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TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS

by Mark REEDER )

1. INTRODUCTION

An automorphism of a simple finite-dimensional complex Lie algebra

is called torsion, if has finite order in the group Aut( ) of all automorphisms

of . The torsion automorphisms of were classified by Victor Kac in [12],

as an application of his results on infinite-dimensional Lie algebras.

Those torsion automorphisms contained in the identity component G

Aut( ) are called inner ; they were classified in 1927 by Élie Cartan [6]

who used (and perhaps introduced) the affine Weyl group and the geometry

of alcoves for this purpose. This paper extends Cartan’s method to cover all

torsion automorphisms of , thereby recovering Kac’s classification directly

from the geometry of the affine Weyl group, without the use of infinite-

dimensional Lie algebras.

Kac’s classification can be roughly stated as follows. Each symmetry

of the Dynkin graph ( ) of extends to a certain kind of automorphism

of , which we again denote by , called a pinned automorphism. The pinned

automorphisms represent the cosets of G in Aut( ) , and the order of any

torsion element in G is divisible by the order f of . For a given pinned

automorphism of , Kac defines a certain vector (b0 b1 bk) of positive

integers. Here k is the number of -orbits on the nodes of ( ) . Then the

G -conjugacy classes of elements in G of order m are parametrized by Kac

coordinates. These are vectors (s0 s1 sk) of nonnegative relatively prime

integers si satisfying

f

k

i 0

bisi m
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For a more precise statement see Theorem 3.7. When 1, the integers bi

are the coefficients of the highest root in . For nontrivial , the bi’s are

closely related to the coefficients of the highest short root in the fixed-point

subalgebra .

The desire to understand torsion automorphisms and their Kac coordinates

in simple terms arose from the work of Benedict Gross and myself on adjoint

gamma factors of discrete Langlands parameters attached to representations of

p -adic groups [9]. Jean-Pierre Serre pointed us to Cartan’s paper, which led

to the approach to Kac’s classification presented here. A brief sketch of an

approach similar to this is given in [15]. However, the examples and details

worked out herein were useful to us, and I hope they will be useful to others.

Throughout, I make frequent use of Kostant’s theory of the principal PGL2

and of conjugacy results due to Steinberg. I give many examples of interesting

torsion classes and show how to compute their Kac coordinates. For the

classical Lie algebras, the torsion automorphisms can be classified using linear

algebra; see Section 4, where each simple Lie algebra is examined separately.

I include some facts about centers and component groups of centralizers that

may not have appeared in the literature, and the last section gives a twisted

analogue (Proposition 5.1) of a result of Kostant on principal elements. These

complements are used in [9].

Since [9] was written, Gross, Jiu-Kang Yu and I have found further

connections between torsion automorphisms of simple Lie algebras and the

representation theory of p -adic groups. These applications will not be explained

here, but they have informed some of the examples below.

ACKNOWLEDGEMENTS. Gross’ insights, requests and encouragement helped

form this paper. In particular, he suggested that the inner case be treated

in detail, before studying general torsion automorphisms. Yu and Stephen

DeBacker contributed many beneficial suggestions. The reviewers also made

valuable comments. It is a pleasure to thank all of these mathematicians for

their help.

2. INNER AUTOMORPHISMS

Reviewing Cartan’s classification [6] of inner automorphisms will serve

to introduce some of the structure in what follows, and as a template for

the general case. See [18] for an introduction, and [3] for foundations of the

theory of root systems as used below.
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2.1 BASIC STRUCTURE

Let Aut( ) be the group of automorphisms of a simple complex Lie

algebra . The identity component G Aut( ) is a simple complex algebraic

group with trivial center and Lie algebra . Let T B be a maximal torus

and a Borel subgroup of G and let \ be the set of roots of T in G , with

positive system \ given by the roots in B and let 6 1 \

be the corresponding simple roots, where is the rank of G .

Since G has trivial center, 6 is a Z -basis of the weight lattice X X (T)

of algebraic homomorphisms T C . We let

: X Y Z

be the natural pairing between X X (T) and the co-weight lattice Y X (T)

of algebraic homomorphisms C T . Let ˇ 1 ˇ be the Z -basis of

Y consisting of fundamental co-weights dual to 6 :

i ˇ j

1 if i j

0 if i j

The Weyl group W N T , where N is the normalizer of T in G , acts on

the real vector space

V R Y

as a group generated by reflections r1 r , where ri fixes the hyperplane

( i 0) pointwise. We regard V as the Lie algebra of the maximal compact

subtorus S T , via the exponential map

exp: V S

which is a surjective group homomorphism defined by the property :

(exp(x)) e2 i x for all \

where on the left side we view as a character of T restricted to S and on

the right side is a linear functional on V . Then

Y ker exp x V : x Z \

so exp induces an isomorphism

V Y S
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2.2 TORSION ELEMENTS IN G

An element s G is semisimple if s acts diagonalizably on . Any

semisimple element is G -conjugate to an element of T , and two elements

of T are G -conjugate if and only if they are W-conjugate. Thus, the set of

semisimple conjugacy classes in G is in bijection with the set of W-orbits

on T .

Any torsion element s G is semisimple and is G -conjugate to an element

of S ; we have s exp(x) , for some x VQ : Q Y . Our discussion so far

shows that two elements x x VQ give G -conjugate elements exp(x) and

exp(x ) if and only if x x are conjugate under the extended affine Weyl group

W : W Y

where Y acts on V by translations. This analysis by Cartan in [6, Part I] is

perhaps the first appearance of the extended affine Weyl group in the literature.

The (unextended) affine Weyl group is a normal subgroup W W which

can be described in two ways : First,

W W Z\̌

where Z\̌ Y is the lattice of co-roots of T in G . The group W is also

the group of affine transformations of V generated by the reflections in V

about the affine root hyperplanes with equations n , where \ and

n Z . In fact, W is generated by 1 such affine reflections chosen as

follows. An alcove is a connected component C of the set of points in V not

lying on any root hyperplane. A wall of C is a root hyperplane H meeting

the closure of C in an open subset of H . Each alcove has 1 walls. The

two key facts [3, V.3.2] are first, that W is a Coxeter group generated by

the 1 reflections about the walls of any fixed alcove, and second, that

W permutes the alcoves in V freely and transitively.

The basis 6 determines a particular alcove, as follows. Let 0 i 1 ai i

be the highest root with respect to 6 (here the ai are positive integers), let

0 be the affine linear function 1 0 on V and set a0 1, so that

i 0

ai i 1

Then the alcove determined by 6 is the intersection of half-spaces :

C x V : i x 0 for 0 i

It is convenient to set

ˇ 0 0 V
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Then we can write the closure C of C in barycentric coordinates as

C

i 0

xi ˇ i : xi 0 and

i 0

aixi 1

Thus, C is the convex hull of its vertices

i : a 1
i ˇ i for 0 i

Note that 0 ˇ 0 0 is one of the vertices of C .

Since the affine Weyl group W is transitive on alcoves, so is the extended

affine Weyl group W . Hence the closure C meets all W -orbits in V . This

means that each torsion element s G is conjugate to exp(x) for some

x C VQ . Unlike W , however, W does not act freely on the alcoves in V ,

so we must also take into account the alcove stabilizer

1 : W : C C

which is a complement to W in W :

(2.1) W 1 W

If x and x are in C , the elements exp(x) and exp(x ) are G -conjugate if

and only if x and x are conjugate under 1 . Pictures of C in the case 2,

along with fundamental domains for 1 in C , can be found in [6, p. 224].

See also Section 2.5 below.

Let x C and suppose exp(x) is a torsion element of order m . Since

exp(mx) 1 , there are nonnegative integers s1 s such that

(2.2) x
1

m
i 1

si ˇ i

Since exp(x) has exact order m , it follows that gcd m s1 s 1. As

x C , we have

0 0 x 1
1

m
i 0

aisi

so that the integer s0 : m i 1 aisi is 0 and s0 s1 s satisfy the

equation

(2.3)

i 0

aisi m

where a0 1, and gcd s0 s 1. We call the sequence (s0 s1 s )

the Kac coordinates of s . They determine the action of s on explicitly as

follows. If i 1 ci i \ and we set c s i 1 cisi , then s acts on
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the root space by the scalar c s , where exp(2 1 m) . Two such

elements s exp(x) and s exp(x ) are G -conjugate if and only if their Kac

coordinates (s0 s ) and (s0 s ) are conjugate under the permutation

action of 1 on 0 1 induced by its action on the vertices of C .

