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POSITIVITY OF DIRECT IMAGE SHEAVES

A GEOMETRIC POINT OF VIEW

by Andreas HÖRING

ABSTRACT. These are extended notes of talks I gave at the workshop “Rencontre
positivité” in Rennes. The aim of these talks was to illustrate the interaction between the
geometry of a fibration and the positivity of direct image sheaves. We give numerous
examples and an introduction to the Kollár-Viehweg method for proving direct image
theorems. As an application, we study the geometry of projective manifolds with nef
anticanonical bundle.

1. INTRODUCTION

1.A MOTIVATION

Given a fibration : X Y , i.e. a morphism with connected fibres between

projective manifolds, it is a natural and fundamental problem to try to relate

positivity properties of the total space X , the base Y and the general fibre F .

An important problem in this context is Iitaka’s Cn m -conjecture that predicts

the subadditivity of the Kodaira dimension. More precisely, if we denote by

( ) the Kodaira dimension of a projective manifold, the Cn m -conjecture states

that

(X) (Y) (F)

It turns out that one of the main issues in the study of this conjecture is

a discussion of the positivity of the direct image sheaves ( m
X Y
) , where

m is a sufficiently large integer. Building up on the landmark papers due to

Kawamata [Kaw81, Kaw82], this question was treated by Viehweg in a series

of great articles [Vie82, Vie83].
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THEOREM 1.1 ([Vie82]). Let : X Y be a fibration between projective

manifolds. Then for all m N , the direct image sheaf ( m
X Y
) is weakly

positive.

If the general fibre F is of general type and the family has maximal

variation, Kollár [Kol87] proved that the direct image sheaves ( m
X Y
) are

even big. By the work of Viehweg this settles the Cn m -conjecture for fibre

spaces whose general fibre is of general type.

For further applications, it is important to produce more general versions

of this theorem. Given a fibration : X Y and a line bundle L on X ,

one can ask for the positivity properties of the direct image (L X Y ) .

A moment of reflection will convince the reader that it is pointless to ask

such a question for a line bundle L that is not itself positive in some sense

(e.g. ample, nef, weakly positive, . . . ). In this situation vanishing theorems for

adjoint line bundles L X replace the Hodge-theoretic approach that was the

starting point of Kawamata’s results. Pushing the situation one step further,

we may consider fibrations between schemes that are not necessarily smooth,

replace line bundles by Q -divisors and add some ingredients from the theory

of multiplier ideal sheaves. All these generalisations have been studied in the

last thirty years, with applications ranging from the construction of moduli

spaces [Vie95] to the proof of Shokurov’s rational connectedness conjecture

by Hacon and McKernan [HM07].

The goal of these lecture notes is not to show a certain theorem nor to

give an overview of the incredibly many articles on this subject. Instead of

this, our aim is to show how the positivity of a direct image sheaf and the

geometry of the morphism : X Y interact. We proceed in three technically

independent but thematically connected steps :

! We start in Section 2 with a long series of examples that illustrates what

type of direct image result one can hope to prove.

! Section 3 is devoted to explaining the basic techniques in the proof

of direct image theorems. We will not aim for maximal generality, but

insist on the link between the positivity of direct image sheaves and certain

vanishing/extension theorems.

! In Section 4 we go back to a concrete geometric problem : the study

of projective manifolds with nef anticanonical bundle. We indicate how

the results proven in Section 3 give information on the structure of these

varieties. Furthermore we use the direct image point of view to construct a

series of examples related to the problem of boundedness of their functor of

deformations (Question 4.4).
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A LINGUISTIC CONVENTION. While in analytic geometry a line bundle L

is defined to be positive if it admits a smooth hermitian metric with strictly

positive curvature, we will use the expression “L positive” as a catch-all term

whenever we do not want to make a precise statement. By contrast, “weakly

positive” will be defined precisely (cf. Definition 3.4).

In the same spirit, we will call “direct image sheaf” a sheaf of the form

(L X Y ) where : X Y is a projective morphism, L a line bundle

on X , and X Y some “relative dualising sheaf” (cf. Definition 5.22).

ACKNOWLEDGEMENTS. My ideas on this subject have been stimulated

by discussions with Frédéric Campana, Cinzia Casagrande, Stéphane Druel,

Mihai Păun and Thomas Peternell. A special thanks goes to Laurent Bonavero

and Christophe Mourougane for encouraging me to finish writing these notes.

I would like to thank the referee for pointing out a number of references and

for suggestions to clarify the exposition.

1.B NOTATION

We work over the complex field C . If not mentioned otherwise, all the

topological notions refer to the Zariski topology. In particular, sheaves are

defined with respect to the Zariski topology. Schemes will always be supposed

to be quasi-projective over C . A variety is an integral scheme of finite type

over C . A divisor on a normal variety is a Weil divisor. We will identify

locally free sheaves and vector bundles. By a point on a variety we will

always mean a closed point, the fibres of a morphism are also the fibres over

a closed point of the base.

If X is a projective scheme, we denote by X the canonical sheaf and by
1

X its dual. If X is normal, we denote by KX (resp. KX ) the canonical

(resp. anticanonical) divisor.

Let X be a scheme, and let be a coherent sheaf on X . If X X is

an open subscheme that is endowed with the canonical subscheme structure,

we denote by X the restriction to X . If Z X is a closed subscheme

we denote by

Z : X Z

the restriction to Z .

Let : X Y be a morphism of schemes, and let y Y be a closed

point. Then we denote by Xy :
1(y) : X Y y the (scheme-theoretical)

fibre. More generally if Z Y is a subscheme, we denote the fibre product

X Y Z by XZ .
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We will say that a certain property on X holds over a general point of Y

if there exists a non-empty Zariski open subset Y Y such that the property

holds on 1(Y ) .

If V is a locally free sheaf, we will abbreviate Symd V by SdV .

DEFINITION 1.2. A projective morphism : X Y from a scheme X

onto a normal variety Y is a fibration if it is surjective and the general fibre

is irreducible.

DEFINITION 1.3. A fibration : X Y is generically smooth if there

exists a non-empty Zariski open subset Y Y such that for all y Y , the

fibre Xy is a smooth variety.

In this case, the -smooth locus is the maximal open subset Y Y

such that 1(Y ) is smooth and such that for every y Y the fibre Xy

is smooth and of dimension dimX dim Y . The -singular locus 6 is the

complement Y Y .

REMARK. By generic smoothness it is clear that a fibration is generically

smooth if and only if the singular locus of X does not dominate Y .

DEFINITION 1.4. A fibration has generically reduced fibres in codimen-

sion 1, if there exists a Zariski open subset Y Y such that

codimY (Y Y ) 2

and for all y Y , the fibre Xy is generically reduced.

Since we will use this many times, let us recall that if V Y is a

vector bundle of rank r over a complex manifold, the canonical bundle of its

projectivisation 1 ) : X : P(V) Y is

(1.5) X ( Y detV) P(V)(r)

where P(V)(1) is the tautological bundle. From time to time, we will

abbreviate P(V)(1) by P(1) .

1 ) We will always take projectivisation in the sense of Grothendieck, i.e. consider the space
of hyperplanes.
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2. EXAMPLES

The following direct image theorem, due to Mourougane, is an example

of an ideal situation :

THEOREM 2.1 ([Mou97], Thm. 1). Let : X Y be a smooth fibration

between projective manifolds, and let L be a nef and -big line bundle on X .

Then (L X Y ) is locally free and nef. If L is ample, then (L X Y )

is ample or zero.

The proof of this result follows a strategy developed in Kollár’s landmark

papers [Kol86a, Kol86b] and will be discussed in detail in Section 3.

We will be interested in situations where the fibration is not smooth and

establish in Section 3 only generic results, i.e. results that are of the type : if

C Y is a sufficiently general curve, then (L X Y ) C is nef. Such

a result is of course less satisfactory as long as we don’t test the optimality

of the statement.

Doing these tests is the object of this section. In particular we try to

indicate which properties a fibre Xy should not have if we want (L X Y )

to be positive in some neighbourhood of y . We will see in Corollary 2.6

that vanishing theorems play a crucial role in showing the positivity of direct

image sheaves, so the idea behind these examples is to construct projective

schemes on which these theorems do not hold.

Note that these examples are also relevant if we are only interested in

morphisms : X Y between projective manifolds X and Y . If C Y is a

curve contained in the -singular locus, the scheme XC : X YC can be very

singular. Furthermore if (L X Y ) commutes with arbitrary base-change

(e.g. if there are no higher direct images), we have

(L X Y ) C XC (L XC XC C)

Before we go into the more technical statements, let us consider the

following example which shows that even for a conic bundle, the positivity

properties of direct image sheaves are often worse than what we might naively

expect.

EXAMPLE 2.2 (Wiśniewski [Wiś91], p. 156). Let Y : P(V) be the

projectivisation of the vector bundle

V : 2
P3
(2) P3
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Set p : Y P3 for the projection map, and denote by P(V)(1) the

tautological bundle. Clearly P(V)(1) is globally generated, but not ample : it

is trivial on the threefold Z P3 Y corresponding to the quotient bundle
2

P3
(2) P3 P3 . Furthermore

1
Y P(V)(3) , so

1
Y is nef but not

ample. Set

E : P(V)(1)
2

P(V)(1) p P3(1)

and denote by : X : P(E) Y the projection map. The base locus of the

linear system P(E)(2) p P3( 2) is not empty, but Wiśniewski shows

by an explicit computation that it contains a smooth irreducible divisor X such

that the induced morphism X : X Y is a conic bundle. By the adjunction

formula, one has

1
X P(E)(1) p P3(1) X

Since E p P3(1) is an ample vector bundle, this shows that
1

X is ample.

Nevertheless, the direct image sheaf

1
Y ( 1

X X Y )

is not ample.

We can push the example one step further : set L : P(E)(1) X , then

L is nef and relatively ample, but the direct image sheaf

(L X Y )
1

Y p P3 ( 1) P(V)(2) P(
2

P3
(1)

P3
( 1))

(1)

is effective, but not nef : we have

1
Y p P3 ( 1) Z P3( 1)

An easy computation shows that the base locus of the linear system
1

Y p P3( 1) is exactly Z , so 1
Y p P3( 1) is nef on every curve

that is not contained in Z .

While we will be able to explain very soon why the direct image sheaf

(L X Y ) is negative on Z (cf. Section 2.B), it will take much more effort

to see the positivity of the direct image sheaf on Y Z as part of a larger

framework (cf. Section 3.G).

2.A DIRECT IMAGES AND VANISHING THEOREMS

We will now study a situation where the positivity of (L X Y ) is

equivalent to an injectivity result for cohomology groups. This will enable us

to give counterexamples to the positivity of direct image sheaves.
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PROPOSITION 2.3. Let : X P1 be a flat fibration, where X is a

projective Cohen-Macaulay scheme (not necessarily reduced, irreducible, nor

normal or with some restrictions on the singularities). Let L be a line bundle

such that

Ri (L X) 0 i 0

Then (L X P1) is locally free. It is nef if and only if

(2.4) h1(X L X P1 P1( 1)) h1(X L X P1)

Suppose (L X P1 ) is not zero. It is ample if and only if

(2.5) h1(X L X P1 P1( 2)) h1(X L X P1 P1 ( 1))

REMARK. If L is an ample line bundle on X , Serre vanishing implies that

for k sufficiently large, the higher direct images Ri (L k
X) and both

cohomology groups in (2.5) vanish, so the direct image sheaf (L k
X P1 )

is ample. We will see that for k 1 the situation is more delicate.

COROLLARY 2.6. Let : X P1 be a flat fibration, where X is a

projective Cohen-Macaulay scheme such that the Kodaira vanishing theorem

holds 2 ) on X . If L is a nef and -ample line bundle, (L X P1 ) is nef.

If L is ample, (L X P1) is ample or zero.

Proof. Since L is relatively ample, we have

Ri (L X) 0 i 0

by relative Kodaira vanishing. Since L is nef, the line bundles

L ( P1 P1( 1)) and L P1

are ample. Therefore by Kodaira vanishing both cohomology groups in (2.4)

are zero, so (L X P1 ) is nef by Proposition 2.3.

If L is ample, the bundles

L ( P1 P1( 1)) and L ( P1 P1( 2)) L

are ample and an analogous argument yields the second statement.

