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UNSOLVABLE PROBLEMS

ABOUT HIGHER-DIMENSIONAL KNOTS AND RELATED GROUPS

by F. GONZÁLEZ-ACUÑA, C. MCA. GORDON and J. SIMON

Dedicated to the memory of Michel Kervaire

1. INTRODUCTION

In the present paper we consider the classes of groups 0 , 1 , 2 ,

3 , , and (each properly containing the preceding one) related

to codimension 2 smooth embeddings of manifolds. n is the class of

fundamental groups of complements of n -spheres in Sn 2 ; (resp. )

is the class of groups of complements of orientable, closed surfaces in S4

(resp. in a 1-connected 4-manifold, in a 4-manifold). In fact, is the class of

all finitely presented groups, and 0 contains only the infinite cyclic group.

We are interested in the problem of recognizing when a group in one of these

classes belongs to a smaller class. In general, this is an unsolvable problem.

THEOREM 1.1. Let and be members of 0 1 2 3

such that and 3 . Then there does not exist an algorithm that

can decide, given a finite presentation of a group G in , whether or not G

is in .

For 1 , 0 one can prove, using Haken’s theorem [Hak],

that such an algorithm exists. We conjecture that Theorem 1.1 also holds for

2 ; we show that this is true if there is a group in 2 with unsolvable

word problem.
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The case 3 and 0 of Theorem 1.1 implies that the

isomorphism problem for 3 and the other three classes containing it is

unsolvable. Conjecturally this should hold also for 2 .

Though we do not know whether 2-knot groups with unsolvable word

problem exist, we prove (Corollary 3.5) that there are 3-knot groups with

unsolvable word problem. This is a consequence of Theorem 3.6 which states

that every finitely presented group embeds in a 3-knot group.

We often use methods from [Gor2], in which, in fact, the case

( ) ( 3) of Theorem 1.1 is proved. The cases ( ) ( i) ,

i 0 1, actually follow from [R1, Theorem 1.1] and the fact that the groups

of 1 are torsion free [P] ; they were known to Baumslag and Fox (see [St]).

It is also proved in [Gor2] that the problem of deciding if the second

homology of a finitely presented group G is trivial is unsolvable. The case

( ) ( 3) of our theorem actually states that one cannot decide if a

group in has trivial second homology.

We show (Theorem 5.1) that, in general, problems concerning the compu-

tation of the integral homology of finitely presented groups are unsolvable. We

also prove (Theorems 5.6 and 5.8) incomputability results about the Whitehead

groups Wh0(G) and Wh1(G) , and Wall’s surgery groups Ln(G) .

In the last two sections we prove a geometric unsolvability result : If

n contains a group with unsolvable word problem then there is no algorithm

which decides whether or not an n -sphere in Sn 2 is unknotted. As we

mentioned above, n contains groups with unsolvable word problem if n 3 ;

it follows that no algorithm to decide whether n -knots are trivial exists if

n 3. This result has been proved by Nabutovsky and Weinberger [NW]. In

contrast, Haken’s classical result [Hak] asserts that if n 1 such an algorithm

exists.

In Section 2 we define the various classes of knots being considered and

give characterizations of the corresponding classes of groups. In Section 3

we give a particular way of effectively embedding an arbitrary group in

a perfect group which will be useful in subsequent constructions. We then

prove that some 3-knot groups are universal, that is, contain copies of every

finitely presented group and, therefore, have unsolvable word problem. Also

in Section 3 we prove Theorem 1.1 except for the case ( ) ( ) .

We do this by using what we call an ( ) -construction to show that the

solvability of the problem in question would imply the decidability of the

triviality problem for finitely presented groups.

In Section 4 we do the remaining case ( ) ( ) ; here the proof

is based on the existence of finitely presented groups with unsolvable word
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problem. In Section 5 we show that problems dealing with the homology,

Whitehead groups and surgery groups of finitely presented groups are, in

general, unsolvable. In Section 6 we give a recursive enumeration of n -knots ;

this is used in Section 7 where we derive the undecidability of the knotting

problem for n -spheres from the existence of groups in n with unsolvable

word problem. As we mentioned above we do not know if such groups exist

in 2 .

ACKNOWLEDGEMENTS. The first-named author would like to thank Jon

Simon, Dennis Roseman and the University of Iowa for their kind hospitality

when he was a Visiting Professor ; part of the present work was developed

there.

2. CLASSES OF KNOT GROUPS

In this section we define the classes of groups we are interested in. We

will be working in the PL category, and all embeddings will be locally flat.

An n-knot is an n -sphere Yn embedded in the (n 2)-sphere Sn 2 ; the

fundamental group of its complement, 1(S
n 2 Yn) , is called the group of

the n -knot.

Two n -knots (Sn 2 Yn1) , (S
n 2 Yn2) are equivalent if there is a PL-

homeomorphism from Sn 2 to Sn 2 mapping Yn1 onto Yn2 . An n-knot type

is an equivalence class of n -knots.

An n -knot (Sn 2 Yn) is trivial if there is an (n 1)-disk Dn 1 in Sn 2

such that Dn 1 Yn .

For n 0 we define n to be the class of groups of n -knots. It is well

known (see [Ar2], [Hi], [Fa], [Fo], [Ke1], [Z]) that Z 0 1 2

3 n for n 3.

Define n (resp. n ) to be the class of fundamental groups of com-

plements of closed orientable n -manifolds embedded in Sn 2 (resp. in a

1-connected (n 2)-manifold). One has 1 1 1 by the 3-dimensional

Poincaré Conjecture. Also, if n 2, 2 n (see [Si]) and 2 n , so we

set 2 and 2 . In fact is the class of groups of complements

of a 2-sphere embedded in a manifold of the form S2 S2 # # S2 S2

(see [Gon1]). Let be the class of all finitely presented groups.
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Kervaire [Ke1] has given the following “intrinsic” (i.e. not involving

presentations) group-theoretic characterization of 3 . The symbol t denotes

the normal closure of t .

THEOREM 2.1 (Kervaire). 3 G : H1(G) Z , H2(G) 0 and

there exists t G such that t G .

Also it is easy to see that

G : there exists t G such that t G

We have

3

The fact that the inclusions and are proper is obvious. The

existence of groups G with H2(G) 0 [BMS], [Gor1], [Li], [M] shows

that the inclusion 3 is also proper.

Before giving a group-theoretic characterization of the class we recall

the definition of the Pontrjagin product of two commuting elements of a

group. Suppose a b G and [a b] 1 . Then the Pontrjagin product of a

and b , which we denote by a b , is the image of the canonical generator of

H2(Z Z) under H2(Z Z)
( a b)

H2(G) , where a b : Z Z G is the

homomorphism such that a b(1 0) a and a b(0 1) b . If t G and Ct

is the centralizer of t in G , then we write t Ct t c : c Ct .

