 xn E , we have that anx (x 1 xn) is the

value of an(x1 xn) when xj x for 1 j (hence anx
0 an ). As

when E K , the j -th derivative of anx
n is n!

(n j)!
anx

n j for j n and 0

otherwise. In particular, its n -th derivative is the constant n!an and, if K C ,

the homogeneous polynomial x anx
n is holomorphic, meaning that it is

differentiable and that its derivative at each point is C -linear.

A power series on E with values in F is a series of functions un of

E into F whose general term is a homogeneous polynomial un(x) an x
n ,

an Lns (E F) . We shall call it the power series n N
an x

n or an x
n .

The strict convergence radius [0 ] of the power series an x
n

is the supremum of those r 0 satisfying an r
n . It is given by

1 lim sup an
1
n . When is positive, the power series is called convergent ;

it converges at every point of the open ball B (0) , (normally) uniformly in

Br(0) for 0 r . Hence, its sum f : B (0) F is continuous and more :

PROPOSITION 1.1. Every convergent power series an x
n on E with

values in F , having strict convergence radius , converges in the C sense

in B (0) . Its sum f : B (0) F is C and, if K C , it is holomorphic. More

precisely, for j N , the power series
(n j)!

n!
an j x

n obtained by j times

differentiating an x
n has the same strict convergence radius as an x

n ,

and its sum is D jf : B (0) L
j
s(E F) . Hence, D jf (0) j! aj , showing that,

in B (0) , the function f is the sum of its Taylor expansion at 0 .
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Proof. For an Lns (E F) and 0 n , the symmetric form defining

x anx has the same norm as an since an (x1 x ) anx1 x

is an isometric linear map of Ln(E F) onto L E Ln (E F) .

REMARK. For dimE 1, the ball of strict convergence B (0) , which

depends on the norm and not just on the topology of E , is definitely not

the largest open subset in which the power series converges, as shown by the

power series bnx
nyn on K2 when bnz

n is convergent in one variable.

However, convergence depends only on the topologies of E and F .

ANALYTIC MAPS. A map f of an open subset U of E into F is called

analytic when, for all x0 U , there exists a convergent power series an x
n

such that f (x) an (x x0)
n in a neighbourhood of x0 . By Proposition 1.1,

this implies that f is C (and, if K C , holomorphic) and can be

expressed in a neighbourhood of every point x0 U as the sum of its

Taylor expansion at x0 . As in one variable, the following fundamental result

can be deduced from Cauchy’s formula (see for example [2], chap. 5, théorème

principal) :

PROPOSITION 1.2. If K C , a function f of an open subset U of

E into F is analytic if and only if it is holomorphic. When a sequence

( n) of holomorphic functions of U into F converges locally uniformly to a

function , the latter is holomorphic.

COROLLARY 1.3 (analyticity of inverse maps). If an analytic local map

f : (E x0) F has invertible derivative at x0 , then its local inverse

F f (x0) (E x0) is analytic. Hence, given a third Banach space ! over

K and an analytic local map : ! E ( 0 x0) (F 0) , if the partial

2 ( 0 x0) : E F is invertible, the implicit function : (! 0) (E x0)

whose graph coincides with 1(0) near ( 0 x0) is analytic.

Proof. As the inverse of a C -linear isomorphism is C -linear, this is

obvious if K C . The real case follows by complexification [2], together

with

COROLLARY 1.4. The sum of a convergent power series is analytic in

its ball of strict convergence. The composed map of two analytic maps is

analytic.
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2. ANALYTIC LOCAL CAUCHY PROBLEMS

2.1 CAUCHY’S THEOREM ON ORDINARY DIFFERENTIAL EQUATIONS

Let f be an analytic map on an open subset dom f of K F , taking its

values in F . Given (t0 u0) dom f , we are interested in the local analytic

solutions of the Cauchy problem

(1)

du

dt
f (t u)

u(t0) u0

i.e. analytic germs : (K t0) F which satisfy the initial condition

(t0) u0 and are solutions of the differential equation
du

dt
f (t u) , meaning

that (t) f (t (t)) .