To visualize this action, it is convenient to regard (s0 s ) as a labelling

of the nodes of the extended Dynkin diagram ( ) . These nodes correspond

to the vertices of C and 1 acts on the labellings via symmetries of ( ) .

Thus, s and s are G -conjugate if and only if their labellings of ( ) are

conjugate under 1 .

To describe the group 1 , we first observe from (2.1) and the definitions

of W , W that 1 Y Z\̌ . In fact, each coset in Y Z\̌ contains a unique

co-weight ˇ i which is a vertex of C ; that is, we have ai 1 and i ˇ i .

Such co-weights are called minuscule. For each minuscule co-weight ˇ i there

is a unique element i 1 such that i 0 i . This correspondence is an

explicit group isomorphism Y Z\̌ 1 , and we have

1 i : ai 1

The group 1 also has a topological interpretation : The lattice Z\̌ is the co-

weight lattice X (T ) , where T is a maximal torus in the simply-connected

cover G of G . It follows that 1 Y Z\̌ is isomorphic to the fundamental

group 1(G) of G . For more details on the group 1 , see [3, VI.2.3].

The above discussion is essentially the classification of torsion inner

automorphisms given by Cartan in [6, Part I.4-6]. The minuscule vertices

appear in [6, Part I.7], where they are denoted by O1 Oh 1 , and are used

by Cartan to study 1(G) .

EXAMPLE 1. Let 1 , so that G PGL 1 is the quotient of GL 1

by its center, which consists of scalar matrices. Let [t1 t 1] be the image

in G of a diagonal matrix diag(t1 t2 t 1) GL 1 . All the coefficients

ai 1, so that an element in G of order m has Kac coordinates (s0 s ) ,

where the relatively prime non-negative integers si satisfy s0 s1 s m .

An element s G with these Kac coordinates is given by

(2.4) s [ s1 s2 s s2 s3 s s 1]

where exp(2 1 m) . One can see this from equation (2.2) as follows.

We have

s exp(x)

i 1

exp
si

m
ˇ i

The vector space V is the quotient of R 1 by the diagonal, and the
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fundamental co-weight ˇ i is the image in V of the vector (1 1 0 0) ,

with i entries equal to 1. On the line through ˇ i the exponential map is

given by

exp(t ˇ i) [e2 t 1 e2 t 1 1 1]

so that

exp
si

m
ˇ i [ si si 1 1]

where si appears i times; taking the product over i gives (2.4).

It may seem that s0 only appears in (2.4) indirectly, via the fact that has

order m s0 s . In fact s0 appears on equal footing with the other si’s.

To see this, one can check that

(2.5) [ s2 s3 s s0 s3 s4 s s0 s0 1]

[ s2 s3 s s3 s4 s 1 s1 s2 s ]

which is conjugate to the element s in (2.4). This reflects the fact that ( )

is an ( 1)-gon, on which the group 1 Z ( 1) acts by rotations.

EXAMPLE 2. Fortunately, it is not necessary to have explicit realizations of

co-weights or group elements to get concrete information about torsion classes

in G . We illustrate this by finding the classes of order three in G E6 . The

diagram ( 6) and the coefficients ai are given by

1 2 3 2 1

2

1

and the group 1 is cyclic of order three, acting on ( 6) by rotations. There

are five classes of elements of order three, with Kac coordinates

0 1 0 0 0

0

1

0 0 0 1 0

0

1

0 0 0 0 0

1

1

0 0 1 0 0

0

0

1 0 0 0 1

0

1

The first two labellings are conjugate by the reflection of the diagram about

the vertical axis. This means that the union of these distinct classes in G

forms a single class in Aut( 6) , which contains G with index two.

2.3 COMPUTING KAC COORDINATES

In practice, one often seeks the Kac coordinates of a semisimple element

s exp(x) of known order, for which x lies in V but not in C . For this we

have the following algorithm.
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Let s exp(x) have order m , where x V is arbitrary. Again there are

integers s1 s with gcd m s1 s 1 such that

x
1

m
i 1

si ˇ i

As before, we also define s0 by the equation i 0 aisi m , and we have

i x
si

m
for i 0 1

The difference now is that if x C , then some of the si’s will be negative.

The algorithm runs as follows. If all sj 0, then x is already in C .

Otherwise, select some sj 0 and replace (s0 s ) by (s0 s ) , where

(2.6) si si i ˇ j sj

Repeat the previous steps with the new coordinates (s0 s ) . Eventually one

arrives at coordinates si which are all 0 , and these are the Kac coordinates

of s .

To see that the algorithm works, we recall that the affine Weyl group W

is a Coxeter group generated by the reflections r0 r about the walls

of C ; these are given explicitly by the formulas

rj x x j x ˇ j

where ˇ j is the co-root corresponding to the gradient of the affine root j .

For W , let ( ) be the minimal length of a word expressing in the

generators ri . We have (rj ) ( ) if and only if 1
j is negative

on C . For any x V , set

d(x) ( )

where W is of minimal length such that the point y : 1x is

contained in C . Clearly d(x) 0 if and only if x C . Now the transformed

coordinates (s0 s ) given by (2.6) are those of rj x . If sj 0 then

0
sj

m
j x j y 1

j y

so that 1
j 0 on C . Hence (rj ) ( ) . Since y (rj )

1rj x , we

have

d(rjx) (rj ) ( ) d(x)

Hence the algorithm succeeds in ( ) steps.

Regard the vector (s0 s ) as a labelling of the affine Dynkin diagram

( ) by placing si on the i
th node of ( ) . We can implement the algorithm by
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manipulating the labelling, as illustrated in the following example. Let G G2 ,

where the coefficients ai are given by
1 2 3

. Consider the element t G

of order five with Kac diagram
0 1 1

. Let us compute the conjugacy

class of s t2 , which also has order five. We have t exp(y) , where

y 1
5
( ˇ 1 ˇ 2) C , and s exp(x) , where x 2y 1

5
(2 ˇ 1 2 ˇ 2) C .

Thus, s1 s2 2 and s0 5 (2 2 3 2) 5, so the algorithm runs as

5 2 2 r0 5 3 2 r1 2 3 1 r2 2 0 1

The final diagram gives the Kac coordinates of t2 , and shows that t2 is not

conjugate to t in G2 .

2.4 CENTRALIZERS

The centralizer CG(s) of a torsion element s G can be described in

terms of the geometry of the alcove C and the action on C by 1 . The

closure C is partitioned into a disjoint union of 2 1 1 facets :

C

J

CJ

indexed by the proper subsets J 0 . The facet CJ consists of the

points x C such that i x 0 for i J and i x 0 for i J . For

example, C C and for J 0 i we have CJ
i . Let

\J be the set of roots in \ which are constant on CJ . Then \J is a root

subsystem of \ of rank J , with basis 6J : j : j J . If x CJ VQ ,

the Kac coordinates (s0 s ) of the torsion automorphism s exp(x) have

sj 0 if and only if j J .

The subalgebra s of vectors in fixed by s is reductive, and depends

only on J . Namely,

(2.7) s

\J

The (unextended) Dynkin diagram ( s) of s is the subgraph of ( )

supported on J .

For example, the element s is regular if s . This occurs exactly when

x C , or equivalently, when all si 0. Taking all si 1 gives the unique

class of regular elements of minimal order

(2.8) h : a0 a1 a

the Coxeter number of G [3, VI.1.11]. We will return to this in Section 2.5.
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The identity component CG(s) of CG(s) is determined by
s , hence it

too depends only on J . Explicitly, the root datum of CG(s) is that of G but

with the roots \ and co-roots \̌ replaced by the roots \J and the co-roots

\̌J ˇ : \J , respectively.

However, the component group As of CG(s) is more sensitive : it depends

on the actual point x CJ . For example, if n then V is the set of

vectors in Rn whose coordinates sum to zero. The simple roots i xi xi 1

define the alcove

C (x1 xn) V : xn 1 x1 x2 xn

There is an open dense subset U C for which CG(s) T when s exp(U) .

On the other hand, at the barycenter x : 1
2n
(n 1 n 3 3 n 1 n) of C ,

the element s̄ exp x has order n and has Kac coordinates (1 1 1) . The

centralizer CG(s̄) of s̄ in G PGLn(C) is a semidirect product T ,

where N is a lift of a Coxeter element W and has order n .

Since it is the barycenter of C , the point x is fixed by the group 1

which is also cyclic of order n , generated by the affine transformation

1 : (x1 x2 xn) xn 1 1
n

x1
1
n

x2
1
n

xn 1
1
n

and we

can take to be the projection of 1 to W . This example is generalized in

the next section.

The relation between As and the geometry of C is governed by the alcove

stabilizer 1 , as follows.