Notice that if Ct is cyclic then t Ct 0 because ( t c) factors through

the trivial group H2(Ct) .

The following characterization of the groups in is a slight reformulation

of a theorem of Simon [Si], using a remark in [BT].

THEOREM 2.2 (Simon). G : H1(G) Z and there exists t G

such that t G and t Ct H2(G) .

We now give characterizations using presentations. A Wirtinger presentation

is a finite presentation x1 xm : r1 rn such that each relator rk is

of the form x 1
i

1xj . The following holds (see [Si]) :

THEOREM 2.3. G : H1G Z and G has a Wirtinger

presentation .

In [Ar1] Artin gave a characterization of 1-knot groups using presentations.
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THEOREM 2.4 (Artin). A group belongs to 1 if and only if it has a

presentation x1 xn : x
1

j j 1 j n such that

(1) for j 1 n, j is conjugate to x ( j) in the free group F generated

by x1 xn ,

(2)
n

j 1 j
n

j 1 xj in F , and

(3) is the permutation (1 2 n) .

There are also characterizations of 2-knot groups (see [Gon2] and [Ka]) :

THEOREM 2.5 (González-Acuña). A group belongs to 2 if and only if

it has a presentation of the form

x1 xn : x
1

2i 1x2i x 1
j j 1 i h 1 j n

satisfying (1) and (2) above and also

(3) the permutations and
h

i 1(2i 1 2i) generate a transitive group of

permutations of 1 2 n ;

(4) x1 xn : x
1

j j 1 j n and x1 xn : x
1

j j 1 j n

present free groups, where

j

xj 1 j 1 x
1

j 1 if j is odd and j 2h

j 1 if j is even and j 2h

j if j 2h .

We recall that a set S is recursively enumerable if there is an algorithm

(effective procedure) that lists the elements of S . For example it is clear that

the set of all finite presentations of groups is recursively enumerable. If S is

recursively enumerable, a subset R S is recursive if both R and S R are

recursively enumerable; equivalently, there is an algorithm to decide whether

or not a given element of S belongs to R . Clearly the set of presentations

in Theorem 2.4 is a recursive subset of the set of finite presentations and, as

explained in [Gon2], so is the set of presentations in Theorem 2.5.

If , let P( ) denote the set of all finite presentations of members

of . In order for the decision problem for in Theorem 1.1 to be

well-posed, it is necessary that the corresponding set of presentations P( )

be recursively enumerable. We now show that if is 0 1 2 3 or

then P( ) is recursively enumerable.
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Let be the finite presentation x1 xm : r1 rn . An identity in

is a t -tuple (p1 pt) where each pi is a conjugate, in the free group

F on x1 xm , of an element of r1 r
1

1 rn r
1

n and p1 pt 1

in F .

If K is the standard 2-complex associated to (well-defined up to

homotopy equivalence) and is an identity in , then there is an associated

map f of an oriented 2-sphere S2 into K (for details see [LS, p. 157,

150 and 151]) ; denote by [ ] the image under f : H2(S
2) H2(K ) of the

canonical generator of H2(S
2) . If 1 s are finitely many identities in

x1 xm : r1 rn we will say that x1 xm : r1 rn ; 1 s

is a presentation with identities. If is a presentation, will denote the

group presented by .

LEMMA 2.6. Let be a recursively enumerable set of finite presentations.

Then : H2( ) 0 is recursively enumerable.

Proof. There is a recursive enumeration of all the presentations

with identities x1 xm : r1 rn ; 1 s such that and

[ 1] [ s] generate H2(K ) , where x1 xm : r1 rn .

Notice that if x1 xm : r1 rn ; 1 s is in and

x1 xm : r1 rn then H2( ) 0 since every element of H2(K )

is spherical. Conversely if H2( ) 0 where x1 xm : r1 rn
then x1 xm : r1 rn ; 1 s is in for some choice of identities

1 s in .

Hence, if we strike out the identities in and eliminate repetitions we

obtain a list of all the finite presentations such that H2( ) 0 .

LEMMA 2.7. Let be a recursively enumerable set of finite presentations.

Let be the set of finite presentations such that for some

. Then is recursively enumerable.

Proof. Let 1 2 3 be a recursive enumeration of the elements

of . Using Tietze’s Theorem one can give, for any i , a recursive enumeration

i1 i2 i3 of all finite presentations defining the same group as i .

Hence, from ij , i j N one obtains a recursive enumeration of .

We use the notation of Lemma 2.7 in the proof of the following theorem.

THEOREM 2.8. Let be one of the classes 0 1 2 3 . Then

P( ) is recursively enumerable.
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Proof. (1) For 0 , take x : in Lemma 2.7.

(2) 1 : By [Ar1, Satz 10] (see, for example, [N, Theorem 9.2.2])

there is a recursive set of finite presentations such that is the set of

presentations of members of 1 .

(3) 2 : Use the same argument appealing to [Gon2] instead of [Ar1].

(4) : Again, use the same argument taking to be the set of

Wirtinger presentations.

(5) : Using Tietze’s Theorem enumerate recursively all finite

presentations of the trivial group with a positive number of generators. Deleting

the first relator from each presentation in this list we obtain a list, with

repetitions, of all the presentations of members of with a positive number

of generators.

(6) 3 : Take a recursive enumeration of the presentations of

members of and apply Lemma 2.6.

If ( ), and P( ) is recursively enumerable, we say that the

recognition problem Rec( ) is solvable if there exists an algorithm which

decides, given a finite presentation of a group G , whether or not G ;

otherwise, unsolvable. Clearly if , with P( ) and P( ) recursively

enumerable, then Rec( ) unsolvable implies Rec( ) unsolvable. The fact

that Rec( 1 ) is unsolvable underlies many of our results.

3. EFFECTIVE EMBEDDING THEOREMS

AND THE UNSOLVABILITY OF SOME RECOGNITION PROBLEMS

In this section we prove Theorem 1.1 except for the case ( ) ( ) .

The proofs will make use of the following proposition.

PROPOSITION 3.1. There is a computable function which takes an arbitrary

finite presentation of a group G and produces a finite presentation of a group

P such that

(1) G embeds in P ;

(2) P is perfect, i.e., H1(P) 0 ;

(3) if G 1 , then P 1 .

ADDENDUM 3.2. In Proposition 3.1, we may assume in addition that

(4) if G 1 then H2(P) is infinite.
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Proof of Proposition 3.1. Suppose we have a finite presentation for G

with m generators, x1 xm . Adjoin new generators a b to form the

iterated free product (G a ) b of G with two free groups of rank 2.

