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COHOMOLOGY OF LIE 2-GROUPS

by Grégory GINOT and Ping XU )

ABSTRACT. We study the cohomology of (strict) Lie 2-groups. We obtain an
explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the
crossed module A 1. The cohomology of the Lie 2-groups corresponding to the
universal crossed modules G Aut(G) and G Aut (G) is the abutment of a
spectral sequence involving the cohomology of GL(n Z) and SL(n Z) . When the
dimension of the center of G is less than 3, we compute these cohomology groups
explicitly. We also compute the cohomology of the Lie 2-group corresponding to a

crossed module G
i
H for which Ker(i) is compact and Coker(i) is connected,

simply connected and compact, and we apply the result to the string 2-group.

1. INTRODUCTION

This paper is devoted to the study of Lie 2-group cohomology. A Lie

2 -group is a Lie groupoid !2 !1 , where both the space of objects !1

and the space of morphisms are Lie groups and all the groupoid structure

maps are group morphisms. This is what is usually referred to as “groupoids

over groups”. It is well known that Lie 2-groups are equivalent to crossed

modules [11, 2]. By a crossed module, we mean a Lie group morphism G
i
H

together with a right action of H on G by automorphisms satisfying certain

compatibility conditions. In this case, Ker i is called the kernel, and H i(G)

the cokernel, of the crossed module.

) Research partially supported by NSF grant DMS-0605725 & NSA grant H98230-06-1-0047.



374 G. GINOT AND P. XU

Lie 2-groups arise naturally in various places in mathematical physics,

for instance in higher gauge theory [4]. They also appear in the theory of

non-abelian gerbes. As was shown by Breen [8, 9] (see also [15]), a G -gerbe

is equivalent to a 2-group principal bundle in the sense of Dedecker [13],

where the structure 2-group is the one corresponding to the crossed module

G
i
Aut(G) , where i denotes the map to the inner automorphisms.

As in the 1-group case, associated to any Lie 2-group ! , there is a

simplicial manifold N!! , called the nerve of the 2-group. Thus one defines the

cohomology of a Lie 2-group ! with trivial coefficients R as the cohomology

of this simplicial manifold N!! with coefficients R . The latter can be computed

using a double de Rham cochain complex. A very natural question arises as

to whether there is a Bott-Shulman type map [6, 7] for such a Lie 2-group.

Unfortunately, the answer seems to be out of reach in general. However,

we are able to describe a class of cocycles in "3r([G
i
H]) generated by

elements in S ( ) H[3] , the symmetric algebra on the vector space ( ) H

with degree 3. Here we denote by [G
i
H] the Lie 2-group corresponding to

the crossed module G
i
H . As a consequence, we explicitly describe, for any

abelian group A , cocycles in "!([A 1]) which generate the cohomology

group H!([A 1]) . These cocycles are given by skew-symmetric polynomial

functions on the Lie algebra of A . Such an explicit map is also obtained

in the case where the cokernel of G H is finite. Our approach is based on

the following idea. A Lie 2-group [G H] induces a short exact sequence

of Lie 2-groups :

1 [Ker i 1] [G H] [1 Coker i] 1

which in turn induces a fibration of 2-groups. As a consequence, we obtain a

Leray-Serre spectral sequence. Discussions on these topics occupy Sections 4

and 5.

We also use the spectral sequence to compute the cohomology of a

2-group [G
i
H] with connected and simply connected compact cokernel

Coker(i) H i(G) and compact kernel Ker(i) . In general, the cohomology of

[G
i
H] depends on a transgression homomorphism

T : H3([Ker(i) 1]) H4([1 H i(G)])

An example of such a 2-group is given by the string 2-group [3] for which

we recover computations also independently due to Baez and Stevenson [5].

Next we apply our result to study the cohomology of particular classes

of 2-groups : [G
i

Aut (G)] and [G
i
Aut(G)] , where Aut (G) is the

orientation-preserving automorphism group of G . If G is a semi-simple Lie
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group, the result is immediate since both the kernel and the cokernel are

finite groups. However, when G is a general compact Lie group, the situation

becomes much subtler. This is due to the fact that the connected component of

the center Z(G) is a torus Tn , and therefore Out (G) and Out(G) are no longer

finite groups. Indeed they are closely related to SL(n Z) and GL(n Z) , whose

cohomology groups are in general very difficult to compute : this still remains

an open question for large n . Nevertheless, we obtain a spectral sequence

involving the cohomology of these groups, converging to the cohomology of

the 2-group. For n 3, using a result of Soulé [25], we are able to compute

the cohomology groups explicitly.

One of the main motivations for studying the cohomology of 2-groups is to

study characteristic classes of gerbes. Since G -gerbes correspond to principal

[G
i
Aut(G)] -bundles, any nontrivial cohomology class in H!([G

i
Aut(G)])

defines a universal characteristic class for G -gerbes. And a Bott-Shulman type

cocycle allow one to express such a universal characteristic class in terms of

geometric data such as connections just like in the usual Chern-Weil theory.

This will be discussed in detail in [15].

Note that the constructions in this paper can be defined in the more

general context of weak Lie 2-groups as defined by Henriques in [16] since

the cohomology and homotopy groups are defined using the nerve.

ACKNOWLEDGEMENTS. The authors would like to thank A. Ash, L. Breen,

A. Henriques, K. Mackenzie, C. Soulé, J. Stasheff and the referee for many

useful comments and suggestions.

NOTATIONS. Given a (graded) vector space V we denote by V[k] the

graded vector space with shifted grading (V[k])n Vn k . Thus if V is

concentrated in degree 0, V[k] is concentrated in degree k . The graded

symmetric (or free commutative) algebra on a graded vector space V will be

denoted by S(V) . We write S(V)q for the subspace of homogeneous elements

of total degree q , that is,

S(V)q x1 xr Sr(V) r 0 and x1 xr q

In particular, if x S(V)p and y S(V)q , one has x y ( 1)pqy x . Thus if

V is concentrated in even degrees, S(V) is a polynomial algebra. On the other

hand, if V is concentrated in odd degrees, S(V) is an exterior algebra. Unless

otherwise stated, all cohomology groups are taken with real coefficients.
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2. CROSSED MODULES

A crossed module of Lie groups is a Lie group morphism G
i
H together

with a right H -action (h ) h of H on G by Lie group automorphisms

satisfying :

1. for all (h ) G H , i( h) h 1i( )h ;

2. for all (x y) G G , xi(y) y 1xy .