THEOREM (Cauchy). Under these hypotheses, the Cauchy problem (1) has

a unique local analytic solution.

Proof. If K R , the complexified map of a solution of (1) is a solution

of the complexified Cauchy problem. Now, if the theorem is true in the

complex case, the solution of the complexified Cauchy problem must be the

complexified map of a solution of (1) (hence existence and uniqueness in the

real case), since otherwise t ( t̄) would be another solution, contradicting

uniqueness. This reduces the question to the complex case.

If K C , (1) is equivalent to the equation

(2) (t) f t u0
t

t0
( ) d

in the unknown local holomorphic function
du

dt
: (C t0) F , where

t

t0
( ) d denotes the local primitive of which vanishes at t0 .

Robbin’s idea is to use a small parameter C . For 0, setting

(3) t t0 T V(T) (t) d 1V(T) :
T

0
V( ) d

one has
t

t0
( ) d d 1V(T) ; hence, (2) can be written

(4) V(T) f t0 T u0 d 1V(T)

an equation which still makes sense for 0.

Let b(D F) denote the Banach space (Proposition 1.2) of all bounded

holomorphic maps of the open unit disk D C into F , equipped with the

norm of uniform convergence . For nonzero C , the “microscope”
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(3) defines a bijection of the set of solutions V b(D F) of (4) onto the

set of those solutions of (2) which are defined and bounded in the open

disk of radius centred at t0 . Therefore, to establish Cauchy’s theorem, we

should just prove that there exist 0 and r 0 such that, for , the

equation (4) has a unique solution V b(D F) satisfying V V0 r ,

where V0 b(D F) denotes the constant f (t0 u0) .

LEMMA 2.1. The formula "( V)(T) : f t0 T u0 d 1V(T) de-

fines a local holomorphic map " : C b(D F) (0 V0) b(D F) V0

such that "(0 V) V0 and therefore V"(0 V0) 0 .

This yields Cauchy’s theorem : by the implicit function theorem, there exist

0 and r 0 such that, for , the equation V "( V) 0 , i.e. (4),

has a unique solution V ( ) b(D F) satisfying V V0 r .

Proof of Lemma 2.1. " is obtained by composing two holomorphic maps :

! the polynomial map # : C b(D F) b(D C F) defined by

#( V)(T) t0 T u0 d 1V(T)

(indeed, # is a holomorphic polynomial with values in b(D C F)

because d 1 is a continuous endomorphism of b(D F) since we have

d 1V(T) T V V , V b(D F) T D ) ;

! the local map f : b(D C F) (t0 u0) b(D F) V0 , defined by

f W f W .

Indeed, if f is well-defined and bounded on the open ball B (t0 u0) of

radius 0 centred at (t0 u0) , then, for each W b(D C F) with

W (t0 u0) , the map f W is well-defined, holomorphic and bounded

on D . To see that f is holomorphic near the constant (t0 x0) , notice that if D
2f

satisfies D2f (t x) c on B (t0 u0) , then, for all W W b(D C F)

with W (t0 u0) and W W (t0 u0) , Taylor’s formula

yields

f W(T) W(T) f W(T) Df W(T) W(T)

1

0
(1 s)D2f W(T) s W(T) W(T)2 ds

c

2
W

2
T D

implying that f is differentiable at W and that Df (W) is the complex endo-

morphism of b(D C F) given by Df (W) W (T) Df W(T) W(T) .
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2.2 THE CAUCHY-KOWALEVSKI THEOREM

HYPOTHESES AND NOTATION. Let J1(E F) : E F L(E F) and let

f be an analytic map on an open subset dom f of K J1(E F) , taking

its values in F . Given t0 K and an analytic germ u0 : (E x0) F

satisfying t0 j
1u0(x0) dom f , where j1u0(x0) : x0 u0(x0) Du0(x0) , we

are interested in the local analytic solutions of the Cauchy problem

(5)
tu f (t x u xu)

u(t0 x) u0(x)

i.e. analytic germs : K E (0 x0) F such that, setting t(x) : (t x) ,

! is a solution of the partial differential equation tu f (t x u xu) ,

meaning that t (t x) f t j1 t(x) ;

! the initial condition t0 u0 is satisfied.