2 ) We say that Kodaira vanishing holds on a Cohen-Macaulay scheme X if for every ample
line bundle, the cohomology Hi(X L X) vanishes for all i 0. In this case also the relative
Kodaira vanishing theorem holds : if : X Y is a morphism and L a relatively ample line
bundle, a Leray spectral sequence argument shows that Ri (L X) 0 for all i 0.
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Proof of Proposition 2.3. Since is flat, the vanishing of the higher

direct images implies by [Har77, III, Thm. 12.11]

Hi(F L F F) 0 i 0

for every fibre F , so

h0(F L F F) (F L F F)

is constant by [Har77, III, Thm. 9.9]. It follows from Grauert’s Bildgarbensatz

that (L X P1) is a locally free sheaf. Furthermore, since is flat, we

have Fy P1 ( 1) for any fibre Fy
1(y) . So we have an exact

sequence

0 L X P1 P1( 1) L X P1 L Fy Fy 0

Since h1(Fy L Fy Fy ) 0 , the associated long exact cohomology

sequence shows that

h1(X L X P1 P1( 1)) h1(X L X P1)

if and only if the morphism

( ) H0(X L X P1 ) H0(Fy L Fy Fy )

is surjective. Since

H0(X L X P1 ) H0(P1 (L X P1 ))

and, by cohomology and base change,

( (L X P1 ))y H0(Fy L Fy Fy )

the morphism ( ) is surjective if and only if (L X P1) is generated

in y by its global sections. A vector bundle on P1 is nef if and only if it is

generated by its global sections.

This shows the first statement. For the second statement the proof is

analogous : we conclude with the observation that the sheaf (L X P1 ) is

ample if and only if

(L X P1) P1( 1) (L P1( 1) X P1 )

is globally generated.
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2.B MULTIPLE FIBRES

We will now give an explicit example of a scheme where Equalities (2.4)

and (2.5) do not hold. After the elementary but tedious proof, we will see

that Wiśniewski’s Example 2.2 arises from a special case of the following

proposition.

PROPOSITION 2.7. Let P : P(V) be the projectivisation of the vector

bundle

V : 2
P1 P1(d)

where d 1 and denote by : P P1 the projection map. Let Xred be the

divisor defined by the quotient vector bundle V 2
P1

and denote by X the

scheme corresponding to the divisor 2Xred . Set

L : P1(a) P(b)

where b 1 and a 0 . The direct image sheaf

( X) (L X X P1 )

is locally free. It is nef if and only if a d 0 . It is ample if and only if

a d 0 .

REMARK. It is straightforward to see that the line bundle L is nef and

big; if a 0 it is even ample. The moral of the rather technical statement is

as follows : the direct image sheaf ( X) (L X X P1 ) takes into account

the scheme-theoretic structure of X . If the normal bundle of Xred absorbs the

positivity of L , we cannot expect to have a positive direct image sheaf.

The proof will use the log-version of the Kodaira-Akizuki-Nakano vanishing

theorem, due to Norimatsu.

THEOREM 2.8 ([Nor78]). Let X be a projective manifold and D a simple

normal crossings divisor on X . Let L be an ample line bundle over X , then

Hi(X L X(D)) 0 i 0

Proof of Proposition 2.7. The statement on ampleness easily reduces to

the statement on nefness, since a vector bundle on P1 is ample if and

only if ( 1) is nef, and a d 0 if and only if (a 1) d 0. Let us

check when the direct image sheaf is nef.



96 A. HÖRING

For every y P1 , the fibre Xy is isomorphic to a non-reduced conic in P
2 .

Using

L Xy Xy P2(b 1) Xy

and the exact sequence

0 P2(b 3) P2(b 1) P2(b 1) Xy 0

we see that Hi(Xy L Xy Xy ) 0 for i 0. Thus by [Har77, III,

Ex. 11.8], the higher direct images Ri( X) (L X X) vanish and we are

in the situation of Proposition 2.3. Thus by (2.4) the statement is equivalent

to

( ) h1(X L X P1 P1( 1)) h1(X L X P1)

STEP 1 : reduction to Xred . Consider the exact sequence

0 L P P1 L(X) P P1 L X X P1 0

Since L is nef and -ample, L
P1
is ample, so Kodaira vanishing on P

and the associated long exact sequence imply that

hi(P L(X) P P1) hi(X L X X P1) i 0

Consider now the exact sequence

0 L(Xred) P P1 L(X) P P1 L(Xred) Xred Xred P1 0

The divisor Xred is smooth, so Norimatsu vanishing on P (cf. Theorem 2.8)

and the associated long exact sequence imply that

hi(P L(X) P P1 ) hi(Xred L(Xred) Xred Xred P1) i 0

As an intermediate result we obtain that

hi(Xred L(Xred) Xred Xred P1 ) hi(X L X X P1 ) i 0

Since L (
P1 P1 ( 1)) is still ample we can apply the same arguments

to the exact sequences tensored with P1( 1) to get

hi(Xred L(Xred) P1( 1) Xred Xred P1)

hi(X L P1( 1) X X P1 )

for all i 0. Since Xred (Xred) NXred P , we see that ( ) is equivalent to

( ) h1(Xred L P1( 1) Xred NXred P Xred P1)

h1(Xred L Xred NXred P Xred P1)
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STEP 2 : the computation on Xred . The divisor Xred is isomorphic to

P1 P1 and we will identify the restriction of to Xred to the projection on

the first factor. Using the usual notation for line bundles on P1 P1 we see

that the restriction of the tautological bundle to Xred is Xred (0 1) , so we have

L Xred P1 (a) P(b) Xred Xred (a b)

Since P P1(d 2) P( 3) and Xred Xred ( 2 2) , we have

NXred P P Xred Xred Xred ( d 1)

This implies that

L Xred NXred P Xred P1 Xred (a b) Xred ( d 1) Xred (0 2)

Xred (a d b 1)

Since b 1, this implies that

( Xred ) (L Xred NXred P Xred P1) P1(a d) b

furthermore there are no higher direct images, so

h1(Xred L Xred NXred P Xred P1) h1(P1 P1(a d) b)

By the same argument we obtain

h1(Xred L P1( 1) Xred NXred P Xred P1) h1(P1 P1(a d 1) b)

Therefore ( ) is equivalent to

h1(P1 P1(a d 1) b) h1(P1 P1(a d) b)

which holds if and only if a d 0.

Let us see how Wiśniewski’s Example 2.2 fits in the statement of

Proposition 2.7 : using the notation of the example let l be a line in Z P3 ,

then

E l
2

P1 P1(1)

so in the notation of Proposition 2.7 we have d 1. One easily computes

that

h0(P(E l) P(E)(2) p P3( 2) P(E l)) 1

so the restriction of the linear system P(E)(2) p P3( 2) to P(E l)

has a unique element; it is a double divisor whose support corresponds to the

surjection

E l
2

P1
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Furthermore
1

X P(E l) P1(1) P(E l)(1)

so in the notation of Proposition 2.7 we have a 1. Applying the proposition,

we obtain (again) that since a d 0, the direct image sheaf

( 1
X X Y ) l

1
Y l

is nef but not ample. For the line bundle L P(E)(1) X , the same

computation yields a 0, so a d 1. Hence the direct image sheaf

(L X Y ) l
1

Y p P3( 1) l

is not nef, although L is nef and relatively ample.

2.C NON-RATIONAL SINGULARITIES

We will show in Theorem 3.30 that for a fibration X Y and a line

bundle that is nef and relatively big, the direct image sheaf is weakly positive

if the irrational locus of X does not dominate Y . We will give an example

to show that this last condition is crucial : the construction is due to [BS95,

Ex. 2.2.10] where it is presented as an example of a variety for which the

classical vanishing theorem fails. We follow our general philosophy to see it

as an example of direct image sheaves with bad properties.

EXAMPLE 2.9. Let P : P(V) be the projectivisation of the vector bundle

V : P1( 1) 3
P1

and denote by : P P1 the projection map. For d 4, let X be a general

member of the linear system P(d) .

Then the restriction X : X P1 is a flat morphism of normal Gorenstein

varieties. Set L : P(1) P1(1) , then L is nef and -ample and the

direct image sheaf ( X) (L
k

X X P1 ) is not nef for any k 1.

Proof. Since V P1( 1) 3
P1
, it follows that for d 1, the base locus

of the linear system P(d) is supported exactly on the curve corresponding

to the quotient bundle V P1( 1) . By Bertini’s theorem a general member

X of the linear system is nonsingular in the complement of the base locus,

therefore X is nonsingular in codimension 1. Since it is a divisor in P , it is

Gorenstein, so it is normal by Serre’s criterion 5.12. Since X has no embedded

points and P1 is a smooth curve it is clear that X is flat.
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We want to show that the direct image sheaf ( X) (L
k

X X P1 )

is not nef. Arguing as in the proof of Proposition 2.7 we get

h1(P L k(X) P P1 ) h1(X L k
X X P1)

and

h1(P L k(X) P P1 P1 ( 1)) h1(X L k
X X P1 P1( 1))

We have P P1 P1( 1) P( 4) , so

L k(X) P P1 P1(k 1) P(d k 4)

Since d 4, the higher direct images of P1(k 1) P(d k 4) vanish,

so

h1(P L k(X) P P1) h1(P1 P1(k 1) Sd k 4V)

and

h1(P L k(X) P P1 P1 ( 1)) h1(P1 P1(k 2) Sd k 4V)

It is easy to see that P1 (k 1) Sd k 4V has a direct factor of the form

P1(3 d) . Since d 4, this implies that

h1(P1 P1(k 2) Sd k 4V) h1(P1 P1(k 1) Sd k 4V)

so

h1(X (L k
X) X P1 P1( 1)) h1(X (L k

X) X P1 )

for all k 1. Since X is singular at most along a -section, it has at

most finitely many irrational singularities in every fibre. Therefore the relative

Kawamata-Viehweg 3 ) vanishing Theorem 3.7 applies to X , so

Ri( X) (L
k

X X) 0 i 0

Thus we can conclude with Proposition 2.3.

2.D EFFECTIVE DIVISORS

We have seen in the preceding examples (and will see in much more

generality in Section 3) that in general, we cannot expect the direct image

sheaves to be globally positive, e.g. to be nef. Since we only obtain weak

positivity results, it is natural to ask if we can weaken the condition on L to

some weak positivity condition like the existence of global sections.

Unfortunately, the positivity of the direct image sheaf for a line bundle

that is effective but not nef comes with an extra difficulty. It is not sufficient

to discuss the geometry of the fibration X Y , but also its relation with

3 ) The absolute Kawamata-Viehweg/Kodaira vanishing theorem does not hold on X .
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the geometry of the non-nef locus of the line bundle, represented by some

multiplier ideal. In the next example we will take a line bundle L such that

the stable base locus of its linear system dominates the base (cf. Section 3.H

for more details).

EXAMPLE 2.10. Let P : P(V) be the projectivisation of the vector bundle

V : P1( 1) 3
P1

and denote by : P P1 the projection map. Set L : P(1) , then for

any k 4, the linear system kL is not empty, but the direct image sheaf

(L k
P P1 ) is not nef.

Proof. For k 1, we have L k SkV , so we immediately get

h0(P L k) h0(P1 SkV) 0

Since P P1 P( 4) P1( 1) , we have

L k
P P1 P(k 4) P1 ( 1)

Hence for k 4,

(L k
P P1) Sk 4V P1 ( 1)

has at least one direct factor isomorphic to P1( 1) , so it is not nef. For

k 4, we even have (L 4
P P1) P1( 1) , so the direct image sheaf

is antiample !

3. POSITIVITY OF DIRECT IMAGE SHEAVES

3.A THE PROBLEM

In this chapter we will explain in detail a method to prove the (weak)

positivity of direct image sheaves. Technically speaking we will attack the

following problem.

PROBLEM 3.1 (The direct image problem). Let : X Y be a fibration

from a projective Cohen-Macaulay variety X onto a normal projective

Gorenstein 4 ) variety Y . Let L be a line bundle over X that satisfies certain

positivity properties (e.g. nef and -big), and denote by X Y the relative

dualising sheaf (cf. Definition 5.22). What can we say about the positivity

properties of the direct image sheaf (L X Y ) ?