PROPOSITION 2.1. For s exp(x) with x C , the component group As

of CG(s) is isomorphic to the stabilizer 1x 1 : x x .

Proof. Let Wx W : x x be the stabilizer of x in W . This

group is finite, and its normal subgroup Wx , generated by reflections about

hyperplanes through x , acts simply-transitively on the set of alcoves containing

x in their closure [3, V, Thms 1, 2]. It follows that Wx decomposes as

(2.9) Wx 1x Wx

On the other hand, let Ws be the stabilizer of s in W . The projection

: W W sends Wx to Ws . Since Wx is finite and Y is torsion-free, the

map is injective on Wx . If s s , then x x Y , so there is y Y

such that ty x x . It follows that restricts to an isomorphism Wx Ws .
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The image (Wx ) is the subgroup Ws Ws generated by reflections for

the roots in \s : \ : (s) 1 . Hence induces an isomorphism

(2.10) 1x Ws Ws

The group CG(s) is reductive, with maximal torus T and Borel subgroup

Bs B CG(s) . Put

Ns N CG(s) and Ns N CG(s)

Then Ws Ns T is the Weyl group of T in CG(s) [7, 3.5] and

(2.11) Ws Ws Ns Ns

Since CG(s) acts transitively on its Borel subgroups and Ns acts transitively

on the Borel subgroups of CG(s) containing T , it follows that the inclusion

Ns CG(s) gives an isomorphism

(2.12) Ns Ns As

Combining equations (2.10), (2.11) and (2.12), we get 1x As , as claimed.

Finally, since we have seen that 1 is abelian, it follows that As is abelian.

In the example for G E6 in Section 2.2, the first three classes have trivial

stabilizer in 1 , hence have connected centralizer in G , while the centralizers

of
0 0 1 0 0

0

0

and

1 0 0 0 1

0

1

have three components.

REMARKS. 1) The projection of 1 into W is the subgroup K of W

preserving the set 6 0 1 of simple roots augmented by

the lowest root, and 1x projects isomorphically onto the subgroup Ks of K

preserving the base 6 \s of \s . This group Ks is a complement to Ws

in Ws .

2) Recall that we can identify 1 with the fundamental group 1(G) of G .

From this point of view, the embedding As 1(G) can be seen as follows.

Let G G be the simply-connected covering of G , with kernel 1(G) .

Choose a lift G of every element CG(s) . Then the commutator

[ s ] induces a well-defined homomorphism As 1(G) which is

injective, since the centralizer of s in G is connected [21, 8.1].
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2.5 KAC COORDINATES OF PRINCIPAL ELEMENTS

The smallest simple Lie algebra is 2 , consisting of all 2 2 matrices of

trace zero, with bracket [A B] AB BA . In [14], Kostant showed that 2

plays a powerful role in the structure theory of an arbitrary simple complex Lie

algebra . There are finitely many embeddings of 2 in , up to conjugacy

by G Aut( ) . One class of embeddings is distinguished by its behavior

on Cartan subalgebras. Fix a Cartan subalgebra 0 of 2 . For example, we

could take 0 to be the diagonal matrices in 2 . Each embedding 2

sends 0 into a Cartan subalgebra of , and usually into infinitely many

such ’s. However, there is exactly one G -conjugacy class of embeddings

: 2 with the property that ( 0) is contained in a unique Cartan

subalgebra of .

This has the following implication on the level of groups. The auto-

morphism group of 2 is PGL2 , the quotient of GL2 by the scalar

matrices, which acts on 2 by conjugation. The above facts mean that

there is a unique conjugacy class of algebraic subgroups G0 G which

are isomorphic to PGL2 , with the property that any maximal torus T0

of G0 is contained in a unique maximal torus T of G . Such a sub-

group G0 is called a principal PGL2 in G . We say that an element

s G is a principal element if s lies in some principal PGL2 in G .

In this section we study the Kac coordinates of principal torsion elements

of G .

We can choose G0 , a principal PGL2 in G , along with a maximal torus

T0 in G0 , so that T is the unique maximal torus of G containing T0

and the simple roots 1 of T each restrict to the same root

of T0 in G0 . This means that T0 is the closed subgroup of T defined

by the equations 1 2 , and X (T0) is the subgroup of

X (T) generated by the co-weight ˇ X (T) defined by the conditions

i ˇ 1 for 1 i . In the line V0 : R X (T0) we have the

alcove

C0 r ˇ : 0 r 1 V0

However, only part of C0 is contained in C . Indeed, we have

0 r ˇ 1 r

i 1

ai 1 r(h 1)

where we recall from (2.8) that h is the Coxeter number of G . It follows

that r ˇ C if and only if r (h 1) 1 .
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Suppose s exp(r ˇ) G0 has finite order m 1. Then r n m for

relatively prime positive integers n m . For 1 i we then have

i(s) (s) exp(2 r 1)

If r (h 1) 1 , so that r ˇ C , the Kac coordinates of s are obtained as

follows.

Since

r ˇ
1

m
i 1

n ˇ i

we have s1 s2 s n . Then

m s0
i 1

n ai s0 n(h 1)

Hence the Kac coordinates of s exp(r ˇ) are

(2.13) (n nh m n n n) when r
n

m

1

h 1

We have x C if and only if r 1 (h 1) . For this inequality to hold, we

must then have m h .

If m h then n 1 and s is Kostant’s principal element, with Kac

coordinates (1 1 1) , having the smallest possible order h of a regular

torsion element in G [14]. We have s̄ exp(x) , where x ˇ h is the

unique point in the alcove C at which all simple affine roots take the same

value, namely 1 h (cf. [14, 8.6]). Kostant’s principal elements appeared in

Section 2.4 for G PGLn . For a twisted analogue of them, see Section 5

below.

If we continue on the path r ˇ for r 1 (h 1) , the Kac coordinates

become less obvious than those of (2.13) ; one must use the algorithm of

Section 2.3, for which the number of steps depends on r , to conjugate back

into C . We need only go up to r 1 2, since every torsion element of

G0 is conjugate to some exp(r ˇ) for rational r [0 1 2] . As we exit C at

r 1 (h 1) and proceed, we enter new alcoves, creating segments in each

alcove. Each of these segments is W -conjugate to a unique segment in C .

The resulting collection of segments in C forms the path of a billiard ball

with initial direction from 0 to ˇ .
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Pictures for SO5 and G2 are shown below. The dotted line consists of

points in C0 lying outside C and the points where the billiard path bounces off

a wall of C are labelled by their Kac coordinates. The faint lines intersecting

at Kostant’s principal element (111) are those with equations i 1 h , for

i 0 1 2. In the picture for SO5 we have continued out to ˇ , to show how

the symmetry r ˇ (1 r) ˇ by conjugation in G0 is transformed into the

nontrivial symmetry of the alcove C .

SO5

(111)

(011)

(101)

(110)

(010)

= ω̌2(001)
1

2
ρ̌

2

3
ρ̌

ω̌1

ω̌0 (α0 + 2α1 + α2 ≡ 1)

ρ̌

α
0 =

0

α
0 =

1

α
1

=
0

α
1

=
1

α
2

=
0

α
2

=
1

(001)

G2

(111)

(011) = 1

5
ρ̌

(101)

(110)

(201)

(010)

1

2
ρ̌

2

5
ρ̌

1

3
ρ̌

1

4
ρ̌

ω̌2

ω̌1

ω̌0 (α0 + 2α1 + 3α2 ≡ 1)

α
0 =

0

α
0 =

1

α
1

=
0

α
1

=
1

α
2
=

0

α
2

=
1

2.6 KAC COORDINATES AND REGULAR ELEMENTS IN THE WEYL GROUP

In the examples above, many of the interesting torsion classes have all of

their Kac coordinates si 0 1 . Such classes often come from the Weyl

group of G . For example, Kostant showed that his class of principal elements,

with all si 1, meets the normalizer N of T in a single N -conjugacy class

which projects to the class of Coxeter elements in W .
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Other classes in W arise similarly. Following Springer [20], we say that

an element W is regular if has an eigenvector in whose stabilizer in

W is trivial. For example, any power of a Coxeter element is regular. Using

Springer’s classification of regular elements, along with more recent results

of Panyushev [16], one can prove 1 )

PROPOSITION 2.2. Let W N T be a regular element of order m.

Then

1. has a representative N which has order m and is principal;

2. the G-conjugacy class of is uniquely determined by the properties

in 1. ;

3. the Kac coordinates of (which are well-defined, by 2.) have all

si 0 1 .

We call the principal lift of . For a given regular element , there

are often several ways to find the Kac coordinates of its principal lift . We

give just one method, which is not the most efficient, nor can we guarantee

that it always works, but it is fun.