A (strict) morphism G2
i2

H2 G1
i1

H1 of crossed modules

is a pair ( : G2 G1 : H2 H1) of Lie group morphisms such that

i2 i1 and ( ) (h) ( h) for all G2 , h H2 .

There is a well-known equivalence of categories between the category of

crossed modules and the category of (strict) Lie 2-groups [11]. Recall that

a Lie 2 -group is a group object in the category of Lie groupoids, which

means that it is a Lie groupoid !2 !1 where both !2 and !1 are Lie

groups and all structure maps are Lie group morphisms. Such a 2-group

will be denoted by !2 !1 . The crossed module G
i
H gives

rise to the 2-group G H H . The groupoid G H H is the

transformation groupoid : the source and target maps s t : G H H are

given by s( h) h and t( h) h i( ) , respectively. The (so-called vertical)

composition is ( h) ( h i( )) ( h) . The group structure on H is the

usual one, while the group structure (the so-called horizontal composition) on

G H is the semi-direct product of Lie groups : ( h) ( h ) ( h hh ) .

Conversely, there is a crossed module associated to any Lie 2-group [11]. In

the sequel we make no distinction between crossed modules and 2-groups.

We use the short notation [G
i
H] for the Lie 2-group corresponding to a

crossed module G
i
H .

DEFINITION 2.1. Let ( ) : G2
i2
H2 G1

i1
H1 be a morphism

of crossed modules, where is a submersion. The kernel of the map ( ) is,

by definition (see [21]), the crossed module (G2
ĩ
H2 H1G1) , where ĩ is the

natural group morphism induced by i2 and . The H2 H1G1 -action on G2 is

induced by the H2 -action :
(h2 1)
2

h2
2 . The structure map H2 H1 G1 H2

induces a natural crossed module morphism (G2
ĩ
H2 H1G1) G2

i2
H2 .

A Lie group G can be seen as a Lie 2-group with trivial 2-arrows,

i.e. as the Lie 2-group G G . The associated crossed module is

1 G . It yields an embedding of the category of Lie groups in the category

of Lie 2-groups. As in the case of groups, associated to a Lie 2-group
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! : !2 !1 , there is a simplicial manifold N!! , called its (geometric)

nerve. It is the nerve of the underlying 2-category as defined by Street [26].

In particular, N0! , N1! !1 and N2! consists of 2-arrows of !2

fitting in a commutative square :

(2.1)

A1
f0

A0
f1

f2

A2

N2! is naturally a submanifold of !2 !1 !1 !1 . For p 3, an element

of Np! is a p -simplex (labelled by arrows of ! ) such that each subsimplex of

dimension 3 is a commutative tetrahedron, whose faces are given by elements

of N2! (see (3.5) below or [21, 20, 26]). See also Remark 3.7 below.

The nerve N! defines a functor from the category of Lie 2-groups to

the category of simplicial manifolds. The nerve of a Lie group considered

as a Lie 2-group is isomorphic to the usual (1-)nerve [23]. Taking the fat

realization of the nerve defines a functor from Lie 2-groups to topological

spaces. In particular, the homotopy groups of a Lie 2-group can be defined

as the homotopy groups of its nerve.

Note that Lie 2-groups embed in an evident way in the category of weak

Lie 2-groupoids (see for instance [2] and [16]). There is a notion of fibration

for (weak) Lie 2-groups due to Henriques [16, Sections 2 and 4] (see also

[27, 28]). We also refer the reader to [20, 21] for an excellent exposition in

the case of discrete 2-groups. In the present paper, however, we use only a

special kind of fibration, which is given by the following lemma :

LEMMA 2.2. Let ( ) : G2
i2

H2 G1
i1

H1 be a morphism

of crossed modules where and are surjective submersions. Then

( ) : [G2
i2

H2] [G1
i1

H1] is a fibration of Lie 2 -groups. The

kernel of the morphism ( ) (as in Definition 2.1), i.e. the Lie 2 -group

[G2
ĩ
H2 H1 G1] , is a homotopy fiber of ( ) and is equivalent to

[Ker( )
i2
Ker( )] .

Proof. Let !1 and !2 be the Lie 2-groups corresponding to the crossed

modules (G1
i1
H1) and (G2

i2
H2) respectively, and # : !2 !1 the map

induced by ( ) : G2
i2
H2 G1

i1
H1 . Since and are surjective

submersions, Nm# : Nm!2 Nm!1 is a surjective submersion for all m .

Since !2 and !1 are (strict) Lie 2-groups, their nerves N!!2 and N!!1 are

simplicial manifolds satisfying the Kan condition for simplicial manifolds as
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in [16, Definiton 1.2 and Definition 1.4]. Thus, for all m j , the canonical maps

Nm!2 Hom($m
!
N!!2) Hom(%[m j]! N!!2) are surjective submersions for

m 2 and diffeomorphisms for m 2. Here $m
!
is the simplicial m -simplex

and %[m j]! its j
th-horn, i.e. the subcomplex generated by all facets containing

the j th-vertex. The same results holds when !2 is replaced by !1 .

The map Nm!2 Hom($m
!
N!!2) Hom(%[m j]! N!!2) and the map

Nm!2 Hom($m
!
N!!2) Hom($m

!
N!!1) Nm!1 induced by # : !2 !1

yield, for all j , a smooth map from Nm!2 to the space C[m j] , which consists

of the commutative squares

%[m j]! N!!2

N!#

$m
!