THEOREM (Cauchy-Kowalevski). Under these hypotheses, the Cauchy

problem (5) has a unique local analytic solution.

REDUCTION OF THE PROBLEM. Denoting by the analytic function defined

on an open subset dom 0 of K J1(E F) by

(t x y z) : f t0 t x0 x u0(x0 x) y Du0(x0 x) z

(5) is equivalent to the local Cauchy problem

(6)
t (t x x )

(0 x) 0

in the unknown function (t x) : u(t0 t x0 x) u0(x0 x) near 0 K E .

Replacing (t x) by (t x) t (0) and (t x y z) by (t x y t (0) z) (0) ,

we may assume that

(7) (0) 0

Solving (6) in an open convex subset C 0 of K E is equivalent to finding

an analytic map : C F (the partial derivative : t ) such that

(8) (t x) t x 1
t (t x) x

1
t (t x)

where, as in [13],

1
t (t x)

t

0
( x) d t

1

0
(st x) ds
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Again, we introduce a small parameter K , whose use is subtler than

before, due to derivation with respect to x : for 0, setting

(t x) ( 2T X) V(T X) (t x)

one has 1
t (t x) 2 1

T V(T X) and x
1

t (t x) X
1

T V(T X) , hence

(8) can be written

(9) V(T X) 2T X 2 1
T V(T X) X

1
T V(T X)

THE FUNCTION SPACE. The presence of X
1

T V(T X) in (9) makes it

harder to find a function space for which the analogue of Lemma 2.1 holds.

PROPOSITION 2.2. Given Banach spaces E1 F1 , let B be the open unit ball

of E1 . The set (E1 F1) of all V : B F1 of the form V(x) n N
Vn x

n

with Vn Lns (E1 F1) and n N
Vn is a Banach space over K for the

norm V 1 : n N
Vn and its elements are analytic functions.

Proof. The power series whose sum belongs to (E1 F1) have strict

convergence radius 1. Therefore, by Corollary 1.4, the elements of (E1 F1)

are analytic. As each V (E1 F1) identifies to the sequence consisting of

the coefficients Vn
1
n!
DnV(0) of the power series defining it, a standard

argument proves that (E1 F1) is a Banach space.

NOTATION. Let 0(E1 F1) be the closed subspace of (E1 F1) consisting

of all V with V(0) 0. The following result, implicit in [13] (p. 44, estimate

line 4), has no C analogue. This may be viewed as “the” reason why the

Cauchy-Kowalevski theorem is true only in the analytic category :

PROPOSITION 2.3. Let E1 denote the Banach space K E endowed with

the norm (T X) : T X . For V 0(E1 F) , one has
1

T V 0(E1 F) ,

X
1

T V 0 E1 L(E F) , 1
T V 1

1
2
V 1 and X

1
T V 1 V 1 .

Proposition 2.3, whose easy proof is given in Appendix 2.2, provides

the analogue of the first point in the proof of Lemma 2.1. We turn to the

second point, again inspired by [13] (Proposition 1.11, p. 42) and proved in

Appendix 2.2 :

PROPOSITION 2.4. Given three Banach spaces E1 F1 F2 and an analytic

local map : (F1 0) (F2 0) , the formula (W) : W defines a local

analytic map : 0(E1 F1) 0 0(E1 F2) 0 .
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Proof of the theorem. Here is the analogue of Lemma 2.1 :

LEMMA 2.5. With the notation of Proposition 2.3, the formula

"( V)(T X) : 2T X 2 1
T V(T X) X

1
T V(T X)

defines an analytic map " : K 0(E1 F) 0 0(E1 F) 0(E1 F) 0 .