As above, let m be the common order of and . A simple argument,

using the regularity of [20, Prop. 4.1], implies that permutes the

roots in \ in orbits of size m . Let S be a set of representatives for the

-orbits on \ . For each S , choose a root vector E and

let

Z : E E m 1 E

The set Z : S , along with a basis of , is a basis of , so we

have the dimension formula

(2.14) dim dim
\

m

On the other hand, one can tabulate all possible Kac coordinates for

elements of order m , and compute dimensions of centralizers in each

case.

1 ) Some, if not all of this proposition is known to experts, but I could not find complete
proofs in the literature. These will appear in forthcoming work of B. Gross, J.-K. Yu and the
author.
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Let us try this for E8 . Here \ 240, and the extended Dynkin diagram

( ) has labellings ai given by

1 2 3 4 5 6 4 2

3

There is exactly one regular class in W(E8) for each order m 1 2 3 4

5 6 8 10 12 15 20 24 30 (see [20, 5.4]). These are precisely the classes

in W(E8) with irreducible minimal polynomials on (cf. [17]) and each

nontrivial regular element has 0. For each of the m 1 on this list,

we have

dim
240

m

by equation (2.14). We search through the vectors (s0 s ) for which all

si 0 1 and i 0 aisi m . Each vector corresponds to an automorphism

G of order m and we calculate the dimension of the centralizer ,

using (2.7). Remarkably, we find in each case that

dim
240

m

with equality for just one vector (s0 s ) , which must then be the Kac

coordinates of the principal lift of .

These Kac coordinates have a deeper meaning. If we omit s0 and double

the remaining si’s, we obtain the weighted Dynkin diagram of another

embedding

: PGL2 G

(see [7] for background). This means that lies in this (PGL2) as well as

the principal PGL2 . The two PGL2’s are conjugate exactly when is the

Coxeter element. The results are tabulated below, using Carter’s notations [8]

and [7] for Weyl group elements and embeddings : PGL2 G , respectively.

The first four lines of this table appear in Springer [20, 9.11, 2] (who arrived

at them by completely different means). Those entries where s0 1 are

related to the map between nilpotent elements in and conjugacy classes

in W defined by Kazhdan and Lusztig (see [13] and [19]). S. DeBacker

informs me that the entries with s0 0 are related to a variant of the

Kazhdan-Lusztig map. A complete list of Kac coordinates for certain lifts

of all Weyl group elements (for E8 and some smaller groups) can be found

in [5].
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TABLE 1

Principal lifts of regular elements in W(E8)

Class of
m dim Kac coordinates of

Class of

W(E8) PGL2 G

E8 30 8
1 1 1 1 1 1 1 1

1
E8

E8(a1) 24 10
1 1 1 1 1 0 1 1

1
E8(a1)

E8(a2) 20 12
1 1 1 0 1 0 1 1

1
E8(a2)

E8(a5) 15 16
1 1 0 1 0 1 0 1

0
E8(a4)

E8(a3) 12 20
1 0 1 0 0 1 0 1

0
E8(a5)

E8(a6) 10 24
1 0 1 0 0 1 0 0

0
E8(a6)

D8(a3) 8 30
0 1 0 0 0 1 0 0

0
E8(b6)

E8(a8) 6 40
1 0 0 0 1 0 0 0

0
E8(a7)

2A4 5 48
0 0 0 0 1 0 0 0

0
E8(a7)

2D4(a1) 4 60
0 0 0 1 0 0 0 0

0
A4 A2

4A2 3 80
0 0 0 0 0 0 0 0

1
D4(a1) A2

8A1 2 120
0 0 0 0 0 0 0 1

0
2A2

3. SEMISIMPLE AUTOMORPHISMS

We come now to our main purpose, which is to extend Cartan’s analysis

of inner automorphisms to all torsion automorphisms of . Recall that we

have fixed a maximal torus and a Borel subgroup T B in G Aut( ) ,

and 6 1 is the set of simple roots of T in B .
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3.1 PINNED AUTOMORPHISMS

Choose a nonzero vector Xi in the root space i
, for each 1 i .

The triple

(T B Xi i 1)

is called a pinning (Fr. épinglage) and automorphisms of normalizing T B

and permuting Xi are called pinned automorphisms. The group Aut( )

of pinned automorphisms is finite and is a complement to G in Aut( ) :

(3.1) Aut( ) Aut( ) G

(See [4, VIII. 5.2].) A pinned automorphism can be viewed as a permutation

of 1 which gives a symmetry of the Dynkin graph ( ) of .

Conversely, for any permutation of 1 giving a symmetry of ( )

there is a unique pinned automorphism Aut( ) such that Xi X i

for all i . More precisely, for each i there exists Yi i
, such that the Lie

algebra is generated by Xi Yi : 1 i and

Xi X i Yi Y i

Thus, Aut( ) is isomorphic to the symmetry group of ( ) , hence has

order six when has type D4 , order two in types An Dn (n 5) and E6 , and

is trivial otherwise. The nontrivial pinned automorphisms and their fixed-point

subalgebras are tabulated as follows.

Type ( ) f ( )

2A2n 2n 1 2 2n 1

(n 1)

2A2n 1 2n 2 2n

(n 2)

2Dn 1 2n 2 2 2n 1

3D4 8 3 2

2E6 6 2 4

Fix now a pinned automorphism Aut( ) of order f and denote also

by the permutation of 1 which it induces. We have f 1 2 3 ,

and f 1 reduces to the inner case treated above. Let I be the set of orbits
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in 1 under . The fixed-point algebra is simple and is generated

by the elements

X

i

Xi Y

i

Yi for I

(see [10, X.5]).

LEMMA 3.1. For any Aut( ) , the fixed-point groups T and G

are connected and T is a maximal torus in G . If is nontrivial then G

is equal to the full automorphism group Aut( ) .

Proof. Since permutes the basis ˇ 1 ˇ of X (T) , it follows that

T is connected, of dimension equal to the number of -orbits on this basis.

Let G G be the simply-connected covering of G with kernel Z 1(G)

and let T be the pre-image of T in G . The set M i : ai 1 of

minuscule weights of T restricts bijectively to the character group of Z ,

so that the -invariant elements of M are the characters of Z (1 )Z .

It follows that the map

Z (1 )Z T (1 )T

induced by the inclusion Z T is injective. The connectedness of G now

follows from [21, 9.3, 9.5].

Since X1 X is a regular nilpotent element in contained in ,

there is a principal PGL2 in G contained in G . It follows that T contains

regular elements in G . Since the centralizer of a principal PGL2 in G is

trivial, it follows that G has trivial center.

The nodes of the Dynkin graph ( ) correspond to the -orbits on

1 and from the table above, we see that ( ) has trivial symmetry

group. Hence Aut( ) is connected and G Aut( ) .

3.2 CONJUGACY RESULTS

The first step in the classification of semisimple inner automorphisms was

the fact that T meets every semisimple conjugacy class in G . In the outer

case, we begin with an analogous result.

LEMMA 3.2. Every semisimple automorphism of is G-congugate to

one of the form s, where Aut( ) and s T .

Proof. From [21, Thm. 7.5], preserves a Borel subgroup of G and a

maximal torus therein. Replacing by a G -conjugate, we may assume that
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these are B and T , respectively. Let be the projection of in Aut( )

according to (3.1). So s , for some s G . Since preserves T B , the

element s normalizes T B . Hence s projects to an element of the Weyl

group of T which preserves the set of simple roots 6 determined by B . This

means that 1 , so s T .

Let p : T T (1 )T be the restriction to T of the natural projection

T T (1 )T . The kernel

ker p T (1 )T

is finite. Indeed, if f is the order of then the mapping t t (t) f 1(t)

sends (1 )T to 1 and sends every element of T to its f th power. It follows

that ker p is contained in the f -torsion subgroup of T , hence ker p is finite

of order dividing f . Since T and T (1 )T have the same dimension, it

follows that p is surjective. Hence there is t T such that

1(t)s t 1 T

Conjugating in Aut( ) , we have

t t 1 t s t 1 1(t)s t 1 T

as claimed.

Thus, any element of G is G -conjugate to one of the form s , with

s T . As a partial step towards torsion automorphisms, we will first restrict

s to lie in S , where S : exp(V) is the maximal compact subgroup of T .

The conjugation action of G on G induces actions of W and S on S ,

hence an action of W S on S .

LEMMA 3.3. If two elements of S are G-conjugate, then they are

conjugate under W S.