4 ) The Gorenstein condition is an important restriction which we make to simplify parts of
our considerations. It is possible to weaken this condition.
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We have seen in Section 2 that there are certain obstructions for the direct

image sheaf to be positive, so we will not be able to give an answer in this

rather general setting. Moreover we will see in this chapter that we do not

get any result about the positivity (L X Y ) on the non-flat locus of the

morphism . Since these loci are often very interesting this is of course a

certain drawback, but is due to the nature of the problem : we will see in

Section 4 that strange things can happen, even in very restricted situations.

This explains the “generic” nature of the statement that is the main goal of

this section :

THEOREM 3.30 ([Vie82, Kol86a]). Let : X Y be a fibration from

a normal projective Cohen-Macaulay variety X onto a normal projective

Gorenstein variety Y . Suppose that the locus of irrational singularities Irr(X)

does not dominate Y . Let L be a line bundle over X that is

! nef and -big,

! or trivial, i.e. L X .

Then (L X Y ) is weakly positive.

If is generically smooth, then (L X Y ) is weakly positive on the

-smooth locus.

How does one prove this statement ? The bulk of the work will be to

prove the rather technical, but useful Lemma 3.24 that reduces the direct

image problem 3.1 to the following, probably easier

PROBLEM 3.2 (The extension problem). Let Y be a normal projective

variety on which we fix a very ample line bundle H . Let : X Y be a

fibration from a projective manifold 5 ) X onto Y . Let L be a line bundle on

X that satisfies certain positivity properties (e.g. nef and -big), and denote

by X the canonical sheaf. Is the coherent sheaf (L X ) H dim Y 1

generically generated by global sections ?

We will see that this reduction step is essentially a geometric problem

and independent of the line bundle L . On the other hand, the answer to

the extension problem depends heavily on the positivity of L . In the case

where L is nef and -big, we get a positive answer via the Kawamata-

Viehweg vanishing theorem 3.7; when L is trivial the same is done by

5 ) The variety X is not the same as X in Problem 3.1. In fact in order to get a positive
answer to the direct image problem for X , one has to give a positive answer to the extension
problem for infinitely many varieties X .
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Kollár’s Theorem 3.8. Finally in Section 3.H we will indicate how analytic

tools and the theory of multiplier ideals allows one to generalise Theorem 3.30.

THEOREM 3.38 ([BP07]). Let : X Y be a fibration from a projective

manifold X onto a normal projective Gorenstein variety Y . Let L be a

pseudo-effective line bundle over X and let h be a singular metric such

that Oh(L) 0 and that the cosupport of (h) does not dominate Y . Then

(L X Y ) is weakly positive.

Since the steps of the proof are rather technical, let us explain the general

strategy in the ideal case of Mourougane’s Theorem 6 ) 2.1.

STEP 1 : (L X Y ) is locally free. By the relative Kawamata-Viehweg

theorem there are no higher direct images and we conclude via flatness.

STEP 2 : the fibre product trick [Vie83, Kol86a]. Let Xs : X Y Y X

be the s -times fibred product and denote by s : Xs Y the induced map to

Y and by i : Xs X the projection on the i -th factor. Then Xs is smooth, s

is a smooth fibration and Ls :
s

i 1(
i) L is nef and s -big. A combination

of flat base change and projection formula arguments shows that

(L X Y )
s s (Ls Xs Y )

STEP 3 : an extension property for nef and relatively big line bundles.

An application of the Kawamata-Viehweg vanishing theorem combined with a

Castelnuovo-Mumford regularity argument shows the following : let : A B

be a smooth fibration between projective manifolds and let M be a nef and

-big line bundle on A . Let H be a very ample line bundle on B , then

(M A) Hdim Y 1

is globally generated.

STEP 4 : the vector bundle (L X Y ) is nef. Let H be a very ample

line bundle on Y . Apply Step 3 to the smooth fibrations s : Xs Y to see

that

(L X Y )
s

Y Hdim Y 1 s (Ls Xs ) Hdim Y 1

is globally generated for all s 0. This implies that (L X Y ) is nef.

6 ) The following outline is cut and paste from Mourougane’s beautifully written paper.



POSITIVITY OF DIRECT IMAGE SHEAVES 103

Here is the list of tasks that we have to undertake to adapt this proof to

our situation.

! Skip Step 1. It is clear that for L an arbitrary line bundle, the direct

image sheaf (L X Y ) is not locally free, but only torsion-free. Even if

is flat, the direct image sheaf is only reflexive in general. For example this

means that we cannot use the projection formula.

! Try to understand the fibre products Xs . The main setback in our

situation is that the fibre products Xs can acquire some really bad singularities.

If is flat, they are Cohen-Macaulay and under some conditions even normal.

The most important point for us is to find a non-empty Zariski open subset

Y Y , such that ( s) 1(Y ) Xs has at most rational singularities.

! Isomorphisms become morphisms. In our case, a formula like

( (L X Y ))
s s (Ls Xs Y )

does not necessary hold. We will deal with this problem by showing these

isomorphisms in codimension 1, then extend to a morphism via reflexiveness.

! Show extension properties. So far we haven’t made use of the positivity

of L . The positivity of L only enters the picture in Step 3, which we generalise

for a variety of different conditions on the positivity of L .

We will carry out the first three points in Sections 3.D and 3.E; the

extension of sections will then be treated in Sections 3.F and 3.H.

ADVICE FOR THE READER. For technical reasons, it will often be necessary

to restrict the fibration : X Y to some smaller locus Y Y (resp. X X )

to show a statement and then extend to the corresponding statement on the

whole space. For a first reading, it might be useful to forget about these

technicalities and assume that : X Y is flat and (L X Y ) is locally

free.

3.B WEAK POSITIVITY AND VANISHING THEOREMS

Since direct image sheaves are in general not locally free, the usual

definition of ample, nef etc. are no longer valid in this context. This can

be done in two different ways : try to use the same definition in the more

general context or introduce a new, weaker definition for the general setting.

The first way leads to the notion of ample and nef sheaves as defined in
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[AT82] and [Kub70]. For our problem the notion of weak positivity in the

sense of Viehweg is more natural.

NOTATION 3.3 ([Vie83], Def. 1.1). Let X be a normal variety and let be

a torsion-free sheaf on X . Let i : X X be the largest open subvariety such

that X is locally free. For all m N , denote by Sm( X ) (resp.

( X )
m ) the m -th symmetric product (resp. the m -fold tensor product).

Then we define S[m] : i Sm( X ) and
[m] : i ( X )

m ;

in particular these sheaves are reflexive by Lemma 5.5.

REMARK. Since is supposed to be torsion-free, the set X X has

codimension at least 2. It follows from Lemma 5.5 that

S[m] (Sm ) and [m] ( m)

This implies that

( [a])[b] [ab] a b N

DEFINITION 3.4 ([Vie83], Def. 1.2, Remark 1.3). Let X be a normal

variety, and let X X be a non-empty open subset. We say that a torsion-

free coherent sheaf is weakly positive (in the sense of Viehweg) over X

if for some line bundle H on X and every N there exists some N

such that S[ ] H is globally generated over X , that is the evaluation

map of sections on X

H0(X S[ ] H ) X S[ ] H

is surjective over X . The sheaf is weakly positive if there exists some

non-empty open subset X X such that is weakly positive over X .

The next lemma relates the notions of nefness and weak positivity. It shows

that a weakly positive sheaf is nef with the exception of some proper subset

that contains curves where the sheaf fails to be nef.

LEMMA 3.5 ([Vie82], Lemma 1.10). Let X be a normal projective variety,

and let be a coherent sheaf over X . Suppose that is weakly positive

over X X . Let C be a projective curve such that C X and

is locally free in a neighborhood of C . Then the restriction C is nef.

Proof. Apply the Barton-Kleiman criterion [Laz04b, Prop. 6.1.18].
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Vanishing theorems play a central role for the positivity of direct image

sheaves. In fact every time that we can show that for a fixed very ample line

bundle H on Y , and any sufficiently nice fibration : M Y endowed with

a positive line bundle L on M , we have

( ) Hi(Y (L M) H) 0 i 0

we have a good chance of showing the weak positivity of direct image sheaves.

The main reason why this works is Castelnuovo-Mumford regularity.

THEOREM 3.6 (Castelnuovo-Mumford regularity, [Laz04a], Thm. 1.8.5).

Let X be a projective variety and let H be an ample line bundle that is

generated by global sections. Let be a coherent sheaf on X , and let m be

a natural number such that

Hi(X Hm i) 0 i 0

Then Hm is generated by its global sections.

There are two ways of showing a vanishing statement of type ( ) . The

first way is to show the vanishing of

Hi(X L X H) 0 i 0

and to make a spectral sequence argument to obtain the vanishing statement

( ) . This method can only work if L is sufficiently positive on the general fibre

of the fibration, otherwise the cohomology will not vanish globally since we

have cohomology along the fibres. Nevertheless if the line bundle is relatively

nef and big, the relative Kawamata-Viehweg Theorem shows that we get the

required vanishing.

THEOREM 3.7 (Relative Kawamata-Viehweg vanishing : [BS95], Lem-

ma 2.2.5). Let X be a normal quasi-projective variety and let : X Y

be a projective morphism to a quasi-projective variety. Let L be a -nef and

-big line bundle. Then

Ri (L X) 0 i max
y (Irr(X))

dim( 1(y) Irr(X))

The second method is much more refined and aims at showing directly

the vanishing ( ) . This approach is based on a famous theorem due to Kollár.
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THEOREM 3.8 ([Kol86a], Thm. 2.1). Let X be a projective manifold, and

let : X Y be a fibration onto a normal variety Y . Then for all j 0 the

coherent sheaf Rj X is torsion-free. Furthermore let H be an ample line

bundle on Y ; then for all j 0 we have

Hi(Y Rj X H) 0 i 0

COROLLARY 3.9. In the situation of Theorem 3.7, suppose that X has

at most rational singularities and that is a flat Cohen-Macaulay fibration

(cf. 5.14) onto a Gorenstein variety Y . Then (L X Y ) is locally free.

Proof. Since is a flat Cohen-Macaulay fibration, the relative dualising

sheaf X Y exists and is flat over Y by Theorem 5.18. Since Y is Gorenstein,

we have

X X Y Y

by Theorem 5.20, so X is flat over Y . By the relative Kawamata-Viehweg

vanishing theorem the higher direct images Ri (L X) vanish, so (L X)

is locally free [Mum70, Cor. 2, p. 50]. Hence (L X Y ) (L X)
1

Y

is locally free.

3.C SIMPLIFYING THE PROBLEM – A BIT

Example 2.9 shows that if the total space has too many irrational

singularities, we cannot expect to obtain a positivity result for direct image

sheaves. Therefore it is necessary to start with a total space with (essentially)

rational singularities.

PROPOSITION 3.10. Let : X Y be a fibration from a normal, projective

Cohen-Macaulay variety onto a Gorenstein variety Y , and let L be a line

bundle over X . Suppose that the locus of irrational singularities Irr(X) of

X does not dominate Y , and let q : X X be a desingularisation of X .

If ( q) (q L X Y) is weakly positive on some non-empty open set

Y Y , the direct image sheaf (L X Y ) is weakly positive on Y (Irr(X)) .

Proof. The desingularisation q : X X induces a morphism q X X

that is an isomorphism in the complement of Irr(X) . By the projection formula

we obtain a morphism

( q) (q L X Y ) (L X Y )

that is an isomorphism in the complement of (Irr(X)) .
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REMARK. The proposition tells us that we can restrict our attention to

the case where the total space is smooth. This does not mean that we are

obliged to do so : if we have a total space with rational singularities and some

extra information on the singularities of the fibration, one might obtain more

precise results if we do not desingularise.

3.D FIBRE PRODUCTS

Our goal is to give sufficient conditions such that Problem 3.1 reduces to the

more accessible Problem 3.2. This goal is achieved with sufficient generality

with the reduction Lemma 3.24 which is our main technical result. The idea

is as follows : by definition, to show the weak positivity of (L X Y ) it

is sufficient to show that for some very ample line bundle H and all s N ,

the sheaves

[ (L X Y )]
[s]

Y H dim Y 1

are globally generated on some non-empty open set. This could be simpler,

since we “added a lot of positivity” to the sheaf 7 ). On the other hand it is

difficult to say something about the tensor products [ (L X Y )]
[s] . The

fibre product trick will allow us to get around this problem by showing that

the sheaf (L X Y )
[s] can essentially be realised as a direct image sheaf

of some associated fibration Xs Y (Lemma 3.17). The drawback of this

trick is that Xs can have irrational singularities, which is an obstruction to

having positive direct image sheaves (cf. Section 2.C). For this reason, we

will be rather obsessed with controlling the singularities of the varieties we

construct.