N!!1

See [16, Definition 2.3]. Note that C[m j] can be identified with the

fiber product Hom(%[m j]! N!!2) Hom(%[m j]! N!!1) Hom($
m
!
N!!1) . By the

definition of a fibration [16, Definition 2.3], it suffices to prove that (for

all m j ) the map Nm!2 C[m j] is a surjective submersion. For m 2,

Hom(%[m j]! N!!2) Nm!2 . Thus C[m j] Nm!2 and we are done. For

m 1, C[1 j] H1 and the map N1!2 H2 C[1 j] H1 is . For

m 2, C[2 j] is identified with H 2
2 G1 and the map N2!2 C[2 j]

becomes H 2
2 G2

id 2

H 2
2 G1 . The latter is a surjective submersion

since is a submersion.

The fiber F! of N!# is the pullback pt! N!!1 N!!2 , where pt! N![1 1]

is the point (viewed as a constant simplicial manifold). Thus, F! is the

nerve of the Lie 2-groups [Ker( )
i2
Ker( )] . Here the crossed module

structure of Ker( )
i2
Ker( ) is induced by that of G2

i2
H2 . The inclusions

Ker( ) G2 and the map Ker( ) H2
id 1

H2 H1 G1 yield a crossed

module homomorphism Ker( )
i2
Ker( ) G2

ĩ
H2 H1 G1 , which

is an equivalence of crossed modules. See [2, 20, 21, 27, 15] for the

definition of equivalence of crossed modules, or Lie 2-groups. It follows that

N![G2
ĩ
H2 H1 G1] is weakly homotopic to F! . Furthermore, the natural

diagram

[G2
ĩ
H2 H1 G1]

[Ker( )
i2
Ker( )] [G2

i2
H2]
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is commutative. Thus [G2
ĩ
H2 H1 G1] is a homotopy fiber of the map

( ) : [G2
i2
H2] [G1

i1
H1] .

As far as the present paper is concerned, it is sufficient to consider

Lemma 2.2 as a definition of a fibration of Lie 2-groups. In particular all

fibrations of Lie 2-groups in this paper arise as in Lemma 2.2. That is, they

are induced by a morphism ( ) of crossed modules where both and

are surjective submersions.

EXAMPLE 2.3. The main examples of interest in this paper are obtained

as follows (see Section 3). Let G
i
H be a crossed module and : H K

be a Lie group morphism such that (i( )) 1 for all G . Then the map

(1 ) : [G
i
H] [1 K] is a map of 2-groups and it is a fibration if

is a surjective submersion. The kernel of the map (1 ) (as defined in

Definition 2.1) is the Lie 2-group [G
i
Ker( )] , which is equal to the Lie

2-group [Ker(1)
i
Ker( )] .

REMARK 2.4. We recall that a 2-group is a group object in the category of

groupoids. Then the Lie 2-group [G2
ĩ
H2 H1G1] is the (weak) fiber product

(of Lie groupoids, see [19]) [1 1]
[G1

i1
H1]
[G2

i2
H2] . In particular it is

the correct fiber product to look at if one is interested in group stacks rather

than Lie 2-groups.

3. COHOMOLOGY OF LIE 2-GROUPS

The de Rham cohomology groups of a Lie 2-group ! are defined as the co-

homology groups of the bicomplex ("!(N!!) ddR ) , where ddR : "
p(Nq!)

"p 1(Nq!) is the de Rham differential and : "p(Nq!) "p(Nq 1!) is in-

duced by the simplicial structure on N!! : ( 1)p
q 1

i 0 ( 1)idi , where

di : N!! N! 1! are the face maps. We use the shorter notation "!

tot(!) for

the associated total complex. Hence "n
tot(!)

p q n

"p(Nq!) with (total) dif-

ferential ddR . We denote by H!(!) the cohomology of ! . It is well known

that H!(!) is naturally isomorphic to the cohomology of the fat realization of

its nerve N!! (see for instance [7]).

The simplicial structure of the nerve N!! of a Lie 2-group ! gives rise to a

structure of cosimplicial algebra on the space of de Rham forms "!

tot(!) . Thus,
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there exists an associative cup-product : "!

tot(!) "!

tot(!) "!

tot(!) which

turns ("!

tot(!) ddR ) into a differential graded algebra and, therefore,

(H!(!) ) is a graded commutative algebra. The same holds for singular

cohomology.

If G
i

H is a crossed module, we denote by "!

tot([G
i

H]) the

total complex of the corresponding Lie 2-group. A map of Lie 2-groups

f : ! G induces a simplicial map N!! N!G , and by pullback, a map of

cochain complexes "!(N!G)
f

"!(N!!) . A similar construction, replacing the

de Rham forms by the singular cochains with coefficients in a ring R , yields the

singular cochain functor C!([G
i
H] R) of the Lie 2-group [G

i
H] whose

cohomology H!([G
i
H] R) is the singular cohomology with coefficients

in R . If R R , the singular cohomology groups coincide with the de Rham

cohomology groups. The cohomology of a Lie group considered as a Lie

2-group is the usual cohomology of its classifying space since, in that case,

the 2-nerve is isomorphic to the 1-nerve of the Lie group [26].

Given a crossed module G
i
H of Lie groups, i(G) is a normal subgroup

of H . Hence, the projection H H i(G) induces a Lie 2-group morphism

(3.1) [G
i
H] [1 H i(G)]

which is a fibration (by Lemma 2.2) in which the fiber is the 2-group

[G
i
i(G)] . The canonical morphism of crossed modules (Ker(i) 1)

(G
i
i(G)) is an equivalence (see [2, 20, 21, 27, 15] for the equivalence

of crossed modules or Lie 2-groups) and in particular, the Lie 2-groups

[G
i
i(G)] and [Ker(i) 1] have weakly homotopic nerves. It follows that

there is a Leray-Serre spectral sequence.

LEMMA 3.1. There is a converging spectral sequence of algebras

(3.2) L
p q
2 Hp [1 H i(G)] q([Ker(i) 1]) Hp q([G

i
H])

where q([Ker(i) 1]) is the de Rham cohomology viewed as a local

coefficient system on [1 H i(G)] .