Proof. Suppose s s S and G are such that s 1 s . Writing

: 1( ) , this means that

s s

For the moment we care only that s s T . Following the argument in [1,

Lemma 6.5], we will show that s and s are conjugate under N T . Using

the Bruhat decomposition for G , there is a unique n N such that un ,

with u in the unipotent radical U of our -stable Borel subgroup B .
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We can replace by n . Indeed, we have

u n s s un

Writing both sides in the form UNU and comparing the parts in N on both

sides, we find that

(3.2) n s s n

This shows that n( s)n 1 s , as claimed, and also that the image of n in

W belongs to W . We have already remarked that every element W

has a representative ˙ N . Hence n ˙ t , for some t T , so s and s

are N T -conjugate, as claimed.

Now suppose s s S . Using the polar decomposition T S H , where

H (R 0) , we write t tcth , with tc S and th H . From equation (3.2)

we have

(s ) (tcth) s (tcth)
1 (tc t

1
c s) th t

1
h

Since both (s ) and tc t
1

c s belong to S , it follows that th th , and that

nc s s nc

where nc ˙ tc N S . Since the action of N on S factors through

N T W , the lemma is proved.

To study S -conjugacy on S , we linearize as follows. Our pinned auto-

morphism permutes the basis ˇ i of Y . Let

P f 1(1 f 1) End(V)

be the projection onto V and set

Y P Y

Then Y is a lattice in V , and contains the group Y of -invariants in Y

as a (generally proper) sublattice.

LEMMA 3.4. Let x x V . Then exp(x) and exp(x ) are S-conjugate

if and only if x x Y .

Proof. A straightforward calculation shows that

exp( ) exp(x) exp( ) exp(x )

for some V if and only if

x x [(1 )V Y] V
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We show that

(3.3) [(1 )V Y] V Y

Since P kills (1 )V and is the identity map on V , the left side of (3.3)

is contained in the right side. The reverse containment follows from the fact

that the polynomial

p(x) f 1(1 x x2 x f 1)

satisfies the differential equation p(x) (1 x)p (x) x f 1 .

The W -action on V extends to an affine action of the group

W : W Y

where y Y acts by the translation ty : x x y . Lemmas 3.3 and 3.4

combine to yield

LEMMA 3.5. Let x x V . Then exp(x) and exp(x ) are G-conjugate

if and only if x and x belong to the same W -orbit on V .

Since exp(x) is torsion if and only if x VQ : Q Y , Lemma 3.5

implies

COROLLARY 3.6. The map x exp(x) induces a bijection between

the set of W -orbits on VQ and the set of G-conjugacy classes of torsion

elements in G.

3.3 A FUNDAMENTAL DOMAIN FOR W IN V AND KAC COORDINATES

We shall use the geometry of the W -action on V to recover Kac’s

parametrization of the G -conjugacy classes of torsion elements in G .

Throughout this section it may help the reader to look ahead at Table 2

and Section 4, where the individual cases are treated in detail.

Recall that I denotes the set of orbits in 1 under the permutation

induced by the action of on the set 6 1 of simple roots. For

I , let be the unique element in the subgroup of W generated by the

reflections ri : i such that i : i i : i . Then W

is a Coxeter group with generators : I and V is the reflection
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representation of W (see [21]). The lattice Y has the Z -basis ˇ : I ,

where ˇ P ( ˇ i) for any i . That is,

ˇ
1

i

ˇ i

where denotes the cardinality of the -orbit . The action of W on V

is generated by the reflections and the translations by ˇ . As the notation

indicates, W is an extended affine Weyl group, of a root system \ defined

as follows. Say that two roots in \ are -equivalent if their restrictions

¯ and ¯ to V are positively proportional : ¯ r ¯ for some r 0.

A -equivalence class a \ can have one of two types :

I. a is a -orbit consisting of mutually orthogonal roots ;

II. a , occurring only in type 2A2n .

Let \ denote the set of -equivalence classes of roots in \ . For each

a \ , set

a :

a

¯ and \ : a : a \

Then \ is a reduced root system and W is its extended affine Weyl group.

Note that a is generally not the restriction to V of a root in a . If we

choose a as in the definitions of types I and II, i.e., so that ¯ is not

twice the restriction of another root in a , and set a ¯ , then a fa a ,

where

fa
a in type I

4 in type II

A base 6 of \ is obtained from the base 6 of \ as follows. Given a

-orbit I , let a \ denote the unique -equivalence class containing

i : i , and set

: a f : fa

Then 6 : : I is a base of \ ; we have ˇ 0 if

and

(3.4) ˇ
f 1 if a has type I ,

2 if a has type II

The equations a n , for a \ and n Z , give hyperplanes in V

and the complement of all these hyperplanes is a union of alcoves which

are permuted transitively by the group W W Y . Outside of 2A2n this
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follows from (3.4), which shows that the ˇ are the fundamental weights

for 6 . For 2A2n see Section 4.1.

Just as in the inner case, the base 6 determines an alcove C in V ,

as follows. Let 0 be the highest root of \ with respect to the base 6 .

We obtain positive integers c , for I , defined as

0

I

c

The integers c are found in Table 2 below. As in the inner case, we set

I : 0 I 0 : 1 0 c0 1

so that

I

c 1

on V , and our alcove is defined by

C : x V : x 0 I

Note that C is not equal to C V , in general. The set of vertices of C

is : I , where

0 ˇ 0 0 and 0 ˇ
1
ˇ for I

A point x C may be uniquely expressed in barycentric coordinates as

x

I

x with

I

x 1 and x 0 I

As in the inner case, any point in V is W -conjugate to a point in C and

two points in C are conjugate under W if and only if they are conjugate

under the alcove stabilizer

1 : W : C C

The action of each element 1 on C is given in barycentric coordinates

as a permutation of I , via the action of on the vertices of C .

We recover the Kac classification by taking a closer look at the vertices

0 ˇ
1
ˇ . From (3.4), we have

(3.5) 0 ˇ
f c

I claim that

(3.6) f divides f c for all I
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This is clear if f . Otherwise, we are not in type 2A2n and since f is a

prime, the orbit i is a singleton. Being the highest root of \ , 0 is

a long root, hence it is the sum of a -equivalence class (in fact a -orbit)

a0 1 f of cardinality f . From (3.5) we have

f c 0 ˇ 1 f ˇ i f 1 ˇ i

which is divisible by f , as claimed. If we set

f0 f

then (3.6) also holds for 0. Thus, we have integers

(3.7) b :
f c

f
for I , with b0 1

We can now state the Kac classification of torsion elements in G .

THEOREM 3.7. The G-conjugacy classes of torsion elements in G are

classified as follows.

1. Every torsion element in G is G-conjugate to one of the form

exp(x) , where x C VQ .

2. There are nonnegative integers s , indexed by I , such that

gcd s : I 1 , the order m of is given by

m f

I

b s

and x is given in barycentric coordinates as

x
f

m
I

b s

3. Two torsion automorphisms , with coordinates (s ) and (s ) , are

G-conjugate if and only if there is a permutation of I arising from 1

such that s s for all I .

Proof. The assertions in parts 1. and 3. are immediate from the above

discussion and Corollary 3.6. Since exp(x) and commute, the order m of

exp(x) is divisible by f and we have exp(mx) 1 . Hence there are

integers s1 s2 s such that

x
1

m
i 1

si ˇ i
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Since x is -fixed, each si depends only on the -orbit containing i ; we

write s : si for i , and we have

(3.8) x
1

m
I

s ˇ

Since x C , we have

1 0 x
1

m
I

s 0 ˇ
1

m
I

s c f
f

m
I

b s

We define a nonnegative integer s0 by

s0
m

f
I

b s

so that

f

I

b s m

If d divides s for all I , then d divides m f , so f divides m d and we

have
m d 1 exp mx d

implying that m d 1. Therefore d 1 and the integers s are relatively

prime.

From (3.8) and (3.5), the integers (s ) are related to the barycentric

coordinates (x ) of x by

s

m

x

0

x

c f

x

f b

or

x
f

m
b s

This shows that all s are nonnegative and completes the proof of part 2.

REMARK. The integers (s ) I are the Kac coordinates of (cf. [12,

Thm. 8.5]). The integers b are the labels of Kac’s twisted affine diagrams,

as we will see in the next section.

3.4 FIXED-POINT SUBALGEBRAS

In this section we determine the subalgebra fixed by a torsion

automorphism G , in terms of the geometry of the alcove C . The

first step is to compute the matrix of acting on . For each -equivalence
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class a \ , the direct sum

a

a

is preserved by , the root spaces being permuted. I claim that if a

has type I, then acts on a via the permutation matrix of an

fa -cycle. If fa 1, and we choose any nonzero X , then X X

is a basis of a permuted by . If a has type I with fa 1 then we

can find W and I such that , where 6 . By [21] we

can choose a lift n N of so that Ad(n) : is -equivariant. By

definition, the pinned automorphism fixes pointwise, so also fixes

pointwise, as claimed.