For the following statements and proofs, it is very convenient to work in a

relative setting, i.e. to consider projective morphisms between quasi-projective

varieties.

CONSTRUCTION 3.11. Let : X Y be a fibration from a quasi-projective

manifold X onto a normal quasi-projective Gorenstein variety Y , and let L

be a line bundle over X . The s -times fibred product

X Y Y X

has a unique irreducible component that dominates Y and we denote by Xs

its reduction.

7 ) The proof of the invariance of plurigenera is based on this principle : add a positive line
bundle so that you can extend the sections from the central fibre, then find some inductive process
to get rid of the line bundle (cf. [Pău07, Siu02]).
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Denote by s : Xs X the projection on the s -th factor and by s : Xs Y

and : Xs Xs 1 the induced maps. We sum this up in the commutative

diagram

Xs

s

s

X

Xs 1

s 1

Y

Denote by X0 X and Y0 Y the maximal open sets such that X0 : X0 Y0

is a flat fibration. By Corollary 5.24 we have

Xs0 : ( s) 1(Y0) X0 Y0 Y0 X0

Moreover s
Xs
0
is a flat fibration and

Xs
0
Y0 ( s) X0 Y0 ( )

X
s 1
0

Y0

By the same corollary, Xs0 is Gorenstein. We set L1 : L and define inductively

for s 1

Ls : ( s) L ( ) Ls 1

LEMMA 3.12. In the situation of Construction 3.11, suppose that X0

has generically reduced fibres in codimension one (Definition 1.4). Then Xs0
is normal.

Proof. Since Xs0 is Cohen-Macaulay, it is sufficient by Serre’s crite-

rion 5.12 to show that Xs0 is nonsingular in codimension 1. Since Xs0 is

equidimensional over Y0 and has generically reduced fibres in codimen-

sion 1, we may furthermore suppose that Y0 is smooth and that all the fibres

of X0 are generically reduced. Let Z X be the smallest closed set such

that

1X Y X Z

is locally free. The general fibre is smooth and all the fibres are generically

reduced, so

codimX Z 2

and X0 Z : X0 Z Y is a smooth map. Since is equidimensional, it

follows inductively that the s -times fibred product

(X0 Z)s : (X0 Z) Y0 Y0 (X0 Z)

is smooth and

codimXs
0
(Xs0 (X0 Z)s) 2

This concludes the proof.
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The normality of Xs0 is in general not sufficient to ensure that a direct

image sheaf is weakly positive over Y0 . The next lemma gives sufficient

conditions to have rational singularities.

LEMMA 3.13 ([Kol86a], Lemma 3.4). In the situation of Construction 3.11,

let Y Y and X : 1(Y ) be open sets such that X : X Y is flat

and such that the -singular locus 6 satisfies the following conditions :

(1) the intersection 6 Y is a smooth divisor;

(2) the preimage 1(6 Y ) is a simple normal crossings divisor.

Then ( s) 1(Y ) is normal with at most rational singularities.

Proof. Conditions (1) and (2) imply that X has generically reduced

fibres in codimension 1, so Lemma 3.12 shows that ( s) 1(Y ) is normal.

A local computation shows that its singularities are rational, cf. [Vie83,

Lemma 3.6].

EXAMPLE 3.14. Let : X Y be a conic bundle, where X and Y are

projective manifolds. The locus 61 6 such that the fibres are double lines

has codimension at least two [Sar82, Prop. 1.8.5], so the fibre products

X Y Y X

are normal. Furthermore if y 6reg is a point of the -singular locus such that

the fibre over Xy is a union of two lines, there exists an analytic neighbourhood

y U 6 such that 1(U) is a union of two copies of U P1 glued along

a section. Thus the above lemma applies for

Y : Y (61 6sing)

We turn now to the most crucial question of Construction 3.11 : what is

the relation between (L X Y ) and
s (Ls Xs Y ) ? The ideal relation

would of course be

( (L X Y ))
s s (Ls Xs Y )

but this is not true in general. The first problem is already apparent in

Construction 3.11 : if is not flat, Xs is not given by a natural construction

(recall that Xs is the reduction of a certain irreducible component). The sheaves

Xs Y and X Y are not dualising sheaves in the sense of Definition 5.17 and

there is no functorial property that relates them. We can deal with this problem

by doing the computation over the flat locus where we have an easy relation
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between Xs
0
Y0 and X0 Y0 . A second problem is that (L X Y ) is not

locally free. We take care of this problem by working on the locus where the

sheaf is locally free and extend by taking biduals.

LEMMA 3.15 (Base change lemma, locally free case). In the situation of

Construction 3.11, suppose that (L X0 Y0) is locally free. Then

(3.16) s (Ls Xs
0
Y0) [ (L X0 Y0)]

s

Proof. We proceed by induction on s . The case s 1 is trivial. By

construction, we have

Ls Xs
0
Y0 ( s) (L X0 Y0) ( ) (Ls 1 X

s 1
0

Y0
)

Since X0 has Gorenstein fibres, X0 Y0 is locally free by [Kle80, p. 58].

Hence L X0 Y0 is locally free and the projection formula implies that

s (Ls Xs
0
Y0) L X0 Y0

s ( (Ls 1 X
s 1
0

Y0
))

Since is flat, we can apply flat base change to obtain

s ( (Ls 1 X
s 1
0

Y0
)) ( s 1(Ls 1 X

s 1
0

Y0
))

By the induction hypothesis

s 1(Ls 1 X
s 1
0

Y0
) [ (L X0 Y0)]

s 1

is locally free, so we can apply the projection formula a second time to see

that

L X0 Y0
s ( (Ls 1 X

s 1
0

Y0
))

L X0 Y0 ( s 1(Ls 1 X
s 1
0

Y0
))

(L X0 Y0) [ (L X0 Y0)]
s 1

LEMMA 3.17 (Base change lemma). In the situation of Construction 3.11,

the direct image sheaf s (Ls Xs
0
Y0) is reflexive and

(3.18) s (Ls Xs
0
Y0) [ (L X0 Y0)]

[s]

Proof. Since s : Xs0 Y0 is a flat Cohen-Macaulay fibration, the sheaf
s (Ls Xs

0
Y0) is reflexive by Corollary 5.26. In particular it is locally free

in codimension one by Proposition 5.3. Thus Lemma 3.15 shows that there

exists an open subset Y Y0 such that codimY0(Y0 Y ) 2 and

s (Ls Xs
0
Y0) Y [ (L X0 Y0)]

s
Y

Since the bidual [ (L X Y )]
[s] is reflexive, we obtain the isomorphism by

Lemma 5.5.



POSITIVITY OF DIRECT IMAGE SHEAVES 111

3.E DESINGULARISATION

In the preceding section we have seen that the fibre product Xs is smooth

over a general point of Y , but it is also clear that the fibre products are rarely

normal with at most rational singularities. This is somewhat annoying since

vanishing theorems tend to fail for varieties with irrational singularities. We

can deal with this situation by taking a desingularisation X(s) Xs , so the

total space will be smooth. This comes at a certain price, since the locus

where the new map X(s) Y has “nice” fibres (or is at least flat) tends to

be smaller than Y0 . Therefore we get new loci where it will be hard to say

something about the positivity of the direct image sheaves.

CONSTRUCTION 3.19. Suppose that we are in the situation of Construc-

tion 3.11, Let : (Xs) Xs be the normalisation. By relative duality for

finite morphisms (cf. [Har77, III, Ex. 6.10, Ex. 7.2]), there exists a natural

morphism

(Xs) Xs

Let r : X(s) (Xs) be a desingularisation, then we have a morphism

r X(s) (Xs)

Pushing the morphism down on Xs , we obtain a morphism

(3.20) ( r) X(s) (Xs) Xs

which by Definition 5.16 is an isomorphism on the locus where Xs is

normal with at most rational singularities. By the projection formula, the

morphism (3.20) induces a morphism ( r) ( X(s) ( r) Ls) Ls Xs .

Set (s) : s r : X(s) Y . Pushing down via s we obtain a morphism

(3.21) (s)(( r) Ls X(s) )
s (Ls Xs )

which is an isomorphism on the largest open set Y Y0 such that (
s) 1(Y )

is normal with at most rational singularities.

REMARK. Since (s) is not necessarily flat, the direct image sheaf
(s)
(( r) Ls X(s) ) is torsion-free, but not necessarily reflexive.

LEMMA 3.22. In the situation of Construction 3.19, there exists a natural

map

(3.23) s : [ (s)(( r) Ls X(s) )] [ (L X Y )]
[s]

Y

which is an isomorphism on the largest open set Y Y0 such that (
s) 1(Y )

is normal with at most rational singularities.
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REMARK. Note that in general the set Y depends on s . Since the smooth

locus of works for every s , we will implicitly choose Y as the largest

open set that works for all s .

Proof. We have a global morphism

( ) (s)(( r) Ls X(s) )
s (Ls Xs )

which is an isomorphism on the largest open subset Y Y0 such that

( s) 1(Y ) is normal with at most rational singularities.

Since Y is Gorenstein, we have

s (Ls Xs )
s (Ls Xs Y ) Y

Therefore Lemma 3.17 implies that

s (Ls Xs ) Y0 [ (L X0 Y0)]
[s]

Y0

Composing the restriction of ( ) to Y0 with this isomorphism, we obtain a

morphism

(s)(( r) Ls X(s) ) Y0 [ (L X0 Y0)]
[s]

Y0

Since X is Cohen-Macaulay and Y is normal, the non-flat locus has

codimension at least two [Har77, III, Ex. 10.9], i.e. codimY (Y Y0) 2 .

Since [ (L X Y )]
[s]

Y is a reflexive sheaf, this morphism extends to

a global morphism on Y by reflexiveness of the om-sheaf (Corollary 5.7).

By what precedes it is clear that this extended morphism is an isomorphism

on Y .

We come to the main technical statement : it sums up the preceding

considerations and explains how to reduce Problem 3.1 to Problem 3.2.

LEMMA 3.24 (Reduction lemma). Let : X Y be a fibration from a

quasi-projective manifold onto a Gorenstein quasi-projective variety Y , and

let L be a line bundle over X .

Suppose furthermore that there exists a line bundle H on Y and a non-

empty Zariski open subset Y Y such that for all sufficiently large s N ,

the sheaf
(s)(( r) Ls X(s) ) H dim Y 1

is generated by global sections on Y . Then (L X Y ) is weakly positive

on Y Y , where Y is the locus defined in Lemma 3.22. In particular

(L X Y ) is weakly positive on the intersection of Y with the -smooth

locus.



POSITIVITY OF DIRECT IMAGE SHEAVES 113

REMARKS 3.25. (1) The reader will have noticed that while in Section 3.D

we always worked with the relative dualising sheaf X Y (or Xs Y ), we now

work with the canonical sheaf X(s) . The reason for this change is that the

vanishing theorems we use are stated for the canonical sheaf.

(2) It may appear pointless to make a statement with two different sets

Y and Y , since in the end we show a property on their intersection. This

distinction is motivated by the fact that Y is determined by the geometry of

the fibration : X Y and has nothing to do with the line bundle L . The

set Y depends on the positivity of L . We will detail this in Section 3.F.

Proof. We are in the situation of Construction 3.19, so Lemma 3.22

implies the existence of a morphism

s : [ (s)(( r) Ls X(s))] [ (L X Y )]
[s]

Y

that is an isomorphism on Y Y0 . Since H is locally free, the induced

morphism

(s)(( r) Ls X(s) ) H dim Y 1 [ (L X Y )]
[s]

Y H dim Y 1

is still an isomorphism on Y . Since the sheaf on the left hand side is generated

by global sections on Y , it follows that

[ (L X Y )]
[s]

Y H dim Y 1

is generated by global sections on Y Y . By definition this implies that

(L X Y ) is weakly positive on Y Y . Since Y always contains the

-smooth locus, the second statement is immediate.