Proof. It follows from the main theorem of [1] that the realization of

the map [G
i
H] [1 H i(G)] is a quasi-fibration whose homotopy

fiber is the (fat) realization of [Ker(i) 1] . Indeed, this fat realization is

homotopic to the fat realization of [G
i
i(G)] . In fact, one can show that

this quasi-fibration is indeed a fibration. The spectral sequence (3.2) is the

Leray-Serre spectral sequence of this (quasi-)fibration.
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By the same argument, it also follows that there is a long exact sequence

of homotopy groups 1 )

(3.3) 1([1 H i(G)]) 0([Ker(i) 1])

0([G
i
H]) 0([1 H i(G)]) 0

REMARK 3.2. The algebra structures in Lemma 3.1 are induced by the

algebra structure on the singular or de Rham cohomology of the respective

Lie 2-groups.

REMARK 3.3. A similar proof implies that if [G2
i2
H2] [G1

i1
H1]

is a fibration of 2-groups with fiber F , then there is a Leray spectral

sequence

L
p q
2 Hp [G1

i1
H1]

q(F) Hp q([G2
i2
H2])

REMARK 3.4. In the special case of discrete 2-groups, the Leray-Serre

spectral sequence (3.2) has been studied in [12]. In this rather different context,

the higher differentials in the spectral sequence are related to the k-invariant

of the crossed module.

We now give a more explicit description of the complex "!

tot([G
i
H])

in degree 4, which will be needed in Sections 4 and 7. Until the end of

this section, we denote by ! the 2-group G H H associated to

the crossed module G
i
H . One has N0! and N1! H . Since there

is only one object in the underlying category, all 1-arrows can be composed.

Thus, a triangle as in Equation (2.1) is given by a 2-arrow G H and a

1-arrow f0 . Hence, N2! (G H) H . With this choice, for ( h f ) N2! ,

the corresponding 2-arrow and 1-arrows f0 f1 f2 in Equation (2.1) are

respectively given by

(3.4) ( h) f0 f f1 h i( ) f2 h f 1

The three face maps di : N2! N1! ( i 0 1 2) are given by di( h f ) fi ,

i 0 1 2 (see Equation (3.4)).

REMARK 3.5. Of course the choice of f0 is a convention, we could

equivalently have chosen to work with f2 .

1 ) The sequence should not be confused with the long exact sequence of simplicial homotopy
groups in [16, Section 3].
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N3! is the space of a commutative tetrahedron labelled by objects and

arrows of ! :

(3.5)

A3

A1

f02

2

3

f03

0

A0
f13

f23

f12

1

A2

f01

Commutativity means that one has ( 3 f01) 1 ( f23 0) 2 , where is

the vertical multiplication of 2-arrows and is the horizontal multiplication.

Since there is only one object, such a tetrahedron is given by 0 f01 2 and

3 satisfying s( 3) s( 2) (t( 0))
1 s( 0) f

1
01 . Thus N3! G3 H3 . The

face maps di ( i 0 4) are given by the restrictions to the triangle which

doesn’t contain Ai as a vertex. Thus, given ( 0 2 3 h0 f01 h2) G3 H3 ,

one has

d0( 0 2 3 h0 f01 h2) ( 0 h0 f01)(3.6)

d1( 0 2 3 h0 f01 h2) (( 1
3 ) f01

h2i(
1

0
)h

1
0

0 2 h2 f01)(3.7)

d2( 0 2 3 h0 f01 h2) ( 2 h2 h0 i( 0))(3.8)

d3( 0 2 3 h0 f01 h2) ( 3 h2 i(
1

0 ) f 1
01 h0 f

1
01 )(3.9)

REMARK 3.6. The choice of indices in ( 0 2 3 h0 f01 h2) is reminiscent

of the tetrahedron (3.5). That is the 2-arrow 0 ( 0 h0) G H , the

1-arrow from A2 to A3 is f01 and so on . . . . For instance, the 2-arrow

1 ( 1 h1) G H is given by Equation (3.7), i.e. 1 ( 1
3 ) f01

h2i(
1

0
)h

1
0

0 2

and h1 h2 .

Applying the differential form functor, we get

(a) "0tot([G
i
H]) "0( ) R ,

(b) "1tot([G
i
H]) "0(H) ,
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(c) "2tot([G
i

H]) "1(H) "0(G H H) . The differentials from

"1tot([G
i
H]) to "2tot([G

i
H]) are given by

ddR : "
0(H) "1(H) "2tot([G

i
H])

and

d0 d1 d2 : "
0(H) "0(G H H) "2tot([G

i
H])

(d) "3tot([G
i
H]) "2(H) "1(G H H) "0(G3 H3) . The differentials

are quite similar.

(e) "4tot([G
i
H]) "3(H) "2(G H H) "1(G3 H3) "0(N4!) .

REMARK 3.7. For p 4, an element in Np! is a commutative p -simplex

labelled by arrows of ! whose faces of dimension 2 are elements of N2! with

compatible edges. If we denote by A0 Ap the vertices of the p -simplex, the

commutativity implies that it is enough to know all the 2-faces containing A0 .

Reasoning as for N3! , it follows that Np! G
p(p 1)

2 Hp . Details are left to

the reader.

Let be the Lie algebra of G . There is an obvious map ( ) "1(G)

which sends to its left invariant 1-form L . By composition we have

a map

(3.10) ( ) "1(G)
p1

"1(G H H) "3tot([G
i
H])

where p1 : G H H G is the projection.

The action of H on G induces an action of H on , and therefore an

action on . The above composite map I clearly restricts to ( ) H , the

subspace of consisting of elements both - and H -invariant. Assigning

the degree 3 to elements of ( ) H , i.e. replacing ( ) H by ( ) H[3] , we

have the following

PROPOSITION 3.8. The map I : ( ) H[3] 0 "!

tot([G
i
H]) ddR

is a map of cochain complexes, i.e. (ddR )(I) 0 .