Now add m 4 additional relations, as follows, to obtain P (compare [Gor2,

proof of Theorem 3]) :

(i) a a 1 b2

(ii) a 1 b b 1

(iii) a2ixi
2i 2i 2b 2i 2 (i 1 m)

(iv) [x1 a] [xm a] 2b 2

(v) [x1 ] [xm ] b b 1 1 .

We can see from relations (iv) and (v) that abelianizing P gives b 0 ;

then (i) and (ii) imply a 0, so by (iii), each xi 0. Thus P is perfect.

If G 1 then (iv) and (v) imply b 1, so, as above, we conclude

a 1 as well. To show that the natural map from G to P is an

embedding, we claim that when G 1, P is an amalgamated free product

(G a ) E b , where E is a free group of rank m 4. One can

check that the words in b and on the right side of equations (i)–(v) freely

generate a subgroup E of b , and that the elements on the left are a basis

for a free subgroup of G a . To verify this, one shows that any product

corresponding to a freely reduced non-trivial word in those elements represents

a non-trivial element in b or the free product G a , respectively,

by showing that it has positive length when expressed in normal form [LS,

p. 187]. We suppress the details, but have chosen the elements such that the

possibilities of cancellation are sufficiently restricted that these may readily

be supplied. It should be noted that the possibility that several xi 1 does

not make the elements a2ixi
2i ill behaved, but we need G 1 to guarantee

that the products [xi a] and [xi ] do not disappear completely.

Proof of Addendum 3.2. Construct P as above except add an additional

relation in (iii) with i m 1 and xm 1 1. Everything is unchanged except

that if G 1 then the amalgamating subgroup E in the amalgamated free

product decomposition of P is now a free group of rank m 5. The Mayer-

Vietoris sequence of this amalgamated free product decomposition gives an

exact sequence

H2(P) Zm 5 H1(G) Z4

Since H1(G) is generated by m elements, it follows that H2(P) is infinite.
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The application of Proposition 3.1 to our recognition problems will make

use of the particular construction employed in the proof. Here we pause to

note that statements (1) and (2) of Proposition 3.1 alone quickly yield the

following embedding theorem.

THEOREM 3.3. There is a computable function which takes a finite

presentation of a group G and produces a finite presentation of a group

K 3 and an embedding of G in K .

Proof. By Proposition 3.1 (1) and (2) we can construct a finite presentation

of a perfect group P in which G embeds. Let K be the iterated HNN extension

of P P

P P s t u : s 1(1 p) s (p 1) for p P t 1(1 p) t (p p) for p P

u 1su s2 u 1tu t2

Note that after the first two HNN extensions, the stable letters s t are a basis

for a free subgroup of rank 2.

Since H1(P) 0 , we clearly have H1(K) Z . Also, the Mayer-Vietoris

sequence for HNN extensions implies that H2(K) 0 . Finally, K u .

Hence K 3 by Theorem 2.1. Since G embeds in P , it embeds in K .

COROLLARY 3.4. There is a group K 3 which contains an isomorphic

copy of every finitely presented group.

Proof. This follows from Theorem 3.3 and Higman’s theorem that there

exists a finitely presented group which contains an isomorphic copy of every

finitely presented group [Hig].

COROLLARY 3.5. There is a group K 3 with unsolvable word problem.

Corollary 3.5 will be used in Section 7 to show that the triviality problem

for n -knots, n 3, is unsolvable.

We prove the unsolvability of the various recognition problems that we

consider in this section by showing that their solvability would imply the

solvability of Rec( 1 ) . The proofs all follow the same pattern, which

can be described in the following way. Suppose ( ). An

( ) -construction is a computable function

f : (P( ) P( 1 ) P( 1 )) (P( ) P( ) P( ))
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In words, an ( )-construction is an effective procedure which takes an

arbitrary finite presentation of a group G and produces a finite presentation

of a group A , such that if G 1 then A and if G 1 then A .

Hence if is any class of groups such that , then A if

and only if G 1. It follows from the unsolvability of Rec( 1 ) that if

an ( )-construction exists (and P( ) is recursively enumerable) then

Rec( ) is unsolvable. We remark that all our ( ) -constructions will

actually produce an embedding of G in A .

THEOREM 3.6. ( 3 2 Z ) -constructions exist.

Proof. Given a finite presentation of a group G , we must produce a finite

presentation of a group K 3 , such that if G 1 then K Z and if

G 1 then K 2 .

Let P be the finitely presented group described in the proofs of Propo-

sition 3.1 and Addendum 3.2. Let Q be the HNN extension P P s :

s 1(1 p)s (p 1) p P . Let q (a ) P P , and let R be ob-

tained from the free product Q1 Q2 of two copies of Q by adjoining

the relations s1 q2 , q1 s2 . Here, a letter with subindex 1 (resp. 2)

represents an element of the first (resp. second) copy of Q . Finally, let

K R t : t 1(1 pi) t (pi pi) pi Pi i 1 2 . Note that we can write

down a finite presentation of K .

If G 1, then P 1, and hence R 1 and K Z . From now on, assume

that G 1. We will show that G 3 2 . First note that q
n (1 P) (P 1)

for n 0, and so, by Britton’s Lemma, the subgroup s q of Q is a free

group of rank 2. Hence R is a free product with amalgamation Q1 F2 Q2 .

Since, in Q , (1 P) s q 1 , the subgroup S 1 P1 1 P2 of

R is the free product (1 P1) (1 P2) . Also, the map : S R given by

(1 pi) (pi pi) , pi Pi , i 1 2, is a monomorphism, since, if 6 is the

diagonal subgroup of P P , then 6 s q 1 in Q . Hence K is an

HNN extension of R . Note that t K , and that H1(K) Z .

Let : S R be the inclusion map. Using the Mayer-Vietoris sequences

for free products with amalgamation and HNN extensions [Bie] one sees that

: H2(S) H2(R) is an isomorphism. Also, for x H2(S) , (x) 2 (x) .

Hence, again using the Mayer-Vietoris sequence for HNN extensions, we

obtain H2(K) 0 . Hence K 3 .

To see that K 2 , we examine Hj(K ) , j 1 2, where K is the commu-

tator subgroup of K . Consider spaces XR , XS , where XH denotes an aspherical

complex with basepoint and 1(XH ) H . Let f : (XS ) (XR ) be
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cellular maps inducing, respectively, the maps and on fundamental groups.

In the disjoint union of XR and XS [0 1] , identify (x 0) XS [0 1] with

f (x) and (x 1) XS [0 1] with (x) , obtaining an aspherical complex XK .