A REMARK ON THE CASE L X . The somewhat vague task of

understanding the influence of the geometry of the fibration : X Y on

the existence of bad loci of the direct image sheaves can now be made more

precise : suppose 8 ) that in the reduction lemma, we have Y Y . Then the

loci where the morphism (3.23)

s : [ (s)(( r) Ls X(s))] [ (L X Y )]
[s]

Y

is not an isomorphism contain the locus where the direct image sheaves are

not weakly positive. Looking at the construction, it seems that this locus does

not depend on L , but this is only part of the truth. Indeed, Lemma 3.13 does

not depend on L , so the locus Y Y0 does not depend on L . But s might

be an isomorphism on a locus that is larger than Y .

8 ) This holds in the setting of Theorem 3.30.
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To give an example, suppose that the complement Y Y has codimension

at least two, so s is an isomorphism in codimension one. Thus if we can

ensure that [
(s)
(( r) Ls X(s) )] is reflexive, then

s is an isomorphism

on Y .

Proof. Indeed [ (L X Y )]
[s]

Y is reflexive and an isomorphism in

codimension one between reflexive sheaves extends to a global isomorphism

by Lemma 5.5.

On the one hand since (s) has very little chance of being flat, in general

it is hard to ensure that [
(s)
(( r) Ls X(s) )] is reflexive. On the other hand

in the case L X , we have a fundamental result due to Kawamata :

THEOREM 3.26 ([Kaw81], Thm. 5). Let : X Y be a fibration between

projective manifolds and let 6 Y be the -singular locus. If 6 is a normal

crossing divisor, the direct image sheaf X is locally free.

This theorem explains why the case L X works slightly better than

the general case :

COROLLARY 3.27 ([Kol86a], Cor. 3.7). Let : X Y be a fibration

between projective manifolds and let 6 Y be the -singular locus. Suppose

that 6 is a normal crossing divisor, and that outside a codimension two set

Z Y , the fibres are reduced with normal crossings. Then X Y is locally

free and nef.

Proof. Apply Theorem 3.30, Lemma 3.13 and the preceding discussion.

3.F EXTENSION OF SECTIONS

From a geometric point of view, the main part of the work is done.

We will now specify the condition on L and check that the line bundles

( r) Ls satisfy the same condition. Then we can apply vanishing theorems

and Castelnuovo-Mumford regularity to check the condition in the reduction

Lemma 3.24. Note that while so far all our considerations were local on the

base Y and worked in the quasi-projective setting, we will now assume X

and Y to be projective.

The weak positivity of the direct image sheaf (L X Y ) for L a nef

and -big line bundle is the easiest case :



POSITIVITY OF DIRECT IMAGE SHEAVES 115

LEMMA 3.28. Let Y be a normal projective variety on which we fix a

very ample line bundle H . Let : X Y be a fibration from a projective

manifold X onto Y . Let L be a nef and -big line bundle on X . Then the

coherent sheaf

(L X) H dim Y 1

is generated by global sections.

Proof. By Castelnuovo-Mumford regularity (Theorem 3.6) it is sufficient

to show that

Hi(Y (L X) H dim Y 1 i) 0 i 0

Fix i 1 dim Y . By the relative Kawamata-Viehweg vanishing theo-

rem 3.7,

Rj (L X) 0 j 0

so by a degenerate case of the Leray spectral sequence

Hk(Y (L X) H dim Y 1 i) Hk(X L X H dim Y 1 i)

for every k 0. Since H is ample and L is nef and -big, the line bundle

M : H dim Y 1 i L is nef. Furthermore we have

c1(M)
dim X

dim Y

d 0

dim Y

d
c1( H dim Y 1 i)d c1(L)

dim X d

Since L is nef and H ample on Y , every term in this sum is nonnegative.

Since L is -big, the last term is strictly positive, so M is nef and big. Thus

the standard Kawamata-Viehweg theorem yields

Hk(X L X H dim Y 1 i) 0 k 1

Note the overkill of vanishing in the preceding proof. For a nef and

relatively big line bundle we can vanish much more cohomology groups than

we actually need, so there is some hope of obtaining similar results under

weaker conditions.

LEMMA 3.29. Let Y be a normal projective variety on which we fix a

very ample line bundle H . Let : X Y be a fibration from a projective

manifold X onto Y . Then the coherent sheaf

X H dim Y 1

is generated by global sections.
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Proof. By Castelnuovo-Mumford regularity (Theorem 3.6) it is sufficient

to show that

Hi(Y X H dim Y 1 i) 0 i 0

Since H is ample, this property holds by Kollár’s Theorem 3.8.

THEOREM 3.30 ([Vie82, Kol86a]). Let : X Y be a fibration from

a normal projective Cohen-Macaulay variety X onto a normal projective

Gorenstein variety Y . Suppose that the locus of irrational singularities Irr(X)

does not dominate Y . Let L be a line bundle over X that is

! nef and -big,

! or trivial, i.e. L X .

Then (L X Y ) is weakly positive.

If is generically smooth, then (L X Y ) is weakly positive on the

-smooth locus.

Proof. By Proposition 3.10, we may suppose without loss of generality

that X is smooth. We use the notation of Constructions 3.11 and 3.19, and

fix a very ample line bundle H on Y .

First case. Since L is nef and -big, the bundle Ls is nef and
s -big. Since

the restriction of d : X(s) Xs to a general (s) -fibre is an isomorphism,

the pull-back ( d) Ls is nef and (s) -big. Hence the coherent sheaf

(s)(( r) Ls X(s) ) H dim Y 1

is globally generated for all s 0 by Lemma 3.28, so in the notation of the

reduction Lemma 3.24 we have Y Y .

Second case. The coherent sheaf

(s)
X(s) H dim Y 1

is globally generated for all s 0 by Lemma 3.29, so in the notation of the

reduction Lemma 3.24 we have Y Y .

In both cases the reduction Lemma 3.24 shows that (L X Y ) is weakly

positive over the maximal Zariski open subset Y Y such that for all s 0

the fibre product ( s) 1(Y ) is normal with at most rational singularities. In

particular if is generically smooth, (L X Y ) is weakly positive on the

-smooth locus.
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3.G RETURN TO WIŚNIEWSKI’S EXAMPLE

Let us see how these rather abstract considerations apply to Wiśniewski’s

Example 2.2. In this case we consider a conic bundle : X Y , where X

and Y are projective manifolds. The morphism is flat, so in the notation

of Construction 3.11, we have Y0 Y and X0 X . Furthermore if we take

L 1
X p P3( 1) , the line bundle L is relatively nef and big, so by

Corollary 3.9, the direct image

(L X Y )

is locally free. Therefore we can apply the base change lemma in the locally

free version 3.15, so

s (Ls Xs Y ) [ (L X Y )]
s

A local computation shows that the locus 61 6 such that the fibres Xy
are double lines, is exactly the section Z . Moreover 6 Z is smooth, so

Example 3.14 tells us that the varieties Xs are normal and have rational sin-

gularities in the complement of ( s) 1(Z) . Thus by the reduction Lemma 3.24,

the direct image sheaf (L X Y ) is weakly positive on Y Z .

Let us now see that Xs does not have rational singularities over Z : for

this we twist the morphism s with H dim Y 1 , where H is a very ample

line bundle, to get a morphism

(s)(( r) Ls X(s) ) H dim Y 1 [ (L X Y )]
[s]

Y H dim Y 1

By Lemma 3.28, the sheaf on the left hand side is globally generated for

every s , so (L X Y ) is weakly positive on the locus where the morphism

is an isomorphism. Yet we know that the direct image sheaf

(L X Y )
1

Y p P3( 1)

is antiample on the section Z . Therefore the morphism cannot be an

isomorphism on this locus, in particular Xs does not have rational singularities

on ( s) 1(Z) .

The preceding arguments show that if the base of a conic bundle has

dimension two, the locus over which we have irrational singularities is at

most a union of points. Thus we get :

COROLLARY 3.31. Let X be a smooth projective threefold that is a conic

bundle : X Y over a surface Y . Let L be a line bundle over X that is

nef and -big. Then the direct image sheaf (L X Y ) is nef.
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3.H MULTIPLIER IDEALS

The preceding discussion shows that in most cases a direct image sheaf

(L X Y ) has merely a generic positivity property like weak positivity,

even if the line bundle L is positive in every point of X . Although it is

natural to try to obtain similar results under a weaker hypothesis on L , one

must be careful : Example 2.10 shows that the existence of global sections

is not a sufficient condition. In this section we will explain briefly how

the introduction of multiplier ideals permits to obtain significantly better

results.

The idea of this section is to relate the classical point of view explained

above with the recent important results by Berndtsson and Păun [BP07]. It

differs from the rest of these notes in two points : we will use an analytic

language and techniques, since they provide a more natural framework for

extension theorems. The exposition will no longer be self-contained and we

refer to [Dem96, Dem01] for basic definitions.

A line bundle L on X is pseudo-effective if the first Chern class

c1(L) is contained in the closure of the cone of the first Chern classes

of effective line bundles in the Neron-Severi group NS(X) R . In this

paragraph we will rather use the following equivalent analytic defini-

tion.

DEFINITION 3.32. Let X be a projective manifold, and L be a line bundle

over X . Then L is pseudo-effective if it admits a singular hermitian metric

h such that its curvature current Oh(L) i h is positive (in the sense of

currents), which we abbreviate as Oh(L) 0 .

It is well known that if Oh(L) 0 , a local weight function of the

metric defined on a small open subset U X is psh (plurisubharmonic).

DEFINITION 3.33. Let be a psh function on an open subset 1 Cn .

Set

( ) : f 1 x f 2e 2 L1loc near x

Let L be a pseudo-effective line bundle and h a singular metric such that

Oh(L) 0 . The multiplier ideal sheaf (h) associated to h is defined at a

point x X by ( ) , where is a local weight function around x . The

cosupport of (h) is the support of X (h) .
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EXAMPLE 3.34. Let L be a line bundle on a projective manifold X such

that H0(X L) 0 . Let 1 k be a base of H
0(X L) ; then we can define

a metric h on L with weight function

log

k

j 1

j(x)
2

This metric satisfies Oh(L) 0 and is nonsingular on the complement of

x X 1(x) k(x) 0

In the case of Example 2.10, we have h0(X L) 3 and all the sections vanish

along the section C corresponding to

P1( 1) 3
P1 P1( 1)

A local computation shows that (h) C .

We will replace the Kawamata-Viehweg vanishing Theorem 3.7 by the

Ohsawa-Takegoshi theorem to obtain the analogue of Lemma 3.28 in this

setting.

LEMMA 3.35. Let Y be a normal projective variety on which we fix a

very ample line bundle H . Let : X Y be a fibration from a projective

manifold X onto Y . Let L be a pseudo-effective line bundle over X and let

h be a singular metric such that Oh(L) 0 and that the cosupport of (h)

does not dominate Y . Then the coherent sheaf

(L X) H dim Y 1

is generically generated by its global sections.

Proof. Since H0(Y (L X) H dim Y 1) H0(X L X H dim Y 1)

and the fibre of (L X) H dim Y 1 in a general point y Y equals

H0(Xy L Xy Xy ) , we have to show that the restriction morphism

H0(X L X H 2) H0(Xy L Xy Xy )

is surjective. We argue by induction on the dimension of Y .

If dim Y 1, a general element D of the linear system H is a disjoint

union of smooth fibres. Hence if Xy
1(y) is a general fibre, we have a

surjective restriction morphism

H0(D L D D) H0(Xy L Xy Xy )
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Fix a smooth metric h with positive curvature on H . Since Oh(L) 0 , we

have

Oh h (L H) O h ( H)

Thus the line bundle L H 2 endowed with the metric h h 2 satisfies

the conditions of the (singular) Ohsawa-Manivel-Takegoshi theorem (cf. [BP07,

Thm. 5.1] and the remarks after their statement), so any section of

H0(D L D D (h D))

extends to a section of H0(X L X (h)) . Since the cosupport of (h) does

not dominate Y , we have (h D) D by the generic restriction theorem

[Laz04b, Thm. 9.5.35].