If a has type II, and we again choose any nonzero

X , then (X X [X X ]) is an ordered basis of a on which

has matrix

0 1 0
1 0 0
0 0 1

Now let s , where s T . The characteristic polynomial of on a

is given as follows. Recall from the previous section that we defined a to

be the shortest restriction to V of a root in a , and that we have

a fa a

Our matrix calculations show that

(3.9) det(t a)
t fa a(s)

fa if a has type I ,

(t2 a(s)
2)(t a(s)

2) if a has type II

In all cases, the roots of det(t a) are distinct and we have

det(1 a) 1 a(s)
fa 1 a(s)

If s exp(x) with x V this means that

(3.10) dim a

1 if a x Z

0 if a x Z

Thus, the integrality of a x determines when a is nonzero. However, the

root a is not the character of T on a . Indeed, if a x Z , the matrix

calculations above show that the line a affords the character a or 2 a , the

latter occurring if and only if a has type II and a x is odd.
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As we saw for 1, the closure

C x V : 0 I

is partitioned into a disjoint union of 2 I 1 facets :

C

J I

CJ

indexed by the subsets J I with J I . The facet CJ consists of the points

x C such that x 0 for J and x 0 for I J . For a

general root a \ , we have a x Z if and only if a x 1 0 1 .

Thus, we have proved :

PROPOSITION 3.8. If x CJ and exp(x) , then we have the root-

space decomposition

a

a

where the sum is over those -equivalence classes a \ for which

a x 1 0 1 . Each such a is a one-dimensional eigenspace for T ,

affording either the root a or 2 a , the latter occurring if and only if a has

type II and a x 1 .

The root 2 a appears only in the case
2A2n ; for more details in this case

see Section 4.1.

Taking x 0, Proposition 3.8 says that has root system

\ : a : a \ with base 6 : : I

where f 1 . If we set 0 f 1
0 , then

(3.11) 0

I

b

where the integers b c f f are the ones previously arrived at in (3.7).

For (G ) not of type 2A2n , the root 0 is the highest short root of \ . For
2A2n , 0 is twice the highest short root of \ (see 4.1). In all cases, we set

0 f 1
0 , and recall that b0 1, so that

I

b
1

f
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To complete the picture, we must also give the co-roots of \ . For every

-equivalence class a \ , the co-root ˇa is defined by

(3.12) ˇ
a

a

ˇ

which makes a
ˇ
a 2, and we set ˇ ˇ

a , for I . Then the reflection

W about the hyperplane 0 is given by

(3.13) x x x ˇ for all I

We also define ˇ
0 so that (3.13) also holds for 0. Recall that a0 is the

-equivalence class such that 0 a0 . Our
ˇ
0 will be a multiple of ˇ

a0 ,

where the latter has been defined in (3.12). To make (3.13) hold, we must

take

ˇ
0

1
2
ˇ
a0 in type 2A2n

ˇ
a0 in all other types

All of this data is displayed in the Kac diagram ( ) , which has nodes

indexed by I and labelled by the integers b , for I ; the number of

bonds between nodes is the integer

n : ˇ ˇ 0 1 2 3 4

We get n 4 only in type 2A2 (see Section 4.1), and we get n 3

only in type 3D4 (see 4.4). If n 2, then we may order so that
ˇ 1 and ˇ n . Then on the bonds we put an arrow

pointing towards , as in the following example :

means ˇ 1 ˇ 3

The Kac diagrams appear in the fourth column of Table 2. For any x C ,

deleting from ( ) the nodes for which x Z gives the Dynkin

diagram ( ) , by Proposition 3.8. We denote the node corresponding to 0

by ; deleting just this node gives the Dynkin diagram ( ) . Above each

node of ( ) , we give the integers b . These integers are denoted by Kac

as ai in [12, Chap. 8] ; he arrived at them, along with his diagrams ( ) ,

in a completely different way.
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TABLE 2

Root systems \ , \ and Kac diagrams ( )

c b

Type \ (\ -diagram) ( ) \ 1
f

2A2 C1
1

4

1 2
B1 1

2A2n Cn
2

2

2

2

2

2

1

4

1 2 2 2 2
Bn 1

(n 2)

2A2n 1 Bn
1

2

2

2

2

2

2

1

1 2

1

2 1
Cn 2

(n 3)

2Dn 1 Cn
2

1

2

1

2

1

1

2

1 1 1 1 1
Bn 2

(n 2)

3D4 G2
2

3

3

1

1 2 1
G2 1

2E6 F4
2

2

3

2

4

1

2

1

1 2 3 2 1
F4 1

On the left side of Table 2, we also give the unextended diagrams of the

root systems \ , along with the integers c and f above and below each

node, respectively. Recall that these numbers were used to compute the b ’s,

via the relation c f b f . The rightmost column of Table 2 gives the alcove

stabilizer 1 , discussed in Section 3.6 below.

3.5 COMPUTING KAC COORDINATES IN THE OUTER CASE

As we saw for 1, the subgroup W of W generated by the reflections

, for I , is the affine Weyl group of the root system \ , and the alcoves

in V are permuted simply transitively by W . From the formula

x x x ˇ for x V and I

we can express the action of W on V in terms of Kac coordinates, just as

we did in Section 2.3 : if x V has barycentric coordinates (s ) I , where

some of the s ’s may be negative, then x has barycentric coordinates

(s ) I , where

s s ˇ s

The algorithm for conjugating x into C runs just as in Section 2.3. Thus

the diagram ( ) contains instructions for finding the Kac coordinates of

the automorphism exp(x) , where x is any rational point in V .
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3.6 THE COMPONENT GROUP OF G

Let x C , with exp(x) as before. Lemma 3.8 determines

the connected centralizer (G ) up to isogeny, in terms of the facet CJ

containing x . As in case 1, the component group A of G depends

on the location of x in CJ , and is governed by the alcove stabilizer

1 W : C C

More precisely, we have :

LEMMA 3.9. If exp(x) , with x C , then A 1 x , where 1 x

is the stabilizer of x in 1 .

Proof. Let W N T be the subgroup of W whose elements can be

represented by -fixed elements of N . If n N , then (n) n modulo T .

Hence W is a subgroup of W . Let W x denote the stabilizer of x in W .

I claim that the projection : W W sends W x onto W and gives an

isomorphism

(3.14) W x W

If W is the projection of an element of W x then x x Y . By

equation (3.3), there are V and y Y such that

x x ( 1) y

Setting s exp(x) , t exp( ) , we have

(s) t 1 (t)s

By [21, 8.2 (4)] we may choose ˙ N such that ˙T . Then the element

n t ˙ belongs to N and nT . Thus, the projection (3.14) maps W x

into W . The argument is reversible, showing that (W x) W . Finally,

since the kernel of is torsion free and W x is finite, the map (3.14) is

injective, completing the proof of (3.14). With this in hand, the rest of the

argument is entirely similar to that of Proposition 2.1, and is left to the

reader.

REMARK. From Table 2, we see that for 1 the group G has at

most two components, is always connected in types 2A2n ,
3D4 and

2E6 , and

is disconnected in types 2A2n 1 and
2Dn 1 exactly when the Kac coordinates

(s ) I are fixed by the nontrivial symmetry of ( ) (cf. [21, 9.8]).
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3.7 THE CENTER OF G

Let exp(x) , with x contained in the facet CJ of C . The center

Z of G centralizes T T , hence is contained in T . Since G has

trivial center, the character group X (T ) is generated by restrictions of roots

of T . It follows that the character group of Z is

X (Z ) X (T ) Z\J Z6 Z6J

where 6J is the set of gradients of the affine roots for J . Since all

but at most one root of 6J are contained in 6 , the possible exception being

0 i I bi i , it follows that X (Z ) has rank equal to I J and the

torsion subgroup of X (Z ) is cyclic of order equal to the gcd b : I J .

For example, Z is connected if 0 J .

3.8 ISOLATED AUTOMORPHISMS

A semisimple automorphism Aut( ) is isolated if the fixed-point

subalgebra is semisimple. Such a is necessarily torsion, lest the Zariski-

closure of contain a nontrivial torus in the center of G . The previous

section shows that, for x C , the automorphism exp(x) is isolated

exactly when x is a vertex of C . Hence every isolated automorphism of

is conjugate to some

: exp( ) I

where 0
1
ˇ are the vertices of C (see Section 3.3). The order

m of is given by

m c f f b

From Section 3.7, the center of G is cyclic of order b , generated by
f exp( f ) . Equivalently, the center of G is generated by .