Proof. Proposition 2.3 asserts that we have 1
T L 0(E1 F) 0(E1 F)

and hence X
1

T L 0(E1 F) 0 E1 L(E F) , implying that the formula

#( V)(T X) : 2T X 2 1
T V(T X) X

1
T V(T X) defines an analytic

map # : K 0(E1 F) 0 0(E1 F) 0 E1 K J1(E F) 0 . Since

" # , we conclude by Proposition 2.4.

As "(0 V) 0 yields "(0 0) 0 and V"(0 0) 0, the implicit

function theorem implies that there exist 0 and r 0 such that, for

, the equation V "( V) 0 , i.e. (9), has a unique solution

V ( ) 0(E1 F) satisfying V 1 r . Now, if is a solution of (8)

which is analytic near 0, then, for (0 ) small enough, the solution

V(T X) ( 2T X) of (9) is well-defined in B , belongs to 0(E1 F) and

satisfies V 1 r , proving the local existence and uniqueness of the solution

of (8), hence of (5).

REMARKS. With the notation of Lemma 2.5, for k N and V , the

k -th order Taylor polynomial jk0"( V) of "( V) at 0 depends only on

and jk0V . Denoting it by "k( jk0V) and replacing " by "k in what we have

just done, we get that the solution of (5) is formally unique.

One can avoid Proposition 2.4 and just show that the map V "( V)

is a contraction of the closed unit ball of 0(E1 F) for small enough .

However, this requires the same ingredients as the proof of Proposition 2.4.

APPENDIX A

PROOF OF PROPOSITION 2.3

For V 0(E1 F) , we have that V(T X) n N
Vn(T X)n with

Vn :
1
n!
DnV(0 0) Lns (E1 F) , i.e. V(T X)

n N

n

k 0

n
k
Tk Vn(1 0)

k(0 X)n k

since (T X) T(1 0) (0 X) ; hence, near 0,
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1
T V(T X)

n N

n

k 0

n

k

Tk 1

k 1
Vn(1 0)

k(0 X)n k(10)

n N

1

n 1

n

k 0

n 1

k 1
Tk 1 Vn(1 0)

k(0 X)n k

n 2

1

n

n

k 1

n

k
Tk Vn 1(1 0)

k 1(0 X)n k

and, denoting by (0 dX) the injection E X (0 X) E1 ,

X
1

T V(T X)

n 2

1

n

n 1

k 1

n

k
(n k)TkVn 1(1 0)

k 1(0 X)n k 1(0 dX)(11)

n 2

n 1

k 1

n 1

k
Tk Vn 1(1 0)

k 1(0 X)n k 1(0 dX)

n N

n

k 1

n

k
Tk Vn(1 0)

k 1(0 X)n k(0 dX)

By (10), one has 1
T V(T X) n 2(

1
T V)n(T X)n near 0, where

( 1
T V)n(T1 X1) (Tn Xn)

1

n

1

n!
n

n

k 1

n

k
T (1) T (k) Vn 1(1 0)

k 1(0 X (k 1)) (0 X (n))

and therefore 1 )

( 1
T V)n(T1 X1) (Tn Xn)

1

n
Vn 1

1

n!
n

n

k 1

n

k
T (1) T (k) X (k 1) X (n)

1

n
Vn 1

1

n!
n

n

k 0

n

k
T (1) T (k) X (k 1) X (n)

1

n
Vn 1

n

k 0

1

k!(n k)!
n

T (1) T (k) X (k 1) X (n)

1

n
Vn 1 ( T1 X1 ) ( Tn Xn ) ;

1 ) Using, in the last equality, the fact that there are k! (n k)! permutations n

preserving a given subset with k elements.
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hence, ( 1
T V)n

1
n
Vn 1 and n 2 (

1
T V)n n N

1
n 1

Vn
1
2
V 1 ,

which does yield 1
T V 0(E1 F) and

1
T V 1

1
2
V 1 .