If dim Y 1, a general element D of the linear system H is a projec-

tive manifold such that (D) is a normal variety. Furthermore (L D h D)

is a pseudo-effective line bundle over D such that OhD (L D) 0 and by

the generic restriction theorem the cosupport of (h D) does not dominate

(D) . So by induction

( D) (L D D) (H D)
dim Y

is generically generated by its global sections. By adjunction D X H

D , so another application of [BP07, Thm. 5.1] shows that the restriction map

H0(X L X H dim Y 1 (h)) H0(D L H dim Y
D D (h D))

is surjective.

REMARK 3.36. The proof shows that we can only extend sections from

smooth fibres Xy such that the multiplier ideal (h Xy ) of the restricted metric

is trivial. In particular we do not know whether (L X) H dim Y 1

is generated by its global sections on the -smooth locus minus the image

of the cosupport of (h) . Nevertheless the proof shows that it is generated

by its global sections on Y , where

(3.37) Y y Y Xy is smooth, (h Xy ) Xy , (L X) is locally free

in y and (L X) H dim Y 1
y H0(Xy L Xy Xy )

This description is not very explicit, but still sufficient for what we need in

the forthcoming proof.

The following statement is a reformulation of [BP07, Cor. 0.2]. While their

proof uses the analytic language much more than we do, the key ingredient

is the same : the Ohsawa-Manivel-Takegoshi theorem used in the proof of

Lemma 3.35.
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THEOREM 3.38. Let : X Y be a fibration from a projective manifold

X onto a normal projective Gorenstein variety Y . Let L be a pseudo-effective

line bundle over X and h a singular metric such that Oh(L) 0 and that

the cosupport of (h) does not dominate Y . Then (L X Y ) is weakly

positive.

Proof. We use the notation of Constructions 3.11 and 3.19, and fix a very

ample line bundle H on Y . By the reduction Lemma 3.24, it is sufficient to

find a Zariski open subset Y Y such that

(s)(( r) Ls X(s) ) H dim Y 1

is globally generated on Y for all s 0. In the case s 1 it is clear that

we satisfy the conditions of Lemma 3.35, so Remark 3.36 gives a set Y Y

such that (L X) H dim Y 1 is generated by its global sections on Y .

We claim that the same set Y works for every s 0 : note first that since

L is pseudo-effective the bundle ( r) Ls is pseudo-effective and we endow

it inductively with the metric

hs : ( r) (( s) h ( ) hs 1)

It is clear that Ohs (( r) Ls) 0 , and we will now study 9 ) the multiplier

ideal (hs) .

Fix a point y Y : since ( s) 1(Y ) is in the smooth locus of Xs , we

can identify X(s)y with Xsy and

(s)(( r) Ls X(s) ) H dim Y 1
y

s (Ls Xs ) H dim Y 1
y

The fibre Xy is smooth and X
s
y is isomorphic to the s -fold product Xy Xy .

Furthermore

Ls Xsy

s

j 1
j L

where j is the projection on the j -th factor and

hs Xsy

s

j 1
j h Xy

As (h Xy ) Xy , this implies by [Laz04b, Prop. 9.5.22] that

(hs Xsy )
s

j 1
j (h Xy ) Xsy

9 ) In general it is not true that (hs) ( r) 1(( s) 1( (h)) ( ) 1( (hs 1))) .
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Since

Xsy
(hs Xsy ) (hs) Xsy Xsy

by the restriction theorem [Laz04b, Thm. 9.5.1], we see that the cosupport

of (hs) does not dominate Y . Hence Lemma 3.35 applies and shows

that
(s)
(( r) Ls X(s) ) H dim Y 1 is generically generated by its global

sections, i.e. on some open subset of Y . We will now show that it is actually

generated by its global sections on Y . Note that

H0(Xsy Ls Xsy Xsy
)

s

j 1
j H

0(Xy L Xy Xy )

so the function y h0(Xsy Ls Xsy Xsy
) is constant on Y . Thus

s (Ls Xs ) H dim Y 1 is locally free in y and by Grauert’s theorem

[Har77, III, Cor. 12.9],

s (Ls Xs ) H dim Y 1
y H0(Xsy Ls Xsy Xsy

)

So all the conditions (3.37) hold for (s) : X(s) Y and every point y Y .

Hence Remark 3.36 shows that
(s)
(( r) Ls X(s) ) H dim Y 1 is generated

by global sections on Y .

REMARK 3.39. A natural generalisation of Theorem 3.38 would be to

prove that the direct image sheaf (L (h) X Y ) is weakly positive, even

if the cosupport of (h) dominates Y . Basically the proof should remain the

same, but one has to make sure that an analogue of the morphism (3.23) still

exists in this situation. More precisely we have to show the existence of a

morphism

s : [ (s)(( r) Ls (hs) X(s) )] [ (L (h) X Y )]
[s]

Y

for every s 0. Since the multiplier ideal sheaf (h) is not locally free, the

necessary base change argument would get even more technical.

4. PROJECTIVE MANIFOLDS WITH NEF ANTICANONICAL BUNDLE

We have seen in the preceding sections that the direct image of the relative

dualising sheaf X Y has been intensively studied and often enjoys better

properties than general direct image sheaves (L X Y ) . It is natural to ask

what happens in the case where L is the anticanonical bundle 1
X of some
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Gorenstein variety X . Indeed if : X Y is a fibration between normal

Gorenstein varieties X and Y , we have the trivial relation

1
Y ( 1

X X Y )

so the positivity of 1
Y can be studied via the direct image approach.

4.A GENERAL PROPERTIES

The following example shows that even for a locally trivial fibration, this

direct image is not necessarily positive.

EXAMPLE 4.1 ([Zha06], p. 137). Let Y be a smooth projective curve of

genus 2 and let M be a line bundle such that M has degree at least

3 2. Set X : P( Y M) and denote by : X Y the projection map.

Then 1
X has a non-zero section and is -ample, but

1
Y ( 1

X X Y )

is antiample.

Proof. By the canonical bundle formula we have

1
X ( 1

Y M ) P(2)

so

H0(X 1
X ) H0(Y 1

Y M S2( Y M))

Since 1
Y M is a line bundle of degree at least on the curve Y , it has

a non-zero section. Thus the right hand side is not zero.

REMARK. Theorem 3.38 shows that there can only be one explanation for

this “loss of positivity” : the cosupport of the multiplier ideal sheaf associated

to 1
X dominates the base Y . Indeed the section corresponding to the quotient

bundle

Y M M

has strictly negative intersection with the anticanonical divisor KX .

The example suggests that one should start the study of the anticanonical

bundle under a global assumption, like 1
X is nef. In this case one can then

refine the machinery developed in the preceding sections to obtain a good

structure result :
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THEOREM 4.2 ([Zha05], Main Theorem). Let X be a projective manifold

such that 1
X is nef. Let : X Y be a rational dominant fibration onto

a smooth variety Y . Then either

(1) Y is uniruled (covered by rational curves); or

(2) the Kodaira dimension (Y) is zero. Moreover in this case, the fibration

has generically reduced fibres in codimension one.

As an application, one gets the following corollary, conjectured by

Demailly, Peternell and Schneider [DPS93, Conj. 2] :

COROLLARY 4.3 ([Zha05]). Let X be a projective manifold such that 1
X

is nef. Then the Albanese morphism : X Alb(X) is surjective.

Proof of the corollary. We argue by contradiction and denote by Y a

desingularisation of the image of . Since a torus does not contain any rational

curve, it is clear that Y is not uniruled. Thus by Theorem 4.2 it has Kodaira

dimension zero. A classical theorem by Ueno, later refined by Kawamata

[Kaw81], shows that the image of is contained in a proper subtorus of

Alb(X) . Thus (X) does not generate Alb(X) as a group, a contradiction to

the universal property of the Albanese torus.

Let us recall that a projective manifold X is rationally connected if two

generic points x and y can be connected by a rational curve f : P1 X . Recall

also that any uniruled projective manifold admits a fibration : X Y (the

rational quotient or MRC-fibration, [Kol96, Thm. 5.4], [Cam04, Thm. 1.1])

such that the general fibres are rationally connected projective manifolds,

moreover the base Y is not uniruled by the Graber-Harris-Starr theorem

[GHS03]. Theorem 4.2 implies that the base Y has Kodaira dimension zero

if 1
X is nef. Furthermore the general fibre is rationally connected with nef

anticanonical bundle, so a classification theory naturally starts by looking at

the rationally connected case.

4.B RATIONALLY CONNECTED MANIFOLDS

Rationally connected manifolds with nef anticanonical bundle are a natural

generalisation of Fano manifolds ( 1
X ample), so there is some hope that

some of the properties known for Fanos are still valid in this more general

setting. In dimension one, the only example is P1 and in dimension two

the Enriques classification leads to a finite, well-understood list (cf. [BP04]).

This changes radically as soon as we look at projective threefolds, where a
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number of basic questions are still wide open. Before one can write down an

explicit classification of these manifolds, one should check that there are only

finitely many cases. More precisely one should try to answer the fundamental

question :

QUESTION 4.4 ([JPR06], Ch. 06). Is the functor of deformations of pro-

jective rationally connected manifolds with nef anticanonical bundle bounded,

i.e. are there only finitely many deformation families in every dimension ?

If the anticanonical bundle is nef and big, it is semiample by the base-point

free theorem [Kaw84, Rei83, KM98], so it is possible to study this question

by looking at the anticanonical morphism

mKX : X X

for m sufficiently large. This allows one to prove boundedness for threefolds

with nef and big anticanonical bundle, at least in dimension three [Bor01,

KMMT00, McK02]. If 1
X is nef but not big, there are examples where 1

X

is not semiample [BP04].

In this case, a natural approach to Question 4.4 comes from the minimal

model program : since X is a smooth projective rationally connected manifold,

there exists an elementary Mori contraction : X Y , i.e. a morphism with

connected fibres onto a normal variety Y such that the anticanonical bundle
1

X is -ample and which satisfies the following condition : there exists a

rational curve C X such that a curve C X is contracted by if and

only if we have an equality in N1(X)

[C ] [C] Q

By N1(X) we denote the Q -vector space of 1-cycles on X modulo numerical

equivalence (cf. [Deb01, 1.3]). If the contraction is of fibre type (i.e.

dim Y dimX ), Theorem 3.30 tells us that the anticanonical bundle of Y is

at least weakly positive and even nef if X has dimension three (Corollary 3.31).

Classification theory then allows one to show that this leads to a bounded

situation [BP04].

The situation is much more tricky if the contraction is birational. In

dimension three, Demailly, Peternell and Schneider [DPS93, Thm. 3.8] have

shown that 1
Y is nef unless is a birational contraction that contracts a

divisor E onto a smooth rational curve C Y such that

NC Y P1 ( 1) P1 ( 2)
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or

NC Y P1( 2) 2

In the first case, one can use a flipping construction to show that X is

birational to a Q -Fano variety (ibid.), so we get boundedness in this case.

In the second case we do not have this possibility and the general hope was

that these ( 2 2)-contractions do not exist or appear only in very special

situations. We will now give some examples that destroy this hope. The basic

construction is given by the following rather straightforward lemma.

LEMMA 4.5. Let Y be a smooth projective threefold that contains a finite

number of disjoint smooth rational curves C1 Cr such that

NCi Y P1 ( 2) 2

for every i 1 r and such that the base locus

Bs 1
Y C1 Cr

Let : X Y be the blow-up of Y along the curves C1 Cr . Then
1

X is nef.

Proof. Denote by Ei the exceptional divisors of the blow-up, then

Ei P(NCi Y ) P1 P1

and we fix the notation that the restriction of : X Y to Ei is the projection

on the first factor of the product. With this convention and using the standard

notation for line bundles on P1 P1 , we have

Ei (Ei) NEi X P(N
Ci Y

)( 1) P1 P1( 2 1)

We have
1

X
1

Y X(
r

i 1 Ei)

so

H0(X 1
X ) H0(Y 1

Y C1 Cr ) H0(Y 1
Y )

Yet C1 Cr is in the base locus of
1

Y , so we have

H0(X 1
X ) H0(Y 1

Y )

In particular the base locus of 1
X is contained in 1(C1 Cr)

r

i 1 Ei . Furthermore

1
X Ei ( 1

Y Ci) Ei ( Ei) P1 P1( 2 0) P1 P1(2 1) P1 P1(0 1)

so 1
X Ei is nef. Let now D be an irreducible curve in X , then there are two

cases. If D is not contained in any of the Ei , it is not in the base locus of
1

X , so clearly KX D 0. If D is contained in some Ei , we conclude

by the nefness of 1
X Ei .
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The lemma reduces the question to constructing a threefold Y whose

anticanonical bundle is globally generated except on a finite number of rational

curves. After mailing my first example to Cinzia Casagrande, she immediately

replied with the following very simple one.