Proof. We have ( ) ( ) , where ( ) is the center of the Lie algebra

. Since the de Rham differential vanishes on ( ) , it remains to prove that

I 0. For any ( ) and left invariant vector fields X , Y ,
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m ( L)(X Y h)
L(m (X Y h))

L(X h Ad Y h)

(X) (Y)

p1 (
L) p2 (

L) (X Y h)

where m p1 p2 : G G G are respectively the product map and

the two projections. If, moreover, ( ) H then m p2 , where

m p2 : G H G are respectively the action map and the projection. Since

I( ) "1(G) "1(G H H) "3tot([G
i
H]) , the result follows from a

simple computation using formulas (3.6) – (3.9).

By Proposition 3.8, the images of the map I : ( ) H[3] "3tot([G
i
H])

are automatically cocycles. Recall that S ( ) H[3] is the free graded

commutative algebra on the vector space ( ) H[3] which is concentrated in

degree 3. Thus S ( ) H[3] is indeed an exterior algebra. By the universal

property of free graded commutative algebras, we obtain :

COROLLARY 3.9. The map I : ( ) H[3] H3([G
i
H]) extends uniquely

to a morphism of graded commutative algebras

I : S ( ) H[3]
!

H!([G
i
H])

In fact, the class I( 1 r) , where 1 r ( ) , is represented by

the cocycle I( 1) I( r) "3r([G
i
H]) .

4. COHOMOLOGY OF [A 1]

The following lemma is well known.

LEMMA 4.1. The nerve N!([S
1 1]) is a K(Z 3) -space.

Proof. Since Z is discrete, [Z 1] is a K(Z 2)-space (see for

instance [18, 20, 21]). Furthermore, [R 1] is homotopy equivalent to

[1 1] . Thus the result follows from the fibration of 2-groups [Z 1]

[R 1] [S1 1] .
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Let A be an abelian compact Lie group with Lie algebra . Then [A 1]

is a crossed module. By Corollary 3.9, we have a map I : S( [3])

H!([A 1]) .

PROPOSITION 4.2. Let A be an abelian compact Lie group with Lie

algebra . The map I : S( [3])! H!([A 1]) is an isomorphism of graded

algebras.

Proof. Since our cohomology groups have real coefficients, it is sufficient

to consider the case where A is a torus Tk . Indeed, writing A0 Tk for the

connected component of the identity in A , we have a fibration :

[A0 1] [A 1] [A A0 1]

Since A is compact, A A0 is a finite group. Thus N![A A0 1] is a

K(A A0 2)-space; in particular it is simply connected. Then the Leray spectral

sequence (Lemma 3.1 and Remark 3.3) simplifies as

L
! !

2 H! K(A A0 2) H!([A0 1]) H!([A 1])

Since A A0 is finite, H
i 0(K(A A0 2)) 0. Hence

H!([A 1]) H!([A0 1])

Now assume A Tk . The Künneth formula implies that H!([A 1])

H!([S1 1])
k
as an algebra. Since I is a morphism of algebras, it is

sufficient to consider the case k 1, i.e. A S1 .

Lemma 4.1 implies that H!([S1 1]) S(x) , where x is of degree 3. It

remains to prove that the map (3.10),

I : R "1(S1) "3([S1 1])

generates the degree 3 cohomology of [S1 1] , i.e. that I(1) is not a

coboundary in "3([S1 1]) . Clearly, I(1) is the image of the fundamental

1-form on S1 by the inclusion "1(S1) "3([S1 1]) . By Section 3,

it is obvious that "2([S1 1]) "0(S1) and that the only component

of the coboundary operator : "2([S1 1]) "3([S1 1]) lying in

"1(S1) "3([S1 1]) is the de Rham differential ddR : "
0(S1) "1(S1) .

Since the fundamental 1-form is not exact, the result follows.
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5. THE CASE OF A FINITE COKERNEL

In this section, we consider the particular case of a Lie 2-group [G
i
H]

with finite cokernel.

THEOREM 5.1. Let [G
i
H] be a Lie 2 -group with finite cokernel

C : H i(G) and compact kernel Ker(i) . Let be the Lie algebra of Ker(i) .

There is an isomorphism of graded algebras

H!([G
i
H]) S [3]

! C

In particular, the cohomology is concentrated in degree 3q, q 0 .

Proof. The 2-group [1 C] is naturally identified with the 1-group C .

Thus its nerve N![1 C] coincides with the classifying space BC of C .

Furthermore, since C is finite (and thus discrete), the cohomology (with

local coefficients) H! [1 C] q([Ker(i) 1]) is isomorphic to the

usual group cohomology H! C Hq([Ker(i) 1]) , where the C -module

structure on Hq([Ker(i) 1]) is induced by the C -action on Ker(i) .

Since Hq([Ker(i) 1]) is an R -module and C is finite, the cohomology

H! C Hq([Ker(i) 1]) is concentrated in degree zero so that the spectral

sequence of Lemma 3.1 collapses. Hence

H!([G
i
H]) H0 C Hq([Ker(i) 1])

Hq([Ker(i) 1])C S (( ) [3])q
C

According to Proposition 4.2 they are also isomorphic as algebras, due to

the multiplicativity of the spectral sequence and the freeness of S ( ) [3] .

REMARK 5.2. One can find explicit generators for the cohomology

H!([G H]) as follows. For all y K : Ker(i) , x G , y 1xy xi(y) x .

Thus K Z(G) and ( ) splits as a direct sum ( ) . We denote by J

the map ( ) . The composition of J : with the map (3.10)

is the map

I :
J

"1(G H2) "3tot([G H])

If x1 xq Sq 2 [3] , then I(x1) I(xq) lies in "
q(N2q([G H]))

"
3q
tot([G H]) . Note that the action of h H on K depends only on the

class of h in C . Since C is finite it follows that, for any x Sq( [3]) , I(x)

is a cocycle if and only if x is C -invariant. Let Ǐ (x) I c C x
c . Then

Ǐ (x) is indeed a cocycle and Ǐ generates the cohomology H!([G
i
H]) .
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Let 1 A G
p
H 1 be a Lie group central extension. Since A is

central, there is a canonical action of H on G . It is easy to see that G
p
H

is a crossed module.