Then H (K ) H (XK) , where XK is the universal abelian (infinite cyclic)

covering of XK . As in [L, p. 43] one gets an exact sequence

Hj(S) Z R
d

Hj(R) Z R Hj(K ) Hj 1(S) Z R

where R Z[t t 1] is the integral group ring of the infinite cyclic group

generated by t and d is given by d(x ) (x) t (x) .

Note that d : H0(S) ZR H0(R) ZR can be identified with t 1: R R ,

which is injective. Since R is perfect, it follows that H1(K ) 0 .

Recall that : H2(S) H2(R) is an isomorphism, and that, for x H2(S) ,

(x) 2 (x) . Hence the exact sequence above shows that H2(K ) is

isomorphic to the cokernel of the map d : H2(S) Z R H2(S) Z R defined

by d (x ) x (2t 1) . Thus H2(K ) H2(S) (R (2t 1)R)

H2(S) Z[1 2] . Since H2(S) H2(P) H2(P) is infinite (Addendum 3.2) it

follows that H2(K ;Q) 0 . This, together with the fact that H1(K ;Q) 0 ,

implies that K 2 [Fa], [Hi], [Miln1].

COROLLARY 3.7. If 0 2 then Rec( 3 ) is unsolvable.

THEOREM 3.8. ( 3 Z ) -constructions exist.

Proof. Let G x1 xm : r1 rn be a finitely presented group.

Embed G in a perfect group P as in the proof of Proposition 3.1. Consider the

groups A5 c d : c2 d3 (cd)5 1 and Z2 e : e2 1 . Let Q be

the group obtained from P A5 Z2 by adding the relation b de . Let Q be

the universal central extension of the perfect group Q (see [Miln2]). Then Q

has a presentation with generators x1 xm , a b c d e , and relations

(i) through (v) of the proof of Proposition 3.1, together with c2 d3 (cd)5 ,

b de , and [r ] 1 where r runs over the words r1 rn , c
2 , e2 and

runs over the generators of Q . (Compare the proof of Lemma 2 in Section 10

of [VKF].) The kernel of the natural epimorphism from Q to Q is (contained

in) the center of Q ; also H2(Q) 0 . Now adjoin to Q the relation c2 1

to get the group R . Let K Z R . It is not difficult to verify that if G 1

then K Z .

Assume in the rest of the proof that G 1 ; we claim that K 3 . First

note that c2 is a central element of order 2 in A5 c d : c2 d3 (cd)5

and that c2 [c (dcd 1c)2d] in A5 and therefore in Q . To see that c
2 is non-
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trivial in Q , adjoin to Q the relations r21 1 r2n 1, e2 1 to obtain the

iterated free product with amalgamation S (P Z2) Z Z2 (A5 Z2 (Z2 Z2)) .

Here A5 and Z2 Z2 y e : y2 e2 [y e] 1 are amalgamated by

c2 y ; P Z2 and A5 Z2 (Z2 Z2) are amalgamated by b de , z c2 ,

where z generates the second factor of P Z2 . Since c
2 is non-trivial in A5 ,

it is non-trivial in S and therefore in Q .

Hence we have a short exact sequence 1 Z2 Q R 1 with

Z2 contained in the center of Q . The associated 5-term exact sequence then

yields H2(R) Z2 ; therefore H2(K) Z2 and so K 3 .

To see that K first note that, if is a generator of Z , then

(Z Q) c 1. Since, in addition, H2(Z Q) 0 , Z Q has a Wirtinger

presentation with a generator representing c (see [Y] or [Si]). Finally, K is

obtained from Z Q by adding the relation [ c (dcd 1c)2d] , so K also has

a Wirtinger presentation.

COROLLARY 3.9. If 0 3 then Rec( ) is unsolvable.

THEOREM 3.10. ( Z ) -constructions exist.

Proof. First embed G in a perfect group P as in (the proof of)

Proposition 3.1. Let K P s : s 1bs b2 . Then s K , and so

K .

If G 1 then P 1 and K Z . Now assume G 1. Then K is an

HNN extension of P , and the Mayer-Vietoris sequence of this extension gives

an exact sequence

H2(K) H1(Z) H1(P) 0

Hence H2(K) 0 . This already shows that K 3 . To show that K we

use Theorem 2.2.

Let t K be an element such that t K , and let c Ct , the centralizer

of t in K . Then t c either is isomorphic to Z or does not split non-trivially

as a free product with amalgamation or HNN extension. If the latter holds

then (see [SW, Corollary 3.8]) t c , and therefore t , lies in a conjugate

of P , which contradicts our assumption that t K . Hence t c Z , and

so t c 0. Since H2(K) 0 , Theorem 2.2 implies that K .

COROLLARY 3.11. If 0 then Rec( ) is unsolvable.
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4. HAVING WEIGHT 1 IS UNRECOGNIZABLE

Let U u1 u2 : be a 2-generator, finitely presented, torsion-free

group with unsolvable word problem. Such a group exists by [Bo] or [Mill].

Let K be the iterated HNN extension

U y y2 z : y
1

i uiyi u2i (i 1 2) z 1yiz y2i (i 1 2)

K is still torsion-free and is normally generated by z . Also, for any non-trivial

element of U , the subgroup z of K is isomorphic to F2 , the free

group of rank 2.

Consider the group Q r s t : s 1rs r2 t 1st s2 . It is torsion-

free, normally generated by t , and the subgroup r t F2 .

For any word in u1 u2 , let D be obtained from the free product K Q

by adding the relations t , z r . If represents the trivial element of

U , then D 1, while if does not represent the trivial element of U then

D is a free product with amalgamation K F2 Q , and hence is torsion-free

and non-trivial. Let G Z D . Then, by Klyachko’s theorem [Kl], G

has weight 1 if and only if represents the trivial element of U . Thus we

have proved

PROPOSITION 4.1.

(1) If represents the trivial element of U then G Z ;

(2) if does not represent the trivial element of U then G .

Since U has unsolvable word problem we get

COROLLARY 4.2. If 0 then Rec( ) is unsolvable.

5. UNSOLVABLE PROBLEMS ABOUT HOMOLOGY, WHITEHEAD GROUPS

AND SURGERY GROUPS

By the Poincaré Conjecture [Pe1], [Pe2], [Pe3] and the recognizability of

the 3-sphere [Ru], it follows that there is an algorithm which decides whether

or not a given closed 3-manifold is 1-connected. It is interesting to note that one

can phrase this in terms of homology of groups. Let rt be the set of ordered

presentations x1 xn : r1 rn such that
n

i 1 rixir
1

i
n

i 1 xi in the

free group with generators x1 xn . The groups defined by the members
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of rt are precisely the fundamental groups of closed orientable 3-manifolds.