4. THE VARIOUS CASES

4.1 2A2n

Here 2n 1 . Instead of writing V as a quotient, as we did in Example 1

of Section 2.2, it is convenient now to express V as a cross-section of that

quotient :

V (x1 x2n 1) R2n 1 :

2n 1

i 1

xi 0
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We have Aut( ) PGL2n 1 with pinned automorphism of order two,

acting on V by

(x1 x2n 1) ( x2n 1 x1)

Hence

V (x1 xn 0 xn x1) : xi R

can be identified with Rn via the first n coordinates and we may take

I 1 2 n as the indexing set for the -orbits on 1 2 2n . The

lattice Y has basis ˇ i : 1 i n , where

ˇ i
1
2
(e1 e2 ei)

and e1 en is the standard basis of Rn . The simple roots i xi xi 1

on V restrict to V as

i

xi xi 1 for 1 i n

xn for i n

For 1 i n the -equivalence classes ai i 2n 1 i have type I and

an n n 1 n n 1 has type II, so we have fi 2 for 1 i n ,

fn 4 and

i

2 i 2(xi xi 1) for 1 i n

4 n 4xn for i n

The root system \ , with basis 6 1 n , has type Cn . The highest

root 0 is given by

0 2 1 2 2 2 n 1 n 4x1

and arises from the type-II equivalence class a0 0 0 0 0 , where

0 1 2 n x1 xn 1 . We have ci 0 ˇ i 2 for all i . It

follows that the alcove C V is defined by the inequalities

1
4

x1 x2 xn 0

and has vertices 0 0 and i
1
2
ˇ i for 1 i n . For 1 i n we have

bi 2ci 2 2 and

0 f 1
0 2x1

(which equals 2 1 if n 1). Thus, we get the diagrams ( ) in Table 2 :

1 2 2 2 2 2
if n 1
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and
1 2

if n 1. The group 1 is trivial, so every torsion element in

G is G -conjugate to a unique one of the form exp(x) with x C VQ .

The isolated automorphisms

i : exp( i)

have order

mi f bi
2 if i 0

4 if 1 i n

The fixed-point subalgebras are

i
2i 2(n i) 1

By Lemma 3.9 the fixed-point subgroups G i are connected. They have center

of order two, for 1 i n with trivial center for i 0. Indeed, we have

G i Sp2i SO2(n i) 1

To see this directly via linear algebra, let ( ) be the usual dot-product

on C2n 1 , let J be the matrix equal to one on the anti-diagonal and zero

elsewhere, and let si be a diagonal matrix with characteristic polynomial

(t2 1)i(t 1)2(n i) 1 . Then the bilinear form

u i : (siu J )

is orthogonal on the 1 eigenspace of si and symplectic on the sum of the

imaginary eigenspaces of si . The subgroup of GL2n 1 preserving i is

Sp2i O2(n i) 1 , whose image in PGL2n 1 is isomorphic to Sp2i SO2(n i) 1 .

4.2 2A2n 1 n 2

Here 2n and

V (x1 x2n) R2n :

2n

i 1

xi 0

We have Aut( ) PGL2n with pinned automorphism of order two,

acting on V by

(x1 x2n) ( x2n x1)

Hence

V (x1 xn xn x1) : xi R
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can be identified with Rn via the first n coordinates and we may take

I 1 2 n as the indexing set for the -orbits on 1 2 2n . The

lattice Y has basis ˇ i : 1 i n , where

ˇ i
1
2
(e1 e2 ei)

and e1 en is the standard basis of Rn . The simple roots i xi xi 1

on V restrict to V as

i

xi xi 1 for 1 i n

2xn for i n

All -equivalence classes have type I and are -orbits on the roots. We have

i

2 i 2(xi xi 1) for 1 i n

n 2xn for i n

The root system \ , with basis 6 1 n , has type Bn and the

highest root 0 is given by

0

n

i 1

ci i 1 2 2 2 n 1 2 n 2(x1 x2)

arising from the -orbit a0 x1 x2n 1 x2 x2n . It follows that the alcove

C V is defined by the inequalities

1
2

x2 x1 x2 xn 0

and has vertices

0 0 1 ˇ 1 i
1
2
ˇ i for 2 i n

We have 0 f 1
0 x1 x2 , so we get the diagram ( ) in Table 2 :

1 2

1

2 1

The group 1 has order two, and the nontrivial element 1 acts on V

by

(x1 x2 xn 1 xn) ( 1
2

x1 x2 xn 1 xn)

Hence 0 1 and gives the nontrivial symmetry of the diagram ( ) .

For 1 i n , the isolated automorphism

i : exp( i)



38 M. REEDER

has order

mi f bi
2 if i 1 or n

4 if 1 i n

We will ignore i 1, since 1 is conjugate to 0 . For 0 i n , i 1,

the fixed-point subalgebra is

i
2i 2(n i)

For i 0 the fixed-point subgroup G Sp2n I is connected with trivial

center. For 1 i n the fixed-point group G i has two components and has

center of order two. Indeed, we have

G i [O2i Sp2(n i)] I2n

To see this directly via linear algebra, let ( ) be the usual dot-product

on C2n , let J be the matrix equal to one on the anti-diagonal and zero

elsewhere, and let si be a diagonal matrix with characteristic polynomial

(t2 1)(n i)(t 1)2i . Then the bilinear form

u i : (siu J )

is orthogonal on the 1 eigenspace of si and symplectic on the sum of the

imaginary eigenspaces of si . The subgroup of GL2n preserving i is

O2i Sp2(n i) , which has kernel I2n when projected into PGL2n .

4.3 2Dn 1

Here 2n 2 and V Rn 1 . We have

Aut( ) PSO2n 2 O2n 2 I

with pinned automorphism of order two, acting on V by

(x1 xn xn 1) (x1 xn xn 1)

Hence

V (x1 xn 0) : xi R

can be identified with Rn via the first n coordinates and we may take

I 1 2 n as the indexing set for the -orbits on 1 2 n 1 .

The lattice Y has basis ˇ i : 1 i n , where

ˇ i

e1 ei if 1 i n

1
2
(e1 en) if i n



TORSION AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS 39

The simple roots

i xi xi 1 (1 i n) n 1 xn xn 1

on V restrict to V as

i

xi xi 1 for 1 i n

xn for i n

All -equivalence classes have type I, and are -orbits on the roots. We have

i
i xi xi 1 for 1 i n

2 n 2xn for i n

The root system \ , with basis 6 1 n , has type Cn and the

highest root 0 is given by

0

n

i 1

ci i 2 1 2 2 2 n 1 n 2x1

arising from the -orbit a0 x1 xn 1 x1 xn 1 . It follows that the alcove

C V is defined by the inequalities

1
2

x1 x2 xn 0

and has vertices

0 0 i
1
2
(e1 ei) for 1 i n

We have 0 f 1
0 x1 , so we get the diagram ( ) in Table 2 :

1 1 1 1 1

The group 1 has order two, and the nontrivial element 1 acts on V

by

(x1 x2 xn 1 xn) ( 1
2

xn
1
2

xn 1
1
2

x2
1
2

x1)

Hence i n i and gives the nontrivial symmetry of the diagram

( ) . For 1 i n , the isolated automorphism

i : exp( i)

has order

mi f bi 2 for 1 i n
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The fixed-point subalgebra is

i
2(n i) 1 2i 1

Since all bi 1, the fixed-point subgroup G i has trivial center for all i

and is connected unless n is even and i n 2. In that case, there are two

components. More precisely, for i n 2 we have

G i SO2(n i) 1 SO2i 1

and for n 2k we have

G k 2 [SO2k 1 SO2k 1]

where the outer involution switches the two components.

To see this directly via linear algebra, note that the automorphism i

is conjugation by an element of order two in O2n 2 having characteristic

polynomial (t 1)2(n i) 1(t 1)2i 1 .