COROLLARY 5.3. Let [G
p
H] be the Lie 2 -group corresponding to a

central extension of H by a compact abelian group A. There is an isomorphism

of graded algebras

H!([G
p
H]) S( [3])!

where is the Lie algebra of A.

Recall that S( [3])! is a graded commutative algebra generated by

generators of degree 3 (given by any basis of ).

Proof. Since G
p
H is a surjective submersion, the cokernel H p(G)

is trivial. Moreover the kernel of [G
p
H] is [A 1] . Hence the

conclusion follows from Theorem 5.1.

REMARK 5.4. Identifying the crossed module A 1 with the kernel of

G
p
H yields a canonical morphism of 2-groups : [A 1] [G H] . It

follows from the proof of Theorem 5.1 that the isomorphism H!([G
p
H])

S( [3])! is given by the composition

S( [3])! H!([A 1]) H!([G
p
H])

EXAMPLE 5.5. Let G be a compact Lie group. It is isomorphic to a

quotient of Z G by a central finite subgroup. Here G is the commutator

subgroup of G . Hence there is a map G Aut(G ) yielding a Lie 2-group

[G Aut(G )] through the action of Aut(G ) on G (see Section 7 below).

Theorem 5.1 implies that

H!([G Aut(G )]) S ( ) [3]
!

6. THE CASE OF A CONNECTED COMPACT COKERNEL

The results of Section 3 can be applied to a more general type of 2-groups

[G
i
H] , where G and H are Fréchet Lie groups (thus possibly infinite-

dimensional). See [3] for more details on Fréchet Lie 2-groups. In such a

case, instead of the de Rham cohomology, singular cohomology with real

coefficients can be used.
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We start from the following lemma.

LEMMA 6.1. Let G and H be Fréchet Lie groups. Assume that C

H i(G) is a connected compact Lie group, and Ker(i) is compact. Then the

third page L
! !

3 of the Leray spectral sequence (3.2) is concentrated in bidegree

(p 3q) , p 0 , q 0 , and

(6.1) L
p 3q
4 Hp(BC) Sq( [3])

Here BC is the classifying space of C H i(G) , and is the Lie algebra

of A Ker(i) .

Note that since S( [3]) is a graded commutative algebra 2 ) generated by

elements of degree 3, it lies in degree 3q (where 0 q dim( )).

Proof. Note that C is the cokernel [1 C] of [G
i
H] (see Section 2).

Since C H i(G) is connected, its classifying space BC is simply connected.

It follows that the L
i j
2 term of the Leray spectral sequence in Lemma 3.1 is

isomorphic to

L
i j
2 Hi(BC) H j([A 1])

as an algebra. By Proposition 4.2, H!([A 1]) S( [3])! is concentrated

in degree 3q (q 0). Since the differential d2 : L
i j
2 L

i 2 j 1
2 is a

derivation, it follows that d2 0 for degree reasons. Similarly, d3 0.

Thus L
! !

4 L
! !

3 L
! !

2 .

The (higher) differential d4 : L
i j
4 L

i 4 j 3
4 induces a transgression

homomorphism

(6.2) T : L
0 3
4

d4
L
4 0
4 H4(BC)

PROPOSITION 6.2. Under the same hypothesis as in Lemma 6.1, there is

a natural linear isomorphism

H!([G
i
H]) H!(BC) (Im T) S Ker(T)[3]

!

which is an algebra isomorphism if we assume, moreover, that C H i(G)

is simply connected.

Here BC is the classifying space of C and Im T is the ideal generated

by the image of T .

2 ) S( [3]) is in fact an exterior algebra, since it is generated by odd-degree generators.
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Proof. Since d4 : L
i j
4 L

i 4 j 3
4 is a derivation, it is uniquely determined

by T . From Lemma 6.1, it follows that

L
! !

5 H!(BC) (Im T) S Ker(T)[3]
!

For degree reasons, dr 0 for all r 5. Thus L
! !

5 L! ! as an algebra, and the

linear isomorphism H!([G
i
H]) H!(BC) (Im T) S Ker(T)[3]

!

follows

since our ground ring is a field. If C is furthermore simply connected, then

H!(BC) is a polynomial algebra with generators xi of even degree xi 2i ,

i 2. In particular, H4(BC) has no decomposable elements, thus L! ! is a

polynomial algebras with graded generators. It follows that L! ! H!([G
i
H])

as an algebra.

As an application, we compute below the cohomology of the string

2 -group String(G) (see [3]). Let G be a connected and simply connected

compact simple Lie group. There is a unique left invariant closed 3-form

on G which generates H3(G Z) Z . By transgression, the form

corresponds to a class [ ] H4(BG Z) , which determines the basic central

extension [22, 3]

1 S1 "G
p
"G 1

of the based (at identity) loop group "G of G . Associated to is a (homotopy

class of) map "BG G K(Z 3) N!([S
1 1]) which induces an

isomorphism on 3 . Let PG denote the space of paths f : [0 1] G starting

at the identity. The conjugation action of PG on "G lifts to "G . The string

2 -group (see [3]) is the Fréchet 2-group corresponding to the crossed module

String(G) : ["G
p
PG]

where p is the composition

p : "G
p
"G PG

By construction, Ker(p) S1 , PG p("G) G , and also 3(String(G)) 0

(as follows from [3, Theorem 3]). Recall that the cohomology H!(G) is the

exterior algebra on generators x1 xr , where xi is of degree 2ei 1 and

e1 er are the exponents of G . Note that we can choose x1 . Similarly,

H!(BG) is the polynomial algebra on generators y1 yr of degree yi 2ei ,

where y1 can be taken to be [ ] . To apply Proposition 6.2, it suffices to

compute the transgression homomorphism T : R H4(BG) R , where the

domain R is identified with the Lie algebra of S1 . Since [ ] H4(BG) is

obtained by the transgression from [ ] H3(G) H3(N"G) , it follows that
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T(1) is the generator of H4(BG) . Indeed, there is a commutative diagram of