This follows from the fact that every closed orientable 3-manifold is an open

book with planar pages (see e.g. [Ro, p. 340–341]) and from a theorem of

Artin (see [Bir, Theorem 1.9] ; see also [Wi] and [Gon3]).

Thus the question of deciding whether a closed 3-manifold is 1-connected

is equivalent to that of deciding whether a member of rt presents the trivial

group. This in turn can be phrased in terms of homology, as follows.

Let M be a closed orientable 3-manifold and let

M1 # # Mr # N1 # # Ns # S
1 S2 # # S1 S2

be the connected sum decomposition of M into prime manifolds [Miln3], where

1(Mi) is infinite non-cyclic, 1 i r , and 1(Nj) is finite, 1 j s . Let

nj be the order of 1(Nj) , 1 j s . Then H3( 1(M)) Zr Zn1 Zns ,

and so 1(M) 1 if and only if H1( 1(M)) 0 and H3( 1(M)) 0 . Thus

the simple-connectedness problem is equivalent to deciding, for members

of rt, whether the finitely generated abelian groups H1( ) and H3( ) are

trivial. (Here, and in the sequel, if F is a functor defined on the category

of groups, and is a group presentation, we abbreviate F( ) to F( ) .)

As noted above, it is known (albeit indirectly) that this decision problem is

solvable.

However, it is natural to ask the question for the class of all finite

presentations. We shall see that this and many other problems concerning

the computation of the homology of groups in dimensions greater than 1 are

algorithmically unsolvable. We will also prove incomputability results about

Whitehead groups Whn(G) and Wall’s surgery groups Ln(G) . H (G) will

denote the infinite sequence (H1(G) H2(G) H3(G) ) of integral homology

groups of the group G .

THEOREM 5.1. Let be a class of infinite sequences (A1 A2 A3 )

of abelian groups which is closed under isomorphisms 1 ). Suppose there are

finitely presented groups G1 G2 such that H1(G1) H1(G2) , H (G1)

and H (G2) . Then the set of finite presentations such that H ( )

is not recursive.

QUESTION 5.2. When can one replace recursive by recursively enumer-

able ?

1 ) (A1 A2 A3 ) is isomorphic to (A1 A2 A3 ) if Ai Ai for all i .
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REMARK 5.3. For a class , closed under isomorphisms, which does not

satisfy the hypothesis of the theorem, a finite presentation has integral

homology belonging to if and only if H1( ) 1 , where 1 is the class of

finitely generated abelian groups which are first terms of sequences belonging

to ; hence : H ( ) is recursive if and only if 1 is recursive.

Proof of Theorem 5.1. Call a finite presentation x1 xm : r1 rn

freely related if r1 rn generate a free group of rank n in the free group

on x1 xm . Clearly every finitely presented group has a freely related

presentation. If we have a freely related presentation of deficiency d of a

group we can find a freely related presentation of deficiency d 1 of the

same group by adjoining, for example, new generators z1 z2 and relators

z1 z32 and z2z1z2 .

It follows that G1 and G2 have freely related presentations with the

same deficiency d . Writing s dimH1(G1;Q) dimH1(G2;Q) , let G G2

(resp. G1 ) if the sequence (H1(G1) Z
s d 0 0 ) belongs to (resp. does

not belong to ).

Let x1 xm : r1 rn be a freely related presentation of G of defi-

ciency d . Let 1 p : be a finite presentation of an acyclic (i.e.

with trivial integral homology in all positive dimensions) group U with unsolv-

able word problem. Such a group exists by [N] (or [Bo]), [BDM, Theorem E]

and [R2]. Consider also a finite presentation y1 yn yq :

of an acyclic group Y such that y1 yn represent n different non-trivial

elements of Y . Denote by m the presentation whose generators are

x1 xm , 1 p , y1 yq and whose relators are those of and .

To a word in the generators 1 p of we associate the

presentation W obtained by adjoining to m the relations ri [ yi] ,

i 1 n . If 1 in U then W presents G U Y so H (W ) H (G) .

If 1 in U then [ y1] [ yn] (resp. r1 rn ) generate a free group

of rank n in U Y (resp. in the free group Fm on x1 xm ) so that W

presents a free product of Fm and U Y amalgamated along a free group

of rank n ; the Mayer-Vietoris sequence for free products with amalgamation

then yields Hi(W ) 0 for i 2, H2(W ) Zs d and H1(W ) H1(G) .

Since precisely one of the sequences H (G) , (H1(G) Z
s d 0 0 ) belongs

to , it follows that an algorithm which decides whether or not groups given

by finite presentations have an integral homology sequence which belongs to

could be used to solve the word problem for U . Since U has unsolvable

word problem, the existence of such an algorithm is impossible. Thus, the set

of finite presentations with H ( ) is not recursive.
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REMARK 5.4. Recall that a property P of (isomorphism classes of) finitely

presented groups is a Markov property if there exist finitely presented groups

G1 and G2 such that

(1) G1 has property P ; and

(2) if G2 embeds in a finitely presented group H then H does not have

property P .

If is an isomorphism closed class of sequences of abelian groups and if

H (G) for some finitely presented group G then “having a homology

sequence which belongs to ” is not a Markov property since any finitely

presented group embeds in a finitely presented acyclic group A ([BDM])

and therefore in A G , a group whose homology belongs to . There-

fore Theorem 5.1 cannot be derived from Rabin’s theorem (Theorem 1.1

of [R1]).

COROLLARY 5.5. If I is a set of natural numbers containing a number

greater than 1 then the set of finite presentations such that Hi( ) 0 for

every i I is not recursive.

Proof. Take G1 to be the trivial group and, if n I 1 , take

G2 An5 SL(2 5) .

The case I 1 3 is the one which we were discussing above in relation

with the simple-connectedness problem for 3-manifolds.

The case I 1 2 corresponds to the problem of deciding whether or

not a finitely presented group is the fundamental group of a smooth homology

n -sphere, n 5, that is (see [Ke2]), a group with trivial first and second

homology. This problem is, therefore, unsolvable.

We now prove an incomputability result for Wh0 and Wh1 , where

Wh0(G) K0(ZG) , the reduced projective class group [Miln4, p. 419], and

Wh1(G) is the usual Whitehead group [Miln4, p. 372].

THEOREM 5.6. Let be a class of pairs (A0 A1) of abelian groups which

is closed under isomorphisms. Suppose (0 0) and (Wh0(G) Wh1(G))

for some finitely presented group G. Then the set of finite presentations

such that (Wh0( ) Wh1( )) is not recursive.

Proof. By [W3], for a free product with amalgamation H A F B with

F free one has a Mayer-Vietoris sequence
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Wh1(F) Wh1(A) Wh1(B) Wh1(H)

Wh0(F) Wh0(A) Wh0(B) Wh0(H) 0

and Wh0(F) Wh1(F) 0 .