EXAMPLE 4.6. Set X : P P1( 2) 2
P1

and denote by : X P1

the natural projection. The section C0 X corresponding to the quotient

bundle

( ) P1( 2) 2
P1 P1( 2)

has normal bundle P1( 2) 2 . Furthermore

1
X P(2)

so

H0(X 1
X ) H0 P1 S2( P1( 2) 2

P1
)

The vector bundle S2 P1( 2) 2
P1

is globally generated except in the

direction corresponding to ( ) . Conclude with Lemma 4.5.

Thus we see that ( 2 2)-contractions exist, but this is not a problem

as long as the anticanonical bundle of X BlCY is nef and big. In the case

of Example 4.6, we have ( KY )
3 54. Adapting the formulas in [JPR05,

p. 28], one sees that if X is the blow-up of Y in a ( 2 2)-curve, then

(4.7) ( KX)
3 ( KY )

3 2

Thus ( KX)
3 56 0 and 1

X is nef and big. In order to get an example

with ( KX)
3 0, we need a more involved construction :

EXAMPLE 4.8. Let p1 p8 be an almost general configuration of not

infinitely near points in P2 , i.e. no three points except p1 p2 p3 are collinear

and there is no conic through more than five points. The pencil of cubics

through these eight points has exactly one unassigned base point p9 [Har77,

Cor. 4.5], and we denote by S the blow-up of P2 in these nine points. Let

D1 be the strict transform of the line through p1 p2 p3 .

Set Y : P( S S(D1)) and denote by : Y S the natural projection.

Then there exist exactly two smooth rational curves Ci Y such that

NCi Y P1 ( 2) 2

The curves C1 and C2 are disjoint and the base locus of
1

Y is equal to

C1 C2 . Let : X Y be the blow-up of Y along the curves C1 C2 . Then
1

X is nef and ( KX)
3 0.
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Proof. Note first that blowing up the points p1 p9 resolves the

indeterminacies of the map induced by the pencil, so we have a fibration

f : S P1 such that 1
S P1(1) . The curve D1 is a 2-curve, so it is

contracted by f , and it is elementary to see that

f 1( f (D1)) D1 D2

where D2 is the strict transform of the unique conic through p4 p9 .

Note that the genericity condition implies that the conic D2 is smooth, since

otherwise three of the six points would be collinear. Furthermore we have

D22 2 D1 D2 2

We denote by S1 (resp. S2 ) the two disjoint -sections corresponding to the

quotient line bundles S S(D1) S(D1) (resp. S S(D1) S ).

For i 1 2 , set YDi
: 1(Di) . Then YDi

is isomorphic to the second

Hirzebruch surface F2 and the curve

Ci : YDi
Si

is the unique section of YDi
such that NCi YDi P1 ( 2) . Since

NYDi Y ( YDi
) NCi S ( YDi

) P1( 2)

the exact sequence

0 NCi YDi NCi Y NYDi Y Ci 0

splits, hence NCi Y P1( 2) 2 . Since S1 and S2 are disjoint, the curves

C1 and C2 are disjoint.

Thus we are left to prove that the base locus of 1
Y is exactly C1 C2 .

By the canonical bundle formula we have

1
Y S(D2) P( S S(D1))(2)

Denote by F a general f -fibre, then

1
Y S(D2) S2( S S(D1))

S(D2) S(F) S(F D1)

is clearly generated by its global sections on S (D1 D2) . Since
1

Y is

relatively generated by global sections the natural map

1
Y

1
Y

is surjective, so 1
Y is generated by its global sections on Y (YD1 YD2 ) .
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We will now show that the intersection of YD1 with the base locus of
1

Y is exactly C1 (YD1 C2) ; the corresponding statement for YD2 can be

shown analogously. Together they imply our claim on the base locus. From

the computation above, we get h0(Y 1
Y ) 5 and an analogous computation

shows that

h0(Y 1
Y Y ( YD1 )) h0(S 1

Y S( D1)) 3

Therefore the image of the restriction map

r : H0(Y 1
Y ) H0(YD1

1
Y YD1

)

has dimension two and we will now describe its geometry. Consider the

restricted line bundle

1
Y YD1 S(D2) P( S S(D1))(2) YD1

( YD1
) P1 (2) P(

P1 P1
( 2))(2)

The fixed part of the linear system 1
Y YD1

is C1 and

( YD1
) P1 (2) P(

P1 P1
( 2))(1)

is base-point free. Any section of 1
Y YD1

that extends to Y vanishes on

C1 (YD1 C2) , thus

(4.9) im r H0(YD1 ( YD1
) P1(2) P(

P1 P1
( 2))(1) YD1 C2) C1

The divisors corresponding to a general element of the linear system

( YD1
) P1(2) P(

P1 P1
( 2))(1) are rational curves with normal bun-

dle P1(2) . Since D1 D2 2, the surface YD1 and the curve C2 meet

exactly in two points. These points are not on the 2-curve C1 YD1 , so

elementary considerations on the second Hirzebruch surface show that

h0(YD1 ( YD1
) P1 (2) P(

P1 P1
( 2))(1) YD1 C2) 2

and the linear system has no base points except YD1 C2 . Thus the inclusion

(4.9) is an equality and the base locus of im r is C1 (YD1 C2) .

Finally let us check that X has the stated properties : by Lemma 4.5, the

anticanonical bundle of X is nef. By the Chern-Wu formula for Chern classes

on projectivised vector bundles [Har77, App.A, 3]

c1( P( S S(D1))(1))
2 c1( S(D1)) c1( P( S S(D1))(1)) 0

so an easy computation shows that ( KY )
3 4. Applying Formula (4.7)

twice, we see that ( KX)
3 0.
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Example 4.8 shows that in order to answer Question 4.4, we must consider

projective manifolds 10 ) whose anticanonical bundle is nef in codimension one,

i.e. the non-nef locus of the anticanonical bundle is a finite union of subvarieties

of codimension at least two. Being very optimistic we could even ask :

Do we have boundedness of the functor of deformations of projective ratio-

nally connected manifolds whose anticanonical bundle is nef in codimension

one ?

Well, the answer to this question is no, and once more the direct image point

of view gives us a hint how to construct a counterexample : if : X S is a

Pr -bundle over a surface such that 1
X is nef, then 1

S is nef (Corollary 3.31).

Thus if we construct a Pr -bundle X over a surface S such that 1
S is not

nef, we have a good candidate and all we have to ensure is that the non-nef

locus does not get too big.

EXAMPLE 4.10. Let C P2 be a smooth cubic. Let : S P2 be the

blow-up of P2 in d points p1 pd lying on the cubic curve C . Denote

still by C S the strict transform of the cubic. Since

1
S

1
P2 S

d

i 1
1(pi)

we have

H0(S 1
S ) H0(P2 P2(3) p1 pd )

Thus

C 1
S

and if we blow up at least ten points, we have

( KS)
2 9 d 0

so C is the only element in the anticanonical system.

Set X P( r 1
S S(C)) , then : X S is a Pr 1 -bundle over S and

has second Betti number d 2. We claim that the anticanonical sheaf 1
X

is globally generated on the complement of a unique 11 ) curve C0 X such

that KX C0 0.

10 ) Very probably, we shall also have to admit some singularities coming from the minimal
model program.
11 ) Note that the non-nef locus in the sense of [Tak08] is in general not the union of the

curves that are KX -negative. In our case we nevertheless have NNef( KX) C0 , so KX is
nef in codimension dimX 2.
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Proof of the claim. By the canonical bundle formula

1
X P(

r 1
S S(C))

(r)

so it is sufficient to show the claim for
P(

r 1
S S(C))

(1) . The vector bundle
r 1

S S(C) is clearly generated by its global sections on the complement

of the curve C . Furthermore we have r 1 global sections vanishing on a

divisor corresponding to a quotient bundle

r 1
S S(C)

r 2
S S(C)

The intersection of these r 1 divisors is the -section Z corresponding to

the quotient bundle
r 1

S S(C) S(C)

so the base locus of
P(

r 1
S S(C))

(1) is contained in the intersection of
1(C) and Z which is an integral curve C0 C . Since

P(
r 1

S S(C))
(1) C0 C(C) NC S

and NC S has degree ( KS)
2 0, the intersection number c1( P(1)) C0 is

negative.

Example 4.10 shows that the second Betti number of a projective manifold

X of dimension n such that KX C 0 for all integral curves C X except

one can be arbitrarily high. Since the second Betti number is an invariant under

deformation of compact complex manifolds, this shows that the corresponding

functor of deformations is not bounded.

Note that Example 4.10 does not necessarily indicate that the answer to

Question 4.4 is negative. In the example, the curve C0 such that KX C0 0 is

elliptic while the result of Demailly, Peternell and Schneider [DPS93, Thm. 3.8]

indicates that the obstructions arising from elementary Mori contractions are

rational curves. It is possible to refine the construction to get an example of

a projective manifold X such that 1
X is globally generated except on one

rational curve C0 X that satisfies

NC0 X P1( 2) P1( 2d)

with d N arbitrary. Adapting Lemma 4.5, one might hope to get a

counterexample via an iterated blow-up. Unfortunately, the normal bundle

of the KX -negative curves produced in this process will not be of the form

prescribed by [DPS93, Thm. 3.8], so we will not end up with a manifold

whose anticanonical bundle is nef. Summa summarum, the initial problem

remains open and a step towards a better understanding should be given by

an answer to the following question :
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QUESTION 4.11. What is the smallest class of varieties that contains the

projective rationally connected manifolds with nef anticanonical bundle and

is stable under the minimal model program ?

5. A TECHNICAL APPENDIX

5.A REFLEXIVE SHEAVES

Locally free sheaves, although very convenient, are too restricted for our

purposes since a direct image sheaf is not necessarily locally free, even if

the fibration is smooth. We will see that reflexive sheaves are the appropriate

framework to fill this gap. Our exposition follows closely [Har80, Ch. 1].

DEFINITION 5.1. Let X be an integral scheme and a coherent sheaf

on X . We define the dual of by

: om
X
( X)

and the bidual of by : ( ) . A sheaf is torsion-free if the natural

map

is injective. It is reflexive if it is an isomorphism.

REMARK. Let Tor be the torsion subsheaf of a coherent sheaf

(cf. definition in [Kob87, p. 159]). It is elementary to see that is torsion-free

if and only if Tor 0 (ibid).

By upper semicontinuity [Har77, II, Ex. 5.8] there exists a non-empty open

subset X0 X such that X0 is locally free. It is important to give a lower

bound on the codimension of X X0 .

NOTATION 5.2. Let X be an integral scheme, and let be a coherent

sheaf on X . We say that is locally free in codimension k if there exists

a closed subvariety Z X such that codimX Z k 1 and X Z is locally

free.

REMARK. It is well known that on a smooth variety a torsion-free sheaf is

locally free in codimension one (cf. [Kob87, Cor. 5.15]) and a reflexive sheaf

is locally free in codimension two (cf. [Har80, Cor. 1.4]). Since a normal
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variety is regular in codimension one, this immediately implies

PROPOSITION 5.3. Let X be a normal variety, and a torsion-free sheaf

on X . Then is locally free in codimension one.

DEFINITION 5.4. A coherent sheaf on an irreducible scheme X is

normal if for every open set X0 X and every closed subset Z X0 such

that codim(X0) Z 2, the restriction map

K( X0) K( X0 Z)

is bijective.

The next lemma gives a useful characterisation of reflexive sheaves on a

normal variety.

LEMMA 5.5 ([Har80]). Let be a coherent sheaf on a normal variety

X . The following conditions are equivalent :

(1) is reflexive;

(2) is torsion-free and normal;

(3) is torsion-free, and for each open set X0 X and each closed

subset Z X0 such that codim(X0) Z 2 , we have X0 j X0 Z ,

where j : X0 Z X0 is the inclusion map.

In particular if and are reflexive sheaves on X and there exists a closed

set Z X such that codimX Z 2 and X Z X Z , then .