Fréchet 2-group fibrations

[1 "G]

j

[1 PG]
ev

[1 G]

[S1 1] ["G
p
"G] String(G)

ev
[1 G]

where the right horizontal arrows are induced by ev : PG G , f f (1) and

the canonical inclusion [S1 1] ["G
p
"G] Ker(ev) is an equivalence

of Fréchet 2-groups. Thus the transgression map T is the composition T j

where T : H3(G) H3([1 "G]) H4([1 G]) H4(BG) is the

transgression map associated to the fibration [1 PG]
ev
[1 G] . Since

PG is contractible, T ( ) is a generator 3 ) of H4(BG) . It also follows from

the exact sequence (3.3) that j is an isomorphism on 3 , and so is

j : R H3([S1 1]) H3([1 "G]) H3(B"G) H3(G)

Hence T T j : R H4(BG) R is an isomorphism. Thus, we recover

the following result of Baez-Stevenson [5] :

PROPOSITION 6.3.

H!(String(G)) S(y2 yr) H!(BG) ([ ])

where the yi ’s are the generators of H
4(BG) .

7. THE CASE OF [G Aut (G)] AND [G Aut(G)]

Let G be a compact Lie group. There is a canonical morphism G
i
Aut(G)

given by inner automorphisms which is also a crossed module. Since inner

automorphisms are orientation-preserving, we also have a crossed module

G
i

Aut (G) , where Aut (G) is the group of orientation-preserving

automorphisms.

Now, assume G is a semi-simple Lie group. Then both Out(G) and

Out (G) are finite groups. Moreover, Ker(i) and Ker(i ) are also finite.

Thus, by Theorem 5.1, we obtain

3 ) as for the case of the “universal” fibration G EG BG
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PROPOSITION 7.1. Let G be a semi-simple Lie group. Then

Hn([G Aut(G)]) Hn([G Aut (G)])
0 if n 0 ,

R if n 0 .

For general compact Lie groups, the cohomology of [G
i
Aut (G)] and

[G
i
Aut (G)] can be computed with the help of spectral sequences.

THEOREM 7.2. If G is a compact Lie group, there are converging spectral

sequences of graded commutative algebras

E2
p q

Hp SL(n Z) S(( ) [3])q Hp q [G
i
Aut (G)](7.1)

E
p q
2 Hp GL(n Z) S(( ) [3])q Hp q [G

i
Aut(G)](7.2)

where n dim(( ) ) is the dimension of ( ) , and the SL(n Z) -action

(or GL(n Z) -action) on S(( ) [3])q is induced by the natural action on

( ) R
n .

In particular the spectral sequences are concentrated in bidegrees (p 3k)

(p and k 0 ) and

E2
0 q 0 3n

0 and E2
0 0

E2
0 3n

R(7.3)

E
0 q 0
2 0 and E

0 0
2 R(7.4)

Proof. Let be the Lie algebra of G and ( ) the Lie algebra of its

center Z(G) . Then ( ) ( ) . Since the kernel of G
i
Aut(G) is Z(G) ,

we have the fibration

(7.5) [Z(G) 1]
j
[G

i
Aut(G)] [1 Out(G)]

where j is the inclusion map. By Lemma 3.1, we have a spectral sequence

Hp [1 Out(G)] q([Z(G) 1]) Hp q [G
i
Aut(G)]

and similarly for [G
i

Aut (G)] . By Proposition 4.2, Hq([Z(G) 1])

S(( ) [3])q . Since G is compact, the group Out(G) is discrete. Thus, the

E
p q
2 and E2

p q
-terms of the spectral sequences become the group cohomology

groups Hp Out(G) S(( ) [3])q and Hp Out (G) S(( ) [3])q respectively.

Note that the center of G is stable under the action by any automorphism.

Hence, there are canonical group morphisms Out(G) Out(Z(G)) and

Out (G) Out (Z(G)) .
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First assume that G Z(G) G , where Z(G) S1 S1 is a torus

of dimension n and G [G G] is semi-simple. Then the canonical map

Out(G) Out(Z(G)) has an obvious section Out(Z(G)) Out(G) given by

idG . Since G is the commutator subgroup of G , it is also stable under

automorphisms. It follows that Out(G) GL(n Z) Out(G ) and Out (G)

SL(n Z) Out (G ) since Aut(Z(G)) GL(n Z) . We now need to find out the

Out(G) and Out (G) -actions on H!([Z(G) 1]) S(( ) [3])q . If t1 tn

are coordinates on Z(G) , then ( ) R dt1 R dtn and, according

to Proposition 4.2, the elements I(dt1) I(dtn) "1(S1 S1)

"3([Z(G) 1]) form a basis of H!([Z(G) 1]) . It follows that the Out(G)

and Out (G) -actions on H!([Z(G) 1]) reduce to the standard GL(n Z)

and SL(n Z) -actions on the vector space R dt1 R dtn . Since Out(G )

and Out (G ) are finite and act trivially on H!([Z(G) 1]) , the spectral

sequences (7.1) and (7.2) follow from the Künneth formula.

In general, since G is compact, it is isomorphic to the quotient G

(Z G ) $ , where Z is the connected component of the center Z(G) and

$ Z(G) G is finite central. Let G be the universal cover of G , which is

a compact Lie group, and p : Z G G be the covering of G given by the

composition Z G Z G G . Let f Aut(G) , then f p : Z G G

is a Lie group morphism. There is a unique lift

Z G
f

p

Z G

p

G
f

G

of the map f p : Z G G into a map f : Z G Z G preserving the

unit. Indeed, to see this, it is sufficient to check that f p ( 1(Z G ))

p ( 1(Z G )) . Clearly p ( 1(Z G )) p (Zn) is the non-torsion part of

1(G) . It is thus stable by any automorphism, therefore by f : 1(G) 1(G) .