In [Rot, Chapter 12] a sequence of finitely presented groups G1 G2 Gs

is constructed such that G1 is free, Gs has unsolvable word problem

and, for 1 i s , Gi 1 is an HNN extension of Gi along a free

group; see [CM]. Therefore Gs belongs to Waldhausen’s class Cl in [W3]

and hence (Wh0(Gs) Wh1(Gs)) (0 0) . Let U G Gs . Then U has

unsolvable word problem and, using the Mayer-Vietoris sequence above,

(Wh0(U) Wh1(U)) (Wh0(G) Wh1(G)) .

Let W x1 xm : r1 rn be a finite presentation of U , and let

be a word in x1 xm . Let W be the presentation obtained from W by

adjoining additional generators a b and additional relations

a a 1 b2

a 1 b b 1

a2ixi
2i 2i 2b 2i 2 1 i m

[ a] 2b 2

[ ] b b 1 1

as in [Gor2].

If 1 in U , then W presents a trivial group so that (Wh0(W )

Wh1(W )) (0 0) .

If 1 in U , then W presents a free product with amalgamation

(U F2) Fm 4
F2 (where Fr is a free group of rank r ). The Mayer-Vietoris

sequence above and the fact that free groups have trivial Wh0 and Wh1 implies

that if 1 in U then (Wh0(W ) Wh1(W )) (Wh0(U) Wh1(U)) .

Since the set of words which represent the trivial element of G is

not recursive, it follows that the set of finite presentations such that

(Wh0( ) Wh1( )) is not recursive.

COROLLARY 5.7. Let i 0 or 1 . Then the set of finite presentations

such that Whi( ) 0 is not recursive.

Proof. There is a finitely presented group A whose i -th Whitehead group

is non-trivial (for example, Z23 for i 0 [Miln4, p. 419], and Z5 for i 1

[Miln4, p. 374]).
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Finally, we turn to surgery groups [Wa]. Let Lhn(G) (resp. L
s
n(G) ) denote

Wall’s group of surgery obstructions for the problem of obtaining homotopy

equivalences (resp. simple homotopy equivalences) for orientable manifolds

of dimension n and fundamental group G . For x h or s , Lxn is a functor

from groups to abelian groups with Lxn Lxn 4 . Write L
x
n(G) Lxn(G) Lxn(1) .

Note that Lhn(G) Q Lsn(G) Q by the Rothenberg exact sequence. (See

Section 17D of [Wa].)

THEOREM 5.8. Let n 0 and x h or s . Then the set of finite

presentations such that Lxn( ) 0 is not recursive.

Proof. Let U be a 2-generator, finitely presented group with unsolvable

word problem (see [LS, Chap. IV, Thm3.1]). Let G U Z6 and let

W x1 x8 : r1 rq be a finite presentation of G . If is a word in

x1 x8 , let W be the presentation defined in the proof of Theorem 5.6.

If 1 in G then Lxn(W ) Lxn(1) 0. If 1 in G then W

presents a free product with amalgamation (G F2) F12 F2 so, from [C2,

Corollary 6], we obtain an exact sequence

Lxn(F12) Q (Lxn(G F2) Lxn(F2)) Q Lxn(W ) Q

By [C1, Theorem 16], dim Lxn(F12) Q 12 and, using Corollary 6 of [C2],

Corollary 15 and Theorem 16 of [C1] one sees that

dim(Lxn(U Z6 F2) Lxn(F2)) Q 16

so that dim Lxn(W ) Q 4 and dimLxn(W ) Q 3. Thus, if 1 in G

then Lxn(W ) is non-trivial.

As above, the non-recursiveness of the set of words representing the trivial

element of G implies the non-recursiveness of the set of finite presentations

with Lxn( ) 0 .

6. ENUMERATION OF KNOTS

In this section we define presentations of (locally flat PL) n -knots and show

that they can be recursively enumerated. A presentation will be a description

of a knot type in finite terms.

Any abstract (simplicial) complex considered, A , will be assumed to have

as its set V(A) of vertices a finite set of natural numbers. Any simplicial
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complex A will be finite, its set of vertices will be denoted by V(A) and its

underlying polyhedron by A .

When we consider pairs (A B) (resp. (A B) ) of simplicial (resp. abstract)

complexes, B (resp. B ) is a subcomplex of A (resp. A ) and A B (resp

A B ) denotes the smallest subcomplex of A (resp. A ) containing A B

(resp. A B ).

A realization (A ) of the abstract complex A is a simplicial complex A

together with a bijection : V(A) V(A) such that, a subset s of V(A) is

a simplex of A if and only if the convex hull of (s) is a simplex of A . We

also say that A is a realization of A .

If (A ) is a realization of A and B (resp. B ) is a subcomplex of A

(resp. A ) such that (B V(B)) is a realization of B then we say that (A B) is

a realization of (A B) . Notice that if (A1 B1) , (A2 B2) are two realizations of

(A B) then ( A1 B1 ) ( A2 B2 ) , where denotes PL-homeomorphism.

Let A1 , A2 be two abstract complexes with realizations A1 , A2 respec-

tively. A1 is equivalent to A2 (we write A1 A2 ) if A1 A2 .

DEFINITION 6.1. A presentation of an n-knot is a pair (A B) of abstract

complexes having a realization (A B) such that A Sn 2 and B Sn D2 .

We will see that a presentation defines a unique knot type.

If T is a polyhedron PL-homeomorphic to Sp Dq a core of T is the

image of Sp 0 under a PL-homeomorphism from Sp Dq onto T .

LEMMA 6.2. Let T be PL-homeomorphic to Sn D2 and let K K be

two cores of T . Then there is a PL-homeomorphism from T onto T , mapping

K onto K , which is the identity on T .

Proof. We may assume T Sn D2 and K Sn 0 . Let

f : Sn D2 T be a PL-homeomorphism mapping Sn 0 onto K . Now, if

n 2, the proof of Theorem 2 of [Sw] shows that, if a PL-autohomeomorphism

h of Sn D2 can be extended to a PL-autohomeomorphism of Sn D2 , then

it can be extended to a PL-autohomeomorphism of (Sn D2 Sn 0 ) (both

conditions being equivalent to the vanishing of the second Stiefel-Whitney

class of Sn D2 h S
n D2 ). For n 1 this fact is well known.