NOTATION 5.6. In the situation above, let and be coherent sheaves

on X such that there exists a closed set Z X such that codimX Z 2 and

X Z X Z . Then we say that and are isomorphic in codimension one.

COROLLARY 5.7. Let X be a normal variety, and let and be coherent

sheaves on X . If is reflexive, then om( ) is reflexive.

In particular if there exists a closed set Z X such that codimX Z 2

and a morphism X Z X Z , the morphism extends to a unique morphism

on X .

Proof. The same statement for X smooth is [Kob87, Prop. 5.23], the proof

goes through without changes.
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PROPOSITION 5.8 ([Har80], Cor. 1.7, Prop. 1.8). Let : X Y be a

morphism between normal varieties.

If is equidimensional and dominant, and is a reflexive sheaf on X ,

the direct image is reflexive.

If is flat and is a reflexive sheaf on Y , the pull-back is reflexive.

It is a well-known and basic fact [Har77, II, Cor. 6.16] that on a smooth

variety there is a bijection between linear equivalence classes of Weil divisors

and isomorphism classes of invertible sheaves. On a normal variety this is no

longer true since a Weil divisor is no longer necessarily Cartier. Nevertheless

if we denote by Xreg the nonsingular locus of X , then by [Har77, II, Prop. 6.5]

we can identify the divisor class groups

Cl(X) Cl(Xreg)

Thus, given a Weil divisor D , we can associate a coherent sheaf X(D) by

X(D) : j Xreg(D Xreg )

where j : Xreg X is the inclusion. By Lemma 5.5 the sheaf X(D) is

reflexive. On the other hand given a reflexive sheaf of rank 1 on X , there

exists by Proposition 5.3 an open subset X0 X such that codimX(X X0) 2

and X0 is locally free. So there exists a Weil divisor D on X0 such

that X0 X0(D ) . Since Cl(X) Cl(X0) , we can see D as a Weil

divisor on X . Therefore we have X(D ) by Lemma 5.5. This shows

that on a normal variety we have a bijection between divisor classes and

reflexive rank 1 sheaves modulo multiplication by non-vanishing functions.

Unfortunately this bijection is not an isomorphism of Z -modules, since the

class of reflexive sheaves is not closed under the tensor product. In particular

X(D1) X(D2) X(D1 D2)

does not hold in general ; we have to take the bidual on the left hand side

to obtain an isomorphism. We sum up these observations in the following

PROPOSITION 5.9 ([Rei80], App., Thm. 3). Let X be a normal variety,

then the correspondence

: D X(D)

where D is a Weil divisor, induces a bijection

: Cl(X) reflexive rank 1 sheaves H0(X X)

This bijection is an isomorphism of Z -modules if one defines the product of

two reflexive sheaves and of rank one by ( ) .
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5.B SINGULARITIES

We start with an introduction to the zoology of singular varieties. All these

notions are well-known to the experienced researcher, but often confusing for

the young algebraic geometer. Therefore we will build up the notions as

systematically as possible, but won’t give any proofs.

DEFINITION 5.10. Let X be a scheme. We denote by Xreg the open

subscheme such that for p Xreg , the local ring X p is regular. We denote

by Xsing X Xreg the singular locus of X .

If X is irreducible and codimX Xsing k , we say that X is regular in

codimension k 1.

DEFINITION 5.11 ([Mat89], p. 134). A scheme is Cohen-Macaulay if all

the local rings X p are Cohen-Macaulay rings in the sense of commutative

algebra, that is

Depth X p dim X p

Here the depth of a local ring is the maximal length of a regular sequence

in X p : a sequence x1 xr is regular if x1 is not a zero divisor in X p

and for all i 2 r , the image of xi in X p (x1 xi 1) is not a

zero divisor. The dimension dim X p is the Krull dimension of the local ring.

EXAMPLE ([Har77], II, Prop. 8.23). Any local complete intersection in a

manifold is Cohen-Macaulay.

Serre’s criterion gives us a convenient way to check if an integral scheme

is normal.

THEOREM 5.12 ([Har77], II, Thm. 8.22A). Let X be an integral Cohen-

Macaulay scheme. Then X is normal if and only if it is regular in

codimension 1 .

The Cohen-Macaulay condition will be very useful for us, since it ensures

the existence of a relative dualising sheaf (cf. Section 5.C). For some arguments

it is nevertheless necessary to suppose the stronger Gorenstein property. We

will see that for all the questions we are interested in, it makes no difference

to work with smooth or the more general Gorenstein varieties.
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DEFINITION 5.13. A scheme of pure dimension n is Gorenstein if and

only if it is Cohen-Macaulay and the dualising sheaf X is invertible.

EXAMPLE. Any effective Weil divisor D in a manifold X is Gorenstein.

Indeed by adjunction we have D X D(D) .

DEFINITION 5.14. A fibration : X Y is a flat Cohen-Macaulay (resp.

Gorenstein) fibration if it is flat and X is an irreducible Cohen-Macaulay

(resp. Gorenstein) scheme.

The following theorem shows that the Cohen-Macaulay (resp. Gorenstein)

condition is well-behaved under flat maps.

THEOREM 5.15 ([Mat89], Cor. 23.3, Thm. 23.4). Let : X Y be a flat

morphism. Then X is Cohen-Macaulay (resp. Gorenstein) if and only if Y

and every -fibre is Cohen-Macaulay (resp. Gorenstein).

DEFINITION 5.16. A normal variety X has at most rational singularities

if X is Cohen-Macaulay and there exists a desingularisation r : X X such

that

r X X

REMARK. Note that if X has rational singularities, then every desingular-

isation satisfies the condition from the definition. By [KKMS73] and [Elk81]

the definition above is equivalent to asking that there exists a desingularisation

r : X X such that r X X and

Rir X 0 i 0

It is clear from the definition that the subset Irr(X) X where X has

non-rational singularities is closed and we will call it the irrational locus

of X .

5.C COHERENT SHEAVES AND DUALITY THEORY

We recall the basics of duality theory, for proofs we refer to [Kle80]. The

crucial result that we will apply frequently is the technical Corollary 5.24.
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For the whole section, we fix the notation : let : X Y and : Y Y

be morphisms of schemes, then we have the base change diagram for

X : X Y Y :

X X

Y Y

DEFINITION 5.17 ([Kle80], Def. 10). Let : X Y be a flat projective

morphism of schemes. Denote by xtm the m -th derived functor of omX .

We say that relative duality holds for the morphism if there exists a

quasi-coherent sheaf X Y such that the natural map

Dm : xtm( X Y ) omY (R
r m )

is an isomorphism for all 0 m r : dimX dim Y , and a quasi-

coherent sheaf on X , and a quasi-coherent sheaf on Y . In this case we

call X Y the relative dualising sheaf.

THEOREM 5.18 ([Kle80], Thm. 21, [Kle80], Prop. 9). Let : X Y be a

flat projective morphism of schemes. Then relative duality holds if and only

if all the fibres are Cohen-Macaulay. In this case the relative dualising sheaf

X Y is flat over Y . Let : Y Y be any (not necessarily flat) base change,

then relative duality holds for the flat morphism : X Y and

(5.19) X Y ( ) X Y

THEOREM 5.20 ([Kle80], p. 58; see also Theorem 5.15). Let : X Y

be a flat projective morphism. If X is Cohen-Macaulay and Y is Gorenstein,

relative duality holds and

(5.21) X Y X
1

Y

This allows us to extend slightly the definition of the relative dualising

sheaf to the non-flat case.

DEFINITION 5.22. Let : X Y be a fibration such that X is quasi-

projective Cohen-Macaulay and Y is Gorenstein. Then we set X Y :

X
1

Y .
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REMARK 5.23. We will call X Y the relative dualising sheaf, even in

the non-flat setting. Note that this is a heavy abuse of language, since X Y

is definitely not a relative dualising sheaf in the sense of our definition. In

particular X Y does not have good properties with respect to base change,

fibre products etc.

COROLLARY 5.24. Let : X Y and : Y Y be flat Cohen-Macaulay

fibrations. Then is a flat Cohen-Macaulay fibration. Furthermore we have

(5.25) X Y ( ) Y Y ( ) X Y

If X and Y are Gorenstein, X is Gorenstein. If X and Y are integral, X

is integral.

Proof. STEP 1 : the Cohen-Macaulay case. Since X (resp. Y ) is Cohen-

Macaulay, the fibres of the morphism (resp. ) are Cohen-Macaulay by

Theorem 5.15, so relative duality holds for by Theorem 5.18. So all the

fibres of the induced morphism : X X are Cohen-Macaulay. Since X is

Cohen-Macaulay, this implies by Theorem 5.15 that X is Cohen-Macaulay.

Since the general fibres of and are irreducible, this holds for the general

fibre of . By [Cam04, Lemma 1.10] this shows that there exists an open

subset Y Y such that 1(Y ) is irreducible. Since is flat, it is an open

mapping, so 1(Y ) is dense in X . This shows the irreducibility of X . By

[Kle80, p. 58] we have

X Y X X ( ) X Y

so (5.19) implies (5.25).

STEP 2 : the Gorenstein case. Since Y is Gorenstein, we know by (5.21)

that X X ( ) Y Y is locally free. Using the same formula we see that

in this case the fibres of are even Gorenstein. Since X is Gorenstein, this

implies by Theorem 5.20 that X is Gorenstein.

STEP 3 : integrality. Since X and Y are integral, they admit non-empty

open subsets X0 X and Y0 Y that are smooth. By generic smoothness

applied to the induced morphisms X0 Y and Y0 Y we can suppose up

to restricting a bit further that they are smooth over a smooth base. Therefore

X0 Y Y0 is smooth and dense in X , in particular X is generically reduced.

Since X is flat over the integral scheme Y , it follows from [Laz04a, p. 246]

that X is reduced.
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We conclude with an absolutely trivial, and nevertheless crucial remark.

COROLLARY 5.26. Let : X Y be a flat Cohen-Macaulay fibration,

and let be a locally free sheaf on X . Then

( X Y )

is reflexive.

Proof. Since is locally free, we have

X Y omX( X Y )

so relative duality implies that

( X Y ) omX( X Y ) omY (R
dim X dim Y

Y)

The dual sheaf of a coherent sheaf is reflexive.
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[Elk81] ELKIK, R. Rationalité des singularités canoniques. Invent. Math. 64
(1981), 1–6.

[GHS03] GRABER, T., J. HARRIS and J. STARR. Families of rationally connected
varieties. J. Amer. Math. Soc. 16 (2003), 57–67.

[HM07] HACON, C. D. and J. MCKERNAN. On Shokurov’s rational connectedness
conjecture. Duke Math. J. 138 (2007), 119–136.

[Har77] HARTSHORNE, R. Algebraic Geometry. Graduate Texts in Mathematics
52. Springer-Verlag, New York-Heidelberg, 1977.

[Har80] Stable reflexive sheaves. Math. Ann. 254 (1980), 121–176.

[JPR05] JAHNKE, P., TH. PETERNELL and I. RADLOFF. Threefolds with big and
nef anticanonical bundles. I. Math. Ann. 333 (2005), 569–631.

[JPR06] JAHNKE, P., TH. PETERNELL and I. RADLOFF. Some recent developments
in the classification theory of higher dimensional manifolds. In :
Global Aspects of Complex Geometry, 311–357. Springer, Berlin,
2006.

[Kaw81] KAWAMATA, Y. Characterization of abelian varieties. Compositio Math.
43 (1981), 253–276.

[Kaw82] Kodaira dimension of algebraic fiber spaces over curves. Invent.
Math. 66 (1982), 57–71.

[Kaw84] Elementary contractions of algebraic 3-folds. Ann. of Math. (2)
119 (1984), 95–110.

[KKMS73] KEMPF, G., F. F. KNUDSEN, D. MUMFORD and B. SAINT-DONAT. Toroidal
Embeddings. I. Lecture Notes in Mathematics 339. Springer-Verlag,
Berlin-New York, 1973.

[Kle80] KLEIMAN, S. L. Relative duality for quasicoherent sheaves. Compositio
Math. 41 (1980), 39–60.

[Kob87] KOBAYASHI, S. Differential Geometry of Complex Vector Bundles. Publi-
cations of the Mathematical Society of Japan 15. Kanô Memorial
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