By (11), one has X
1

T V(T X) n N
( X

1
T V)n(T X)n near 0, where

( X
1

T V)n(T1 X1) (Tn Xn)

1

n!
n

n

k 1

n

k
T (1) T (k) Vn(1 0)

k 1(0 X (k 1)) (0 X (n))(0 dX)

and therefore

( X
1

T V)n(T1 X1) (Tn Xn)

Vn
1

n!
n

n

k 1

n

k
T (1) T (k) X (k 1) X (n)

Vn
1

n!
n

n

k 0

n

k
T (1) T (k) X (k 1) X (n)

Vn ( T1 X1 ) ( Tn Xn ) ;

hence, ( X
1

T V)n Vn and n N
( X

1
T V)n n N

Vn V 1 ,

which does yield X
1

T V 0 E1 L(E F) and X
1

T V 1 V 1 .

APPENDIX B

PROOF OF PROPOSITION 2.4

Let W(Z) n N
WnZ

n and ( ) n N n
n be the Taylor

expansions of W and at 0. Since W(Z) n N nW(Z)
n near 0,

the Taylor expansion n N nW
n of at 0 must be given by nW

n(Z)

nW(Z)
n , i.e.

(12) n(W1 Wn)(Z) n W1(Z) Wn(Z)

There remains to show that (12) defines a map n Lns 0(E1 F1) 0(E1 F2)

for all n N and that the power series n N nW
n converges (what follows

is essentially Proposition 1.11 page 42 of [13] and should be classical).



ON THE CAUCHY-KOWALEVSKI THEOREM 369

Clearly, n is n -linear and symmetric. To see that it sends 0(E1 F1)
n into

0(E1 F2) , we inject into (12) the Taylor expansion Wj(Z) N
Wj Z

of Wj at 0 for 1 j n : denoting by k N n(W1 Wn)k Z
k the Taylor

expansion of n(W1 Wn) , we get

n(W1 Wn)k Z
k

N
n

k

n W1 1
Z 1 Wn n

Z n

and therefore

n(W1 Wn)k (Z1 Zk)

1

k!
k N

n

k

n W1 1
(Z (1) Z ( 1)) Wn n

(Z (k n 1) Z (k))

hence

n(W1 Wn)k (Z1 Zk)

1

k!
k N

n

k

n W1 1
Wn n

Z (1) Z (k)

n

N
n

k

W1 1
Wn n

Z1 Zk

and finally

n(W1 Wn)k n

N
n

k

W1 1
Wn n

From this, we deduce the inequality

k N

n(W1 Wn)k n

N n

W1 1
Wn n n W1 1 Wn 1

which does prove that n Lns 0(E1 F1) 0(E1 F2) and n n .

Thus, the strict convergence radius of the power series n N nW
n is

at least equal to that of n N n
n and therefore positive, proving our

result.
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NOTES 2 ). Unfortunately, this part of the proof requires some modest

calculations with power series 3 ) since we have been unable to stick (as in the

case of differential equations) to Cauchy’s viewpoint on holomorphic maps

and Hadamard’s strong maxim : “The shortest way between two truths in the

real domain passes through the complex domain.”

Cartan’s version of differential calculus à la Fréchet first appeared in

Dieudonné’s famous book [3], whose exposition of analytic functions of several

variables, followed in 1971 by a proof of the Cauchy-Kowalevski theorem [4],

did not venture into infinite dimensions.

Robbin’s celebrated proof [14] of Cauchy’s theorem on ordinary differential

equations (in the usual differentiable setting) is a wonderful application of

infinite-dimensional differential calculus, slightly distorted by Lang in an

otherwise very good book [11] — and by the author in [2].

Before Douady’s thesis [6], the theory of analytic functions between Banach

spaces had been developed by Max Zorn in the mid-forties (see the last chapter

of [7], which provides many references).

Hans Lewy [12, 4] showed that the existence part of the Cauchy-Kowalevski

theorem is false in the smooth category without further hyperbolicity hypo-

theses. The uniqueness part is much strengthened by Holmgren’s theorem

[8, 10, 9, 5], of which no infinite-dimensional version seems to be known.
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