4.4 3D4

Here 8 has Aut( ) S3 PSO8 and we take S3 of order

three. Denote the set of simple roots of D4 by 6 1 2 3 4 , where

2 corresponds to the branch node, and let ˇ i be the fundamental co-weight

dual to i . We write I 0 1 2 , where “1” and “2” stand for the -orbits

1 3 4 and 2 , respectively. The equivalence classes a and corresponding

restricted roots a \ and roots a \ are as follows :

a a a

1

3 1 1 3 1

4

2 2 2 2

2 1

2 3 1 2 1 3 2 3( 1 2)

2 4

2 3 4

2 4 1 2 1 2 0 2 1 3 2 0 3(2 1 2)

2 1 3

1 2 3 4 3 1 2 1 2 3 1 2

1 2 2 3 4 3 1 2 2 1 2 2 3 1 2 2
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From Table 2 we have the Kac diagram ( ) , with label b above the

node :
1
0

2
1

1
2

which shows that the isolated automorphisms exp( ) , of order

m c f f b , where are the vertices of C , have semisimple fixed-

point groups G of types G2 A1 A1 A2 , for 0 1 2 respectively. More

precise information, including the exact isomorphism type of G , is given

in the next table.

f c b m ˇ G

0 3 1 1 3 0 V 0 V G2

1 3 2 2 6 1
3
( ˇ 1 ˇ 3 ˇ 4)

1
6
( ˇ 1 ˇ 3 ˇ 4) SO4

2 1 3 1 3 ˇ 2
1
3
ˇ 2 PGL3

Since 1 1, Lemma 3.9 shows that each G is connected. From

Section 3.7, the center of G is trivial for 0 2. This gives G G2 and

G 2 PGL3 . Since 3.7 also shows that the center of G 1 has order two, we

can pin down the isomorphism type of G 1 as follows. Its simply-connected

cover G 1
sc SL2 SL2 . The weight 1 appears in and

1 0 1 2 1

Hence the center of each SL2 factor is nontrivial on , so the kernel of the

covering G 1
sc G 1 must be the diagonal embedding 6 2 of 2 1

into the center of G 1
sc . Thus, we find that G

1 SO4 .

With more work, one can also see this by decomposing 8 under G 1 .

Let Symm be the irreducible representation of SL2 on the m
th symmetric power

of C2 and write Symm n : Symm Symn for the irreducible representations

of SL2 SL2 . For each -orbit a we compute the polynomial

det(t 1 a) t a e2 i a 1

as in (3.9). This leads to the decomposition of the representation of G 1 on

the 1 -eigenspace ( ) for each sixth root of unity , as follows :

(4.1)
(1) Sym2 0 Sym0 2 ( 1) Sym3 1

(e2 i 3) (e4 i 3) Sym0 2 (e i 3) (e5 i 3) Sym1 1

The parity of m n for the various Symm n appearing in and the fact that

G 1 is faithful on , confirm that G 1 SO(4) .
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4.5 EXAMPLE : 2E6

We label the E6 Dynkin graph as : 1 2 3

4

5 6 , so that the

-orbits of simple roots are

a1 1 6 a2 2 5 a3 3 a4 4

and

1 2 1 2 2 2 3 3 4 4

The highest root of \ is 0 a0 , where

a0 1 2 2 2 3 4 5 6 1 2 2 3 4 2 5 6

so that

0 2 1 3 2 4 3 2 4

and therefore

0 2 1 3 2 2 3 4

giving the Kac diagram from Table 2, with label b above the node :

1
0

2
1

3
2

2
3

1
4

Since acts by inversion on 1 Z 3, we have 1 1, so Lemma 3.9

shows that each G is connected for all . From Section 3.7, the center

of G is trivial for 0 4. This gives G F4 and G 4 PSp8 . The

remaining centers have orders b 2 3 2, for 1 2 3 respectively. We can

pin down the isomorphism types as we did for 3D4 , by computing i
ˇ
i 1 ,

to arrive at the table below, where 6 n denotes a diagonal embedding of the

group of n th roots of unity into the center of a product of simply connected

groups.

f c b m ˇ G

0 1 1 1 2 0 V 0 V F4

1 2 2 2 4 1
2
( ˇ 1 ˇ 6)

1
4
( ˇ 1 ˇ 6) [SL2 Sp6] 6 2

2 2 3 3 6 1
2
( ˇ 2 ˇ 5)

1
6
( ˇ 2 ˇ 5) [SL3 SL3] 6 3

3 1 4 2 4 ˇ 3
1
4
ˇ 3 [SL4 SL2] 6 2

4 1 2 1 2 ˇ 4
1
2
ˇ 4 PSp8
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5. TWISTED COXETER ELEMENTS

We close with a twisted analogue of Kostant’s result on principal elements,

mentioned in Section 2.5. Let W be the product, taken in any order,

of a set of representatives for the -orbits on the set ri : 1 i

of simple reflections in W . The element W is called a -twisted

Coxeter element [20]. Such elements form a single W-conjugacy class in W ,

independent of the choice of representatives or the order in the product.

The order h of is the -twisted Coxeter number. By construction, the

length ( ) is the rank of G . These are tabulated below, along with

the sum ht( 0) of the labels of the diagrams ( ) , and the degrees of

the basic W-invariant polynomials affording a primitive f th root of unity as

-eigenvalue.

Type ( ) \ h ht( 0) f -degrees

2A2
1 2

B1 6 3 3

2A2n
1 2 2 2 2

Bn 4n 2 2n 1 3 5 2n 1
(n 2)

2A2n 1

1 2

1

2 1
Cn 4n 2 2n 1 3 5 2n 1

(n 3)

2Dn 1

1 1 1 1 1
Bn 2n 2 n 1 n 1

(n 2)

3D4
1 2 1

G2 12 4 4 4

2E6
1 2 3 2 1

F4 18 9 5 9

B. Gross pointed out to me that h f ht( 0) , meaning that a torsion

automorphism G with Kac coordinates s 1 for all I has order

h . In fact, the table shows that twisted Coxeter numbers have the properties :

h f ht( 0)
\

f largest f -degree

generalizing other well-known properties of ordinary Coxeter numbers. This

indicates that might be a lift to Aut(G) of a twisted Coxeter element. We

will prove that this is the case :
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PROPOSITION 5.1. Let G be a torsion automorphism with Kac

coordinates s 1 for all I . Then preserves a Cartan subalgebra of

and acts there via a -twisted Coxeter element.

For 1 this is Kostant’s result, proved in [14], and mentioned in

Section 2.5 above. We will use some of Kostant’s arguments in what follows,

but instead of his theory of cyclic elements, we will invoke the classification

of torsion automorphisms. The main point is the following lemma, which is

also used in [9] :

LEMMA 5.2. Let N be a torsion automorphism of of order m,

let L denote the number of -orbits on the set \ of roots of T in . Then

(5.1) dim dim L

and equality implies the following :

1. is abelian and 0 , so that dim L ;

2. the projection of to W has the same order m as ;

3. m h , with equality if and only if has all Kac coordinates s 1 .

Proof. Partition \ \1 \L into -orbits of size ni \i and

let i be the span of the root vectors X for \i . Then

L

i 1

i

Since ni fixes every root in \i , it acts on i as scalar multiplication by

some zi C and we have

dim i

1 if zi 1

0 if zi 1

On the other hand, since G , the subalgebra is G -conjugate to a

Cartan subalgebra of . It follows that

dim dim dim i : zi 1 dim L

If equality holds at both steps, then and are G -conjugate and zi 1

for all 1 i L . Hence is abelian and

L

i 1

CXi
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where Xi is a nonzero vector in i . If H then the value i H is

constant for \i , and [H Xi] iXi . But since is abelian, we have all

i 0, so H 0 for all \ , meaning that H 0. Hence 0 and

assertion 1 holds. Moreover, since is abelian it has empty root-system, so

the Kac coordinates s of are all non-zero and the order m of satisfies

the inequality

m f

I

b s f ht( 0) h

with equality if and only if all s 1. Assertion 3 is proved. The projection

of to W has order equal to the least common multiple n of n1 nL

and n I on . If zi 1 for all i , then n I on i for all i , so n m ,

completing the proof of the lemma.

Next, following Kostant, we have an inequality in the reverse direction.

Assume now that 0. Let N \ : \ . Then

N ( ) , where is the projection of to W , and ( ) is the

Coxeter length of with respect to the base 6 . For each i , the intersection

\i N is nonempty. For otherwise, all roots in \i would have the same sign,

so their sum would be non-zero and -invariant, contradicting our assumption

that 0 . Therefore, we have

(5.2) ( )

L

i 1

\i N L

with equality if and only if \i N 1 for all i .

We now prove Proposition 5.1, by computing the Kac coordinates of a lift

N of a twisted Coxeter element in W . From [20, 7.4 (i)] we have

that 0 . By the construction of , we have ( ) dim . From (5.2)

we have dim L . Hence we have equality in Lemma 5.2, so and

have the same order, namely h , and s 1 for all . Since there is a unique

torsion class in G with these Kac coordinates, this proves Proposition 5.1.
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