Hence f (Sn D2) can be extended to a PL-homeomorphism mapping

K onto itself. Then f 1 maps K to K and is the identity on T .
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Let (A B) be a presentation of an n -knot. If (A B) is a realization of

(A B) then the knot type represented by ( A K) , where K is a core of B ,

is the knot type presented by (A B) . This is well-defined because, if K is

another core of B , there is, by the previous lemma, an autohomeomorphism

of A , which is the identity on A B , mapping K onto K . The group of

the n-knot presentation (A B) is the group of a knot in the type presented

by (A B) , that is, 1( A B ) , where (A B) is a realization of (A B) .

Next, we want to give a recursive enumeration of presentations.

A simplicial complex B is a subdivision of the simplicial complex A if

every vertex of A is a vertex of B and every simplex of B is contained in a

simplex of A .

If B is a subdivision of A , (B ) is a realization of the abstract complex

B and A is the abstract complex consisting of the family of subsets s of

V(B) such that the convex hull of (s) is a simplex of A , then we say that

B is a subdivision of A .

The following proposition is the Corollary to Lemma 1 of [BHP].

PROPOSITION 6.3. There is a recursive function X(A k) , A ranging over

all finite abstract complexes, k 1 2 , that recursively enumerates for an

arbitrary complex A the subdivisions of A , i.e. for fixed A the sequence

X(A 1) A , X(A 2) is a recursive enumeration of all subdivisions

of A .

COROLLARY 6.4. Let A be an abstract complex. Then there is a recursive

enumeration of all abstract complexes equivalent to A .

Proof. Let A1 A2 be a recursive enumeration of all abstract com-

plexes. Then A Ar , say. Recursively enumerate all triples (i j k) such

that X(Ar i) is isomorphic to X(Aj k) . Let (i1 j1 k1) (i2 j2 k2) be this

enumeration. Eliminating repetitions in the sequence Aj1 Aj2 we obtain

a recursive enumeration of the complexes equivalent to A .

Now, for any n , choose one abstract complex An (resp. Bn ) with a

realization having underlying polyhedron PL-homeomorphic to Sn 2 (resp.

Sn D2 ). Let An1 A
n
2 (resp. Bn1 B

n
2 ) be a recursive enumeration of all

abstract complexes equivalent to An (resp. Bn ). From these two enumerations

we obtain an enumeration of all pairs (Ani B
n
j ) such that B

n
j is a subcomplex

of Ani . We have therefore proved :
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THEOREM 6.5. For any n 0 there is a recursive enumeration of the set

of all n-knot presentations.

It now makes sense to talk about recursively enumerable and recursive sets

of presentations of n -knots.

Here is a consequence of Theorem 6.5.

COROLLARY 6.6. Given a finite presentation W of an n-knot group one

can find a presentation of an n-knot whose group is isomorphic to the

group presented by W .

Proof. Let 1 2 be an enumeration of the presentations of n -knots.

For every i one can find a finite presentation of the group Gi of the knot type

presented by i and, therefore, using Tietze operations, recursively enumerate

all finite presentations of Gi . Now, enumerate recursively all pairs ( i Wj)

such that the finite presentation Wj presents the group of i . Take the first

pair ( i Wj) in this enumeration such that W Wj and take i .

As a consequence we have the following geometric version of Corollary 3.7.

THEOREM 6.7. Let 0 m 3 n. Then there is no algorithm which

decides if the group of an n-knot presentation is the group of an m-knot.

Proof. By Theorem 3.6 and Corollary 6.6 there is a recursive function

associating to every finite group presentation W an n -knot presentation (W)

such that :

(i) if W presents the trivial group then the group of (W) is Z , which is

an m -knot group;

(ii) if W presents a non-trivial group then the group of (W) is not a

2-knot group (and, therefore, not an m -knot group).

The theorem then follows from the undecidability of the triviality problem for

group presentations.

7. THE KNOTTING PROBLEM

Haken proved in [Hak] that there is a procedure to decide if a given 1-knot

is trivial. In this section we prove that if n is such that there is a group in n

with unsolvable word problem then it is impossible to find such a procedure
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for n -knots. Thus, if n 3, there is no algorithm to decide if a given n -knot

is trivial ; this has been proved by Nabutovsky and Weinberger [NW].

Recall that we have given a recursive enumeration of all n -knot presen-

tations 1 2 . A set i i S of n -knot presentations is recursive if and

only if S is recursive. Intuitively, i i S is recursive if and only if there is

an algorithm for determining whether or not a given knot presentation belongs

to i i S .

THEOREM 7.1. Let n be a natural number. If there is a group in n

with unsolvable word problem then the set of presentations of n-knots which

present the trivial knot is not recursive.

Proof. We may assume n 1 since the groups in 1 have solvable word

problem (see [W2]). We give first a sketch of the proof.

Suppose U x1 xm : r1 rp is the group of the n -knot

(Sn 2 Kn) , where U has unsolvable word problem and represents a meridian

of Kn . Consider the knot (Sn 2 Rn) obtained by taking the connected sum of

(Sn 2 Kn) with the trefoil spun (n 1) times.

Let Mn 2 be the manifold obtained by surgery on (Sn 2 Rn) ; the knot Rn

is replaced by a 1-sphere S1 . Let Yn be a trivial n -sphere in Mn 2 S1 . Then,

the fundamental group of Mn 2 , which is isomorphic to that of Sn 2 Rn , is

1(M
n 2) U Z Y

x1 xm y1 y2 : r1 rp y1y2y1y
1

2 y 1
1 y 1

2 y 1
1

where Y is the trefoil group and the amalgamating subgroup Z is generated

by y1 . Also

1(M
n 2 Yn) x1 xm y1 y2 : r1 rp y1y2y1y

1
2 y 1

1 y 1
2 y 1

1

where represents S1 and a meridian of Yn .

To a word in x1 xm associate a knot (Sn 2 Yn) where Sn 2 is

obtained by surgery on (M ) , being a 1-sphere in Mn 2 Yn representing
1[ y2]

1 [ y2] 1(M
n 2 Yn) . Notice that, as a 1-sphere in Mn 2 ,

represents 1(M
n 2) and is therefore isotopic to S1 ; this implies that

Sn 2 is the (n 2)-sphere. Also, as we explain at the end of the proof,

(Sn 2 Yn) is trivial if and only if 1 in U .