Since p is a group morphism and f Aut(Z G ) , it follows that any

automorphism of G lifts uniquely into an automorphism of Z G . We are

thus back in the previous case.

By the above discussions, we already know that the action of SL(n Z)

and GL(n Z) on ( ) R
n is the standard one. Since the symmetric

algebra on odd generators is isomorphic to an exterior algebra, E
0 q
2 and

E2
0 q

are respectively isomorphic to %k
R
n GL(n Z)

(as a GL(n Z) -module)

and %k
R
n SL(n Z)

(as an SL(n Z) -module). Furthermore, if q 3k , E
0 q
2

and E2
0 q

vanish for degree reasons. In particular, the GL(n Z) -action is
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trivial for k 0, and for k n , it reduces to multiplication by the

determinant on %n
R
n

R . For 0 k n , SL(n Z) (and thus also

GL(n Z) ) has no fixed points in %k Rn besides 0. The last assertion

follows.

In general, the description of the group cohomology of GL(n Z) and

SL(n Z) with arbitrary coefficients for general n is still an open question

unless n 4 (see for instance [25, 17]).

COROLLARY 7.3. Let G be a compact Lie group. Assume that n

dim( ) 3 . Then

Hp([G Aut (G)])
R if p 0 3n

0 otherwise

and

Hp([G Aut(G)])
R if p 0

0 if p 0 .

Proof. If n 0, this reduces to Proposition 7.1. For n 1, GL(1 Z)

Z 2Z and SL(1 Z) 1 . The spectral sequences of Theorem 7.2 are

concentrated in bidegrees (0 0) and (0 3) , and hence collapse.

For n 2, SL(2 Z) is an amalgamated sum Z 4Z Z 2Z Z 6Z over a

tree [24]. For any SL(2 Z) -module M , the action of SL(2 Z) on this tree

yields an exact sequence

Hi(Z 4Z M) Hi(Z 6Z M) Hi(Z 2Z M) Hi 1(SL(2 Z) M)

Since the cohomology of a finite group acting on an R -vector space vanishes

in positive degrees, the only non trivial terms in the spectral sequence E2
p q

are those for p 0. It follows that the spectral sequence collapses and the

result is given by Equation (7.3) in Theorem 7.2. A similar computation gives

the result for GL(2 Z) SL(2 Z) Z 2Z .

For n 3, one uses the fundamental domain introduced by Soulé in [25].

Let Mq be the SL(3 Z) -module Sq(( ) [3]) %q(R3) (q 0 3).

Since M0 and M3 are isomorphic to R with trivial action, the groups

Hp 0(SL(3 Z) Mq) are trivial for q 0 3. Now assume that q 1 or q 2.

The group SL(3 Z) acts by conjugation on the projective space of symmetric

positive definite 3 3-matrices. Let D3 be the subset of such matrices whose

diagonal coefficients are all the same. The orbit X3 D3 SL(3 Z) of D3
under SL(3 Z) is a homotopically trivial triangulated space of dimension 3
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(see [25]). Let &i be the set of equivalence classes of cells of dimension i

modulo the SL(3 Z) -action. For &i , we denote by SL(3 Z) the

stabilizer of the cell and write Mq for Mq endowed with the induced

action of SL(3 Z) twisted by the orientation character SL(3 Z) 1 .

There is a spectral sequence E
i j
1 &i

H j SL(3 Z) Mq converging to

Hi j SL(3 Z) Mq (see [10], Section VII.7). The stabilizers SL(3 Z) are

described in [25], Theorem 2. They are all finite. Thus the spectral sequence

reduces to E
i 0
1 &i

Mq SL(3 Z)
. Direct inspection using Theorem 2

in [25] shows that E
i 1 0
1 0, E

3 0
1 Mq 4

and

E
2 0
2 Mq 4

MqA 3
MqB MqC 2

where A , B , C are respectively the matrices

0 1 0

1 0 0

0 0 1

1 0 0

0 0 1

0 1 0

1 0 0

0 0 1

0 1 0

The term d1 of the spectral sequences is described in [10], Section VII.8. In

our case, since the stabilizers of cells of dimension 3 are trivial, the differential

d1 is induced by the inclusions Mq SL(3 Z)
Mq for each 3-dimensional

cell &3 with a subface of dimension 2. It follows that E
i j
2 0.

Hence the result follows for [G Aut (G)] . The case for [G Aut(G)]

follows using the Künneth formula since GL(3 Z) SL(3 Z) Z 2Z .

REMARK 7.4. For n dim(( ) ) 4 , it should be possible to compute

explicitly H!([G Aut (G)]) and H!([G Aut(G)]) using Theorem 7.2 and

the techniques and results of [17]. For n 5 6, the results of [14] suggest that

the cohomology groups H!([G Aut (G)]) and H!([G Aut(G)]) should be

non trivial. For larger n , it seems a difficult question to describe the spectral

sequences of Theorem 7.2 explicitly.
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[19] MOERDIJK, I. and J. MRČUN. Introduction to Foliations and Lie Groupoids.
Cambridge Studies in Advanced Mathematics 91. Cambridge University
Press, Cambridge, 2003.

[20] MOERDIJK, I. and J.-A. SVENSSON. Algebraic classification of equivariant
homotopy 2-types. J. Pure Appl. Algebra 89 (1993), 187–216.

[21] NOOHI, B. Notes on 2-groupoids, 2-groups and crossed modules. Homology
Homotopy Appl. 9 (2007), 75–106.

[22] PRESSLEY, A. and G. SEGAL. Loop Groups. Oxford Mathematical Monographs.
Oxford Science Publications. The Clarendon Press, Oxford University
Press, New York, 1986.

[23] SEGAL, G. Classifying spaces and spectral sequences. Publ. Math. Inst. Hautes
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