We show below that this function associating knots (or rather knot

presentations) to words can be defined effectively. Hence if there were an

algorithm deciding whether or not n -knots are trivial, there would be an

algorithm which would solve the word problem in U .
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We now proceed to give a more rigorous proof. A simplicial complex T

with underlying polyhedron PL-homeomorphic to the manifold Mn 2 described

above can be obtained by pasting together suitable simplicial complexes E and

F with E PL-homeomorphic to the exterior of Rn and F S1 Dn 1 . Also

we may assume E has subcomplexes E1 and E2 with E1 PL-homeomorphic

to the exterior of Kn , E2 PL-homeomorphic to the exterior of the spun

trefoil and E1 E2 S1 Dn with ( E1 E2 ) containing a meridian

of Rn . We think of E and F as subcomplexes of T . We can assume T

contains a subcomplex S , disjoint from F , such that S Sn D2 and a

core Y of S bounds a PL (n 1)-disk in T F . Choose a vertex

in E1 E2 F . One can find presentations x1 xm : r1 rp ,

y1 yk : s1 s , x1 xm y1 yk : r1 rp s1 s y 1
1

and x1 xm y1 yk : r1 rp s1 s y 1
1 of 1( E1 ) ,

1( E2 ) , 1( T ) and 1( T S ) respectively, by the usual method

of taking a maximal tree in the 1-skeleton containing , letting the generators

be in a one-to-one correspondence with the remaining edges of the 1-skeleton

and reading the relations from the 2-simplices. We can assume that a meridian

of Rn contained in ( E1 E2 ) is represented by and by y1 , a meridian

of Y is represented by , and y2 represents an element of 1( E2 ) which

does not commute with any non-trivial power of y1 . The inclusion-induced

homomorphism 1( T S ) 1( T ) sends to 1, to , xi to xi ,

and yi to yi .

For each r 1, consider the r -th barycentric subdivision (T (r) S(r)) of

the pair (T S) . Every element of 1( T S ) can be represented by an

oriented PL 1-sphere containing which, by [Hu, Corollary 1.6] can be taken

to be a subcomplex of T (r) for some r . We may assume that we know,

for a given vertex of the subdivision T (r) , the simplices of T to which

belongs. This enables one to give, for any -based edge-loop (see [HW,

Sec. 6.3]) in T (r) , not meeting S , a -based edge-loop in T homotopic

to it and, therefore, a word in x1 xm y1 yk , representing it ; one

can then recursively enumerate all words in x1 xm y1 yk repre-

senting [ ] 1( T S ) since the words representing the trivial element

of x1 xm y1 yk : r1 rp s1 s can be recursively enu-

merated.

Let 1 be a recursive enumeration of the triples (r C u) such that

(1) r is a positive integer,

(2) C is an oriented 1-sphere in T S containing , which is a subcomplex

of T (r) ,

(3) u is a word in x1 xm y1 yk representing [C] 1( T S ) .
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We now give a recursive function associating to every word in

x1 xm a presentation ( ) of an n -knot. If is such a word, let 1( j)

(r C u) be the triple with smallest j such that u 1[ y2]
1 [ y2]

in the free group generated by x1 xm y2 and let L T (r 2) :

C . Notice that S(r 2) is a subcomplex of L so that, for every

q , S(r 2 q) , the q -th barycentric subdivision of S(r 2) , is a subcomplex

of L(q) , the q -th barycentric subdivision of L . Recursively enumerate all

triples (A D B) such that (A D) is a presentation of an n -knot and B is

a subcomplex of A D ; in this enumeration take the first triple (A D B)

such that (a realization of) (A D B) is isomorphic to (L(q) S(r 2 q)) for

some q , and define ( ) (A B) .

To show that ( ) is well-defined we need only prove that in the

last enumeration there is at least one triple (A D B) such that (A D B)

is isomorphic to (L(q) S(r 2 q)) for some q . Since 1 in 1( T ) ,

[C] 1( T ) is represented by so C is homotopic, and therefore isotopic,

in T , to a core of F . Hence, L is PL-homeomorphic to the knot exterior

E . Let D be a simplicial complex such that D Sn D2 . Denote by

D (resp. L ) the subcomplex of D (resp. L ) such that D D (resp.

L L ) and let f : D L be a PL-homeomorphism such that

D f L is PL-homeomorphic to Sn 2 . By [Hu, 1.10, 1.6, 1.8 and 1.3(2)] one

may assume that f : D ( L)(q) is a simplicial isomorphism for some q .

Take an abstract complex pair (D D) (resp. (L B) ) having (D D) (resp.

(L(q) S(r 2 q)) ) as a realization and let : V( D) V(L) correspond to f .

By changing the names of the vertices of D if necessary, we can assume

that ( ) for every V( D) and that L D . If we now define

A L D , then the triple (A D B) has the required properties. Hence ( )

is well-defined.

If 1 in U then C is isotopic, in T S , to a core of F and,

therefore, there is a PL (n 1)-disk in T , bounded by a core of S , which

does not intersect C . This implies that ( ) presents the trivial knot type.

Now, the group G of a knot in the knot type presented by ( ) is

x1 xm y1 yk : r1 1 rp 1

s1 1 s 1 1[ y2] [ y2]

Furthermore, [ y2] has infinite order in x1 xm y1 yk :

r1 rp s1 s y 1
1 1(S

n 2 Rn) . If does not represent the

trivial element of x1 xm : r1 rp then also [ y2] has infinite

order in 1(S
n 2 Rn) (here one uses that [yr1 y2] 1 for any r 0) and

therefore G is an HNN extension of 1(S
n 2 Rn) .
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Thus if 1 in x1 xm : r1 rp then ( ) presents a

non-trivial knot type.

Hence, if the set of presentations of n -knots defining the trivial knot type

were recursive, the word problem in U would be solvable, which is not the

case.

Since n 3 for n 3 and 3 contains groups with unsolvable word

problem by Corollary 3.5, one has the following corollary (cf. [NW]).

COROLLARY 7.2 (Nabutovsky-Weinberger). If n 3 then the set of

presentations of n-knots which present the trivial knot is not recursive.

REMARKS. (1) If in the proof of Theorem 7.1 one can take U torsion-free

(as one may if n 3), a slightly simpler proof can be given : there is no

need to take the connected sum with a spun trefoil and, instead of the word
1[ y2]

1 [ y2] , one can take
1 1 .

(2) If n 3 then any property enjoyed by the trivial n -knot but not by

any of the knots ( ) of the proof of Theorem 7.1 with 1 is not

algorithmically recognizable. Among these are :

(i) Being a fibered knot.

(ii) Having a group with finitely generated (or presented) commutator

subgroup.

(iii) Having a group with solvable word problem.

(iv) Having a torsion-free group (here take U with torsion).

(v) If H is a non-trivial group with H Z , having a group not

containing H as a subgroup (here take U containing H ).

To conclude, here are some questions.

(1) Is there a 2 -knot group with unsolvable word problem ?

Conjecture : Yes.

(2) Does each finitely presented group embed in a 2 -knot group ?

Conjecture : Yes.

(3) If is a non-negative integer, is there an algorithm to decide whether or

not a given locally flat PL-embedded surface of genus in S4 is unknotted ?

Conjecture : No for any value of .
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